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Abstract

We provide an asymptotic distribution theory for a class of Generalized Method
of Moments estimators that arise in the study of differentiated product markets when
the number of observations is associated with the number of products within a given
market. We allow for three sources of error: sampling error in estimating market
shares, simulation error in approximating the shares predicted by the model, and the
underlying model error. It is shown that the estimators are CAN provided the size
of the consumer sample and the number of simulation draws grow at a large enough
rate relative to the number of products. We consider the implications of the results
for Berry, Levinsohn, and Pakes� (1995) random coefficient logit model and the pure
characteristic model analyzed in Berry and Pakes (2002). The required rates differ
for these two frequently used demand models. A small Monte Carlo study shows
that the difference in asymptotic properties of the two models are reßected, in quite a
striking way, in the models� small sample properties. Moreover the limit distributions
provide a good approximation to the actual monte carlo distribution of the parameter
estimates. The results have important implications for the computational burden of
the two models.
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Vertical Model.

1 Introduction

We are often interested in estimating parameters of demand (or production) functions from
data on the quantity, price, characteristics (and perhaps the production inputs) of a set of
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products that interact in an imperfectly competitive market. In the simplest case, there
is a national market with one observation per product, and the approximations used for
the distribution of the estimators are obtained by taking the limit as the number of those
products, say J , grows large.
This paper is concerned with the limiting properties of such estimators. The fact that we

allow for interactions among Þrms implies that to obtain consistency and asymptotic nor-
mality as J grows large we need to modify standard limiting arguments. The modiÞcations
are quite general and apply to a broad class of models used in empirical Industrial Orga-
nization. We are particularly concerned with applications to the demand for differentiated
products; applications which are complicated by the presence of sampling and simulation
errors which enter the estimating equations in a non-linear fashion. Indeed our main focus
is on conditions which guarantee the consistency and asymptotic distributions of estimators
of the parameters of familiar differentiated product discrete-choice demand systems.
Before proceeding we explain why we made certain choices in the way we conduct the

analysis. Of particular importance is our choice of taking limits in the number of products.
The argument here is entirely practical. First Industrial Organization often has to deal with
markets in which both: J is quite large (large enough to think limiting approximations in
dimension J are likely to be relevant), and the theory of imperfect competition is clearly
relevant (partly because of spatial competition and multi-product Þrms). That is using
approximations obtained from limits as J grows large is often appropriate. Second, though
dynamic models often make J endogenous, the relationship between J and its observable
determinants (market size, ownership of products, etc.) varies with the relevant model for
the problem at hand (see, for e.g., Sutton (1991)). Hence in order to take limits in the
determinants of J (rather than in J itself) we would need to discuss a host of issues which
are not central to the goals of this paper. Instead we suffice with conditions on how shares
behave as J increases (condition S below); conditions which are likely to be satisÞed by a
range of dynamic models.
We focus the analysis on a process which generates a single cross section of products even

though estimates of parameters of differentiated product demand systems are often obtained
from richer data generating processes. For example, micro data which matches individuals
to the products they choose, or regional and/or time series variance in the product level data
are often also available. However, as discussed below, in most (though not all) of these cases
J will still be one of the relevant limiting dimensions, and as a result arguments similar
to those given here will still have to be used to rationalize the limiting properties of the
parameter estimates.1

One Þnal point. We have chosen not to condition our major results on the nature of
competition in the product market (e.g., Nash in prices or quantities). This adds to the
generality of our results but, as we will explain, leaves open an interesting and important
set of questions on the efficiency of alternative estimators. At appropriate points we will
comment on different aspects of this efficiency issue. However, for reasons explained below,
we do not have a practical solution to the problem of obtaining efficient estimators for the
models typically used in empirical I.O.

1Indeed we do not know of any empirical work on differentiated product demand systems which does not
generate their objective function by forming averages over the products in a given market. As a result they
all have to worry about the interactions between products that lie at the heart of our analysis.
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Background on the Model and Results

Discrete choice differentiated product demand systems posit that the utility of the consuming
unit is a function of: parameters, θ, observed product characteristics, x, random consumer
tastes, and unobserved (by the econometrician) product characteristics, ξ. Some of the
observed characteristics (e.g., price) may be correlated with ξ. The consuming unit either
chooses one of the J products marketed or it chooses not to spend any money on the goods
in this market (in which case we say the consumer chooses the �outside� alternative). Each
unit makes the choice that maximizes its utility. The choices of different consumers differ
because of their tastes, and the distribution of those tastes is denoted by P 0.
Our estimate of the model�s market shares, say σ(θ, x, ξ, P ), are generated by simply

adding up over the choices of consuming units with taste distribution P , where P is typically
the empirical distribution of tastes from a random sample drawn from P 0. We observe the
actual market shares, s. Up to sampling error, these are assumed to be the market shares
generated by the model at the true (θ0, P 0).
To see how we Þnd estimators for our model note that the true value of the unobservables

are implicitly deÞned by the system

σ(θ0, x, ξ, P 0) = s0, (1)

where θ0 is the true value of the parameter vector and s0 is the population value of the
market shares (it does not contain sampling error).
The equation σ(θ, x, ξ, P ) = s can be solved for ξ as a function of (θ, x, s, P ). An identi-

fying assumption on the conditional distribution of ξ(θ0, x, s0, P 0) is made and the θ vector
is estimated by method of moments. For example, if we assume a zero covariance restriction
between some exogenous vector of instruments, z, and the unobserved characteristics, our
moment restriction would be

E[GJ(θ)] ≡ E[ 1
J

JX
j=1

zjξj(θ, x, s, P )] = 0 (2)

at θ = θ0, and our estimate of θ would minimize a norm in 1
J

PJ
j=1 zjξj(θ, x, s, P ).

Several econometric issues arise in this context. First, unlike a traditional microeco-
nomic cross-section, when we add new observations (products) to the market, we expect
the shares and prices of the existing products to change, indicating dependence in the data
generating process. Similar problems arise in other contexts involving interacting Þrms (e.g.,
production function estimation). To our knowledge no analysis of the limiting properties
of parameter estimates as the number of products grow large in an imperfectly competi-
tive market is available, although those properties seem fundamental to empirical work in
industrial organization.
In our context the interdependence of Þrms� decisions implies that away from the true

value of θ the observations on ξj(θ, x, s
0, P 0) are not independent from one another. That

is since both sj and pj are endogenously determined as a function of the characteristics of
other products (as well as of own-product characteristics) there is conditional dependence
in the estimate of ξ when θ 6= θ0. As a result, consistency proofs that require uniform
convergence of objective functions, uniform over all possible values of θ, cannot be used (at
least not without a speciÞcation for how prices and shares behave as the number of products
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grow large � two aspects of the problem we do not want to hinge our proofs on). Relatedly,
efficient instruments are likely to be a function of the characteristics of all of the products,
and this generates instruments that are not independent over j.
We show how to obtain a consistency proof based on a property of the limiting value of

the objective function that can frequently be evaluated a priori. Given consistency, we then
require only local properties of the objective function to characterize the limit distribution
of the parameter estimates. As a result we are able to use a �triangular array� argument
for the limit distribution of the objective function at θ = θ0, together with simpler local
convergence results (smoothness assumptions will do), to prove asymptotic normality of the
parameter estimates. Our approach to these problems should be broadly applicable to a
wide range of models of equilibrium markets.
A further problem turns out to be quite important in estimating demand parameters

when either; [i] the function σ(·) is an integral which cannot be calculated analytically and
as a result is estimated by Monte Carlo simulation, or [ii] the observed market shares, s, are
based on a random sample of consumers of size n and hence are subject to sampling error.
In these cases, the disturbances generated by the simulation and sampling processes also
impact on the distribution of the estimators. Importantly, it works out that the impact of
those disturbances differ markedly depending on which of the available differentiated product
demand models are used. That is the nature of competition in demand space feeds back into
the asymptotic limit theory and causes the rates of convergence of the estimators for different
demand models to differ. This generates different limit theorems for the different demand
models. Moreover as clearly illustrated by our Monte Carlo results these differences imply
that the computational burdens of the two models are different, and the importance of the
differences depend on the characteristics of the data.
In particular we show that under fairly general conditions the estimators of the parameters

of the random coefficients logit (or probit) demand systems discussed in Berry, Levinsohn
and Pakes (1995; henceforth BLP) will be consistent if J log J/n and J log J/R converge to
zero as J increases. For asymptotic normality at rate

√
J in these cases we require J2/n and

J2/R to be bounded. That is, to obtain a consistent and asymptotically normal estimator
for the parameters of these models we require the number of simulation draws and the size of
the consumer sample to grow as the square of the growth in the number of products. So to
obtain precise parameter estimates from these models we expect to need to use a relatively
large number of simulation draws, especially when the number of products is large.
The second class of demand models we consider in detail are the �pure characteristic�

models. Their theoretical lineage dates back at least to Hotelling�s 1929 horizontal model
and have been used extensively in the context of the vertical model introduced by Shaked
and Sutton (1982). Berry and Pakes (2002) endow the pure characteristics model with an
estimation algorithm analogous to the estimation algorithm provided in BLP and discuss the
advantages of the pure characteristics framework (focusing on the analysis of the demand
for, and the welfare implications of, new goods).
We show that to estimate the parameters of the uni-dimensional (vertical) pure char-

acteristic model consistently we require only that n and R increase at rate log J , while for
asymptotic normality we require only that J/n and J/R stay bounded. We also explain why
the multidimensional pure characteristic model is likely to obey the same rate restrictions,
but do not have a formal proof to that effect. Since the rate at which n and R must grow
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for asymptotically normal parameter estimates given the pure characteristics model is the
square root of the rate at which they must grow to obtain asymptotically normal estimates
for BLP�s model, we expect to need much smaller numbers of simulation and sampling draws
to obtain precise parameter estimates in the pure characteristics case.
The difference in results arises because differences in the nature of competition between

the two models imply differences in the properties of the share functions; i.e. of σ(·) in
(1). The system in equation (1) must be solved for ξ in order to implement our method
of moments estimation algorithm. In the models with �diffuse� substitution patterns, such
as the random coefficient logit model of BLP, all goods are substitutes for all other goods.
Thus when we decrease ξj consumers who leave good j distribute among all other goods and
as the number of goods grows large each of the (growing number of) partials, ∂σi(·)/∂ξj,
goes to zero. The sampling error is in the shares, and to analyze that error�s impact on the
objective function (equation 2) we have to Þnd how it effects our estimates of ξ. The Þrst
order impact of the sampling error on ξ is ∂ξ/∂σ, and as the elements ∂σ/∂ξ go to zero, the
elements of ∂ξ/∂σ grow large (when J is large a little bit of simulation or sampling error
in s causes large changes in the computed value of ξ). To obtain the asymptotic properties
of our estimator we have to control the impact of sampling error on the objective function.
Since the impact of a unit of sampling error grows rapidly in J , we need the variance of the
sampling error to fall rapidly in J . This is accomplished by allowing the size of the consumer
(and simulation) samples to grow at a rapid rate as J grows large.2

In contrast the pure characteristic model has �local� competition (products are only
substitutes with a Þnite number of other products). As the number of products grows large
each product will tend to have the same number of substitutes, and, as a result, the elements
of ∂σ/∂ξ will stay bounded away from zero. Again the Þrst order impact of sampling error
on the objective function is given by ∂ξ/∂σ, but if the elements of ∂σ/∂ξ are bounded away
from zero, the elements of ∂ξ/∂σ remain bounded. In the pure characteristic model then the
impact of a given simulation or sampling error on the computed value of ξ does not increase
with J . This suggests that for large J we should be able to obtain �well behaved� parameter
estimates from the pure characteristic model with fewer simulation draws than we need to
use in estimating BLP�s model. We provide a Monte Carlo study which indicates that the
difference is rather dramatic.
Since the number of simulation draws needed to obtain precise estimates of the objective

function is likely to be larger in BLP�s model than in the pure characteristic model, the
computational burden of simulation in BLP�s model is expected to be larger than in the pure
characteristics model. Berry and Pakes (2002) show, however, that the computational burden
of obtaining the ξ(·) from the system in (1) is typically larger for the pure characteristics
model than it is for BLP�s model. So there is a trade off to be considered when comparing
the computational burden of the two models between the ease of simulation in one model

2There is an analogy here to the impact of simulation error on the maximum likelihood estimators of
discrete choice models when the choice probabilities are simulated. In that case the probabilities that
determine the likelihood acts like our σ(·) function, and the impact of simulation error on the log-likelihood
is larger when the underlying probabilities of a choice are small. If we let the number of choices (our J) grow
large all but possibly a small number of probabilities would have to go to zero, so for consistency we would
need the simulation error to converge to zero at a faster rate than the rate at which J grows. Unfortunately
the analogy to maximum likelihood does not carry over to the pure characteristics model where σ(·) has
notably different properties, see below.
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and the ease of computing ξ in the other.

Generalizations and Limitations

There are two common ways in which actually estimated differentiated products demand
systems differ from our setup. First, the same demand model can be applied to richer types
of data. Second, one can add a supply side to the model. For example, one might assume a
Nash pricing equilibrium and use the pricing equation together with the demand equation to
estimate the demand parameters. While these extensions can greatly aid in obtaining precise
parameter estimates, in most cases there is still an interest in how the estimates behave as
J becomes large.
On the demand side, richer data could be either [i] observations on multiple markets

across time and/or regions or else [ii] direct observations on consumers, matching observed
attributes of the consumers to their choices. First consider adding more detailed consumer
data within a single market. As explained in Berry, Levinsohn and Pakes (2001), the con-
sumer data can allow one to obtain more precise estimates of parameters governing the
interaction between consumer attributes and product characteristics. However, by itself the
consumer data does not reveal the mean effects of the product characteristics on demand.
That paper shows that in the single-market case with observed consumer choices and unob-
served product characteristics, ξ, it is still necessary to take limits in J .
If one has data on multiple independent markets then the situation is more complicated

and the relevant assumptions depend on the nature of the data. If the same products, or a
subset of the same products, appear in every market, as in Nevo�s (2001) analysis of breakfast
cereals, then the observations on the unobserved quality of the product are not independent
across markets, and we again require limits in dimension J (although different assumptions
might be used for identiÞcation). A similar situation occurs when we have data on a given
market over time, and the same, or related products, appear in different time periods (as in
BLP�s study of auto demand which had data on twenty years with about a hundred products
per year).
If, on the other hand, there were a large number of markets with products whose un-

observable characteristics are independent across markets, then one may be able to obtain
CAN estimators by taking limits solely in the number of markets and not in J .3 However
even then our paper�s implication for how simulation and sampling error effect the estimation
error in the different models should still be useful (especially if J is large). In other cases
the number of markets and the number of products may each be moderately large so we will
want limits as both grow but their ratio remains bounded.
Turning to the supply side, many studies have found that adding a pricing equation and

then jointly estimating all parameters from the combined pricing and demand equations can
markedly increase the precision of demand-parameter estimates. While the strategy has a
cost in additional assumptions, the presence of the demand parameters in the pricing equa-
tion adds efficiency to the demand estimates. In this case, though, the need for asymptotics
in J does not change and limit arguments similar to those given here are required (indeed it
is straightforward to add the pricing equation to the analysis below).

3Retail or service sectors in different cities might be a candidate here, at least sectors that are not
dominated by chains.
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Adding the pricing equation does add some clarity to questions about the optimal choice
of instruments for our problem (as in Chamberlain (1987)). It makes clear that optimal
instruments for price will depend on the characteristics of rival products, rendering semi-
parametric analysis of optimal instruments (as in Newey (1990) and (1993)) difficult if not
impossible. We shall illustrate these problems in the context of our examples and provide
some heuristic guidance for the choice of instruments; but we do not currently have a prac-
tical answer to the questions of optimal instruments.

Organization and Notation

The paper is organized as follows. In section 2 we present the underlying model, an overview
of the main results, and the intuition underlying them. This includes two subsections which
introduce our leading examples and explain the differences between them. Section 3 provides
the main mathematical details of the arguments (formal proofs are relegated to an appendix)
and explains how to determine rates of convergence for our models. Section 4 returns to our
examples and veriÞes that they satisfy the conditions set out in section 4. A small Monte
Carlo study is presented in section 5. This validates the theoretical arguments, and shows
that the limit distributions provide an adequate approximation to the empirical distribution
of the Monte Carlo estimates.
We use kAk = {tr(A0A)}1/2 to denote the Euclidean norm of any m× n matrix A, P−→

to denote convergence in probability, and =⇒ to mean convergence in distribution. For a
matrix AJ×J , we say A = O(g(J)) if the absolute value of the maximum element of the
matrix is of order g(J).

2 The Model and An Overview of the Results

We consider a market with J competing products and an outside good. The vectors of
product characteristics will be denoted by (ξj, x1j). The ξj ∈ R are characteristics which
are not observed by the econometrician whereas the x1j ∈ X1 ⊂ Rd1 are observed. As noted in
BLP (1995) they are analogous to the disturbance in the speciÞcation of traditional demand
systems and are included to account for the fact that the list of product characteristics used
in estimation does not contain all the product characteristics that consumers care about.
Note also that without these disturbances the model could not rationalize the data. In large
markets, where sampling error in the shares is essentially absent, the model predicts that the
estimated shares should Þt the observed shares exactly. This would typically be impossible
if there were no disturbances.
We assume that the sequence {ξj}Jj=1 are independent draws, and, for the most part

maintain the assumption that

E[ξj|x1] = 0 and sup
1≤j

E[ξ2j |x1j] <∞ (3)

with probability one, where x1 = (x11, . . . , x1J). The role and content of the assumption
that the ξ0s have a conditional mean of zero is discussed in BLP. It can be replaced by other
identifying assumptions without changing the logic of the underlying limit theorem. Note
that (3) allows for conditional heteroskedasticity of quite general form.
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In addition to the �exogenous� characteristics [those that satisfy E(ξj|x1j) = 0], we allow
products to have additional characteristics, say x2j ∈ X2 ⊂ Rd2, which are �endogenous� (like
price) in the sense of being related to the {ξj}. This produces a problem analogous to the tra-
ditional simultaneity problem in demand and supply estimation. We let x2 = (x21, . . . , x2J),
x = (x1, x2), and ξ = (ξ1, . . . , ξJ). At times we will also need explicit assumptions on the
process generating x.
The model determines the purchasing decision of a household as a function of its at-

tributes and the characteristics of the products marketed. In all our examples we will be
able to explicitly aggregate over certain dimensions of household heterogeneity to obtain
average purchase probabilities conditional on a Þnite dimensional vector of remaining house-
hold attributes, say conditional on a λ ∈ Rv. So the model produces a map from λ, a
parameter vector, θ ∈ Θ, where Θ is a compact subset of Rk, and the vectors of product
characteristics, (x, ξ), into purchase probabilities. Let that map be ω(x, ξ,λ, θ) . If P is the
distribution of λ, then the vector of aggregate market shares predicted by our model and
given values for θ, ξ, and P are

σ(ξ, θ, P ) =

Z
ω(x, ξ,λ, θ)dP (λ), (4)

where we have suppressed the dependence of σ on x for convenience. The map σ : D→ SJ ,
where D is the appropriate product space, and SJ is the J+1 dimensional unit simplex, i.e.,

SJ = {(s0, . . . , sJ)0| 0 ≤ sj ≤ 1 for j = 0, . . . , J, and
JX
j=0

sj = 1}.

The actual market shares in the population are given by evaluating this function at
(θ0, P 0) the true value of θ and P . We designate this vector by s0 = σ(ξ, θ0, P 0). The
vector s0 is a random quantity uniquely determined by the realization of ξ.
Although P 0 is assumed to be known, we typically will not be able to calculate σ(ξ, θ, P 0)

analytically and will have to make do with a simulator of it, say σ(ξ, θ, PR), where PR is
the empirical measure of some i.i.d. sample λ1, . . . ,λR. For example,

σ(ξ, θ, PR) =

Z
ω(x, ξ,λ, θ)dPR(λ) =

1

R

RX
r=1

ω(x, ξ,λr, θ).

Relatedly the observed vector of market shares, say sn ∈ SJ will typically be constructed
from n i.i.d. draws from the population of consumers, and hence not be precisely equal to
the population market shares (our s0). Assuming then that for any Þxed (ξ, θ), say (ξ1, θ1),
the function σ(ξ1, θ1, P

R) is constructed from R independent, unbiased, simulation draws
makes it natural to assume the disturbances emanating from the simulation and sampling
processes abide by A1.

A!!"#$%&'( A1. The market shares sn` =
1
n

Pn
i=1 1(Ci = `), where Ci is the choice of

the ith consumer, and Ci are i.i.d. across i. For any Þxed (ξ, θ),

σ`(ξ, θ, P
R)− σ`(ξ, θ, P 0) = 1

R

RX
r=1

ε`,r(ξ, θ),
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where ε`,r(ξ, θ) are independent across r and have mean zero, while the function ε`,r(ξ, θ) is
bounded, continuous, and differentiable in ξ, θ. DeÞne the J × J matrices V2 = nE∗[(sn −
s0)(sn − s0)0] = diag[s0] − s0s00 and V3 = RE∗[(σ(ξ, θ0, PR) − σ(ξ, θ0, P 0))(σ(ξ, θ0, PR) −
σ(ξ, θ0, P 0))0], where ξ here are the true values.

Here, diag[x] is notation for a diagonal matrix with x on the principal diagonal and E∗ de-
notes expectations conditional on product characteristics (integrating out over the simulation
and/or sampling disturbances). We can allow for more general simulators like those based
on importance sampling advocated by BLP by simply replacing the V3 given in A1 with the
appropriate importance sampling variance covariance matrix in the results that follow.

We will make the following regularity assumptions on σ(ξ, θ, P ).

A!!"#$%&'( A2. (regularity conditions for share function) For every Þnite J, for all
θ ∈ Θ, and for all P in a neighborhood of P 0, ∂σj(ξ, θ, P )/∂ξk exists, and is continuously
differentiable in both ξ and θ, with ∂σj(ξ, θ, P )/∂ξj > 0, and for k 6= j, ∂σj(ξ, θ, P )/∂ξk ≤ 0
(for k, j = 1, . . . , J). The matrix ∂σ(ξ, θ, P )/∂ξ0 is invertible for all J. Moreover, s0j > 0
for all j.

Note that although these properties must hold for each Þnite J , they need not hold in
the limit. Thus although we assume that s0` > 0 for all `, we have s

0
` → 0 as J →∞ for all

but possibly a Þnite subset of the products. Although we do not explicitly model the process
which generates the products with positive market shares, below we require the process that
generates the (ξ, x) tuples to satisfy certain regularity conditions.
We now outline the logic of the estimation procedure. Elsewhere, [BLP ,1995, and

Berry and Pakes (2002)] we provide quite general conditions which insure that for every
(θ, s, P ) ∈ Θ×SoJ ×P, where SoJ = {s : 0 < s` < 1 for all `} and P is a family of probability
measures, there is a unique solution for the ξ(θ, s, P ) that satisÞes

s− σ(ξ, θ, P ) = 0. (5)

Thus s, ξ are in one-to one relation for any θ, P . By the implicit function theorem, Dieudonné
(1969, Theorem 10.2.1), and A1, the mapping ξ(θ, s, P ) is continuously differentiable in
θ, s, P, in some neighborhood.4 The true value of ξ , ξ(θ0, s0, P 0), is obtained as the solution
to

s0 − σ(ξ, θ0, P 0) = 0. (6)

DeÞne the instrument matrix z = (z1, . . . , zJ) whose components zq = z(x11, . . . , x1J)q ∈
R`, where z(·)q : (Rd1)J → R`, and ` ≥ k ( k is the dimension of θ), for q = 1, . . . , J .
Note that we allow the value of the instruments for the jth observation to be a function
of the values of the characteristics of all the observations. This is because most notions of
equilibrium in use [e.g., Nash in prices or quantities] imply that the endogenous variables we
are instrumenting [i.e., price] are functions of both the product�s own and its competitors�
characteristics. We will require only weak regularity conditions on the zq and will introduce
them where needed below.

4With regard to P, this would be some notion of functional differentiability, see Fernholz (1983) for
discussion.
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Now let

GJ(θ, s, P ) ≡ 1

J

JX
j=1

zjξj(θ, s, P ). (7)

The assumption that E(ξj|x1) = 0 ensures that E[GJ(θ0, s0, P 0)] = 0. If we were able to
calculate ξj(θ, s

0, P 0), then (2) would suggest using as our estimate of θ the method of
moments estimator, Hansen (1982), obtained by minimizing a norm of GJ(θ, s0, P 0).
Unfortunately we observe only sn and not s0, and we cannot calculate σ(ξ, θ, P 0) but

only σ(ξ, θ, PR). Consequently, what we do is substitute an estimate of ξ, obtained as
that value of ξ that sets sn − σ(ξ, θ, PR) to zero and denoted by ξ(θ, sn, PR), into (2) and
minimize the resulting objective function. Thus our estimator of θ, say bθ, is deÞned as any
random variable that satisÞes

kGJ(bθ, sn, PR)k = inf
θ∈Θ

kGJ(θ, sn, PR)k+ op(1/
√
J). (8)

2.1 The Main Results

||GJ(θ, sn, PR)|| has a distribution determined by three independent sources of randomness:
randomness generated from the draws on the vectors {ξj, x1j}, randomness generated from
the sampling distribution of sn, and that generated from the simulated distribution PR.
Analogously there are three dimensions in which our sample can grow: as n, as R, and as J
grow large. Our limit theorems will require rates of growth for each dimension. Throughout
we let J → ∞ and make n and R deterministic functions of J, i.e., we write n(J) and
R(J) and let n(J), R(J) → ∞ at some speciÞed rate. If n(J), R(J) → ∞ at a fast enough
rate, then the contribution from simulation and sampling error will be of smaller order,
and the asymptotics will be dominated by the randomness of ξ. To enable us to evaluate
the contribution of simulation and sampling error to the asymptotic distribution of the
estimator we make assumptions on the rates of growth on n and R which insure that all
three sources of randomness contribute to the asymptotics. Finally, keep in mind that both
sn and σ(ξ, θ, PR) take values in RJ , where J is one of the dimensions that we let grow in
our limiting arguments (for expositional ease we have not indexed these functions by J , but
our assumptions should be interpreted as holding for each Þnite J).
The fact that the dimension of the share function grows with J makes the proofs of our

major results quite detailed. So we begin with an overview of the major steps in the proofs
and their implications for our two leading examples. The proofs themselves are provided in
the next section.
The consistency argument is established by showing that

(i) supθ∈Θ ||GJ(θ, sn, PR)−GJ(θ, s0, P 0)|| converges to zero in probability, and
(ii) an estimator that minimized kGJ(θ, s0, P 0)k over θ ∈ Θ would be consistent for θ0.

(i) insures that neither simulation nor sampling error impacts on the consistency of our
estimator. To establish it we assume that the instruments satisfy a boundedness condition
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and then provide conditions which insure that ||ξ(θ, sn, PR)− ξ(θ, s0, P 0)||2/J converges to
zero in probability uniformly in θ ∈ Θ.5
To establish (ii), we apply a version of Pakes and Pollard (1989, Theorem 3.1). This

requires that: (a) GJ(θ
0, s0, P 0) converges to zero, and (b) for all θ outside of a neighborhood

θ0, GJ(θ, s0, P 0) stays bounded away from zero. Since at θ = θ0, the ξj(θ
0, s0, P 0) are indeed

conditionally independent of one another (conditional on all the zj), standard laws of large
numbers can be used to insure (a). The problem in using standard uniform convergence
arguments to guarantee (b) is that to verify them we would require a model for how the
distribution of product characteristics (including price) evolves as the number of products
grows large. What we do instead is provide an asymptotic identiÞcation condition which
bounds the function ||E[GJ(θ, s0, P 0)]|| uniformly away from zero when θ lies far enough away
from θ0. This condition, which suffices for (b), does not require that GJ(θ, s0, P 0) converges
at all, and puts only weak restrictions on how the characteristic distribution changes as J
grows large. We provide the intuition underlying why we expect the identiÞcation condition
to hold in the context of our examples presently.
We turn next to the asymptotic normality result. Write

ξ(θ, sn, PR) = ξ(θ, s0, P 0) +
©
ξ(θ, sn, PR)− ξ(θ, s0, PR)ª+ ©ξ(θ, s0, PR)− ξ(θ, s0, P 0)ª .

(9)
Next we express the last two terms in this expression in terms of the simulation and

sampling errors and the parameters of the model. The simulation and sampling errors are
deÞned by the J × 1 vectors

εn = sn − s0 and εR(θ) = σR(θ)− σ(θ),
where σR(θ) = σ[ξ(θ, s0, P 0), θ, PR] and σ(θ) = σ[ξ(θ, s0, P 0), θ, P 0].ByA1 both εn and εR(θ)
are sums of i.i.d. mean zero random vectors with known covariance matrix.
From equation (5) and the deÞnition of εn and εR(θ),

s0 + εn − εR(θ) = σ[ξ(θ, sn, PR), θ, P 0].
We can therefore expand the inverse map from (θ, sn, P ) to ξ(·) around s0. More formally
by assumption A2, for each J , almost every P , almost all ξ, and every θ ∈ Θ, the function
σ(ξ, θ, P ) is differentiable in ξ, and its derivative has an inverse, say

H−1(ξ, θ, P ) =
½
∂σ(ξ, θ, P )

∂ξ0

¾−1
. (10)

Abbreviate σ(θ, s, P ) = σ(ξ(θ, s, P ), θ, P ), H(θ, s, P ) = H(ξ(θ, s, P ), θ, P ), andH0 = H(θ
0, s0, P 0).

Now two Taylor expansions give us the last two terms in equation ( 9 ) in terms of H−1
0 , ε

n

and εR(θ). That is, ξ(θ, sn, PR) ' ξ(θ, s0, P 0) +H−1
0 {εn − εR(θ)}, where the approximation

sign indicates that we have omitted the second order terms from the Taylor�s expansion.
Substituting our approximation for ξ(θ, sn, PR) into the objective function, we obtain

our linear approximation to GJ(θ, sn, PR) as
5Note that (sn, PR) is a �function valued� nuisance parameter, similar to the nuisance parameters used

in semiparametric estimation; see, for e.g., Newey (1994). However, unlike the usual semiparametric case
the entire vector sn = (sn1 , . . . , s

n
J)
0 affects each ξj , and E(sn) = s0 for all J (i.e., the function of interest

depends on all the observations, but the �nonparametric estimator� has zero bias at Þnite J).
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GJ(θ) = GJ(θ, s0, P 0) + 1

J
z0H−1

0

©
εn − εR(θ0)ª . (11)

Next we provide conditions under which insure that

(a) sup||θ−θ0||≤δJ
√
J [GJ(θ)−GJ(θ, sn, PR)] P→ 0 when δJ → 0, and

(b) An estimator that minimized kGJ(θ)k over θ ∈ Θ would be; (i) asymptotically nor-
mal at rate

√
J , and (ii) have a variance-covariance matrix which is the sum three

mutually independent terms (one resulting from randomness in the draws on product
characteristics, one from sampling error, and one from simulation error).

Given consistency, a consequence of (a) is that the estimator obtained from minimization
of the criterion function kGJ(θ)k, has the same limit distribution as our estimator (i.e., as bθ
as deÞned in equation 8). Since the former is easier to analyze, we work with it. We prove
(a) using a stochastic equicontinuity argument and pointwise convergence results.
To establish (b) we provide a slight generalization to Theorem 3.3 in Pakes and Pollard

(1989). The generalization allows for the fact that the underlying distributions of the ran-
dom variables we are taking averages of may depend on J. The proof of (b) also requires
a smoothness condition on the non-random function E[GJ(θ, s0, P 0)] at θ = θ

0, and a fur-
ther stochastic equicontinuity condition on the stochastic process GJ(θ, s0, P 0) similar to
condition (iii) of Theorem 3.3 of Pakes and Pollard (1989).
As in that theorem we obtain the asymptotic distribution of

√
J(bθ − θ0) in terms of

∂E[GJ(θ
0, s0, P 0)]/∂θ and var[

√
JGJ(θ0)]. However in our case the random vector

√
JGJ(θ0)

is the sum of the three terms

TJ1 =
1√
J

JX
j=1

zjξj , TJ2 =
1√
J
z0H−1

0 ε
n , and, TJ3 =

1√
J
z0H−1

0 ε
R(θ0). (12)

These random variables are mutually independent and asymptotically normal [at rates deter-
mined by the growth of n(J) and R(J)]. Thus var[

√
JGJ(θ0)] = var[TJ1]+var[TJ2]+var[TJ3].

We choose n(J) and R(J) so that all three terms are of the same magnitude, i.e., so that
the effects of share estimation and simulation are captured by our approximations.

The next section provides the details that insure that the arguments explained in this
subsection are in fact correct (these guarantee the required notions of uniform convergence
and that the second order terms in the Taylor expansion which produces GJ from GJ do not
affect the limiting properties of our estimator). We conclude this subsection by taking the
heuristic argument one step further and using it to outline our results for the estimators of the
two models of demand that are the focus of our attention; i) the logit model and its extension
to the random coefficients logit as discussed in BLP(1995), and ii) the �pure characteristics
model� which Þrst appeared as the horizontal model of Hotelling (1929) [see also Shaked and
Sutton�s (1982) vertical model], and was endowed with an estimation algorithm by Berry
and Pakes (2002).
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The Simple Logit

The utility the ith individual derives from consuming product j is

uij = x
0
jθ + ξj + ²ij ≡ δj + ²ij, (13)

where xj is a vector of observed product characteristics which typically includes price, ξj
is an unobserved characteristic, and ²ij is an i.i.d. (over both products and individuals)
extreme value error term. Since we can add an individual speciÞc constant to all utilities
without changing the distribution of choices, there is a free normalization in this model.
This is customarily resolved by setting the utility of the outside good ui0 = ²i0.
Individual i chooses the product which maximizes its utility. The market share function

is obtained by solving for that maximum and then integrating out over the distribution of ²
to obtain

σj(x, ξ, θ) =
ex

0
jθ+ξj

1 +
PJ

k=1 e
x0kθ+ξk

, j = 1, . . . , J, (14)

while σ0(x, ξ, θ) = (1+
PJ

k=1 e
x0kθ+ξk)−1. Note that this is one of the few models which has an

analytic form for the market share function; consequently we need not simulate that function
and there is no simulation error in this model (i.e., ²R(θ) ≡ 0).
The model predicts that market shares are determined by the random variables x0jθ+ ξj.

For now assume this family of random variables has bounded support [because say xj, ξj,
and θ have bounded support] and density bounded away from zero on this support. Note
that this implies that (with probability one); (a) market shares are all of magnitude O(1/J),
and (b) that for all Þnite J all products have market shares which are strictly positive.
From (14) the model also has an analytic expression for the unobserved product charac-

teristic
ξj(θ, s, P

0) = ln(sj)− ln(s0)− x0jθ. (15)

So our estimator is found by minimizing a norm of

GJ(θ, s
n, P 0) =

1

J

JX
j=1

zjξj(θ, s
n, P 0) =

1

J

JX
j=1

zj[ln(s
n
j )− ln(sn0)− x0jθ],

and can be interpreted as a linear instrumental variable estimator.
Assume temporarily that supθ∈Θ ||GJ(θ, sn, P 0)−GJ(θ, s0, P 0)|| converges to zero in prob-

ability. Then all we require for consistency is that for all θ outside of a neighborhood θ0,
GJ(θ, s

0, P 0) stays bounded away from zero. But

kGJ(θ, s0, P 0)−GJ(θ0, s0, P 0)k = k 1
J

JX
j=1

zjx
0
j(θ − θ0)k,

where zj is a vector of instruments of dimension at least as large as that of xj. Thus a
sufficient condition for identiÞcation is that for J sufficiently large J−1

PJ
j=1 z

0
jxj is of full

column rank with probability arbitrarily close to one.
Typically zj will consist of the x1,j, or the exogenous product characteristics, and instru-

ments for price (which will frequently be treated as endogenous characteristic in the sense of
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being correlated with the ξj). So our identiÞcation condition requires the price of the prod-
uct to be a function of observables which are not collinear with that product�s exogenous
characteristics. To formally verify whether this condition holds we would have to specify the
nature of the pricing equilibrium. However all assumptions used to approximate equilibria
in differentiated product markets imply that a product�s price is a function of; the struc-
ture of ownership, the characteristics of competing products, and its own and its competing
product�s factor prices. As a result it is typically straightforward to construct instruments
that are not collinear with price; indeed the more substantive question is which among the
possible instruments to choose. We return to this question presently.
The expansion that underlies our asymptotic normality result requires the matrix H(·)

whose elements are ∂σk(·)/∂ξj. From (14)

∂σj(x, ξ, θ)

∂ξk
=

 σj(x, ξ, θ)(1− σj(x, ξ, θ)) k = j

−σk(x, ξ, θ)σj(x, ξ, θ) if k 6= j,
(16)

Let S =diag(s) and i = (1, . . . , 1)0. Then H(θ, s, P ) = S−ss0. This is a diagonally dominant
matrix with inverse

H(θ, s, P )−1 = S−1 + ii0/s0.

From (11) the contribution of sampling error to
√
JGJ(θ0), or TJ2 in (12), is J−1/2z0H−1

0 ε
n.

Recall that to obtain a limiting distribution of the estimator we require a rate of growth for
n(J) that produces a Þnite variance for TJ2. To get that rate of growth for the simplest case
let z contain a single variable, and suppose that c/J ≤ s0j ≤ c/J , for j = 0, 1, . . . . Then
since A1 insures that Var∗(εn) = H0, if we let zJ be the sample average of z, we have

Var∗(
1√
J
z0H−1

0 ε
n) =

1

nJ
z0H−1

0 H0H
−1
0 z =

1

nJ

JX
j=1

[
z2j
s0j
+
(
PJ

j=1 zj)
2

s00
] ≤ 1

cn
[
JX
j=1

z2j + J
2z2J ].

That is asymptotic normality requires n(J) to grow like J2 (this assumes zJ is bounded).
To see why this must be the case we need to go back to the relationship between the estimates
of ξ and the observed shares. In the logit model an increase in any particular ξ has a small
impact on the shares of all products, and since¯̄̄̄

¯X
k 6=j

∂σk
∂ξj

¯̄̄̄
¯ = ∂σj

∂ξj
<∞,

as J grows large the impact of a ξ on the share of any given product goes down like 1/J .
It is the inverse map from changes in s to the implied ξ(·) that determines the inßuence of
sampling and simulation error on our estimates of ξ. Since the elements of H(·) go to zero
as J grows large, the elements of this inverse grow without bound in J . To counteract this
effect we need to increase the number of sampling and simulation draws, i.e., reduce the
variance in those errors, at a rate faster than J ; in particular we need n ∝ J2. Below we
provide the formalities that prove this result and show that the same rate conditions hold
for the random coefficient logit analyzed in BLP.
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We now brießy return to the question of efficient instruments. Temporarily assume
Var(ξj|x1,j) = Var(ξj). Then Chamberlain (1987) leads us to expect the efficient instruments
to be

E

·
∂ξ(θ0, ·)
∂θ

|x1
¸
, (17)

where x1 = [x1,1, . . . x1,J ]. Given (15) the instruments for the coefficients of the x1,j should
be the x1,j, while the instrument for the endogenous characteristic, say p or price, should be
E[p|x1, θ0].
To proceed further then we need a model for how prices are set. For simplicity assume

that all competitors are single product Þrms and that equilibrium is Nash in prices. Then

pj = mcj + σj(x, ξ, θ0)/

·
∂σj(x, ξ, θ0)

∂p

¸
.

Note Þrst that E[p|x1, θ0] depends on the whole distribution of the ξ; a distribution not
needed for the rest of the analysis. Moreover even assuming we knew (or were willing to
estimate) that distribution, E[p|x1, θ0] could not be computed unless there were a unique
solution to the vector of pricing equations for each ξ. In many models we use this uniqueness
condition is not satisÞed in which caseE[p|x1, θ0] is not well deÞned (though Nash equilibrium
prices are unique for the simple logit example when each product is owned by a different
Þrm; see Caplin and Nalebuff (1991)).
Assuming uniqueness, the integral deÞning the instrument could be approximated by

simulation; take random draws on ξ, solve the system for the equilibrium prices for each
of the draws, and then average. This would add signiÞcantly to the computational burden
of the estimator. An alternative would be to use a semiparametric approximation of those
instruments [as in Newey (1990) and (1993)]. However the prices depend on the character-
istics and factor prices of all competing products, so the number of dimensions needed for
a semiparametric approximation to those instruments will typically grow in J. As shown in
Pakes (1994), since most of our models imply that the pricing function is exchangeable in the
order of the characteristic vectors of the competing products, the dimensionality problem
can be reduced by using an exchangeable basis (a basis whose dimension does not grow in
J) in forming the semiparametric estimators (see, for e.g., BLP). However in many practical
situations a low order exchangeable basis does not seem to do much better then instruments
obtained from less formal intuitive arguments.
Indeed though it might be difficult to construct (consistent estimates of) efficient instru-

ments for many of our problems, once we combine Chamberlain�s results with the form of
the pricing function, we can often provide quite a bit of guidance for which functions of the
exogenous variables are likely to produce more effective instruments. This is perhaps easiest
to see in the vertical model, a model we turn to now.

The Vertical Model

Perhaps the simplest among the models with a Þnite set of product characteristics is the
�vertical� model of Shaked and Sutton (1982). In this model the utility function is

uij = δj − λipj,
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where δj = xjβ + ξj and we normalize the outside alternative so that δ0 = p0 = 0.
Order the products so 0 = δ0 < δ1 < δ2 < δ3 < . . . . Let F (·; θp), where θp is a parameter

to be estimated, denote the distribution of the price coefficient (of λ), assume it is increasing
over its domain and let

∆j = (δj − δj−1)/(pj − pj−1), for j = 1, . . . , J.

Then necessary and sufficient conditions for all goods to have positive market share in
this model are that 0 = p0 < p1 < p2 < . . . , and ∆j = (δj − δj−1)/(pj − pj−1) are ordered as
∆1 > ∆2 > . . . . In this case the market shares are given by

s0 = 1−F (∆1; θp), sj = F (∆j; θp)−F (∆j+1; θp), for j = 1, . . . , J−1, and sJ = F (∆J ; θp).
(18)

We analyze this model in detail in section 6.1.2. Here we simply want to point out two
properties of its share function. First, in contrast to the logit model, in this model

∂σk
∂ξj

= 0 for j /∈ {j − 1, j, j + 1}.

That is competition is �local�, i.e. only a small number of cross partials are nonzero. Conse-
quently as J grows large none of the nonzero elements of H(·) ≡ ∂σ/∂ξ go to zero, and the
elements of H−1(·) remain bounded. This implies that simulation and sampling error are
likely to have less impact on estimators of the vertical model than on the horizontal model.
Indeed it will allow us to prove an asymptotic normality result when both the number of
simulation and the number of sampling draws grows at rate J (rather than J2 as required
for the logit model).
The local nature of competition in the vertical model makes it relatively easy to consider

questions related to the choice of instruments for this model. Recall that we want our
instruments to approximate the formula in (17) for θ = (θp, β). Not surprisingly, then, the
efficient instrument for θp is the conditional expectation of a function of price.
Assuming again that there is a Nash pricing equilibrium, and that each product is owned

by a distinct Þrm

pj = mcj +
F (∆j; θp)− F (∆j+1; θp)

f(∆j; θp)
δj−δj−1
(pj−pj−1)2 + f(∆j+1; θp)

δj+1−δj
(pj+1−pj)2

(19)

for j = 1, . . . , J , where f(·) is the density for F (·). So the price of product �j� depends
directly on the characteristics and factor prices of the products adjacent to j and only
indirectly on the factor prices and characteristics of the other products (through their effects
on the prices of the adjacent products). Thus �good� instruments are likely to depend more
on the characteristics and factor prices of adjacent than non-adjacent products.
In more general pure characteristics models there is more than one characteristic whose

coefficient distributes among consumers and so different consumers will have different �ad-
jacent� products (products they would substitute to in response to a sufficiently large price
increase of the given product). However the characteristics and factor prices of products
which �border� (in some dimension) the good whose price we are instrumenting will have a
relatively large inßuence on its price (indeed a related result holds for the random coefficients
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logit speciÞcation of BLP (1995)). When there are multi-product Þrms then the impact of
the characteristics of adjacent products on price would differ depending on whether those
products were owned by the Þrm which owns the product whose price is being instrumented
or by a competing Þrm (see BLP).
The next section provides our consistency and asymptotic normality theorems, while sec-

tion 4 returns to our examples and details the implications of our theorems on the properties
of the estimators of their parameters.

3 A Formal Treatment of Asymptotic Properties

To formalize the arguments given in the last section we need to specify the way in which the
large vector sn approaches s0 [as well as the corresponding model-predicted market shares].
Since these are expanding vectors in which almost all of the individual elements of s0 are
decreasing to zero, it will not suffice to specify how each component snj approaches s

0
j ; we will

require stronger, uniform, notions of convergence, as is common in semiparametric estimation
problems. It is also helpful to have some restrictions on the rate at which s0j approaches zero.
In most of the discussion we focus on the special case deÞned by the following assumption:

C'()&%&'( S. There exists positive Þnite constants c and c such that with probability
one

c

J
≤ s0` ≤

c

J
, ` = 0, 1, . . . , J. (20)

In this case, each market share, including the outside option, is declining to zero at the same
rate.

We will work with the product space Θ × SJ × P, where P is the set of probability
measures, and endow the marginal spaces with (pseudo) metrics: the L∞ metric on P,
ρP (P,Q) = supB∈B |P (B)−Q(B)|, where B is the class of all Borel sets on Rk, the Euclidean
metric on Θ, ρE(θ, θ

0) = ||θ − θ0||, and a metric ρα,s0 on SJ deÞned below. We suppose that

ρα,s0(s, s
∗) =


max0≤j≤J

¯̄̄
(sj)α−(s∗j )α

(s0j )
α

¯̄̄
if 0 < α ≤ 1

max0≤j≤J
¯̄
sj − s∗j

¯̄
if α = 0.

(21)

The metric ρα,s depends on the parameter α; the higher α is, the stronger is the metric.
6 We

state the theory for some α, and the choice of α will depend on the application. In the logit-
like case, we use α = 1, while in the vertical case we take α = 0.We also put a metric on the
space where ξ lives and for this we shall just take the averaged Euclidean metric ρξ(ξ, ξ

∗) =
J−1||ξ−ξ∗||2 = J−1PJ

j=1(ξj−ξ∗j)2. Finally, deÞne for each ², the following neighborhoods of
θ0, P 0, and s0: NP 0(²) = {P : ρP (P, P 0) ≤ ²} andNs0(²) = {s : ρα,s(s, s0) ≤ ²},Nθ0(²) = {θ :
ρE(θ, θ

0) ≤ ²}, and for each θ and any ² > 0, deÞne Nξ0(θ; ²) = {ξ : ρξ(ξ, ξ(θ, s0, P 0)) ≤ ²}.
6We include the j = 0 term because the uniform convergence of all other terms does not imply the

convergence of this term.
Note that the space SJ and metric ρs both change with J ; nevertheless, the space can be embedded in

the limiting space consisting of all inÞnite sequences.
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3.1 Consistency

The consistency result uses several assumptions in addition to A1-A2; assumptions we intro-
duce now. A3 controls the way in which sn approaches s0 (and likewise for the corresponding
model quantities), A4 puts fairly mild restrictions on the instruments, and A5 and A6 are
our identiÞcation conditions.
A!!"#$%&'( A3. The random sequences sn and σR(θ) are consistent with respect to the

corresponding metrics, i.e.,

(a) ρα,s0(s
n, s0)

P−→ 0 ; (b) sup
θ∈Θ

ρα,σ(θ)(σ
R(θ),σ(θ))

P−→ 0, (22)

where σR(θ) = σ[ξ(θ, s0, P 0), θ, PR] and σ(θ) = σ[ξ(θ, s0, P 0), θ, P 0]. Furthermore, we sup-
pose that the true market shares satisfy [for the α deÞned in (21)]

(c)
1

nJα

JX
j=0

s0j(1− s0j)
(s0j)

2α

P−→ 0 ; (d) sup
θ∈Θ

¯̄̄̄
¯ 1

R · Jα
JX
j=0

σj(θ)(1− σj(θ))
(σj(θ))2α

¯̄̄̄
¯ P−→ 0.

Assumption A3(a,b) is complicated by the fact that the dimensions of the vectors increase
with J. Note that each (sn` ,σ

R
` ) is a sum of independent bounded random variables with

expectation s0` , conditional on the realization of ξ. Therefore to verify assumption A3 we
require restrictions on the growth rates of n(J) and R(J), and on the limiting behavior of
the vector s0.
Suppose that condition S (equation 20) holds. Then we have that var(sn` ) = O(1/nJ) by

assumption A1. Therefore, (sn` − s0`)/s0` = Op(
p
J/n) for each ` = 0, 1, . . . , J. This gives the

pointwise rate of convergence. To obtain the sup-norm convergence rate [with respect to the
pseudo-metric ρs(s

1, s2) = max0≤`≤J |s1` − s2` | /s0` ], we apply the Bonferroni and Bernstein
inequalities [see Pollard (1984)] to obtain

Pr

·
max
0≤`≤J

¯̄̄̄
sn` − s0`
s0`

¯̄̄̄
> ²

¸
≤

JX
`=0

Pr

·¯̄̄̄
sn` − s0`
s0`

¯̄̄̄
> ²

¸

≤
JX
`=0

exp

µ
− ²2

2var(sn` /s
0
`) + 2²/ns

0
`

¶

≤
JX
`=0

exp
¡−²2O(n/J)¢ . (23)

A sufficient condition for (23) to decrease to zero is that J1+²/n → 0 for any ² > 0. This
guarantees A3(a). Assumption A3(b) is similar but requires uniformity over θ. Assumption
A3(c) is implied by Jα/n→ 0 under condition S, likewise A3(d).

Assumption A4 is a fairly mild restriction on the instruments (it will be satisÞed if they
are bounded). Note that there is no presumption that a law of large numbers holds since to
show that we would need to be more speciÞc about the details of how the instruments are
constructed and the nature of the equilibrium.
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A!!"#$%&'( A4. The instruments are such that the matrix z0z/J is stochastically
bounded, i.e., for all ² > 0 there exists an M² such that Pr[||z0z/J || > M²] < ².

Next we provide an assumption that ensures the uniform mean square convergence for
the vector ξ(θ, sn, PR).We reinterpret solving the equations s = σ(ξ, θ, P ) as a minimization
problem, i.e. ξ(θ, s, P ) is the unique minimum of ||s− σ(ξ, θ, P )||. In fact it is convenient to
take a certain monotonic transform of both sides of the equation s = σ(ξ, θ, P ), where the
choice of transform will depend on the application. SpeciÞcally, we introduce the componen-
twise transformation τJ : RJ → RJ [ i.e., τJ(s) = (τJ(s1), . . . , τJ(sJ))0] and the J × 1 vector
ψJ(ξ, θ, s, P ) = τJ(s)− τJ(σ(ξ, θ, P )). We then deÞne

ξ(θ, s, P ) = arg min
ξ∈RJ

||ψJ(ξ, θ, s, P )|| (24)

for any θ, s, P . For any bijective transform τJ(·), (24) has the same solution. We already
know that there exists a unique solution ξ(θ, s, P ) to s = σ(ξ, θ, P ) for all (θ, s, P ); this is
equivalent to saying that ψJ(ξ, θ, s, P ) = 0 if and only if ξ = ξ(θ, s, P ). We use the new
deÞnition of ξ(θ, s, P ) as an optimization estimator to guarantee its statistical properties; in
view of the increasing dimensions of (ψJ , ξ) however, we must reÞne the concept of uniqueness
of ξ(θ, s, P ). Let τJ(x) = J−α/2τα(x) for

τα(x) =


x1−α−1
1−α if 0 ≤ α < 1

log x if α = 1.

(25)

For each α the function τα(·) is monotonic. In the logit-like case, we use α = 1 and τα(x) =
log x, while in the pure characteristics case we take α = 0 and τα(x) = x. The next condition
insures that we can, at least asymptotically, distinguish the ξ that sets the models predictions
for shares equal to the actual share from other values of ξ.

A!!"#$%&'( A5. For all δ > 0, there exists C(δ) such that

lim
J→∞

Pr

"
inf
θ∈Θ

inf
ξ/∈Nξ0 (θ;δ)

°°τJ(σ(ξ, θ, P 0))− τJ(σ(ξ(θ, s0, P 0), θ, P 0)°° > C(δ)# = 1.
The assumptions made thus far insure that consistency depends only on the proper-

ties of GJ(θ, s0, P 0) for θ ∈ Θ as deÞned in equation (7). Our assumptions imply that
GJ(θ

0, s0, P 0) = op(1). Thus what we require is an assumption on the limiting behavior of
GJ(·, s0, P 0) for θ outside of a neighborhood of θ0 (c.f. Theorem 3.1 of Pakes and Pollard,
1989). This is the role of A6 below. Note that it does not require convergence of the objec-
tive function GJ(θ, s0, P 0) at θ 6= θ0 (since that would require conditions on both the process
generating the x0s and an equilibrium assumption).

A!!"#$%&'( A6. For all δ > 0, there exists C(δ) such that

lim
J→∞

Pr

·
inf

θ/∈Nθ0 (δ)
kGJ(θ, s0, P 0)−GJ(θ0, s0, P 0)k ≥ C(δ)

¸
= 1.

We can now state our consistency result.
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T*+',+# 1 [Consistency] Suppose that A1-A6 hold for some α ∈ [0, 1] and some

n(J), R(J)→∞. Then, bθ P−→ θ0.

All our proofs are in the appendix. Note that this result applies to a wide range of models
and growth rates on n(J), R(J) (a fact we use later).

3.2 Asymptotic Normality

We next establish the asymptotic distribution of bθ. We do this by providing conditions under
which

GJ(θ0) = GJ(θ0, s0, P 0) + 1

J
z0H−1

0

©
εn − εR(θ0)ª

is asymptotically normal with bounded variance, while
√
J [GJ(θ, s

n, PR) − GJ(θ)] = op(1)
uniformly over a shrinking neighborhood of θ0. Additional standard arguments deliver the
asymptotic distribution of

√
J(bθ−θ0) in terms of the variance of√JGJ(θ0) and the derivative

of EGJ(θ, s0, P 0) with respect to θ. The precise magnitude of the variance of
√
JGJ(θ0) is

determined by the behavior of the matrix H−1
0 , an issue we will come back to below.

A!!"#$%&'( B1. θ0 is an interior point of Θ.

A!!"#$%&'( B2. For all θ in some δ > 0 neighborhood of θ0

E
£
GJ(θ, s

0, P 0)
¤
= ΓJ(θ − θ0) + o(kθ − θ0k)

uniformly in J. The matrix ΓJ → Γ as J →∞, where Γ has full (column) rank.
Note that B2 requires only that the expectation of GJ(θ, s0, P 0) be differentiable (not

the function itself). This condition is similar to condition (ii) of Theorem 3.3 in Pakes and
Pollard (1989). What is different here is that the expectation of GJ(θ, s0, P 0) varies with J .
This is because the derivative of ξ(·) with respect to θ and the form of the instruments both
depend on the number and characteristics of the products marketed.

A!!"#$%&'( B3. For all sequences of positive numbers δJ such that δJ → 0,

sup
kθ−θ0k≤δJ

k
√
J [GJ(θ, s

0, P 0)−EGJ(θ, s0, P 0)]−
√
J [GJ(θ

0, s0, P 0)−EGJ(θ0, s0, P 0)]k = op(1).

This assumption is essentially condition (iii) of Theorem 3.3 in Pakes and Pollard (1989).
Given consistency, B1, and B2, it insures that an estimator that minimized kGJ(θ, s0, P 0)||
(an estimator we generally cannot solve for analytically) has the same distribution as the
estimator which minimizes the quadratic form kΓJ(θ − θ0) +GJ(θ0, s0, P 0)k.
To go further we need to work with the disturbances generated by the expansion in (9)

and (10). DeÞne the stochastic process in (ξ, θ, P )

νJ(ξ, θ, P ) =
1√
J
z0H−1(ξ, θ, P )

©
εn − εR(θ)ª , (26)

where εn = (εn1 , . . . , ε
n
J)
0 and εR(θ) = (εR1 (θ), . . . , ε

R
J (θ))

0. We now show that this process
has the structure of a sum of independent random variables from a triangular array. Inter-
changing the order of summation, and letting z0H−1(ξ, θ, P ) ≡ (a1(ξ, θ, P ), . . . , aJ(ξ, θ, P )),
we have
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νJ(ξ, θ, P ) =
nX
i=1

YJi(ξ, θ, P )−
RX
r=1

Y ∗J,r(ξ, θ, P ),

where

YJi(ξ, θ, P ) =
1

n
√
J

JX
j=1

aj(ξ, θ, P )εji ; Y ∗J,r(ξ, θ, P ) =
1

R
√
J

JX
j=1

aj(ξ, θ, P )εj,r(θ). (27)

The random variables YJi (and Y ∗J,r) are i.i.d. across i (r) with mean zero but a distri-
bution that changes with J. It is this structure can be used to apply laws of large numbers
and central limit theorems for triangular arrays to our problem. To be precise we need the
following condition.

A!!"#$%&'( B4. Let YJi = YJi(ξ(θ
0, s0, P 0), θ0, P 0) and Y ∗J,r = Y

∗
J,r(ξ(θ

0, s0, P 0), θ0, P 0).
Suppose that limJ→∞E(z0ξξ0z/J) = Φ1 and that with probability one

(a) lim
J→∞

nE∗ [YJiY 0Ji] = Φ2 ; (b) lim
J→∞

RE∗
£
Y ∗J,rY

∗0
J,r

¤
= Φ3 (28)

for Þnite positive deÞnite non-random matrices Φq, q = 1, 2, 3. Suppose that for some δ > 0,
E(||z0ξ/√J ||2+δ) = o(1) and with probability one

(c)nE∗
h
kYJik2+δ

i
= o(1) ; (d)RE∗

£||Y ∗J,r||2+δ¤ = o(1). (29)

Condition B4 guarantees that
√
JGJ(θ0) is asymptotically normal with variance Φ =P3

q=1Φq. The reason for condition (29) is that use of the Lyapunov Central Limit Theorem
for triangular arrays requires moment conditions holding to power 2 + δ. The next section
will translate these conditions into restrictions on n(J) and R(J) for our leading cases (this
will require more detailed assumptions on z and H0).
Finally, we use a stochastic equicontinuity condition on the stochastic process (26) to han-

dle remainder terms. This approach to asymptotics is now well established in econometrics,
see the recent survey of Andrews (1994).

A!!"#$%&'( B5. The process νJ(ξ, θ, P ) is stochastically equicontinuous in (ξ, θ, P ) at
(ξ(θ0, s0, P 0), P 0, θ0), that is, for all sequences of positive numbers ²J with ²J → 0, we have

sup
kθ−θ0k≤²J

sup
(ξ,P )∈Nξ0 (θ0;²J )×NP0(²J )

°°νJ(ξ, θ, P )− νJ(ξ(θ0, s0, P 0), θ0, P 0)°° = op(1).
In B5 we need to insure that

√
J [GJ(θ, s, P ) − EGJ(θ, s0, P 0)] can be made arbitrar-

ily close to
√
J [GJ(θ

0, s, P ) − EGJ(θ0, s0, P 0)] (with arbitrarily large probability) by mak-
ing θ close to θ0. This is stronger than the condition needed to make

√
J [GJ(θ, s

0, P 0) −
EGJ(θ, s

0, P 0)] close to
√
J [GJ(θ

0, s0, P 0) − EGJ(θ0, s0, P 0)] (we have also to insure that
the consumer sampling and the simulation processes do not cause jumps in the disturbance
process at values of θ close to θ0). The stochastic equicontinuity assumption is sufficient to
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ensure that the remainder term from the expansions we use is of smaller order in probabil-
ity than

√
JGJ(θ0). We verify it for the logit case. With these conditions we can state our

asymptotic normality result (again its proof is in the appendix).

T*+',+# 2. [Asymptotic Normality] Suppose that A1-A6 and B1-B5 hold for some α.
Then, √

J(bθ − θ0) =⇒ N [0, (Γ0Γ)−1Γ0ΦΓ(Γ0Γ)−1], with Φ = Φ1 + Φ2 + Φ3.

Note that the {Φq}3q=1 in the statement of the theorem (and as deÞned in B4) satisfy

Φ2 = p lim
n→∞

1

nJ
z0H−1

0 V2H
−1
0

0z ; Φ3 = p lim
n→∞

1

RJ
z0H−1

0 V3H
−1
0

0z.

We can obtain consistent estimates of the standard errors by substituting consistent estimates
of {Φq}3q=1 and Γ into the theorem�s formula.7 We now consider alternative ways of obtaining
those estimates.
When GJ is differentiable in θ let bΓ = ∂GJ(bθ, sn, PR)/∂θ; this will consistently estimate

Γ under quite general conditions. When GJ is not differentiable in θ we must use numerical
derivatives. Let δ = δ(J) be a small positive number and for each (k, l) let

bΓlk = GJl(bθ + δek, sn, PR)−GJl(bθ, sn, PR)
δ

be an estimate of Γlk, where ek is the kth unit vector. Under the conditions on the rate
at which the bandwidth parameter δ → 0 as J → ∞ given in Pakes and Pollard (1989),bΓlk P−→ Γlk.
To deÞne estimates of Φj we just substitute estimates of the unknown quantities in the

asymptotic variance formulae and replace expectations by sample averages. SpeciÞcally,
deÞne the residual vector bξ = (bξ1, . . . ,bξJ)0, where bξj = ξj(bθ, sn, PR), and let

bΦ1 = 1

J

JX
j=1

zjz
0
j
bξ2j .

To show that bΦ1 P−→ Φ1 we can make use of our results to establish that J−1
PJ

j=1 zjz
0
j(
bξ2j −

ξ2j)
P−→ 0 from our existing conditions, but we also need that J−1

PJ
j=1 zjz

0
jξ
2
j

P−→ Φ1,

7Note that the traditional bootstrap estimator of standard errors is not well deÞned in our context (at
least not without additional assumptions). That is, though we could bootstrap a sample of exogenous
characteristics, we would need to make an equilibrium assumption before we could move from that sample
to a sample that could be used in estimation. Moreover that equilibrium assumption would have to generate
unique price and demand vectors, and uniqueness is not a property generated by the standard equilibrium
assumptions (Nash in prices or quantities) for the demand models we typically take to data (either BLP or
the pure characteristics model). Moreover for a uniqueness result to apply we would typically have to allow
for the multiproduct Þrms we often see in our data.
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which does not follow from our primitive conditions. We shall assume that this holds and
so bΦ1 P−→ Φ1.

8

The plug-in estimates of Φ2 and Φ3 are consistent under our conditions because we can
exploit the independence of the simulation and sampling errors. That is let bε`,r = ε`,r(bξ,bθ).
Then if bΦ2 = 1

nJ
z0 bH−1bV2 bH−10z ; bΦ3 = 1

RJ
z0 bH−1bV3 bH−10z,

where bH = H(bθ, sn, PR), bV2 = Sn − snsn0, and bV3 = (bV3)`,`0 with
(bV3)`,`0 = 1

R

RX
r=1

bε`,rbε`0,r.
Then bΦq →p Φq, q = 2, 3 under our conditions.An alternative estimator of Φ2 can be obtained
by recalculating the objective function at bθ and sn for independent sets orR simulation draws
and computing the variance in these estimates (and a similar procedure could be used for
Φ3).9 Consistency requires the number of sets of simulation draws to grow large but in
applied work we have found that we obtain a relatively precise estimator quite easily.
Note that the standard errors allow for conditional heteroskedasticity in the ξj. However

if the market of interest contains multiproduct Þrms, and the observed characteristics did
not include Þrm speciÞc dummy variables, then one might want to generalize to allow the ξ
to be correlated across products (say have a Þrm speciÞc component).10

Also, as in Hansen (1982), we can improve the efficiency of bθ by taking the weighted
norm criterion, i.e.,

kGJ(θ, s, P )k2WJ
= GJ(θ, s, P )

0WJGJ(θ, s, P )

for some weighting matrix WJ . The resulting class of estimators can be treated similarly to
above: it suffices for asymptotic normality to make the additional assumption thatWJ →p W
for some symmetric positive deÞnite matrix W, in which case the asymptotic variance is
(Γ0WΓ)−1Γ0WΦWΓ(Γ0WΓ)−1 (see Pakes and Pollard (1989)). The optimal weighting matrix
is proportional to Φ−1, and the resulting estimator has asymptotic variance (Γ0Φ−1Γ)−1, and
is efficient within this class.
A few Þnal points on efficiency. First if we make a comparison with the estimator that

is optimal when s0, P 0 are known [and the corresponding moment GJ(θ, s0, P 0) can be com-
puted], we Þnd that the variance of our estimator is strictly larger, so an estimator of the

8To show this we would have to limit the amount of dependence across the zj so as to apply a law of
large numbers based on a weak dependence concept like mixing. To establish that such a propery holds
under more primitive conditions on the economic model is a quite challenging and is left for future work.
Our simulations show that the standard errors seem to be consistent in the models we examined.

9Frequently sn is constructed from total sales data, rather than from a sample of consumer purchasing
patterns, and in these cases n is typically so large that sampling variance has very little impact on the
estimator.
10Similarly, if there were unobserved product characteristics that were determined by the date the product

were introduced, and launch dates were not included in the observed x0s, then we might want to allow for
a launch date speciÞc component of the ξ. We have not generalized in this way because it would require
adding a dimension to all of our indices, which would complicate our notation considerably. Moreover the
added generality does not create any econometric issues that cannot be handled in standard ways.
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variance of the parameter estimates which ignores sampling and simulation error will be
biased downwards. Also, since we are only dealing with the demand subsystem here, our es-
timator can only be efficient in a limited information sense. That is in virtually all currently
used pricing models the pricing equation also depends on the parameters of the demand
system. So if we were willing to make an assumption on how prices are set, we could also
use the pricing equation to help estimate the demand parameters. Relatedly once we made
such an assumption we could look for an efficient estimator under the conditional moment
restriction E[ξj|x1j] = 0 as in Chamberlain (1987); see the discussion the last section.

3.3 A Comment on Rates of Convergence

Establishing conditions under which B4 is true, i.e. conditions under which the random
variables TJ2 ≡ J−1/2z0H−1

0 ε
n and TJ3 ≡ J−1/2z0H−1

0 ε
R(θ) are asymptotically normal with

zero mean and Þnite non-zero variances, is central to the analysis. The relevant variances
are obtained as p limJ→∞Φ2(J) and p limJ→∞Φ3(J), where

Φ2(J) =
1

nJ
z0H−1

0 V2H
−1
0 z ; Φ3(J) =

1

RJ
z0H−1

0 V3H
−1
0 z. (30)

Keep in mind that the matrix H0 is dimension J × J and J grows large in our limiting
argument.
Since for Þxed J both TJ2 and TJ3 are a sum of i.i.d. random variables central limit

theorems for triangular arrays imply that it will be sufficient to Þnd conditions on n(J) and
R(J) that guarantee that the Φ matrices are bounded. We consider the term Φ2(J) [similar
comments apply to Φ3(J)]. The behavior of the elements of H−1(θ, s0, P 0) has a key role
here, and, consequently, we will consider different scenarios regarding these quantities as is
appropriate for the different demand models.
The differences arise because the different models have different implications for the

components of ∂σ(·)/∂ξ. In particular in the models with�diffuse� substitution patterns,
such as the random coefficient logit model of BLP in which all goods are substitutes for all
other goods, that partial goes to zero as the number of products increase, and its inverse
grows large. Consequently, when J is large a little bit of sampling error causes large changes
in the computed value of ξ. In contrast, in the pure characteristic model, competition is
�local�, the more the number of products the �closer� will your nearest competitor tend to
be and the larger will be the response to small changes in the quality of the product. In these
cases a little bit of simulation or sampling error will have almost no effect on the computed
value of ξ.
Formally, if we let a0 = (a1, . . . , aJ) = z0H−1

0 and suppose, without loss of generality, that
z is a J × 1 vector, we have [conditional on s0]

Φ2(J) =
1

nJ

 JX
j=1

a2js
0
j −

Ã
JX
j=1

ajs
0
j

!2 , (31)

since V2 =diag[s0] − s0s00. The magnitude of the matrix Φ2 depends on the vectors a and
s0. Note that the term in square brackets in (31) can be considered to be the �variance� of
the vector (a1, . . . , aJ) with respect to the multinomial like measure induced by the sequence
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of weights (s01, . . . , s
0
J) [note that depending on the behavior of s

0
0, these weights do not

necessarily sum to one even asymptotically].
There are three factors that inßuence the magnitude of Φ2(J). First, the rate at which

s0j , j = 0, 1, . . . , J decline with J . Here we assume Condition S (20) for all of our models
(roughly, all shares go down like 1/J). Second, the rate at which the a0js grow or decline
with J. Finally, the variability of the sequence {aj} also has a role to play in some cases. The
examples establish rates of growth on n(J), R(J), which insure, through there effects on the
rate of growth and variability of the sequence {a1, . . . , aJ}, Þnite limits for Φq(J); q = 2, 3.
In general, if for some function g(·), we have |aj| ≤ g(J) for j = 1, . . . , J, then for all J,

JX
j=1

a2js
0
j −

Ã
JX
j=1

ajs
0
j

!2
≤

JX
j=1

a2js
0
j ≤

µ
max
1≤j≤J

|aj|
¶2 JX

j=1

s0j ≤ g(J)2. (32)

This gives a global bound on the variance matrix Φ2(J); it is essentially this bound that was
used in BLP to provide sufficient conditions for asymptotic normality.
However, it turns out that for two of our leading cases (the logit and random coefficient

logit), there is further structure that can sometimes be exploited to give tighter bounds on
Φ2(J). SpeciÞcally, when (20) hold in these cases we have

(a1, . . . , aJ) = g(J){(1, . . . , 1) +O(1/J)}

for some non-decreasing function g [i.e., the normalized a0s have zero sample variability].
Then, we have

JX
j=1

a2js
0
j −

Ã
JX
j=1

ajs
0
j

!2
' g(J)2

 JX
j=1

s0j −
Ã

JX
j=1

s0j

!2
= g(J)2

h
1− s00 −

¡
1− s00

¢2i
= g(J)2s00(1− s00). (33)

When (20) holds, the share of the outside alternative s00 is O(1/J), and so (33) is O(g(J)
2/J),

and we get a reduction in the magnitude of the variance from the crude bound (32).11

4 A Detailed Analysis of Our Examples

Section 2 introduced two examples and we now provide a detailed analysis of both of them.
The Þrst was the logit model. As noted the logit has �diffuse� substitution patterns which,
in turn, make estimators of the parameters of the model quite sensitive to sampling and
simulation error. The fact that the simple logit only accommodates very restrictive substi-
tution patterns has caused interest in the random coefficients logit model of BLP (1995), so
11Note that when the share of the outside alternative is O(1), (33) is the larger magnitude O(g(J)2). In

this case, there is no gain and ( 32) is not improved.
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we extend our results to that model also (analogous results hold for the nested logit, the
multinomial probit, and the random coefficients probit).
The second example is the vertical model of Shaked and Sutton (1982). This and the

horizontal model of Hotelling (1929) are uni-dimensional examples of a class of models Berry
and Pakes (2002) call the pure characteristics model, and we consider in more detail below.
In these models individual�s preferences are deÞned on a Þnite dimensional space of prod-
uct characteristics, and substitution patterns are �local� in the sense that cross price and
characteristic elasticities are only non-zero for a Þnite number of products.
The asymptotic behavior of the estimator of the two model�s parameters differ. In the

Þrst we require that the variance in both the simulation and the sampling error must decline
at a rate faster than J increases for consistency and at the rate J2 for asymptotic normality.
For the second, the variance in the sampling and the simulation error can decline at any rate
for consistency and to decline at rate J for asymptotic normality.

4.1 The logit model

Recall from equations (13) and (14) that the market shares predicted by the logit model are

σj(x, ξ, θ) =
ex

0
jθ+ξj

1 +
PJ

k=1 e
x0kθ+ξk

, j = 1, . . . , J while σ0(x, ξ, θ) =
1

(1 +
PJ

k=1 e
x0kθ+ξk)

,

and from equation (16)

∂σ

∂ξ
≡ H(θ, s, P ) = S − ss0, while H(θ, s, P )−1 = S−1 + ii0/s0,

where S = diag[s] and i = (1, . . . , 1)0. H(θ, s, P ) is the J × J share matrix derivative
evaluated at ξ = ξ(θ, s, P ), and does not depend on the parameter vector θ.
We assume that the random variables x0jθ+ξj have bounded support and density bounded

away from zero on this support.12 This implies market shares are all of magnitude O(1/J)
with probability one (our Condition S, equation 20). Note that this is sufficient to ensure
invertibility of the matrix H for every Þnite J .
From section 3.1 condition S implies A3 provided J1+²/n → 0 for some ² > 0 , and we

simply assume that the instruments are stochastically bounded thus satisfying A4. Using
τα(x) = log(x/σ0), it is easy to see that A5 is also satisÞed. Thus to prove consistency we
need only verify the identiÞcation condition in A6
A sufficient condition for A6 is that for each ² > 0 there is a J(²) such that for any

J > J(²), J−1
P

j zjx
0
j has full column rank with probability 1− ², since then

inf
θ/∈Nθ0 (δ)

kGJ(θ, s0)−GJ(θ0, s0)k = inf
θ/∈Nθ0 (δ)

k
Ã
1

J

JX
j=1

zjx
0
j

!
(θ−θ0)k ≥ inf

θ/∈Nθ0(δ)
Ckθ−θ0k ≥ Cδ,

with probability 1 − ². In terms of the pricing problem this requires that the price of a
product not be a linear function of that product�s demand side attributes. However, we
12If instead we assumed xjθ + ξj has Þnite variance, it would only affect the argument for normality

through the remainder term magnitudes. That is a different argument would be required to insure that the
rates of growth of n(J) and R(J) are large enough to cause the remainder terms to converge to zero.
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know that the solution to the pricing problem generates a pricing function which depends
on competitor characteristics and factor prices, as well as on its own characteristics.
We now move on to the conditions needed for asymptotic normality; in particular B4 (or

equations 28 and 29) when condition S is satisÞed. Without loss of generality assume z is a
vector, and recall that to prove B4 it suffices to Þnd a rate of growth for n that makes the
limit, as J grows large, of Φ2(J) Þnite (element by element), where

Φ2(J) =
1

nJ
[
JX
j=1

a2js
0
j − (

JX
j=1

ajs
0
j)
2] and ak = z

0H−1
0 ek.

The formula for H−1
0 , and condition S (i.e., all sj > c/J) implies

ak =
zk
sk
+

PJ
j=1 zj

s0
=
J2zJ
c
[1 +O(1/J)], (34)

where zJ is the sample mean of z, which is bounded by assumption. From the discussion at
the end of last section if

(a1, . . . , aJ) = g(J)[(1, . . . , 1) +O(1/J)]

then the components of Φ2(J) are Op[g(J)2/J2n]. Equation (34) implies we satisfy this
condition with g(J) = J2Op(1). Thus the components of Φ2(J) are Op(J2/n); i.e., n must
grow like J2 for asymptotic normality.
We now verify (29). Note that |PJ

j=1 ajεji| ≤ max1≤j≤J |aj|
PJ

j=1 |εji| ≤ cJ2 for some

constant c, because
PJ

j=1 |εji| ≤
PJ

j=1[1(Ci = j) +E1(Ci = j)] ≤ 2. and (34) is true. Thus

E

¯̄̄̄¯ 1

n
√
J

JX
j=1

ajεji

¯̄̄̄
¯
2+δ
 ≤ µ cJ2

n
√
J

¶2+δ
for any δ. Thus nE[|YJi|2+δ] = O(J3+3δ/2n−(1+δ)) = o(1), which, after substituting n(J) = J2,
satisÞes our condition provided 3 + 3δ/2− 2(1 + δ) < 0. That is condition (29) is satisÞed
for any δ > 2.
Finally, we turn to the stochastic equicontinuity condition B5. In the logit case, there

is no simulation, i.e., P is known exactly, and there is only the sampling error to consider.
Furthermore, since [∂σ/∂ξ]−1 = ∂ξ/∂σ, where ξj(θ, s, P

0) = ln(sj/(1−
PJ

k=1 sk))− xjθ , we
can equivalently restrict our attention to the process for s, i.e.

νJ(s) =
1

J
z0H−1(θ, s, P )εn,

where H−1(θ, s, P ) = S−1 − ii0/(1 − i0s). We must show that this process is stochastically
equicontinuous. In the appendix we show the equivalent condition that

νJ(s
n)− νJ(s0) = Op(J3/2/n). (35)

It follows that the remainder terms in the expansion (11) are of smaller order than the
leading terms.
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In conclusion, the asymptotic variance of
√
J(bθ − θ0) isÃ

lim
J→∞

1

J

JX
j=1

E(zjx
0
j)

!−1
(Φ1 + Φ2)

Ã
lim
J→∞

1

J

JX
j=1

E(xjz
0
j)

!−1
where

Φ2 = lim
J→∞

1

nJ
z0H−1

0 z = lim
J→∞

"
1

nJ

JX
j=1

zjz
0
js
−1
j +

J

n

1
J

PJ
j=1E(zj)

1
J

PJ
j=1E(z

0
j)

s0

#
.

Under our assumptions the Þrst term is Op(J/n). Since the second term is Op(J2/n) it is
dominant.13 That is

Φ2 = lim
J→∞

J2

n
× limJ→∞

1
J

PJ
j=1E(zj)

1
J

PJ
j=1E(z

0
j)

limJ→∞(Js0)
.

4.1.1 The Random Coefficients Logit

The logit model limits substitution patterns in unrealistic ways. However, the random
coefficients logit, given by

uij = δj + xjλi + ²ij, where δj = xjβ + ξj,

is much more ßexible (see BLP (1995)). Usually the δj contain the mean of the coefficients of
the x and the λ contain the deviations from that mean. It is the variance in preferences for
characteristics (the variance in the λ) that is essential for more ßexible substitution patterns
(especially the variance in the price coefficient).
The market share for this model is given by

σj(x, ξ, θ) =

Z
eδj+xjλ

1 +
P

k e
δk+xkλ

dP (λ) ≡
Z
sj(λ)dP (λ) ≡ E[sj(λ)], (36)

where P is a given probability measure. Note that the integrand, sj(λ), is just the logit
market share function evaluated at a particular value of the random coefficients (we have
suppressed its other arguments x, θ, ξ). The derivatives of the market share function are

∂σj
∂ξk

=


R
sj(λ) {1− sj(λ)} dP (λ) j = k

− R sj(λ)sk(λ)dP (λ) if k 6= j.
In matrix terms we can write the share matrix

H = E[H(λ)], where H(λ) = S(λ)− s(λ)s(λ)0
in which S(λ) = diag(s1(λ), . . . , sJ(λ))0 and s(λ) = (s1(λ), . . . , sJ(λ))0. Unfortunately there
is no easy expression (that we know of) for the inverse matrix H−1

0 for this case. However,
we can still characterize its properties sufficiently well to ensure that property (33) holds.
13In the case where the outside alternative is O(1), the two terms in this equation are of equal magnitude

and we must include both.
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By the convexity of the matrix inverse [Groves and Rothenberg (1969)] we have

H−1 = [EH(λ)]−1 ≤ E[H(λ)−1]
in the positive deÞnite sense. The inverse of any given logit matrix is S(λ)−1 + ii0/s0(λ). If
we assume that sj(λ) ≥ sj for all j = 0, 1, . . . , J for some nonrandom sequence of constants
sj that obey condition S, then

[EH(λ)]−1 ≤ S−1 + ii0

S0
≡ H−1, (37)

where S= diag(s1, . . . , sJ)
0. Furthermore, H−1V2H−1 ≤ H−1V2H−1 by the properties of

positive deÞnite symmetric matrices [Anderson (1984, Theorem A1.1)]. We can now apply
the results from the previous subsection. Under condition S, the variance term (31) is of
order J2/n as in the Þxed coefficient logit case. The remaining arguments of the previous
subsection hold here too so that the condition for the central limit theorem is satisÞed in
the random coefficient case. In fact, we are able to prove in this case that

Φ2 = lim
J→∞

J2

n
× µzµ

0
z

limJ→∞(J
R
s0(λ)dP (λ))

(38)

Φ3 ≤ lim
J→∞

J2

R
× µzµ

0
z

limJ→∞(J
R
s0(λ)dP (λ))

. (39)

where µz = limJ→∞ 1
J

PJ
j=1E(zj). We could provide more detailed formalizations of both

the identiÞcation and stochastic equicontinuity conditions, but we really have nothing sub-
stantive to say that we have not already said in the context of the Þxed coefficient logit
model.

4.2 The Vertical Model

Recall from equation (18) that the market shares for the vertical model are given by

s0 = 1−F (∆1; θ), sj = F (∆j; θ)−F (∆j+1; θ), for j = 1, . . . , J − 1, and sJ = F (∆J ; θ),
where ∆j = (δj − δj−1)/(pj − pj−1), and for all market shares to be positive we require
∆1 > ∆2 > . . . and δ1 > δ2 > . . ., where δj = xjβ + ξj for j = 1, . . . , J(δ0 = p0 = 0).
Since the simple vertical model only requires integration over one dimension of hetero-

geneity, we assume there is no simulation error. Further for this model the inversion from
shares to ξ is obtained from the recursive system

δj − δj−1 = (pj − pj−1)F−1(1−
j−1X
r=1

sr)

which, together with our normalization (ξ0 = 0), implies

ξj(s
n)− ξj(s0) =

jX
l=1

(pl − pl−1)[F−1(1−
l−1X
r=1

snr )− F−1(1−
l−1X
r=1

s0r)].
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Recall that one requirement for consistency is that J−1||ξ(sn)− ξ(s0)||2 →p 0.
For simplicity we assume that the distribution of λ (i.e., F (·)) has bounded support

and is strictly increasing (so its inverse satisÞes a Lipschitz condition), and that whatever
equilibrium is established maxj≤J(pj − pj−1) = c <∞. Then for any ² > 0

Pr

"
1

J

JX
j=1

©
ξj(s

n)− ξj(s0)
ª2
> ²

#
≤ max

j≤J
Pr
h©
ξj(s

n)− ξj(s0)
ª2
> ²
i

≤ J max
j≤J

Pr

( j−1X
l=0

snl −
j−1X
l=0

s0l

)2
> ²/c


≤ J exp(−²n/c),

by Bernstein�s inequality (since
Pj−1

l=0 s
n
l is a sum of n independent random variables each

bounded by one). Thus assumption A3 will be satisÞed provided n→∞ faster than log J.
For the asymptotic normality result we need the elements of the matrix H−1, where

H = ∂σ/∂ξ. Letting α1 = f(∆1)/p1, α2 = f(∆2)/(p2 − p1), . . . ,αJ = f(∆J)/(pJ − pJ−1)

H =


α1 + α2 −α2 0 · · · 0

−α2 α2 + α3
. . . 0 0

0
. . . . . . −αJ−1 0

... 0 −αJ−1 αJ + αJ−1 −αJ
0 0 0 −αJ αJ

 . (40)

The matrix H is a band matrix with all elements more than one place from the diagonal
being zero. Note also that all row and columns sums are zero apart from the Þrst row and
column, and so the matrix is not diagonal dominant. Furthermore, it can be veriÞed that

H−1 =

min(i,j)X
r=1

1

αr


i,j

=


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1
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· · · 1
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1
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1
α1
+ 1
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1
α1
+ 1

α2
· · · 1

α1
+ 1

α2
1
α1

1
α1
+ 1

α2
1
α1
+ 1

α2
+ 1

α3
· · · 1

α1
+ 1

α2
+ 1

α3
...

...
...

. . .
...

1
α1

1
α1
+ 1

α2
· · · . . . 1

α1
+ · · ·+ 1

αJ

 .

Notice that any Þxed element of the inverse matrix is of order one as J → ∞ (this is in
contrast to the logit models where the individual elements of the inverse were all of order
J).
Assume that the z are bounded. Then, for k = 1, . . . , J,

ak ≡ z0H−1ek ≤ max
1≤l≤J

|zl| ×
"
J

kX
`=1

1

α`
+

k−1X
j=1

Ã
jX
`=1

1

α`
−

kX
`=1

1

α`

!#

= max
1≤l≤J

|zl| ×
"
J

kX
`=1

p` − p`−1
f(∆`)

−
k−1X
j=1

kX
`=j+1

p` − p`−1
f(∆`)

#
,
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which gives the individual elements in the vector z0H−1. Since prices increase in the order
of the products

ak ≤ max
1≤l≤J

|zl| × J
kX
`=1

p` − p`−1
f(∆`)

, (41)

which is of order J for any Þxed k.
For Theorems 1 and 2 we must determine the magnitude of the sample variance of the

sequence (a1, . . . , aJ) with respect to the multinomial(s1, . . . , sJ) or equivalently given out
assumptions the multinomial (1/J, . . . , 1/J). We have

1

J

JX
k=1

a2k −
Ã
1

J

JX
k=1

ak

!2
≤ 1

J

JX
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³Pk
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{min1≤`≤J f(∆`)}2
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×m−2 1
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JX
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p2k,

with m−2 1
J

PJ
k=1 p

2
k Þnite (since we assume

1
J

PJ
k=1 p

2
k is Þnite and min1≤`≤J f(∆`) ≥ m >

0).14

Given the lower bound m and that the price sequence has a Þnite second moment, (32)
holds with g(J) = J. Therefore, the covariance matrix Φ2(J) is of order J/n. That is, in this
case, we obtain consistency if n increases at any rate faster than log J , while the asymptotic
normality result holds with all three terms contributing provided n grows like J .
Note the contrast to the logit-type models, where nmust increase at rate J for consistency

and rate J2 for the asymptotic normality result [when all shares are the same magnitude].
The difference between the models is due to the difference between localized and diffuse
competition. In the models with sampling and simulation errors, the derivative of market
share with respect to product quality is declining at the same rate as the shares. Therefore,
the elements of the inverse derivative matrix (dσ /dξ )−1 are growing in J , and the number
of simulation draws must increase at a faster rate to offset this. In the vertical model,
competition is localized and the derivative of market share with respect to product quality
does not decline in J , and so the elements of the inverse derivative matrix stay bounded.
As a result our limit theorems can suffice with a lower rate of growth for n in the vertical
model.
14Again what actually happens to these quantities as J grows large will depend the on appropriate spec-

iÞcation of the pricing and product placement equilibria. We suffice with these assumptions because they
seem to be sufficiently general and are all we require for our results. However a similar argument could be
used to establish rates under other assumptions, and it may be possible to improve on our rates.
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5 Monte Carlo Results

In this section we discuss Monte Carlo results for simple versions of our models. We start with
logit-type models. In particular we present results for a simple logit where the market shares
are observed with sampling error, and then for a random coefficients logit with simulation
error in the computed shares. Next we turn to the pure characteristic models. Here we start
with a simple vertical model where market shares are observed with sampling error and then
move to a multi-dimensional pure characteristics model with simulation error. We conclude
with a brief comparison of alternative estimators for the standard errors and of the quality
of the normal limiting approximation to the true distribution of our parameter estimates.
The monte-carlo results reinforce the theoretical discussion in the previous sections. That

is to obtain a �well-behaved� estimator for the Þrst class of models sample sizes and simu-
lation draws must be quite large and increase rapidly in J . The sample sizes and number
of simulation draws which seem to be necessary for estimating the versions of the pure-
characteristic model can be much smaller, and, do not increase nearly as rapidly in J . Also
the normal limiting approximation seems to Þt the true distribution of the parameter esti-
mates surprisingly well.
All of our examples involve data on a single-cross section of markets. Thus, as in our

theoretical discussion, our focus is on how estimates behave as the number of products (J)
within a market varies. In practice there are several reasons to prefer to estimate off data
that features a cross section or time series of different market equilibria but, as noted above,
we will typically still need insights into how estimates behave as J changes.
For the logit model, the deterministic part of utility is drawn as

δj = xjβ + ξj, (42)

where ξj is drawn from the standard normal distribution. The x�s are a constant and a
standard normal, with a β coefficient on the constant of 3 and a slope coefficient of 1.
(Except as noted, all random variables in the Monte Carlo exercises are i.i.d. draws.)
Table 1 gives the mean estimated value of β2 across 1000 Monte Carlo datasets. Each

column gives results for a different value of J , the number of products, while the panels
running down the table vary the number of consumer draws used to calculate the market
share of the sample (n). Note that zero shares are discarded from the dataset. The fourth
panel gives results for n set proportional to J , while in the Þfth panel n is set equal to J2 .
The last column uses the true expected shares (i.e., �n =∞�).
In the second row of each panel is the simulated standard deviation (the standard error

of the estimate across the simulated samples) and the third row gives the standard error
of the mean (the simulated standard error divided by

√
1000). Apart from the inversion,

the simple logit model is linear in parameters. Thus, given no sampling error in the shares,
we should get unbiased results even for small J (which seems consistent with the results for
n =∞).
We see that the results are particularly bad for small n relative to J , with a large apparent

bias. This is in large part due to the sample selection bias that comes from throwing small
share products out of the market.15 A good with a low value of x will tend to have a positive
15We did not deal with this problem in our theoretical analysis above, but it is likely to be a problem for

datasets built from small samples of consumers.

32



market share only if it has a large value of ξ while a good with a high value of x will tend
to have a positive share even for small ξ . This generates a negative correlation between x
and ξ among goods with positive market shares.
Table 2 gives Monte Carlo results for a random coefficients logit. In this case (as in most

of the empirical literature which as aggregate data), we assume that observed market shares
have no sampling error ( i.e. we are assuming that the observed shares are aggregated over a
very large number of consumers). Since we always simulate positive predicted shares, there
is no sample selection problem when there is data from a large consumer sample. So here
we also consider smaller values of R.
Our random coefficients logit example once again sets δj = xjβ+ξj, but now β = (−5, 1).

Utility of consumer i for product j is

uij = δj + θxλixj2 + ²ij, (43)

where λ is standard normal, the standard deviation of the random �taste for x�, θx, is set
to one and xj2 is the non-constant element of x. As usual, the ²�s are i.i.d. extreme-value
draws. The market shares are calculated by taking R draws from the distribution of the
random coefficient λ. The �observed� market shares are set to their expected value at the
true parameter values (i.e., we are assuming that the observed shares are aggregated over a
very large number of consumers.)
Computation of the inverse shares follows BLP, but we do not use a variance reduction

(importance sampling) scheme of sort used in that paper.
Table 2 summarizes the estimates of θx, the standard deviation of the random coefficient

on the non-constant x. The results are consistent with the theory that suggest that the esti-
mation routine will perform badly when the number of simulation draws is �small� relative
to the number of products. In particular there seems to be a bias that increases in J holding
R Þxed (at least at low values of R); and for R = 50 the variance is actually increases as J
goes from 50 to 100. Also when J gets large (take our J = 100), we need fairly large value of
R for that bias to go away (for J=100 we probably need R > 1000). However, as the theory
predicts when we set R = J2, all estimates look to be close to their true values (relative to
their standard deviations), and the standard errors decrease as does

√
J .

Table 3 has results for the vertical model. As in Table 1, the variance in observed shares is
generated by small samples of consumers rather than from simulation error in the predicted
shares. Once again, this can produce zero observed market shares, but in the vertical model
the zero share products can be included in the estimation routine at little cost.16

The exact vertical model considers a utility function of

uij = δ − θpλipj, (44)

where δ is �quality�, λi is consumer-speciÞc part of the the marginal disutility of a price
increase and θp is a parameter of the model. To keep the random coefficient in an easy
16In practice, the inversion for δ simply sets the δ of zero share products to the δ of the next lowest-priced

good. Since zero shares occur in the vertical model when δ�s are �close together�, this creates little bias.
Note the contrast to the logit model, where zero share products have systematically low δs and where the
inversion routine cannot handle zero shares. We should note that this is the choice of δ for a zero market
share product produced by our estimation algorithm; any δ below this value would also be consistent with
a zero market share.
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one-parameter family, we assume that λi is drawn from the unit exponential distribution, so
that θp (set equal to one in the experiments) is the mean disutility of a price increase. In
fact, θp is not separately identiÞed from demand-side data and so is held Þxed at one in the
Monte Carlo experiments (this is just a normalization.)
Quality is modeled as δj = xjβ + ξj, where the two components of x are a constant and

a uniform drawn from (0, 2). β is set equal to (1.5,1). The �unobserved� ξj is uniform on
(−1, 1) . To insure that the expected shares are all positive, price is set equal to δ2.17
The results in Table 3 summarize the estimates of β2, the slope coefficient on x in the

quality equation. These results are very different than those for the logit-type models in
Table 2. Indeed, when we use the vertical model it is striking that there is no apparent
inconsistency in the estimates anywhere in the table (even when J = 200 and n = 50). As
expected, for Þxed n the variance decreases in J . However for small n the decrease is almost
imperceptible, while with large n the variance declines at very close to the rate of

√
J , which

is the rate we would expect if simulation had no impact on the estimates at all.
Our Þnal monte carlo for parameter estimates is an example of the computation of δ in

a multidimensional pure characteristics- model. To the vertical model of Table 3, we add a
random coefficient on the observed x,

uij = δ + θxλi1xj − θpλi2pj, (45)

with
δ = β0 + β1xj + ξ. (46)

There are now two dimensions of the unobserved consumer tastes, related to x and p.
In the vertical model of Table 3, computation was not an issue and so we focused on

small consumer samples as the source of �simulation� error. In the pure random coefficients
model, the market shares must be simulated and so we focus on simulation error. We assume
that the consumer sample is very large. This is fairly realistic in many datasets and avoids
the problem of sample selection that arises in the small sample case.
As discussed in Berry and Pakes (2002), estimation of the parameters is computationally

cumbersome as the number of products increases, making it difficult to estimate the model
with many repetitions in a Monte Carlo exercise. For computational tractability, we therefore
focus on the computation of δ at Þxed values of parameters. In particular, we hold the
parameters (θx, θp) of the random coefficients at their true values and then compute δ from
the constructed data on x, p and expected market shares. The method of solving for ξ is
the �exact� homotopy method of Berry and Pakes (2002). To summarize the relevant error
in the computation, we regress the computed δ on x to obtain an estimate of (β0,β1). In
Table 4, we report the mean estimates of β1 we obtained from repeating this procedure for
different number of products and simulation draws.
The data for Table 4 were created via the following assumptions. The observed xj is

drawn as 1.5 times a random uniform on (0,1). The unobserved ξj is drawn as a a random
uniform on (0,1). (Note that somewhat more of the variance in δ comes from x as oppose
to ξ, which will aid the estimation procedure.) The term δ is then constructed via the
parameters (β0,β1) = (2, 1). To ensure positive market shares, price is set equal to a convex
function of δ, eδ/10. The random �taste� for x is standard normal, while the random term
on price is modeled as a standard log-normal (with µ = 1.)
17In the vertical model, all shares will be positive if price increases �fast enough� in quality.
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The results in Table 4 are consistent with our conjecture that the multi-dimensional
pure characteristics model behaves much as the single-dimensional (vertical) model. In
particular there is no obvious bias in the estimates even when there are only a small number
of simulation draws. The �∞� row of Table 4 uses the true δ that created the data (as this
is the δ that would be recovered if both n and R were inÞnite). This row therefore gives
the results from the model without any simulation error. It is apparent that at low values
of J and high values of R very little of the standard error of the estimate is attributable
to simulation error, but that fraction is still quite large when J = R (note that throughout
we keep R fairly small as that keeps the computational burden of estimating the model
repeatedly on different simulated data sets manageable). Overall, however, the table seems
consistent with the conjecture that the multidimensional pure characteristics model behaves
similar to the unidimensional characteristic model; in particular we do not need R to grow
faster than J for consistency and fairly precise estimates can be obtained from relatively
small values of R.
We also wanted to evaluate the quality of the approximation to the distribution of pa-

rameter estimates that emanates from the normal limiting distributions and the asymptotic
variance formulas given in the text. To evaluate this we re-ran, with different simulation
draws, the results in Table 2 (random coefficients logit) and Table 3 (pure vertical model) for
J = 50 and R = 500. For each dataset, we calculated both the parameter estimate and the
estimate of the variance of the asymptotic normal distribution. In both models, to calculate
the asymptotic variance we need to estimate the variance in the moment conditions due to
the simulation (as well as due to the data). For the random coefficients logit, we simulated
this variance (for each of the 1000 Monte Carlo experiments) by drawing 500 new datasets
and re-calculating the moment conditions at each new dataset (holding the parameter Þxed
at its estimated value). For the pure vertical model, the contribution of the error is in the
observed shares can be evaluated using the usual asymptotic formula for the variance of
multinomial draws.
As can be seen in Table 5 the average of the estimates of the standard deviations from

the asymptotic expansions is almost identical to the true standard deviation as obtained
from the monte carlo estimates. The Þts of the asymptotic approximations are surprisingly
good. I.e. our limiting distributions seem to provide a very good approximation to the actual
distributions of the parameter estimates. Figures 1 and 2 provide comparisons of the actual
distribution of the parameter estimates from the Monte Carlo experiments to the distribu-
tion obtained from the limiting approximation using the variances and parameter estimates
reported in the table (for the random coefficients logit and the vertical model respectively).
The plotted distribution is a kernel density estimate, calculated from the default values in
the Stata statistical program. The smooth line is the normal distribution Þt to the same
data; the distribution of the calculated parameters does appear to be approximately normal.

A Appendix

P,''- '- T*+',+# 1. We Þrst show that the estimator deÞned as any sequence that satisÞes

kGJ(bθ, s0, P 0)k = inf
θ∈Θ

kGJ(θ, s0, P 0)k+ op(1)

is consistent. Note that assumption A1 together with the law of large numbers for triangular arrays
[see, for example, Billingsley (1986, Theorem 6.2)] imply that kGJ(θ0, s0, P 0)k = op(1). Therefore,
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by Theorem 3.1 of Pakes and Pollard (1989) it will suffice to show that for every (δ, ε) > (0, 0)
there exists a C∗(δ) > 0 and an J(ε) such that for J ≥ J(ε)

Pr

·
inf

θ/∈Nθ0 (δ)
kGJ(θ)k ≥ C∗(δ)

¸
≥ 1− ε,

where we have omitted indexing GJ by (s0, P 0) for notational convenience. From the triangle
inequality infθ/∈Nθ0(δ) kGJ(θ)−GJ(θ0)k ≥ C(δ) implies that

inf
θ/∈Nθ0(δ)

kGJ(θ)k ≥ C(δ)− kGJ(θ0)k.

Fix ε > 0, and let ε∗ = min{ε, C(δ)}, so that 0 < ε∗ ≤ ε. Since kGJ(θ0)k = op(1), there exists
J1(ε

∗) such that for any J ≥ J1(ε∗), Pr{kGJ(θ0)k ≥ ε∗/2} ≤ ε∗/2. By assumption A1, there exists
J2(ε

∗) such that for J ≥ J2(ε∗), Pr{infθ/∈Nθ0(δ) kGJ(θ)−GJ(θ0)k ≥ C(δ)} ≥ 1−ε∗/2. Consequently,
(2) implies that for J ≥ max{J1(ε∗), J2(ε∗)}

Pr

·
inf

θ/∈Nθ0 (δ)
kGJ(θ)k ≥ C(δ)− ε∗/2

¸
≥ 1− ε∗ ≥ 1− ε.

To complete the proof let C∗(δ) = C(δ)− ε∗/2 > 0.
We now return to the actual estimator bθ and show that

kGJ(bθ, sn, PR)k = inf
θ∈Θ

kGJ(θ, s0, P 0)k+ op(1). (47)

We show that
sup
θ∈Θ

1

J
||ξ(θ, sn, PR)− ξ(θ, s0, P 0)||2 = op(1), (48)

which implies that

sup
θ∈Θ

|| 1
J
z0{ξ(θ, sn, PR)− ξ(θ, s0, P 0)}||2 ≤ 1

J
||z0z||2 × 1

J
sup
θ∈Θ

||ξ(θ, sn, PR)− ξ(θ, s0, P 0)||2

= op(1),

i.e., that supθ∈Θ kGJ(θ, sn, PR)−GJ(θ, s0, P 0)k = op(1). This in turn implies (47) by the triangle
inequality.

The result (48) follows from the following argument. We show below that

sup
θ∈Θ

||ψJ(ξ(θ, sn, PR), θ, s0, P 0)|| = op(1). (49)

Then, by Assumption A5: when ||ξ − ξ(θ, s0, P 0)|| ≥ δ√J, we have infθ∈Θ ||ψJ(ξ, θ, s0, P 0)|| ≥ ε.
This implies that ||ξ(θ, sn, PR) − ξ(θ, s0, P 0)||2/J = op(1) by contradiction, which concludes the
proof of (48) and hence (47). The result (49) follows because:

sup
θ∈Θ

||ψJ(ξ(θ, sn, PR), θ, s0, P 0)|| ≤ sup
θ∈Θ

||ψJ(ξ(θ, sn, PR), θ, s0, P 0)− ψJ(ξ(θ, sn, PR), θ, sn, PR)||

≤ sup
θ∈Θ

sup
ξ
||ψJ(ξ, θ, s0, P 0)− ψJ(ξ, θ, sn, PR)||

≤ °°τJ(sn)− τJ(s0)°°
+sup
θ∈Θ

sup
ξ

°°τJ(σ(ξ, s0, P 0) + εR(θ))− τJ(σ(ξ, s0, P 0))°° .
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For some intermediate values sj we have by the mean value theorem

°°τJ(sn)− τJ(s0)°°2 =
1

Jα

JX
j=1

h ·
τα(sj)(s

n
j − s0j )

i2

≤ max
1≤j≤J

¯̄̄
(s0j )

α ·
τα(sj)

¯̄̄2 1
Jα

JX
j=1

"
snj − s0j
(s0j )

α

#2

≤ max
1≤j≤J

¯̄̄
(s0j )

α ·
τα(sj)

¯̄̄2 × 1

nJα

JX
j=1

s0j (1− s0j )
(s0j )

2α
× (1 + op(1))

= op(1),

by assumption A3, while max1≤j≤J |(s0j )α
·
τα(sj)| ≤M with probability tending to one by assump-

tions A3. This is because

M ≥ max
1≤j≤J

¯̄̄
(sj)

α ·
τ1(sj)

¯̄̄
= max

1≤j≤J

¯̄̄
{(s0j)α + sαj − (s0j )α}

·
τα(sj)

¯̄̄

≥ max
1≤j≤J

¯̄
(s0j )

ατα(sj)
¯̄− max

1≤j≤J

¯̄̄̄
¯sαj − (s0j )αsαj

¯̄̄̄
¯ max1≤j≤J

|sαj
·
τα(sj)|

= max
1≤j≤J

¯̄
(s0j )

ατα(sj)
¯̄
+ op(1),

where the op(1) term follows from A3(a) and (c). The result

sup
θ∈Θ

°°τJ(σ(ξ, s0, P 0) + εR(θ))− τJ(σ(ξ, s0, P 0))°° = op(1)
follows by similar arguments using A3(b) and (d)

P,''- '- T*+',+# 2. As discussed in section 3, this will follow from Pakes and Pollard
(1989, Theorem 2) provided our remainder terms are op(1) and the leading terms satisfy a central
limit theorem.

Leading Term Argument. We show thath
var

³
c0
√
JGJ(θ0)

´i−1/2
c0
√
JGJ(θ0) (50)

is asymptotically normally distributed with mean zero and variance one for any vector c. Since the
three terms in

√
JGJ(θ0), denoted TJ1, TJ2, and TJ3, say, are mutually independent it suffices to

show that var (c0TJ`)
−1/2 c0TJ`, ` = 1, 2, 3, converge to standard normal random variables. Then,

by the Cramér-Wold device [the fact that a multivariate random variable is normal if any linear
combination of its elements are], we have the result.

A standard central limit theorem for mutually uncorrelated random variables establishes that¡
c0E{var(ξ|z)zz0}c¢−1/2 c0J−1/2z0ξ(θ0, s0, P 0) =⇒ N(0, 1).
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Condition (29) enables us to apply the Lyapunov central limit theorem for triangular arrays [see
for example, Billingsley (1986, Theorem 27.3)], which says that the random variables c0

Pn
i=1 YJi

and c0
PR
r=1 Y

∗
J,r are asymptotically normal.

We now turn to the remainder terms. For each Þxed θ, we use a Taylor series approximation
to ξ(θ, sn, PR)− ξ(θ, s0, PR) and to ξ(θ, s0, PR)− ξ(θ, s0, P 0). SpeciÞcally, by the intermediate
value theorem

0 = σ(ξ(θ, sn, PR), θ, PR)− sn

= σ(ξ(θ, s0, PR), θ, PR)− sn + ∂σ(ξ, θ, P
R)

∂ξ0
©
ξ(θ, sn, PR)− ξ(θ, s0, PR)ª , (51)

where ξ is intermediate between ξ(θ, sn, PR) and ξ(θ, s0, PR). In fact, there are different vec-
tors ξ for each row, but we suppress this for notational convenience. Thus using the facts that
σ(ξ(θ, s0, PR), θ, PR) = s0 and that for any ξ ∈ Nξ0(θ; ²) the matrix ∂σ(ξ, θ, PR)

±
∂ξ0 is invertible

with probability tending to one, we can write

ξ(θ, sn, PR)− ξ(θ, s0, PR) = −
½
∂σ(ξ, θ, PR)

∂ξ0

¾−1
εn (52)

with probability tending to one. Likewise,

0 = σ(ξ(θ, s0, PR), θ, PR)− s0

= σ(ξ(θ, s0, P 0), θ, PR)− s0 + ∂σ(ξ, θ, P
R)

∂ξ0
©
ξ(θ, s0, PR)− ξ(θ, s0, P 0)ª ,

where ξ are intermediate between ξ(θ, s0, PR) and ξ(θ, s0, P 0) as before. Then we use the fact that
σ(ξ(θ, s0, P 0), θ, PR) − s0 = σ(ξ(θ, s0, P 0), θ, PR) − σ(ξ(θ, s0, P 0), θ, P 0) = εR(θ) to obtain that
with probability tending to one

ξ(θ, s0, PR)− ξ(θ, s0, P 0) = −
(
∂σ(ξ, θ, PR)

∂ξ0

)−1
εR(θ). (53)

Therefore,

√
J [GJ(θ)−GJ(θ, sn, PR)] = − 1√

J
z0
£
H(ξ, θ, PR)−1 −H(θ, s0, P 0)−1¤ εn

− 1√
J
z0
£
H(ξ, θ, PR)−1 −H(θ, s0, P 0)−1¤ εR(θ). (54)

We must establish that
√
J [GJ(θ)−GJ(θ, sn, PR)] = op(1) uniformly in θ in a shrinking neighbor-

hood of θ0. We just show that

sup
||θ−θ0||≤²J

|| 1√
J
z0{H(ξ, θ, PR)−1 −H(θ0, s0, P 0)−1}εn|| = op(1), (55)

from which the result follows. The proof for the term (54) is similar and is omitted. Since ξ is
intermediate between ξ(θ, sn, PR) and ξ(θ, s0, PR) it is also consistent in mean square, i.e., there
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exists a sequence ²J → 0 such that Pr[ξ /∈ Nξ0(θ0; ²J)] → 0. Furthermore, for this ²J we have
Pr{ρP (PR, P 0) ≥ ²J}→ 0 by the Glivenko-Cantelli theorem. Then, notice that for any η > 0,

Pr

"
sup

||θ−θ0||≤²J
|| 1√
J
z0{H(ξ, θ, PR)−1 −H(θ, s0, P 0)−1}εn|| > η

#

≤ Pr

"
sup

||θ−θ0||≤²J
||νJ(ξ, PR, θ)− νJ(ξ(s0, P 0, θ), P 0, θ)|| > η

#

≤ Pr

 sup
||θ−θ0||≤²J

sup
(ξ,P )∈Nξ0(θ0;²J )×NP0(²J )

||νJ(ξ, P, θ)− νJ(ξ(s0, P 0, θ), P 0, θ)|| > η


+Pr
h
ξ /∈ Nξ0(θ0; ²J)

i
+Pr

£
PR /∈ NP 0(²J)

¤

= Pr

 sup
||θ−θ0||≤²J

sup
(ξ,P )∈Nξ0(θ0;²J )×NP0(²J )

||νJ(ξ, P, θ)− νJ(ξ(s0, P 0, θ), P 0, θ)|| > η
+ o(1)

= o(1)

by the stochastic equicontinuity condition B5.

P,''- '- (35). It suffices to show that for any random sequence s(n) converging to s0 we have
||νJ(s(n))− νJ(s0)|| →p 0. We shall take s(n) = sn and show that Rn = νJ(sn)− νJ(s0) = op(1),
where

Rn =
1√
J
z0{(Sn)−1 − S−1}(sn − s) + 1√

J
z0ii0(sn − s){ 1

1− i0sn −
1

1− i0s} ≡ Rn21 +Rn22.

The following argument shows that under our conditionsRn21 = Op(J3/2/n) andRn22 = Op(J3/2/n).
We deal Þrst with Rn21, which can be rewritten using a geometric series expansion as

|Rn21| ≤ max kz`k × 1√
J

JX
`=1

δ2`
1 + δ`

,

where δ` = (sn` − s`)/s`. For any ² > 0,

Pr [|Rn21| > ²] ≤ Pr

·
|Rn21| > ² and max

1≤`≤J
|δ`| ≤ 1/2

¸
+Pr

·
max
1≤`≤J

|δ`| > 1/2
¸

≤ Pr

·
|Rn21| > ² and max

1≤`≤J
|δ`| ≤ 1/2

¸
+ o(1)

by the uniform convergence of δ` assumed in A3.When max1≤`≤J |δ`| ≤ 1/2, |Rn21| ≤ 2√
J

PJ
`=1 δ

2
` ,

and by the Markov inequality
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Pr

"
2√
J

JX
`=1

δ2` > ²

#
≤

2√
J

PJ
`=1E(δ

2
`)

²

=

2
n
√
J

PJ
`=1

(1−s`)
s`

²
= O(J3/2/n).

Similar calculation applies to Rn22.

P,''- '- (39) .() (38). We show that for any vector z,

z0H−1ek
J2

=
µz
s0
+O(1/J), k = 1, . . . , J, (56)

where µz = limJ→∞ J−1
PJ
j=1 zj and s0 = limJ→∞ J

R
s0(λ)dP (λ). The variance formula then

follows from (33). Note that the matrix Γ is the same as in the Þxed coefficient logit case.
The proof of (56) is quite long because we can�t directly calculate the inverse of H in this case.

Instead we approximate the continuous mixture by a sequence of Þnite mixture, each of whose
inverse we can compute. Let T, TJ : P→R, where

TJ(P ) =
z0H(P )−1ek

J2
; T (P ) =

µz
s0(P )

,

where the notation H(P ) emphasizes the dependence of the matrix H on the probability measure
P. We must show that for all ² > 0, there exists J0 such that for all J ≥ J0,

|TJ(P )− T (P )| < ².
We shall work with a discrete mixture of Þxed coefficient models indexed by m. By the triangle
inequality

|TJ(P )− T (P )| ≤ |TJ(P )− TJ(Pm)|+ |TJ(Pm)− T (Pm)|+ |T (Pm)− T (P )|

= I + II + III

for any m. The proof that III is small follows directly from our assumptions and the strong law
of large numbers. We show below that II converges to zero uniformly in m,J. What remains is to
show that I is small, which follows from the crude inequality

1

J2
¯̄
z0H(P )−1ek − z0H(Pm)−1ek

¯̄ ≤ 1

J2
°°z0H(Pm)−1°° kH(P )−H(Pm)k°°H(P )−1ek°° (57)

and the following bounds (obtained below)

°°z0H(Pm)−1°° ≤ O(J5/2) (58)°°H(P )−1ek°° ≤ O(J2) (59)

kH(P )−H(Pm)k ≤ O(1/m(1−η)/2J1/2), (60)
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provided J4+η/m→ 0.

P,''- '- (59). Writing H(P )−1 = C−1B, we have that H(P )−1ek =
³
b1k
c1
, . . . , bJkcJ

´
whose

(squared) norm is

JX
j=1

b2jk
c2j
≤ 1

min1≤j≤J c2j

 JX
j=1

bjk

2 ≤ cons tan t

J2 {1−∆(J)}2 = O(J
4)

because the elements of B and C are known to be positive. This establishes (59). The veriÞcation
of (58) is given below.

P,''- '- (60). SpeciÞcally, we show that the matrixH(P ) =
R
S(λ)dP (λ)−R s(λ)s(λ)0dP (λ)

can be well approximated by the matrix H(Pm) =
R
S(λ)dPm(λ) −

R
s(λ)s(λ)0dPm(λ), where Pm

is an empirical distribution of size m from the population governed by P, that is,

H(Pm) =
1

m

mX
`=1

©
S(λ`)− s(λ`)s(λ`)0

ª
.

We work element by element. Since Jsj(λ) is bounded away from both zero and inÞnity, we have
that for positive Þnite constants c1 and c2,

Pr

·¯̄̄̄
J2
Z
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

¯̄̄̄
>
κ

m

¸
≤ exp

£−2κ2/mc1¤
Pr

·
J

¯̄̄̄Z
sj(λ)(1− sj(λ)) {dPm(λ)− dP (λ)}

¯̄̄̄
>
κ

m

¸
≤ exp

£−2κ2/mc2¤ ,
by Hoeffding�s exponential inequality, see Pollard (1984, p191). Therefore taking κ = cm1/2(logm)r,
we have by the Bonferroni inequality,

Pr

·
max

1≤j 6=k≤J

¯̄̄̄
J2
Z
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

¯̄̄̄
>
c(logm)r

m1/2

¸

≤
XX
j 6=k

Pr

·
J2
¯̄̄̄Z
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

¯̄̄̄
>
c(logm)r

m1/2

¸

= O(J2) exp[−c∗(logm)2r] (61)

for some constant c∗. Taking m = Jα for any α > 0, we get that

∞X
m=1

Pr

·
max

1≤j 6=k≤J

¯̄̄̄
J2
Z
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

¯̄̄̄
>
c(logm)r

m1/2

¸
<∞

provided r > 3/2c∗α, so that by the Borel-Cantelli lemma, we have for any η > 0,

m(1−η)/2 max
1≤j 6=k≤J

¯̄̄̄
J2
Z
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

¯̄̄̄
−→ 0 (62)

with probability one. Similarly,

m(1−η)/2 max
1≤j≤J

¯̄̄̄
J

Z
sj(λ)(1− sj(λ)) {dPm(λ)− dP (λ)}

¯̄̄̄
−→ 0 (63)
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with probability one. In conclusion, the discrete mixture of logits well approximates any random
coefficient logit matrix. SpeciÞcally, (60) follows because

kH(P )−H(Pm)k2 =
JX
j=1

{H(P )−H(Pm)}2j,j +
JX
j=1

JX
k=1

j 6=k

{H(P )−H(Pm)}2j,k

≤ J max
1≤j≤J

{H(P )−H(Pm)}2j,j + J2 max
1≤j 6=k≤J

{H(P )−H(Pm)}2j,k
= O(1

.√
Jm1−η )

with probability one for large m,J by (62) and (63).

P,''- '- II. Consider the discrete mixture

H =
1

m

mX
`=1

(S` − s`s`0),

where s` = (s`1, . . . , s
`
J)
0, ` = 1, . . . ,m. We show that

1

J2
z0H−1ek =

1
J

PJ
j=1 zj

J 1
m

Pm
`=1 s

`
0

+O(1/J), k = 1, . . . , J, (64)

where s`0 = 1−
PJ
j=1 s

`
j = O(1/J), ` = 1, . . . ,m.

Write H = (D + UV 0)/m, where D =
Pm
`=1 S

` and U = (s1, . . . , sJ) and V = −(s1, . . . , sJ).
We have

z0H−1ek = m
©
z0D−1ek − z0D−1U(I + V 0D−1U)−1V 0D−1ek

ª
(65)

by the Sherman-Morrison-Woodbury formula [Golub and Van Loan (1989, p51)]. First note that

z0D−1ek =
zk
dk
= O(J/m),

where dj =
Pm
`=1 s

`
j = O(m/J), j = 1, . . . , J, so this term is of smaller order. We are going to

establish that

£
(I + V 0D−1U)−1

¤
ij
=

1 +O(1/J)Pm
`=1 s

`
0 [1 +O(1/J)]

(66)

for all i, j = 1, . . . ,m. In this case,

m

J2
z0D−1U(I + V 0D−1U)−1V 0D−1ek =

1

J2 1m
Pm
`=1 s

`
0

z0D−1Uii0V 0D−1ek +O(1/J),

where i0V 0D−1ek = 1 and z0D−1Ui =
PJ
j=1 zj , so we get the required result (64).

We have

z0D−1U1×m =
³ PJ

j=1

zjs
1
j

dj
, · · · ,

PJ
j=1

zjs
m
j

dj

´
; V 0D−1ek = −


s1k
dk
...
smk
dk


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and

I + V 0D−1U =


1−PJ

j=1

(s1j )
2

dj
−PJ

j=1

s1js
2
j

dj
· · · −PJ

j=1

s1js
m
j

dj

−PJ
j=1

s2js
1
j

dj
1−PJ

j=1

(s2j )
2

dj
−PJ

j=1

s2js
m
j

dj
...

. . .
...

−PJ
j=1

smj s
1
j

dj
−PJ

j=1

smj s
2
j

dj
· · · 1−PJ

j=1

(smj )
2

dj

 . (67)

Substitute smj = dj −
Pm−1
`=1 s

`
j and use the fact that

PJ
j=1 s

`
j = 1− s`0, to obtain

JX
j=1

smj s
k
j

dj
= 1− sk0 −

m−1X
`=1

 JX
j=1

skj s
`
j

dj

 ≡ 1− sk0 −
1

m

m−1X
`=1

a`k

JX
j=1

(smj )
2

dj
=

JX
j=1

dj +
m−1X
`=1

m−1X
k=1

JX
j=1

s`js
k
j

dj
− 2

m−1X
`=1

JX
j=1

s`j

≡
m−1X
`=1

m−1X
k=1

a`k +
m−1X
`=1

s`0 − sm` − (m− 2),

where a`k =
PJ
j=1

skj s
`
j

dj
. Therefore, we can write

I + V 0D−1U =
·
A a
a0 b

¸
+
1

J

·
0m−1,m−1 δ

δ0 φ

¸
= X +

E

J
,

where the m− 1×m− 1 matrix A is

A =


1− a11 −a12 · · · −a1,m−1
−a12 1− a22 · · · −a2,m−1
...

. . .
...

−a1,m−1 −a2,m−1 . . . 1− am−1,m−1

 ,
while the m− 1× 1 column vectors

a =


−
n
1−Pm−1

`=1 a1`

o
...

−
n
1−Pm−1

`=1 am−1,`
o
 ; δ =

 Js10
...

Jsm−10

 ,
and the scalars b = (m− 1)−Pm−1

`=1

Pm−1
k=1 a`k and φ = J(−

Pm−1
`=1 s

`
0 + s

m
` ).

Note that the matrix X = (xjk) is singular, in fact the last column (row) is equal to minus the
sum of the preceding m− 1 columns (rows). Therefore, by Taylor expansion

det

µ
X +

E

J

¶
=
1

J

mX
j,k=1

∂ det (X)

∂xjk
ejk +

1

2J2

mX
j,k,l,r=1

∂2 det (X)

∂xjk∂xlr
ejkelr + . . . (68)

First, we have that ∂ det (X) /∂xjk = x
Adj
jk , where x

Adj
jk is the adjoint [i.e., the determinant of the

matrix Xjk formed by deleting the j�th row and k �th column from X, see Anderson (1984, p598)]
of xjk. In fact, for all j, k
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xAdjjk = det(A), (69)

as we show below. Since most of the matrix E = (ejk) is zero, we only need the adjoints corre-
sponding to the outer (right) border of the matrix X, which means there are only order m terms
in the Þrst summation in ( 68). Also, note that

∂2 det (X)

∂xmj∂xmk
=
∂2 det (X)

∂xjm∂xkm
= 0 j, k = 1, . . . ,m,

so there are only order m2 terms in the second summation. Furthermore, since

∂2 det (X)

∂xmj∂xkm
= det(Ajk) = O(det(A)/m),

the second term in (68) is of order m/J2 and

det(I + V 0D−1U) = det(A)
mX
`=1

s`0[1 +O(1/J)]. (70)

Finally, we must show that the adjoints of the matrix Z = X +E/J satisfy

zAdjjk = det(A)[1 +O(1/J)], j 6= k, (71)

which implies (66) holds.

P,''- '- (69). We use the fact that determinants are invariant to certain linear transforma-
tions and also that the matrix X has the following property

xjm = −
m−1X
`=1

xj` ; xmk = −
m−1X
`=1

xm`, j, k = 1, . . . ,m,

to show that the determinant of the matrix

Xmj =

 x11 · · · x1,j−1 x1,j+1 · · · x1,m
...

...
...

...
xm−1,1 · · · xm−1,j−1 xm−1,j+1 · · · xm−1,m


is the same as the determinant of the matrix A. SpeciÞcally, add columns 1 to m−2 to the m−1�th
column and one gets the matrix A. For general Xjk a sequence of such transformations gives the
result.

P,''- '- (71). Essentially the same as above.
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Table 1:
Monte Carlo Estimates for the Simple Logit Model

True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Consumer Draws # of Products (J)
(n) 10 25 50 100 200
500 0.941 0.798 0.778 0.633 0.518

(0.362) (0.209) (0.137) (0.086) (0.076)
[0.011] [0.007] [0.068] [0.004] [0.002]

1000 0.997 1.013 0.974 0.934 0.882
(0.426) (0.255) (0.149) (0.120) (0.077)
[0.014] [0.008] [0.005] [0.004] [0.002]

2000 1.023 1.046 0.998 0.976 0.923
(0.500) (0.224) (0.138) (0.123) (0.089)
[0.016] [0.007] [0.004] [0.004] [0.004]

10J 0.685 0.728 0.768 0.921 0.916
(0.406) (0.214) (0.132) (0.110) (0.088)
[0.013] [0.007] [0.004] [0.004] [0.004]

J2 0.615 0.857 1.021 1.022 1.015
(0.358) (0.200) (0.139) (0.101) (0.077)
[0.011] [0.006] [0.004] [0.003] [0.002]

∞ 1.027 0.997 0.995 1.007 1.008
(0.376) (0.242) (0.133) (0.094) (0.073)
[0.012] [0.008] [0.004] [0.003] [0.002]

Notes: Simulated Standard Errors (empirical standard deviations across the repetitions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].
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Table 2:
Monte Carlo Estimates for the Random Coefficients Logit

True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Simulation # of Products (J)
draws (R) 10 50 100

10 1.194 1.218
(0.982) (0.512) *
[.031] [0.016]

50 1.025 1.039 1.241
(0.645) (0.311) (0.495)
[0.020] [0.010] [0.016]

100 0.982 1.013 1.037
(0.674) (0.271) (0.209)
[0.021] [0.009] [0.007]

500 0.998 1.008 1.015
(0.633) (0.255) (0.181)
[0.002] [0.008] [0.006]

10J 0.982 1.008 1.018
(0.674) (0.255) (0.181)
[0.014] [0.008] [0.006]

J2 0.982 .998 1.004
(0.674) (0.244) (0.175)
[0.021] [.008] [.006]

Notes: Simulated Standard Errors (empirical standard deviations across the repetitions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].

∗With 100 products and only 10 draws, we had numeric problems computing the estimates.
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Table 3:
Monte Carlo Estimates for the Pure Vertical Model

True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Consumer # of Products (J)
Draws (n) 10 25 50 100 200

50 1.023 1.022 1.011 0.997 1.013
(0.494) (0.373) (0.349) (0.321) (0.302)
[0.016] [0.012] [0.011] [0.010] [0.010]

100 1.005 1.010 1.005 1.002 1.009
(0.426) (0.303) (0.257) (0.244) (0.217)
[0.014] [0.010] [0.008] [0.008] [0.007]

500 0.993 0.998 1.001 1.005 1.007
(0.371) (0.223) (0.176) (0.142) (0.123)
[0.012] [0.007] [0.006] [0.005] [0.004]

1000 1.01 0.99 1.00 1.00 1.00
(0.361) (0.227) (0.162) (0.118) (0.097)
[0.011] [0.007] [0.006] [0.004] [0.003]

10J 1.018 1.014 1.008 0.998 0.996
(0.440) (0.253) (0.175) (0.120) (0.085)
[0.014] [0.008] [0.006] [0.004] [0.003]

J2 0.998 0.998 1.000 1.002 1.000
(0.423) (0.227) (0.153) (0.105) (0.074)
[0.014] [0.007] [0.005] [0.003] [0.002]

∞ 0.997 0.999 0.999 1.001 0.997
(0.364 (0.214) (0.141) (0.101) (0.072)
[0.011] [0.007] [0.005] [0.003] [0.002]

Notes: Simulated Standard Errors (empirical standard deviations across the repetitions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].
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Table 4:
Monte Carlo Estimates for a Pure Characteristics Model

True Value of the Parm is 1
100 Monte Carlo Repetitions

# Simulation # of Products, (J)
Draws (R) 10 25 50 100

10 1.039 0.999 1.016 1.021
(0.370) (0.332) (0.311) (0.325)
[0.037] [0.033] [0.031] [0.033]

25 1.043 0.993 0.999 1.010
(0.279) (0.268) (0.235) (0.214)
[0.028] [0.027] [0.024] [0.021]

50 1.040 1.006 0.992 1.024
(0.243) (0.215) (0.187) (0.161)
[0.024] [0.021] [0.019] [0.016]

100 1.036 1.023 0.987 1.012
(0.224) (0.182) (0.143) (0.136)
[0.022] [0.018] [0.014] [0.014]

J 1.039 0.993 0.992 1.012
(0.370) (0.268) (0.187) (0.136)
[0.037] [0.027] [0.019] [0.014]

∞ 1.030 1.013 0.986 1.002
(0.207) (0.164) (0.103) (0.061)
[0.021] [0.016] [0.010] [0.006]

Notes: Simulated Standard Errors (empirical standard deviations across the repetitions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].

Table 5:
Monte Carlo and Estimated Standard Errors

(J = 50, R = 500, 1000 Repetitions)

Mean Monte Carlo Mean Asymp.
Model Parm Std. Dev. Std. Dev.

R.C. Logit 1.010 0.2574 0.2201
Pure Vert 1.002 0.1720 0.1719
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