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The outline of the lectures is as follows.

Lecture 1.

I will begin with the behavioral model that

leads to moment inequalities (including exam-

ples). This is the analogue of revealed prefer-

ence in the analysis of utility, but to bring it to

data we will need to allow for the disturbances

that arise in applications. I will then move to

a more detailed discussion of product reposi-

tioning. Finally, I will conclude with a note on

analyzing counterfactuals in situations where

multiple equilibrium are likely.

Lecture 2.

The topic here is the econometrics of inequal-

ity estimators. It begins by explaining the econo-

metric issues that arise in moment inequal-

ity estimators that do not arise on estimators

based on moment equalities. It then moves

on to techniques available to derive confidence
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sets for the partially identified models gener-

ated by moment inequalities. Emphasis is given

to practical issues which arise in getting confi-

dence intervals for parameters.

Lecture 3.

The use of inequalities in choice theory. Again

this is based on revealed preference. We focus

on discrete choice problems that have been dif-

ficult to analyze with traditional discrete choice

methods. These include models with; (i) errors

in the right hand side variables, (ii) models with

choice specific fixed effects, and (iii) models

with unobserved heterogeneity and state de-

pendence.



Profit Inequalities: The Behavioral

Model.

• Econometrican observes a set of choices

made by various agents.

• Assume agents expected the choices they

made to lead to returns that were higher

than the returns the agents would have

earned had they made an alternative feasi-

ble choice.

• Assume a parametric return function and

for each value of θ compute the difference

between the observable part of the actual

realized returns and the observable part of

returns that would have been earned had

the alternative choice been made.
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• Estimator: accept any value of θ that, on
average, makes the observed decisions bet-
ter than the alternative.

• Question: When do such (possibly set val-
ued) estimators enable us to make valid
inferences on the parameters of interest?

Pakes (2010) provides two (non-nested) sets
of conditions where they do, and develops the
actual estimators. The ideas behind these es-
timators date, respectively to

• Tamer (2003),

• Pakes, Porter, Ho, and Ishii (2015).

I start with a simple example, designed, I hope,
to get your interest. Later I come back to
multiple agent problems.



Static Example: Due to M. Katz (2007);

see Pakes (2010)

Estimate the costs shoppers assign to driving

to a supermarket (important to the analysis

of; zoning regulations, public transportation

projects,...). Proven difficult to analyze em-

pirically with standard choice models because

of the complexity of the choice set facing con-

sumers (all possible bundles of goods at all

possible supermarkets). Here we show how to

turn it into an “ordered” problem, which is the

single agent analogue to the problems we face

for many of the investment and product place-

ment problems we consider in I.O.
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Assume that the agents’ utility functions are
additively separable functions of;

• utility from basket of goods bought,

• expenditure on that basket, and

• drive time to the supermarket.

I.e. if bi = b(di) is the basket of goods bought,
si = s(di) is the store chosen, and zi are indi-
vidual characteristics

π(di, zi, θ) = U(bi)− e(bi, si)− θidt(si, zi),

where e(·) provides expenditure, dt(·) provides
drive time, and I have used the free normaliza-
tion on expenditure (the cost of drive time are
in dollars).
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Standard discrete choice. Need to specify

the expected utility from each possible choice.

Requires

(i) the agent’s prior probability for each possi-

ble price at each store, and

(ii) the bundle of goods the agent would buy

were any particular price vector realized.

(There is a simple reduced form, that I come

back to; but not available for interacting agent

problems.)



Simplify. Compare the utility from the choice
the individual made to that of an alternative
feasible choice. Expected difference should be
positive. Requires: finding an alternative choice
that allows us to isolate the effects of drive
time.

For a particular di chose d′(di) to be the pur-
chase of

• the same basket of goods,

• at a store which is further away from the
consumer’s home then the store the con-
sumer shopped at.

Note. Need not specify the utility from differ-
ent baskets of goods; i.e. it allows us to hold
fixed the dimension of the choice that gener-
ated the problem with the size of the choice
set, and investigate the impact of the dimen-
sion of interest (travel time) in isolation.
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Let E(·) be the agent’s expectation operator.

Then we assume that

E[∆π(di, d
′(di), z)] =

−E[∆e(di, d
′(di))]− θi E[∆dt(di, d

′(di))] ≥ 0.

Note. I have not assumed that the agent’s

perceptions of prices are “correct” in any sense.

I come back to what I need of the agent’s sub-

jective expectations.
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Case 1: θi = θ0. More generally all determi-
nants of drive time are captured by variables
the econometrician observes and includes in
the specification. Assume that

N−1∑
i

E[∆e(di, d
′(di))]−N−1∑∆e(di, d

′(di))→P 0,

N−1∑
i

E[∆dt(di, d
′(di))]−N−1∑

i

∆dt(di, d
′(di))→P 0

which would be true if, for e.g., agents were
correct on average (this is stronger than we
need). Then

−E[∆e(di, d
′(di))]− θ E[∆dt(di, d

′(di))] ≥ 0

implies

−
∑
i∆e(di, d

′(di))∑
i∆dt(di, d′(di))

→p θ ≤ θ0.
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If we would have also taken an alternative store

which was closer to the individual then

−
∑
i∆e(di, d

′(di))∑
i∆dt(di, d′(di))

→p θ ≥ θ0.

and we would have consistent estimates of bounds

on θ0. Note this assumes that there always

is an alternative store closer to the individual

than the store the agent went to. Below we

come back to the adjustment to the procedure

needed if this is not the case.

Case 2: θi = (θ0 + νi),
∑
νi = 0. This case

allows for a component of the cost of drive

times (νi) that is known to the agent (since

the agent conditions on it when it makes its

decision) but not to the econometrician. Then

provided dt(di) and dt(d′(di)) are known to the

agent



E
[ ∆e(di, d

′(di))

∆dt(di, d′(di))
− (θ0 + νi)

]
≤ 0,

and provided agents expectation on expendi-

tures are not “systematically” biased

1

N

∑
i

( ∆e(di, d
′(di))

∆dt(di, d′(di))

)
→P θ ≤ θ0.

Notes.

• We did not need to specify (or compute)

the utility from all different choices, so there

could have been (unobserved or observed)

sources of heterogeneity in the U(bi). Our

choice of alternative simply differences them

out.
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• Case 2 allows for unobserved heterogene-

ity in the coefficient of interest and does

not need to specify what the distribution

of that unobservable is. In particular it can

be freely correlated with the right hand side

variable. “Drive time” is a choice variable,

so we might expect it to be correlated with

the perceived costs of that time (with νi).

• If the unobserved determinant of drive time

costs (νi) is correlated with drive time (dt)

then Case 1 and Case 2 estimators should

be different, if not they should be the same.

So there is a test for whether any unob-

served differences in preferences are corre-

lated with the “independent” variable.



Empirical Results.

Data. Neilsen Homescan Panel, 2004 & data

on store characteristics from TradeDimensions.

Chooses families from Massachusetts.

Discrete Choice Comparison Model. The

multinomial model divides observations into ex-

penditure classes, and then uses a typical ex-

penditure bundle for that class to form the

expenditure level (the “price index” for each

outlet). Other x’s are drive time, store char-

acteristics, and individual characteristics. Note

that

• the prices for the expenditure class need

not reflect the prices of the goods the in-

dividual actually is interested in (so there is

an error in price, and it is likely negatively

correlated with price itself.)
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• it assumes that the agents knew the goods

available in the store and their prices ex-

actly when they decided which store to choose

(i.e. it does not allow for expectational er-

ror)

• it does not allow for unobserved hetero-

geneity in the effects of drive time. We

could allow for a random coefficient on

drive time, but, then we would need a con-

ditional distribution for the drive time co-

efficient....

Focus. Median of the drive time coefficient

(about forty coefficients; chain dummies, out-

let size, employees, amenities...).

• Multinomial Model: median cost of drive

time was $240 (when the median wage in this

region is $17). Also several coefficients have



the “wrong” sign or order (nearness to a sub-

way stop, several amenities, and chain dum-

mies).

Inequality estimators. Uses a lot of mo-

ments: point estimates, but tests indicated

that the model was accepted. Standard er-

rors are very conservative.

• Inequality estimates with

θi = θ0 : .204 [.126, .255]. ⇒ $4/hour,

• Inequality estimates with

θi = θ0 + νi : .544 [.257, .666], ⇒ $14/hour

and other coefficients straighten out.

Apparently the unobserved component of the

coefficient of drive time is negatively correlated

with observed drive time differences.



Behavioral Models

We now generalize and consider two sets of

behavioral assumptions that generate moment

inequalities. Both sets of assumptions allow

for interacting agent and both have four as-

sumptions. Two of these assumptions are the

same and two are not.

Assumptions Common To Both Models.

Best Response Condition (C1).

∀d ∈ Di, E[π(d,d−i,yi, θ0)|Ji, d]

≤ E[π(d(Ji),d−i,yi, θ0)|Ji],

where di ≡ d(Ji) ∈ Di is the agents decision,

Di ⊂ D is its choice set, Ji is its informa-

tion set, and E[·|Ji] takes expectations over

(d−i,yi). ♠
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Notes.

• No restriction on choice set; could be dis-
crete (a subset of all bilateral contracts,
ordered choice ...) or continuous (with cor-
ners, non-convexities ...).

• No uniqueness requirement, and equilibrium
selection can differ for different observa-
tions (we only use ”necessary” conditions
for an equilibrium)..

• C1 is a rationality assumption in the sense
of Savage (1954); i.e. agents have pri-
ors and an objective function. More gen-
eral than rational expectations and/or a
Bayesian Nash equilibrium. We come back
to what conditions do we require of this
expectation operator in order for our infer-
ences on the parameter values to be cor-
rect.



Counterfactuals.

To check the Nash condition (or the maximiza-

tion condition in single agent models) we need

an approximation to what profits would have

been had the agent made a choice which in

fact it did not make. This requires a model

of how the agent thinks that d−i and yi are

likely to change in response to a change in the

agent’s decision.

Counterfactual Condition (C2).

d−i = d−i(di, zi), yi = y(zi,di,d−i),

the distribution of zi conditional on Ji does not

depend on di. ♠

12



Exogeneity.

The assumption that the distribution of zi con-

ditional on Ji does not depend on di is what we

mean by zi being an exogenous random vari-

able.

• Single agent: no d−i; yi often exogenous in

this sense.

• Multiple agents, simultaneous moves: d−i
satisfies C2.

• Multiple agents, multi-stage; often a y which

is “endogenous” – its distribution depends on

di – and then we need a model of that depen-

dence.

• Multiple agent, sequential moves: must pos-

tulate response. We need a model for dynamic

games.
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Implication: C1 + C2. After substituting

d−i = d−i(di, zi), and yi = y(zi,di,d−i) into

π(·) , if for d′ ∈ Di we let

∆π(di, d
′, d−i, zi) = π(di, d−i, zi)− π(d′, d−i, zi)

we have

E[∆π(di, d
′,d−i, zi)|Ji] ≥ 0. ♠

To estimate we need the relationships between:

• The expectations underlying agents decisions

( E(·)) and the expectations of the observed

sample moments (E(·)),

• π(·, θ) and (zi, di, d−i) and their observable

analogues.
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This is where the two approaches differ. One

is the natural generalization of standard dis-

crete choice theory to multiple agent settings.

The other is an extension of revealed prefer-

ence arguments. Before we turn to them we

need assumptions on the relationship between

what we observe, and the models’ concepts; a

“measurement” model.

General Measurement Model.

Let

r(d, d−i, z
o
i , θ0)

be our observable approximation to π(·). Then

w.l.o.g. we can define the following terms



ν(d, d−i, z
o
i , zi, θ0) ≡ r(d, d−i, zoi , θ0)−π(d, d−i, zi),

so

r(·) = π(·) + ν,

and

E[r(·)|·] = E[π(·)|·] + E[ν|·].

It follows that

r(d, d−i, z
o
i , θ0) ≡ E[π(d,d−i, zi)|Ji]+ν2,i,d+ν1,i,d.

where

ν2,i,d ≡ E[ν(d,d−i, z
o
i , zi, θ0)|Ji],

and

ν1,i,d ≡

(π(d, ·)− E[π(d, ·)|Ji]) + (ν(d, ·)− E[ν(d, ·)|Ji]).
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Sources of ν1. Sum of: expectational er-

ror from incomplete (uncertainty in zi), and/or

asymmetric (uncertainty in d−i) information,

π(d, ·)− E[π(d, ·)|Ji]

and specification and measurement error or

ν(d, ·)− E[ν(d, ·)|Ji]

(This includes errors that arise from specifying

functional forms that generate an approxima-

tion error.)

General Points.

• E[ν1,i,d|Ji] = 0, by construction. E[ν2,i,d|Ji] 6=
0. This distinction is why we need to keep

track of two separate disturbances.

• When the left hand side variable (the vari-

able we are trying to explain) is a measure of
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profits, typically the disturbance is dominated

by ν1 errors, or at least they should not be

ignored. When the ν2 errors can be ignored

straightforward moment inequalities based on

revealed preference can be used to estimate.

• When the left had side is a control or a de-

cision variable (e.g. investment) then typically

the disturbance will contain a ν2 errors or at

least we do not want to ignore them. If the

ν1 errors can be ignored we get traditional dis-

crete choice analysis, or generalizations thereof

(that I turn to next). Note that having no ν1

error requires having no; expectational, mea-

surement, or functional form errors.

• Of course both may be present and we may

have to deal with that.



ν2 and selection in profit inequalities. Since

ν2,i ∈ Ji and di = d(Ji), di will generally be

a function of ν2,i (and perhaps also of ν2,−i).

This can generate a selection problem.

Temporarily assume; the agent’s expectations

(our E(·)) equals the expectations generated by

the true data generating process (our E(·)),

that x is an “instrument” in the sense that

E[ν2|x] = 0, and that x ∈ J . Then

E[ν1|x] = E[ν2|x] = 0.

These expectations do not condition on di,

and any moment which depends on di requires

properties of the disturbance conditional on di.

Since d is measurable σ(J )

E[ν1|x, d] = 0.

However since ν2 ∈ J and

E[π(·)|·] = E[r(·)|·] + ν2,



if the agent choses d∗ then

ν2,d∗ − ν2,d ≥ E[r(·, d)|·]− E[r(·, d∗)|·]

so

E[ν2,d∗|x, d∗] 6= 0, and E[ν2,d|x, d] 6= 0.

The fact that “x is an instrument” does not
“solve” the selection problem.

E.g. Single agent binary choice. di ∈ {0,1},
with

∆π(di, d
′, ·) = ∆r(di, d

′, ·) + ∆ν2,i + ∆ν1
1,i.

Then di = 1 if

E[∆π(di = 1, d′ = 0, ·)|Ji] =

E[∆r(di = 1, d′ = 0, ·)|Ji] + ∆ν2,i ≥ 0

Assume the ν2,i were centered at zero. Then

E[∆ν2,i|di = 1] =

E(∆ν2,i|∆ν2,i ≥ −E[∆r(di = 1, d′ = 0, ·)|Ji]) ≥ 0,

which violates our condition.



ν1 and expectational, measurement, or func-

tional form errors.

• As noted for there not to be a ν1 error there

would have to be none of the errors above.

• Expectations. The mean of expectational

error conditional on variables one knows at the

outset should be zero, but we in general do not

know its distribution. In single agent mod-

els one could try to estimate a rational ex-

pectations distribution. However in interact-

ing agent models, to compute the distribution

of the expectational error we would have to

specify what each agent knows about its com-

petitors, and then repeatedly solve for an equi-

librium (a process which typically would require

us to select among equilibria).

• Measurement (or approximation) error.

Consider the simple linear binary choice model,
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∆Ud,i,t = x∗i,tβ + ν2. Here either x∗ is unob-

served and what we observe is xo = x∗+ ν1, or

there is a ν1 error caused by misspecification.

The two cases are similar so I deal only with

the first. The required choice probability is

Prd|x0, β =
∫
ν1

Pr(ν2 ≥ x∗β)dP (x∗|x0, β),

and assuming densities exist to carry out the

integration we need

f(x∗|xo) =
f(x0|x∗)f(x∗)

f(xo)
=
fν1(ν1 = xo − x∗)f(x∗)

f(x0)
.

Though we might be willing to assume the dis-

tribution of ν1 has some familiar form, it would

be harder to assume a distribution for x∗. To

estimate it we would need a de-convolution

theorem.



M1: Generalized Discrete Choice.

We now add the two conditions to our best
response and counterfactual condition needed
for this model. They are analogous to the as-
sumptions in the single agent discrete choice
model commonly used in econometrics. Its
multiple agent analogue dates to Tamer (Restud
2003). More recent econometric implementa-
tion; Ciliberto-Tamer (Econometrica 2007),

Expectational Condition (FC3):

π(d, d−i, zi, θ0) = E[π(d,d−i, zi, θ0)|Ji].
∀d ∈ Di. ♠

FC3: does not allow for any expectational er-
ror. It therefore rules out asymmetric and/or
incomplete information∗.
∗Two single agent literatures do allow for expectational
errors; (i) dynamic discrete choice (Keane and Wolpin,
Review of Economic Dynamics, 2009), (ii) literature
using measures of expectations (see Manski, Econo-
metrica, 2004).
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Measurement Conditions (FC4).

π(·, θ) is known.

zi = (νf2,i, z
o
i ) , (di, d−i, zoi , z

o
−i) observed,

(νf2,i, ν
f
2,−i)|zoi ,zo−i ∼ F (·; θ),

F (·, θ) is known. ♠

FC4 does not allow for specification error (in

π(·) ) or measurement error. Some of the zi are

observed by the econometrician (zoi ) and some

are not (νf2,i). The agents know (νf2,i, ν
f
2,−i)

(from FC3).
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Implication FC3 + FC4.

∆π(di, d
′, d−i, z

o
i , ν

f
2,i; θ0) ≥ 0,

∀d′ ∈ Di, and

(νf2,i, ν
f
2,−i)|zoi ,zo−i ∼ F (·; θ0).

To insure that the model assigns positive prob-

ability to the observed decisions for some θ

typically also assume:

π(d, d−i, z
o
i , ν

f
2,i) = πas(d, d−i, z

o
i , θ0) + ν

f
2,i,d,

and that the distribution ν
f
2,i conditional on

ν
f
2,−i, has full support.

Notes.

• Single Agent Problems. FC3 and FC4 are

implicit in the standard single agent discrete
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choice literature where we observe the choice

but not returns (profits or utility)∗.

• Models with Multiple Agents. Assume

now that there is no ν1 error, and we have

a full information equilibrium. Then there is

the following estimation problem. The r.h.s.

contains a decision variable, d−i, and by as-

sumption the −i agents know ν2,i when mak-

ing their decisions, so ν2,i is correlated with

d−i. Requires a different estimation algorithm.

Classic Example: Entry game. Early litera-

ture; market specific unobservable clouded the

effects of competition on firm value. The num-

ber and type of competing firms had a positive

effect on firm value. More profitable markets

∗However in the single agent literature the model used
. can be derived as a reduced form from a model with
ν1 errors; see Pakes, 2014.



had more firms and we could not control for

sources of market profitability.

Estimation. Ideas date to Tamer (2003). Es-

timation described here begins with Ciliberto,

Murry, and Tamer (2016), interacting agent

version of the classic discrete choice literature.

The parametric distribution for (νf2,i, ν
f
2,−i) does

not deliver a likelihood (multiple equilibria).

• Can check whether the conditions of the

model are satisfied at the observed (di, d−i)
for any (νf2,i, ν

f
2,−i) and θ, and this, together

with F (·, θ), enable us to calculate the proba-

bility of those conditions being satisfied. These

are necessary conditions for the choices: ⇒ at

θ = θ0 the probability of satisfying them must

be greater then the probability of observing

(di, d−i) (the necessary conditions deliver an



“outer measure”)

• Can check whether (di, d−i) are the only val-
ues of the decision variables to satisfy the nec-
essary conditions for any (νf2,i, ν

f
2,−i) and θ; pro-

vides a lower bound to the probability of ac-
tually observing (di, d−i) given θ (provide an
“inner measure”).

Define

P{(di, d−i) |θ} ≡

Pr{(νf2,i, ν
f
2,−i) : (di, d−i) satisfy M1 |zoi , z

o
−i, θ},

P{(di, d−i) |θ} ≡

Pr{(νf2,i, ν
f
2,−i) : only(di, d−i) satisfy M1|zoi , z

o
−i, θ}.

Note that

P{(di, d−i)|θ} ≡ Pr{(di, d−i) |zoi , z
o
−i, θ},



depends on the unknown true equilibrium se-

lection mechanism, but whatever that mecha-

nism

P{(di, d−i)|θ0} ≥ P{(di, d−i)|θ0} ≥ P{(di, d−i)|θ0},

which is used as a basis for estimation.

Estimating Equations. If h(·) is a positive

function then

E(P{(di, d−i) |θ}−{d = di, d
−i = d−i})h(zoi , z

o
−i)

= (P{(di, d−i) |θ} − P{(di, d−i)|θ0})h(zoi , z
o
−i),

and

E({d = di, d
−i = d−i}−P{(di, d−i) |θ0})h(zoi , z

o
−i)

(P{(di, d−i)|θ} − P{(di, d−i) |θ0})h(zoi , z
o
−i)

should be non-negative at θ = θ0.



M2: Requirements for Profit Inequalities

(the analogue of revealed preference).

In addition to the best response and counter-

factual condition we need

(i) an assumption on the relationship between

agents expectations and the expectation oper-

ator generated by the DGP, and

(ii) restrictions on the measurement model.

Condition on Agents’ Expectations. Let

h(·) be a positive valued function, and xi ∈ Ji
be observable.

Condition IC3

(1/N)
∑
i

E(∆π(di, d
′, d−i, zi)|Ji) ≥ 0 ⇒

E
[ 1

N

∑
i

(∆π(di, d
′, d−i, zi)h(xi))

]
≥ 0 ♠.
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Three progressively weaker conditions. The
weakest suffices.

Agents’ expectations are

1. correct (Bayesian Nash),

E(∆πi(·)|xi) = E(∆πi(·)|xi),

2. or are wrong, but not consistently so

(1/N)
∑
i

(
E[∆π(·|xi]− E[∆π(·)|xi]

)
= 0,

3. or are consistently wrong but in an “overly
optimistic” way - i.e.

(1/N)
∑
i

(
E[∆π(·|xi]− E[∆π(·)|xi]

)
≥ 0.

Note. Generalized discrete choice model nested
to this: expectations=realizations.



Condition on Measurement Model.

Assume Di discrete and there is an x ∈ Ji and

a function c(·) : Di × Di → R+, such that we

satisfy

Recall that

r(d, d−i, z
o
i , θ0) ≡ E[π(d,d−i, zi)|Ji]+ν2,i,d+ν1,i,d,

where

ν2,i,d ≡ E[ν(d,d−i, z
o
i , zi, θ0)|Ji],

and

ν1,i,d ≡

(π(d, ·)− E[π(d, ·)|Ji]) + (ν(d, ·)− E[ν(d, ·)|Ji]).

When we have a comprehensive measure of

the profits from the action, it is just that those

profits either contain expectational error or are

measured with error, then we mostly worry

mostly about ν1 errors.
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Sufficient Condition: ν2 ≡ 0.

This is the analogue of no ν1 error in the gen-

eralized discrete choice model. When there

are only ν1 errors then simply averaging the

observed inequalities gives you an inequality

which should be satisfied at the true θ0. That

is given our three assumptions if

r(d, d−i, z
o
i , θ0) = E[π(d,d−i, zi)|Ji] + ν1,i,d,

then

E[r(d, d−i, z
o
i , θ0)|Ji] ≥ 0.

Which implies that provided xi ∈ Ji, at the true

θ0 ∑
i

r(d, d−i, z
o
i , θ0)h(xi)→a.s. κ > 0.



The case when ν2 6= 0: overcoming the
selection problem.

The econometrician only has access to ∆r(·, θ)
and our best response condition is in terms of
the conditional expectation of ∆π(·). So we
need an assumption which enables us to re-
strict weighted averages of ∆r(·) in a way that
insures that the expectation of the weighted
average of ∆r(·, θ) is positive at θ = θ0.Here
are two ways around it that are frequently used.

PC4a: Differencing. Here there are groups
of observations with the same value for the
ν2 error. We end up getting difference in dif-
ference inequalities (the difference for one ob-
servation contains the same ν2 error as the
difference for the other).

Our supermarket example is a special case of
PC4a. There di = (bi, si),

π(·) = U(bi, zi)− e(bi, si)− θ0dt(si, zi)
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and ν2,i,d ≡ U(bi, zi). If we measure expendi-

tures up to a ν1,i,d error,

r(·) = −e(bi, si)− θ0dt(si, zi) + ν2,i,d + ν1,i,d.

We chose a counterfactual with b′i = bi, so

∆r(·) = ∆π(·) + ∆ν1,·

and the utility from the bundle of goods bought

is differenced out.

“Matching estimators”, i.e. estimators based

on differences in outcomes of matched obser-

vations, implicitly assume PC4a (no differences

in unobservable determinants of the choices

made by matched observations).∗

∗For the general case let there be G groups of observa-
tions indexed by g, counterfactuals d′i,g ∈ Di,g, and posi-
tive weights wi,g ∈ Ji,g, such that

∑
i∈g wi,g∆ν2,i,g,di,g,d′i,g =

0; i.e. a within-group weighted average of profit dif-
ferences eliminates the ν2 errors. Then

G−1
∑
g

∑
i∈g

wi,g(∆r(di,g, d
′
i,g, ·; θ0)−E[∆π(di,g, d

′
i,g, ·; θ0)|Ji,g])→P 0,

provided G−1
∑

g

∑
iwi,g∆r(di,g, d′i,g, ·; θ0) obeys a law of

large numbers.



PC4b: Unconditional Averages and IV’s.

There is a counterfactual which gives us an

inequality that is additive in ν2 no matter the

decision the agent made. The counterfactual

may be different for different observations. Then

we can form averages which do not condition

on d so there is no selection problem.

Assume that ∀d ∈ Di, there is a d′ ∈ Di and a

wi ∈ Ji such that

wi∆r(di, d
′
i, ·; θ) = wiE[∆π(di, d

′
i, ·; θ)|Ji]+ν2,i+∆ν1,i,·,

Then if xi ∈ Ji, and E[ν2,i|xi] = 0,

N−1∑ ν1,i,·h(xi)→P 0 and N−1∑ ν2,ih(xi)→ 0

or x is an “instrument” for both ν2 and ν1, so

provided h(·) > 0

N−1∑
i

wi
[
∆r(di, d

′
i, ·; θ0)−E[∆π(di, d

′
i, ·; θ0)|Ji]

]
h(xi)

converges to a positive number.
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Case 2 of our supermarket example had two ν2
components; a decision specific utility from the
goods bought, ν2,i,d = U(bi, zi) (like in case 1),
and an agent specific aversion to drive time,
θi = θ0 + ν2,i. As in case 1, taking d′ = (bi, s

′
i)

differenced out the U(bi, zi).

Then

∆r(·) = −∆e(·, si, s′i)−(θ0+ν2,i)∆dt(si, s
′
i, zi)+∆ν1,·.

Set wi = [∆dt(si, s
′
i, zi)]−1 ∈ Ji, then C1 and

C2 ⇒

E[∆e(si, s
′
i, bi)/∆dt(si, s

′
i, zi)|Ji]−(θ0+ν2,i) ≤ 0.

This inequality is;
(i) linear in ν2,i, and
(ii) is available for every agent.

So if E[ν2] = 0, PC3 and a law of large num-
bers insures N−1∑

i ν2,i →P 0, and∑
i

∆e(si, s
′
i, bi)/∆dt(si, s

′
i, zi)→P θ0 ≤ θ0



while if E[ν2|x] = 0 we can use x to form instru-

ments which give us the additional inequalities∑
i h(xi)

∆e(si,s
′
i,bi)

∆dt(si,s
′
i,zi)∑

i h(xi)
→P θ0 ≤ θ0

Notice that ν2,i can be correlated with dt(zi, si)

so this procedure enables us to analyze discrete

choice models when a random coefficient af-

fecting tastes for a characteristic is correlated

with the characteristics chosen.



General Condition Condition IC4:∑
j∈Di

χ{di = j}c(j, d′(j))(ν2,i,j−ν2,i,d′(j))h(xi) ≤ 0

where χ{di = j} is an indicator function.

Notes.

• This is an unconditional average (does not
condition on di); i.e. for every possible d ∈
Di we specify a d′(d) (a priori).

• This average is an average of differences
in the ν2,i,j − ν2,i,d′(j).

• Both (i) the weights, and (ii) the compar-
ison (d′), can vary with j.

• We assumed xi ∈ Ji. Could also us an
x−i ∈ J−i provided x−i is not correlated
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with ν1,i which might well be violated in
models with asymmetric information.

Summary: Profit Inequality Model.

• Allows for specification errors, incorrect ex-
pectations, and incomplete and asymmet-
ric information,

and it does so without requiring the econome-
trician

• to specify what the agent knows about ei-
ther its competitors, or about the state of
nature

• It requires a restriction on {ν2,d}, but given
that restriction, there is no need for the
distribution of {ν2,d}.



Examples of use of inequalities in I.O.

• Contracting (bargaining) models in vertical

markets. A party which accepts a contract

must expect to earn more from when the

contract was in force then they would have

earned were the contract not in force; and

if a contract is rejected the opposite must

be the case. Enables an analysis of the

characteristics of the contracts signed in

vertical markets Ho (2009), Crawford and

Yorukoglu (2012).

• Product repositioning (see below)

• Ordered choice models and other discrete

investments by firms (see below).
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Product Repositioning and Short-Run

Responses to Environmental Change

• Product repositioning: a change in the char-

acteristics of the products marketed by an

incumbent firm.

• Empirical analysis of equilibrium responses

to environmental changes typically distin-

guish between the response of

– “static” controls (prices or quantities)

– “dynamic” controls effects (entry, exit,

and various forms of investment includ-

ing in new products).

• Product repositioning generally allocated

to dynamics. Dynamics are harder to do

formally (especially when there are time
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constraints, as is often the case when pol-

icy decisions must be made) and so often

left to informal analysis.

Recent work:

• a number of industries in which firms al-

ready in the market can change the charac-

teristics of their products as easily as they

can change prices, and

• shows that static analysis that does not

take repositioning into account is likely to

be misleading, even in the very short run.

• analysis does raise the issue of multiplicity

of equilibria (come back to this).



Examples.

• Nosko (2014): Response of the market for

CPU’s to innovation: easy to change chip

performance to lower values than the best

performing chips of the current generation.

• Eizenberg (2014): Introduction of the Pen-

tium 4 chip in PC’s and notebooks: deci-

sions to stop the production of products

with older chips (and lower prices) is easy

to implement. Total welfare does not in-

crease, but poorer consumers do better with

the low end kept in.

• Wollmann (2016): commercial truck pro-

duction process is modular (it is possible

to connect different cab types to different

trailers), so some product repositioning im-

mediate. Considers the bailout of GM and
28



Chrysler, and ask what would have hap-

pened had GM and Chrysler been forced

to exit the commercial truck market (once

allowing for product repositioning and once

not), and once with pure exit and once with

them being bought out by an existing pro-

ducer.



Nosko: Intels’ Introduction of The Core 2

Duo Generation in Desktops.

• Chips sold at a given price typically change
their characteristics about as often as price
changes on a given set of characteristics.

• Figures provide benchmark scores and prices
for the products offered at different times.

– June 2006: just prior to the introduc-
tion of the Core 2 Duo. The red and
blue dots represent AMD’s and Intel’s
offerings. Intense competition for high
performance chips with AMD selling the
highest priced product at just over $1000:
seven sold at prices between $1000 and

$600.

– Core 2 Duo introduced in July. By Oc-
tober; (i) AMD no longer markets any

29



Price/Performance – June 2006

Price/Performance – July 2006



Price/Performance – Oct 2006

Price/Performance – January 2008



high priced chips (ii) there are no chips

offered between $1000 and $600 dollars.

• November 2006: Only Core 2 Duo’s at the

high end.

• Nosko goes on to explain

– that the returns from the research that

went into the Core 2 Duo came primarily

from the markups Intel was able to earn

as a result of emptying out the space of

middle priced chips and dominating the

high priced end of the spectrum.

– how a similar phenomena would likely

occur if AMD were to merge with Intel.



Analytic Framework Used in these

Papers.

• Two-period sub-game perfect model (back-

ward induction)

– product offerings set in the first stage

and

– prices set in the second.

• Two-period model ignores effect on subse-

quent periods. Come back to correct this.

• Even for two-period model, need

– Estimates of the fixed costs of adding

and of deleting products.
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– A way of dealing with the multiplicity

problem if we compute counterfactuals

(and all papers do).

Estimates of Fixed Costs (F);

The three examples use

• Estimates of demand and cost as a func-

tion of product characteristics (use either

BLP or the pure characteristics model in

Berry and Pakes, 2007).

• An assumption on the pricing (or quantity

setting) in the “but for” world in which;

(i) one the products that was offered was

not, and (ii) one that was not offered was

offered (use Nash pricing equilibrium).



• The profit inequality approach proposed in

Pakes, Porter, Ho, and Ishii (2015) and

Pakes (2010).

Constant F case.

• xj be a vector of 1’s and 0’s; 1 when the

product is offered. Say ez is vector with

one in the ”z” spot and zero elsewhere.

• Assume z had been added. Compute the

the implied profits had the product not been

added (unilateral deviation in a simultane-

ous move game).

• Let ∆πj(xj, xj−ez, x−j) ≡ πj(xj, x−j)−πj(xj−
ez, x−j).



• Ij is the agent’s information set. zj added

because

E[∆πj(xj, xj − ez, x−j)|Ij] ≥ F.

• Average over all the products introduced

and assume agents’ expectations are unbi-

ased. ⇒ a consistent lower bound for F .

• If z is a feasible addition that was not of-

fered and ∆πj(xj, xj+ez, x−j) ≡ πj(xj, x−j)−
πj(xj + ez, x−j), then

E[∆πj(xj, xj + ez, x−j)|Ij] ≤ F.

which gives us an upper bound to F .

Complications: Non-constant F.

• If the fixed costs are a function of observed

characteristics of the product all we need



is more complicated moment inequality es-

timators.

• Allowance for unobservable fixed cost dif-

ferences that were known to the agents

when they made their product choices im-

plies that the products provided may have

been partially selected on the basis of hav-

ing lower than average unobservable fixed

costs (and vice versa for those that were

not selected). Need a way of dealing with

ν2 errors.

• In addition to the suggestions above, you

could assume a bounded support as in Man-

ski (2003); for an application which com-

bines them see Eizenberg (2014).

Complications: Sunk (in contrast to Fixed)

Costs.



• Find a z that was not marketed, and as-
sume that the firm could have marketed it
and commit to withdrawing it in the next
period before competitors next period de-
cisions are taken.

• Then our behavioral assumption implies that
the difference in value between, (i) adding
this z and then withdrawing it in the next
period, and (ii) the value from just market-
ing the products actually marketed, would
be less than zero. I.e.

E[πj(xj+ez, x−j)−πj(xj, x−j)|Ij] ≤ F+βW,

W ≥ 0 is the cost of withdrawing and β is
the discount rate.

• Lower bounds require further assumptions,
but the upper bound ought to be enough
for examining extremely profitable reposi-
tioning moves following environmental changes
(like those discussed in Nosko (2014)).



Discrete Investment Choices by A Firm.

This application is due to Ishii (thesis and PPHI).

It is about analyzing choices of a number of

ATM’s but as will become obvious similar anal-

ysis could be used for at least some types of

entry games.

Ishii analyzes how ATM networks affect mar-

ket outcomes in the banking industry. The part

of her study we consider here is the choice of

the number of ATMs. General issue: tech-

niques that can be used to empirically analyze

“lumpy” investment decisions, or investment

decisions subject to adjustment costs which

are not convex for some other reason∗, in mar-

ket environments.

∗Actually Ishii’s problem has two sources of non-convexities. One
stems from the discrete nature of the number of ATM choice, the
other from the fact that network effects can generate increasing
returns to increasing numbers of ATMs.
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Ishii uses a two-period model with simultane-

ous moves in each period.

• First period; each bank chooses a number

of ATMs to maximize its expected prof-

its given its perceptions on the number of

ATMs likely to be chosen by its competi-

tors.

• Second period interest rates are set con-

ditional on the ATM networks in existence

and consumers chose banks.

Note that there are likely to be many possible

Nash equilibria to this game so again there is

a multiplicity problem.

Getting the second stage profit function?

• Estimate a demand system for banking ser-

vices (discrete choice model among a finite set



of banks with consumer and bank specific un-

observables; as in BLP).and

• an interest rate setting equation.

Both conditional on the number of ATMs of

the bank and its competitors, i.e. on (di, d−i).

Interest rates set in a simultaneous move Nash

game.

Note. We need to know what interest rates

would be and where consumers would go were

there a different network of ATMs to get the

counterfactuals. Need to assume that the so-

lution to the second stage is unique; or at least

that you are calculating the one all participants

agree would occur. Come back to the realism

of this below.

The ATM Choice Model.To complete the

analysis of ATM networks Ishii requires esti-

mates of the cost of setting up and running

ATMs. Crucial to the analysis of the impli-

cations of existing network (is there over or



under investment, are ATM networks allow-

ing for excessive concentration and excessively

low interest on customer accounts,...) and of

what the network is likely to result from alter-

native institutional rules (of particular interest

is the analysis of systems that do not allow sur-

charges, as suggestions to eliminate surcharges

have been part of the public debate for some

time).

We infer what cost must have been for the

network actually chosen to be optimal. So we

model choice network size; of di ∈ D ⊂ Z+,

the non-negative integers. We assume a si-

multaneous move gain. The agent forms a

perception on the distribution of actions of its

competitors and of likely values of the variables

that determine profits in the next period, and

chooses the di that maximizes expected prof-

its. So this is a multiple agent ordered choice

model.



Formally

E[π(yi, di, d−i, θ)|Ji] = E[r(zi, di, d−i)|Ji]−(θ+ν2,i)di,

(1)

where

• Ji is the information known by the agents

when the decisions on the number of ATM’s

must be made,

• θ is average cost of an ATM, and the ν2,i

capture the effects of cost differences among

banks that are unobserved to the econome-

trician but known to the agent. What we

know is there are a set of instruments such

that E[ν2,i|xi] = 0

Clearly a necessary condition for an optimal

choice of di is that:



• expected profits from the observed di is
greater than the expected profits from di−
1

• expected profits from the observed di is
greater than the expected profits from di+
1.

Since we can calculate what the bank would
earn in income in both those situations, these
two differences provide inequalities that the
costs of ATMs must satisfy, and when we aver-
age them over banks, they provide an inequal-
ity estimator of θ.†

The inequality for the first case is‡

†These conditions will also be sufficient if the expectation of π(·)
is (the discrete analogue of) concave in di for all values of d−i,
a condition which works out to be almost always satisfied at the
estimated value of θ.
‡More formally to get this we use PC4 substituting

h(j, d′(j), ·) = 1 ifj = di; h(j, d′(j), ·) = −1 ifj = di − 1,

and h(j, d′(j), ·) = 0 elsewhere.



0 ≤ E[π(zi, di, d−i, θ)|Ji]−E[π(zi, di−1, d−i, θ)|Ji] =

E[r(zi, di, d−i)|Ji]−E[r(zi, di−1, d−i)|Ji]−(θ+ν2,i)

This will give us are upper bound for θ. I will

let you work out the second case. It gives us

our lower bound.

A few points are worthy of note.

• Note we have chosen d′(di) in a way that

insures we keep a ν2,i for every agent (there

is no selection).

• To do this we need to solve out for the

returns that would be earned were there a

different ATM network (for r(yi, di−1, d−i),



etc.) ⇒ we have to solve out for the inter-

est rates that would prevail were the alter-

native networks chosen. This is why you

need the structural static model; i.e. we

need approximations to counterfactuals.

• The expectation is conditional on informa-

tion known when the decisions are made.

It is over any component of yi not known

at the time decisions are made, and over

the actions of the competitors (over d−i).

Note that we do not need to specify what

that information set is.



Our behavioral assumptions imply.

E
(
r(zi, di, d−i)−r(zi, di−1, d−i)−(θ0+ν2,i)

)
≥ 0

and

E
(
r(zi, di, d−i)−r(zi, di+1, d−i)+(θ0+ν2,i)

)
≤ 0,

with
∑
ν2,i = 0 by construction. If we had an

instrument (an x which is the in the agents’ in-
formation set when it made its decision) that
was orthogonal to ν2,i and h(·) was a posi-
tive value function, our behavioral assumptions
would also imply∑
i

E
(
r(zi, di, d−i)−r(zi, di−1, d−i)−(θ0+ν2,i)

)
h(xi) ≥ 0

Simplest Estimator. Let ∆rL be the sample
average of the returns made from the last ATM
installed, and ∆rR be the sample average of
the returns that would have been made if one
more ATM had been installed. Then

∆rL − θ ≥ 0 (i.e. ∆rL ≥ θ),
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and

−∆rR + θ ≥ 0 (i.e. θ ≥ rR).

Assuming |∆rR| ≤∆rL

Θ̂J = {θ : −∆rR ≤ θ ≤∆rL}.

Notes. With more instruments the lower bound
for θ0 is the maximum of a finite number of
moments, each of which distribute (approxi-
mately) normally. So actual lower bound has a
positive bias in finite samples. The estimate of
the upper bound is a minimum, so the estimate
will have a negative bias. ⇒ Θ̂J may well be a
point even if Θ0 is an interval. Importance of
test.

Boundaries. To construct the (unconditional)
moment used to estimate the parameter of the



ordered choice model, the weight function h

placed positive weight only on counterfactuals

d′ = di+t for fixed (positive) t. More generally,

we could consider counterfactuals d′ = di + ti
where ti depends on i, if the ti are fixed and

have the same sign for all i. In this case,

weights proportional to 1/|ti| satisfy Assump-

tion 3.

Typically, we want at least one inequality based

on weighting positive ti counterfactuals and

one inequality based on weighting negative ti
counterfactuals in order to get both upper and

lower bounds for θ0. For any agents with di =

0, there are no feasible counterfactuals with

d′ = di + t for any t < 0. Dropping the obser-

vations with di = 0 before forming the inequal-

ities generates a standard truncation problem.

A similar problem will occur when controls are

continuous but bounded from one side (as in

a Tobit model, or in an auction model where



there is a cost to formulating the bid which

causes some agents not to bid).

We start out now with slight more detailed no-

tation, allowing for a different structural error

for every di, di+t, say ν2,i,di,di+t = tηi in the

ATM model (so ηi is now the firm specific un-

observed cost of the ATM). By definition of

the parameter θ0, Eηi = 0. To deal with the

boundary problem, we make an additional as-

sumption that



Assume the ηi are i.i.d. with a distribution

that is symmetric (about zero). Extending

the argument of Powell (1986), the symme-

try assumption allows for the use of the infor-

mation from the un-truncated direction (e.g.

ν2,i,di,di+t with positive t) to obtain a bound in

the truncated direction (e.g. ν2,i,di,di−t). We

use the choice set in the ATM model is di ≥ 0

to illustrate, but the idea extends to other one-

sided boundary models.

Let L = {i : di > 0} denote the set of firms

that install a positive number of machines and

so are not on the boundary, and let nL be the

number of firms in L. It will be helpful to use

order statistic notation, i.e.

η(1) ≤ η(2) ≤ · · · ≤ η(n).

Let

Lη = {i : ηi ≤ η(nL)} and Uη = {i : ηi ≥ η(nL+1)}.
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Similarly, let ∆r+
i = ∆r(di,di + 1,d−i, zi) and

∆r+
(1) ≤∆r+

(2) ≤ · · · ≤∆r+
(n)

while

Ur = {i : ∆r+
i ≥∆r+

(nL+1)}.

Sets L and Ur are observable to the econome-

trician, but sets Lη and Uη are not.

Consider the following choice of weight func-
tion

hi(d′;di,Ji) = n−1[ 1{d′ = di−1}1{i ∈ L}+ 1{d′ = di+1}1{i ∈ Ur}],
and form∑

i

∑
d′∈Di

hi(d′;di,Ji,x−i)∆r(di, d
′,d−i, z

o
i , θ0)

=
1

n

∑
i∈L

∆r(di,di−1,d−i, z
o
i , θ0)+

1

n

∑
i∈Ur

∆r(di,di+1,d−i, z
o
i , θ0)

≥
1

n

∑
i∈L

∆r(di,di−1,d−i, z
o
i , θ0)+

1

n

∑
i∈Uη

∆r(di,di+1,d−i, z
o
i , θ0)

=
1

n

∑
i∈L

{E[∆π(di,di − 1,d−i, zi)|Ji]− ν2,i,di,di−1}



+
1

n

∑
i∈Uη

{E[∆π(di,di + 1,d−i, zi)|Ji]− ν2,i,di,di+1}

≥ −
1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 .

The first inequality holds by the definition of Ur and
noting ∆r(di,di + 1,d−i, zoi , θ0) = ∆r+

i + θ0. The second
follows from the fact that E[∆π(di,di−1,d−i, zi)|Ji] > 0
for i ∈ L and E[∆π(di,di + 1,d−i, zi)|Ji] > 0 for all i.

Now note that

−
1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 =
1

n

∑
i∈L

ηi −
∑
i∈Uη

ηi


≥

1

n

∑
i∈Lη

ηi −
∑
i∈Uη

ηi

 =
1

n


nL∑
i=1

η(i) −
n∑

i=nL+1

η(i)

 .

Under the assumption that ηi are i.i.d. and symmetrically
distributed about zero, the last term above has mean

zero. So, E
[
−n−1

∑
i∈L ν2,i,di,di−1 − n−1

∑
i∈Uη

ν2,i,di,di+1

]
≥

0.

We have provided a set of assumptions which

generates a lower bound for the parameter of

interest despite the fact that the choice set is



bounded from below. The appendix to PPHI

shows that we can use instruments along with

a symmetry assumption to generate more mo-

ment inequalities for the lower bound.

Inequality Method, ATM Costs∗

θJ 95% CI for θ
LB UB

1. h(x) ≡ 1, d ≥ 1 u.b. θ̂ [24,452, 25,283] 20,544 29,006
2. h(x) ≡ 1, d ≥ 0 [24,452, 26,444] 20,472 30,402
h(x) = Inst.
3. d ≥ 1 for u.b. θ̂ 19,264 16,130 23,283
4. d ≥ 0 20,273 17,349 24,535

{d : |d− di| = 1,2}, h(x) = 1

5.{d : |d− di| = 1,2}; d ≥ 1 u.b. θ̂ [24,452, 25,283] 20,691 28,738
6.{d : |d− di| = 1,2}; d ≥ 0 [24,452, 26,644] 20,736 29,897

F.O.C (Hansen & Singleton,1982)

7. h(x)=1 28,528 23,929 33,126
8. h(x)=IV 16,039 11,105 20,262

∗ There are 291 banks in 10 markets. The IV are 1,pop, # Banks in
Mkt, # Branches of Bank). The first order condition estimator re-
quires derivatives with respect to interest rate movements induced
by the increment in the number of ATMs. We used two-sided nu-
merical derivatives of the first order conditions for a Nash equilibria
for interest rates.

Results (see table).



• First two rows just use a constant and you

can see that when you do the selection cor-

rection (second row) the upper bound goes

up a bit. There is mediocre precision.

• When we add instruments we get a point

estimate, but it is just outside the bounds

and a formal test marginally rejects the in-

struments.

• Adding equations for |d − di| = 2 does not

do much, as it shouldn’t if the profit func-

tion is concave.

• An alternative procedure is Hansen and Sin-

gleton’s F.O.C. estimator. It gets a num-

ber which is about the upper bound of our

c.i. and would be rejected if we accepted

the c.i. of the IV estimator.



• Works out to $4,500 per ATM per month.
Quite a bit larger than prior estimates which
do not take into account all aspects of
costs.

Implications. Ishii (thesis). Large banks sub-
sidize their ATM networks in order to gain cus-
tomers (whom they pay lower interest rates
to). Policy implications

• The question of whether to force equal ac-
cess to all ATMs and a central surcharge
was considered in congress. She considers
a counterfactual with the same number of
ATMs, imposes a universal ATM user fee
that would just cover ATM costs, and re-
calculates equilibrium.

• A centralized surcharge would reallocate
profits from large to small banks and de-
crease concentration markedly.



• Welfare effects (conditional on the network)

not as obvious because of costs of ATMs

(consumers may gain a little, but not alot)

• She also show that investment in ATMs is

suboptimal; so one might want to make the

ATMs endogenous and see what happens,

but then we get faced with, among other

things, the issue of multiplicity of equilibria.



Digression: Multiple Equilibria and

Counterfactual’s in Ishii’s game.

Selection of Equilibria for Counterfactuals.

Possibilities that have been used.

• Enumerate all possible (or at least all rele-

vant) equilibria (used in Eizenberg, 2014).

– Seems like there may be many, but in-

vestment history limits what can be sup-

ported. (see Lee and Pakes, 2009, for

an example).

• Use a learning model to select among equi-

libria (used in Wollmann, 2016).

– Eg.s: best response, fictitious play (Fu-

denberg and Levine, 1998, for a discus-

sion of alternatives.).
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– Will settle down at a Nash equilibrium.

Repeat and get a probability distribution

of possible equilibria.

– Probably not suitable for major changes

that induce experimentation (Doraszel-

ski, Lewis, and Pakes, 2016).

This is taken from Lee and Pakes (2009, Eco-

nomic Letters). Take Ishii’s information on

Pittsfield, Massachusetts and analyze the likely

impact of a change in Pittsfield’s banking en-

vironment (a hypothetical merger and unex-

pected shock to Pittsfield’s economy which

changes the costs of running an ATM).

There were eight banks before the merger, so

we examine the actions of the seven remaining

banks in the market. We assume the merged

bank has a profit function which consists of

the sum of the profits from the two banks



which merged and starts with their ATMs, giv-

ing us an initial allocation of ATMs to the

seven banks of (9,0,3,1,0,0,1). Note that, as

is often the case in empirical work, there is sig-

nificant heterogeneity across the firms inher-

ited from past actions and events (the banks

differ in the number and locations of their branches,

in the amenities they provide customers...).

We are assuming that these characteristics of

the banks do not change.

The realized costs of agent i if it uses ni ATMs

in period t are given by:

C(ni, t) = [b0,i + b1,i,t]ni + b2n
2
i

where (b0,i, b2) are known constants and b1,i,t is

the random draw on the cost shock. These are

iid draws from a normal distribution with mean

µ and variance σ2 that is common across firms.

For simplicity, we assume switching costs and



fixed costs of each machine to be 0; we only

focus on the per-period operational costs.

Firms do not know their future cost shocks be-

fore they chose the number of ATMs they op-

erate in the next period, and we focus on Nash

Equilibria in expected costs. In the first period

after the merger, each firm receives its own

realization of the cost shock b1,i,t. As firms re-

alize that their costs have changed, each firm

will use an average over cost draws after the

switch in regimes to form their expectation of

costs for the next period (µ). There are no

dynamics other than that induced by learning

about the likely value of the cost shocks and

the likely play of competing firms.

Number and Nature of Equilibria

The first part of the analysis proceeds by sim-

ply enumerating the “limiting equilibria”: i.e.,



the Nash equilibria when all firms know the ex-

pected value of the cost shock. Since banks

are asymmetric, there are 170,544 different

allocations of up to 15 ATMs among seven

banks. Table 1 lists all equilibrium allocations

when firms know the expected value of the cost

shock for different values of µ.

Results.

• initial post merger allocation is (9,0,3,1,0,0,1)

does not constitute a best response for any

of our cost specifications.

• the number of equilibria is always strikingly

small in comparison to the number of total

possible allocations.

• within a specification for costs, the differ-

ent equilibria are quite similar to each other



(no two equilibria for the same cost specifi-

cation in which one firm differs in its num-

ber of ATMs by more than one ATM,...)

• “comparative statics”; if an allocation which

had been an equilibrium is no longer an

equilibrium when we lower the cost, this

former equilibrium was always the equilib-

rium with the least number of ATMs at the

higher cost. If an allocation becomes an

equilibrium allocation when it had not been

one at the higher cost, the new equilibrium

allocation always has a larger total num-

ber of ATMs then the equilibria that are

dropped out (and those that are dropped

are always the equilibria with the lowest

number of ATMs).



Possible Equilibria for Four Mean Cost Specifications

Mean Cost (µ) 20,000 15,000 10,000 0
ATM Allocation # of ATMs Is Allocation An Equilibrium?
(4,0,4,0,0,1,1) 10 Yes No No No
(5,0,3,0,0,1,1) 10 Yes No No No
(4,0,4,0,0,1,2) 11 No Yes No No
(4,0,4,0,1,1,1) 11 No Yes Yes No
(5,0,3,0,1,1,2) 12 Yes Yes Yes Yes

Equilibrium Selection through Belief For-

mulation.

Investigate the implications of different pro-

cesses for forming beliefs about competitors’

play. Above we just ignored this and looked

at equilibrium allocations. The different mod-

els of how firms form beliefs about competi-

tor’s play, is one possible equilibrium selection

mechanism.

• Best response; each firm believes its com-

petitors’ will play the same strategy in the
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current period as they did in the prior pe-

riod

• Fictitious play; each firm believes the next

play of its competitors will be a random

draw from the set of tuples of plays ob-

served since the regime change.

Each run is stopped when we have converged

to a single allocation, where convergence is

defined as having remained in the same allo-

cation state for 50 iterations. This location

was viewed as a “rest point” of the process.

Note that all rest points are Nash equilibria of

the game where each agent knows its mean

costs. Table 2 provides the fraction of rest

points at various equilibria for the different cost

specifications. We tried different mean cost-

shocks and different coefficient variations for

those shocks.



Fraction of Rest Points at Alternative Equilibria

Mean (µ) 20,000 15,000 10,000 0
CV (σ/µ)a 1 .5 .25 1 .5 .25 1 .5 .25 1 .5 .25

Best Response
4040011 .89 .87 .82
5030011 .10 .10 .13
4040012 .27 .14 .01
4040111 .40 .21 .02 .04b .00 .00
5030112 .01 .03 .06 .33 .65 .97 .94 1.0 1.0 1.0 1.0 1.0

Fictitious Play.
4040011 .47 .41 .41
5030011 .34 .44 .30
4040012 .00 .00 .00
4040111 .10 .01 .00 .00 .00 .00
5030112 .15 .15 .29 .90 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The initial condition is (9,0,3,1,0,0,1) for all runs and is
never an equilibrium based on true expected costs.

a CV is the coefficient of variation of the cost shock.
For the base specification where µ = 0, the variance
of the cost shocks were set to be the same as when
µ = 20,000.

b In this specification under Best Response, approxi-

mately 2% of trials resulted in “cycling.”
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Note that

• The variance in the cost shocks can cause

a distribution of rest points from a given

initial condition.

• Apparently there is a dependence of the

distribution of the equilibria on belief for-

mulation process. This is troubling be-

cause of the lack of evidence on the em-

pirical relevance on how one forms beliefs.

• On the brighter side, it appears that the

distribution of the number of ATMs from

the lower cost specifications always stochas-

tically dominated those from the higher cost

specifications.
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