
Griliches Lectures, Kyoto, August 2016.

Lecture 2: Econometric Tools for Analyzing

Moment Inequalities. ∗

by Ariel Pakes

∗This is a preliminary version of these notes, and no doubt contains
many errors and omissions.

1



Econometrics for Moment Inequalities.

Our model delivers the condition that

E
[
∆r(di, d

′,d−i, z
o
i , θ0)⊗ h(xi)

]
≥ 0.

Estimator. Form sample analog and looks for values

of θ that satisfy these moment inequalities (can be a

set).

Formalities. j = 1, . . . , J markets with observations on

(z, x, d) for individual agents. Markets’ observations are

independent draws from a population with a distribu-

tion, say P, that respects our assumptions.
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Sample Moments.

m(zj, dj, xj, θ) =

1

nj

∑
i

∆rj(dji , d
′, dj−i, z

o,j
i , θ)⊗ h(xji),

m(PJ , θ) =
1

J

J∑
j=1

m(zj, dj, xj, θ),

Σ(PJ , θ) = V ar(m(zj, dj, xj, θ)).

Population Moments. (m(P, θ),Σ(P, θ)) with

m(P, θ0) ≥ 0.
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Let

Θ0 = {θ : m(P, θ) ≥ 0 },

which is called the identified set.

Estimator. For now I am going to discuss estimation

where we do not adjust for the differential variances of

the moments. I will come back to an adjustment for

differential variance below.

Two different metrics on the negative part of the dis-

tance between

m(PJ , θ) ≡ [m1(PJ , θ), . . . ,mK(PJ , θ)]′



and zero are commonly used in the literature. If f(·)− ≡
min(0, f(·)) then one is

ΘJ = arg min
θ
‖m(PJ , θ)−‖,

and at least initially I will focus on it, though analogous

reasoning applies when we use

ΘJ = arg min
θ

[min
k
mk(PJ , θ),0].

If all the moments are positive this metric is zero, and

if one or more is negative we take the most negative.



Inference.

Consistency of Set Estimator. Several papers pro-
vide conditions for the consistency of the estimator,
usually in Hausdorff metric

dH(supθj∈ΘJ
infθ0∈Θ0

d(θj, θ0) + supθ0∈Θ0
infθj∈ΘJ

d(θj, θ0))

where d(·, ·) is taken to be a norm (usually the sup
norm) on points in Euclidean space.

Large Measures of Precision. There are several dif-
ferent ways of conceptualizing measures of the preci-
sions of your (set) estimator. We could attempt to:
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• Get a confidence set for the set; i.e. a set which

would cover the identified set 95% of the time

(starts with Chernozhukov, Hong, and Tamer, Econo-

metrica 2007). I will not go over this, as it has not

been used intensively.

• Get a confidence set for the point θ0 (starts with

Imbens and Manski, Econometrica, 2004). This is

what you see most often, and I will focus on it.

• Get confidence interval for intervals defined for a

particular direction in the parameter space; simplest

case is directions defined by each component of θ =

[θ1, . . . , θK] as this gives us the analogue of standard



confidence intervals produced by moment equality
estimators. I will consider this, as this is what is
often needed for applied articles.

There are a number of ways of providing estimates of
appropriate size for each concept. I will briefly discuss
some of the alternatives.

Adjust for Different Variance of Different Moments.
Assume that a consistent estimator of the diagonal ma-
trix consisting of the square root of the moments eval-
uated at each θ is available. Call that estimate D̂J(θ)
(a diagonal matrix). Then, estimation proceeds as fol-
lows. Set

Θ̂J = arg min
θ∈Θ
‖D̂J(θ)−1/2PJm(w, θ)−‖ (1)



Note the difference between the weighting being done

here and the weighting that is done for m.o.m. with

equality constraints. In the equality case we weight with

the full covariance matrix. Here we do not do that be-

cause the weighting by the Cholesky transform of the

covariance matrix might imply multiplying a moment

by a negative number, and then the weighted moment

inequalities at θ = θ0 need not have positive expecta-

tion.



Intuition for why standard limiting arguments do

not work.

Look to one parameter that we are particularly inter-

ested in. Define

θ = argminθ∈Θ0
θ1,

Note that θ ∈ Rk. Analogously define

θ̂ = argminθ∈ΘJ
θ1.

This, and the analogous procedure for the upper bound,

will give me my estimates for the upper and lower bound

of the first component of the vector θ say θ0,1 ∈ [θ1, θ1].
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If we could obtain “good” estimates of the limiting dis-
tributions of (θ̂, θ̂), we could use them to build conser-
vative confidence intervals as follows. Use the limiting
distributions of the boundary estimators to obtain â and
b̂ such that

Pr(â > θ1) = α/2 and Pr(̂b < θ1) = α/2.

Then

Pr {[θ1, θ1] ⊂ [â, b̂]} ≥

1 − Pr {â > θ1} − Pr {̂b < θ1} = 1− α.

Two points to come back to
• First, the interval CI is conservative for the point,θ0,1.
I.e.since

Pr{θ0,1 ∈ [â, b̂]} ≥ Pr {[θ1, θ1] ⊂ [â, b̂]},



If the [â, b̂] satisfy the inequality above Pr{θ0,1 ∈ [â, b̂]} ≥
1− α.

• Second, we could improve on the interval slightly by

finding the joint distribution of the upper and lower

bound and then account for the covariance between

them.

Note. This assumes we know the true limiting dis-

tributions for (θ̂, θ̂). We now consider the problem of

determining these distributions.

Note. I will need to construct an approximation to the

distribution of the objective function at different values

of θ. I will use simulation to do this. An alternative



would be to use subsampling, but I will not pursue that
further here.

Limit Distribution. Intuition: split moments up into
those that are

• Binding: Pm0(w, θ) = 0, and
• Non-binding: Pm1(w, θ) > 0.

With probability approaching one ΘJ = {θ : PJm(w, θ) ≥
0}. So stochastic equicontinuity, and θ̂−θ = Op(1/

√
J),

neither of which require differentiability of the objective
function at θ = θ (for these arguments see, for e.g.
Pakes and Pollard, 1989), imply



√
JPJm(w, θ̂) =

√
J
(
Pm(w, θ̂)− Pm(w, θ)

)
+
√
J
(
PJm(w, θ)− Pm(w, θ)

)
+
√
JPm(w, θ) + op(1) ≥ 0.

where

op(1) ≡
√
J
(
PJm(w, θ̂)− Pm(w, θ̂)

)
−
√
J
(
PJm(w, θ)− Pm(w, θ)

)
.

Now
√
JPm1(w, θ) → ∞ and hence, when J is large

enough, will never bind and can be ignored when solving

for θ. If we linearize the binding moments (the first

term) and note that Pm0(w, θ) = 0 (in the second and

third terms), we get



Γ0
√
J(θ̂ − θ) +

√
JPJm0(w, θ) + op(1) ≥ 0.

where Γ0 ≡ ∂Pm0(w,θ)
∂θ |θ=θ, which we assume has full

column rank.

Theorem.
√
J(θ̂ − θ)→d τ̂

where

τ̂ = arg min[
0≤Γ0τ+Z

] τ1

and

Z ∼ N(0,Σ0) ♠.
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Consider two cases.

• dim(m0) = dim(θ). One might think this is the
leading case. It produces a normal limit distribution.

• dim(m0) > dim(θ). This case leads to a non-normal
distribution as there is no derivative of the limit
function (in any given direction we will have a limit
normal, but depending on the realization of the
sampling error we will move away from θ in different
directions with different derivatives).

Though the first assumption seems to be generically
the “right” assumption for models, the second most of-
ten produces a more accurate picture of the true small



sample distribution for the size of samples we use. This

is because our samples typically have enough variance

so that different realizations of the sample moments

will generate different binding moments, so we need an

“asymptotic” approximation that mimics that behavior.

More formally the first case may be the limit case, but

the asymptotic distribution has a “limiting discontinu-

ity”.

Estimate Limit Distribution. When this literature

discusses building CI’s which are uniform over possible

DGP’s it means that it can cover the case where the

parameters are such that the second case is relevant.

When the second case is relevant the limit function

(i.e. the population moments) are not differentiable at



θ = θ. The estimator will still be
√
N consistent, but

the form of the limit distribution is not normal. How-

ever, note that if we knew which moments were binding

we could obtain a parametric bootstrap by substituting

consistent estimates of (Γ0,Σ0) into the formula in the

theorem and solving the linear program for different

draws of the Z. The problem occurs because we do

not know which moments to focus on.



So we need a “new” way of finding a confidence set for
a multidimensional θ0 that covers the true parameter
with probability 1−α. Moreover, because the expecta-
tion of the objective function is non-differentiable at θ0,
there is no longer a reason to think that any estimate
of a function of Θ0, such as θ1, distributes normally.
So we are going to have to simulate test statistics.

Formally we want to test H0 : θ ∈ ΘI(P ) where ΘI(P )
is the identified set. We look for a confidence set with
the property that

lim
J→∞

inf
P∈P

inf
θ∈ΘI(P )

Pr{θ ∈ CS} = 1− α.

where the “inf” is over all data generating processes,
including ones which generate a ΘI where many more
moments bind than there are parameters being esti-
mated.
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Least favorable Confidence Sets for the Point, θ0.

Intuition. What we do is assume that all the moments

of the model are exactly zero at each θ, and then simu-

late a distribution for the objective function many times

given that fact. We then find the 1− α quantile of the

simulated distribution of the objective function. Then

go back to the data and evaluate the sample moments

at that θ. If the sample moment evaluation is greater

than that of the 1 − α quantile, then the value of θ

would be rejected even if all the moments were exactly

zero. They must therefore be rejected when the true

moments are less than zero.
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Let mJ(θ) = m(PJ , θ) and to conform to the literature

assume that the null is H0 : m(θ0) ≤ 0. Define

R(mJ(θ),ΣJ(θ)) = maxk(
mk(θ)√

ΣJ(k,k)(θ)
)

We could also do the analogous procedure using, as the

objective function, ‖m(PJ , θ)+‖.

For each θ we look for a Cα(m(θ),ΣJ(θ)) such that

Pr{R(mJ(θ),ΣJ(θ)) ≥ Cα(m(θ),ΣJ(θ))} = α.

To obtain the least favorable Cα(m(θ),ΣJ(θ)) we sim-

ulate from a mean zero variance ΣJ(θ) normal many

times and compute R(0,ΣJ(θ)) for each simulation run.
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The α quantile of that statistic over the simulated sam-

ples is Cα(0,ΣJ(θ)). We then go back to the data and

find out if

R(mJ(θ),ΣJ(θ)) ≤ Cα(0,ΣJ(θ)).

The particular θ is in the confidence set if and only if

this condition is satisfied. Clearly if we were to simulate

from a normal with any acceptable mean (acceptable

meaning all the moments are less than zero), the crit-

ical value would be less than this, so this is the least

favorable critical value.

The steps for obtaining a CS in this way are as follows.



Step 1. In principal we are now searching over every

point in Θ. In fact, we are going to have to start with

some grid, call it ΘL = {θl, l = 1, . . . L}.

Step 2. For each θl ∈ ΘL construct a normal with

mean zero and the correlation matrix of m(θl). Simu-

late many times and calculate the (1−α) quantile of the

distribution of {z(θl)ns}NSIMns=1 , where z(θl)ns is a simula-

tion draw from the normal. This becomes Cα(0,ΣJ(θ)).

You should do this from a single set of i.i.d. inde-

pendent vectors of normal draws and apply that to the

Cholesky factorization (which differs by θ). I.e. we hold

the random draws fixed as we look over alternative θ.



Step 3. Go back to the data. Compute the value of

the objective function at θl. Accept all θl for which

R(mJ(θl),ΣJ(θl)) ≤ Cα(0,ΣJ(θl)) The true θ0 will be in

this set with probability 1−α. Hence, it is a confidence

set with significance level α.

Computational burden. The simulation is easy enough

for a fixed θ. However, we should be doing the test at

each point in the entire parameter space. Typically

what is done is we divide the parameter space into cells

and do the test for each cell. There is a question of

how you determine ΘL. Most would estimate Θ̂I (the

estimate of the identified set) first, and then use that

as a basis for defining ΘL. You need a ΘL that is larger

than Θ̂I; perhaps a set where the points yield values



of the objective function less than some (fairly large) ε

(and at least in non-linear models this may be hard to

determine).

For a large dimensional θ this can generate a computa-

tional burden which is large enough to limit the appli-

cability of the estimator. This will be particularly com-

putationally difficult if the calculation of the moments

for each θ requires a fixed point calculation. We come

back to ways of alleviating the computational burden

below.

Size of the confidence set. As we add moments

here two things happen. If the new moments bind (in

some direction) it will help us make the confidence set



smaller. However, if they do not bind they will just

increase the CS. I.e. adding a moment that does not

bind at a particular value of θ will (weakly) increase the

estimate of Cα(0,ΣJ(θ)). This is a bit counterintuitive;

adding moments, which should be added information,

is likely to give you less precise estimates, even if the

moment is well specified.

More generally there is a source of conservativeness in

the approximation we are using. Some moments will

be well below zero, and hardly likely to bind. Still in

the simulation we center them to zero, which will imply

that they are as likely to bind as the moments that

are near zero. A number of modifications designed for

utilizing the information in the sample means to make



the procedure less conservative have been suggested.
Examples;

• Use a pre-test which throws out the moments which
are far away from binding and then adjust signifi-
cance levels accordingly (moment selection tech-
niques).

• Center the simulated means at a point which re-
flects the information in the sample mean and ad-
justs significance levels (the shifted means tech-
niques)∗

∗The shifted means technique starts with the ”long-version” of
Pakes, Porter, Ho and Ishii (2015). See Andrews and Guggen-
burger (2009) and Andrews and Soares (2010) and to Romano,
Shaikh, and Wolf (2014) , for discussions of alternatives.



The early versions of these processes required a ”tun-

ing” parameter much like the bandwidth used in non-

parameteric estimation. The paper by Romano, Shaikh,

and Wolf (2014) does not require a “tuning” param-

eter, and so I am going to focus on it. This despite

the fact that it is among the more computationally in-

tensive techniques. Romano, Shaikh, and Wolf starts

with a pre-test and then moves to a “moment shifting”

technique.



Romano, Shaikh, and Wolf and Shifted Moments.

They do an initial step which finds the least favorable
critical value for size β. They then form the following
“shifted” mean

m̃k(mk(θ),ΣJ(θ)) =

min{mk(θ) + Σ
−1/2
J(k,k)Cβ(0,ΣJ(θ)),0}.

They then simulate from a normal with mean m̃(mJ(θ),ΣJ(θ))
and variance ΣJ(θ), and use that simulation to form the
critical value

Cα−β
(
m̃(mJ(θ),ΣJ(θ)),ΣJ(θ)

)
.

A θ is put in the CS if and only if

R(mJ(θl),ΣJ(θl)) ≤ Cα−β
(
m̃(m(θ),ΣJ(θ)),ΣJ(θ)

)
.
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They prove that if the CS is formed in this way

lim
J→∞

inf
P∈P

inf
θ∈ΘI(P )

Pr
{
R(mJ(θ),ΣJ(θ))

≤ Cα−β
(
m̃(m(θ),ΣJ(θ)),ΣJ(θ)

)}
≥ 1− α+ β.

They;
(i) restrict their test to not reject if mink{mk(θ) +

Σ
−1/2
J(k,k)Cβ(0,ΣJ(θ))} < 0 and

(ii) suggest using β a small fraction of α, say 1/10× α
and adjusting α to insure the desired size.

Note this procedure is less sensitive to the inclusion
of irrelevant moments, and hence is an improvement
in that sense. However, adding non-binding moments
still (weakly) increase the CS, and the computational
demands are worse than the least favorable case.
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Conditional and Unconditional

Variance-Covariance Matrices, ΣJ(θ).

The following is from Andrews and Pakes (2016), see

also Chetverikov (2013). These papers note that if

the moment inequalities generated from the model are

conditional moment inequalities, conditional say on X,

then the variance covariance matrix to be used for Σ(θ)

can also be the average of the conditional variances.

Moreover since

V ar(m(·, θ)) = E[V ar(m(·, θ)|x)] + V ar(E[m(·, θ)|x]).

we have for the sample
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V ar(
1√
J

∑
j

mk,j(wj, θ) | x1, . . . , xJ)

1

J

J∑
j=1

{
mk,j(wj, θ)− E[mk,j(wj, θ)|xj]

}2
+

1

J

J∑
j=1

{
E[mk,j(wj, θ)|xj]− Emk,j(wj, θ)

}2
≡

1

J

J∑
j=1

V ar(mk,j(wj, θ)|xj) + V ar(E[mk,j(wj, θ)|xj]).
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So if we set

ΣJ(θ) =
1

J

J∑
j=1

V ar(mk,j(wj, θ)|xj)

we use a smaller (in the matrix sense) variance covari-

ance matrix.



Three points on this are worth noting.

• First, to do this we have to obtain estimates of

V ar(mk,j(wj, θ)|xj).

The suggestion here is to use an estimator suggested

in Chetverikov (2013) and Abadie et al (2014). This

requires compact support and conditional expectations,

i.e. E[m(w, θ)|X], that are sufficiently smooth in X

(Lipshitz in X). Let

l(Xj) = argmin
s 6=j

[(Xs −Xj)′ ˆV ar(X)−1(Xs −Xj)

where

ˆV ar(X) ≡ J−1∑
j

[Xj −XJ][Xj −XJ]′
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and XJ is the sample mean vector, and then set

Σ̂J ≡
1

2J

J∑
j=1

(Yj − Yl(Xj))(Yj − Yl(Xj))′.

Here the “2” takes account of the variance in both

observations. Note that we do not have to do this for

each θ but rather just once. So though there is an

added computational step, it is not too onerous. On

the other hand, there is a question of just how accurate

the resulting estimate of ΣJ(θ) will be in small samples;

though we do know that Σ̂J converges to the average

of the conditional covariance matrices.

• Second, it is interesting to compare this to the mo-

ment equality case. The variances used for the equality



case do not depend on whether or not you condition
on X. The reason it does here, is because in the mo-
ment equality case all the conditional moments are (or
at least are supposed to be, and are treated as) mean
zero. So the variance in the conditional moments is
zero. Here the conditional moments are not mean zero,
and taking out there mean reduces variance.

• Third our intuition that says we will do better using
the conditional variance than the total variance (bet-
ter in the sense of a smaller CS). However this is not
necessarily true. The reason is that the conditional co-
variance (or rather correlation) matrix has different off-
diagonals then the unconditional covariance, and those
off diagonals could make things worse (especially if they
are much more severely positively correlated).



A Note on Testing.

Testing is likely to be quite important in the moment

inequality context when there are many inequalities and

the sample is “small”. If the model is correct and we

had unlimited data all of the inequalities would converge

to their limit values (uniformly in θ), and we would find

values of θ which makes all the sample moments non-

negative. However, in finite samples the distribution of

each moment will be approximately normal. If there

are enough moments then, even if in the limit they

would all be positive, in finite samples we are likely find

one which violates an inequality (actually as we increase

the number of moments this will happen with arbitrarily

large probability).
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When this occurs we will want to find out whether the
violation can be attributed to sampling error; if not the
model is mis-specified. The issue is easiest to see when
estimating an interval.

• If there are many moments which estimate the lower
bound, the estimation algorithm will pick out the
greatest lower bound.

• Since the expectation of a max is greater than the
max of an expectation, use of the glb will generate
a positively biased estimate of the upper bound.

• Analogously when we take the least upper bound
for the estimator of the upper bound for the interval



we will be obtaining a negatively biased estimate of

that bound.

• If these two biases cause the estimated bounds to

cross each other, there will not be a value of the

parameter which satisfies all the constraints.

One can derive tests in a number of ways, and there is

an active literature about this. A few comments are in

order.

• If the identified set is non-empty (there is some

value of θ for which the sample moments are all

positive) then you will never reject any test.



• If one has estimated a confidence set for a point,

then you have already computed a test statistic.

I.e. if there is no θ which is less than the simulated

Cα(θ) level.

Ask more formally if this test has the right size?

I.e. what is the probability of rejecting under the null?

Under H0, there is some θ0 such that Pm(z, θ0) ≥ 0. For

this θ0, our critical values are constructed such that θ0 is

“covered” by the confidence set with probability at least

1−α. In other words, Pr(Qn(θ0) ≤ c(α, θ0) | H0) ≥ 1−α,

or Pr(Qn(θ0) ≥ c(α, θ0) | H0) ≤ α.



Pr(Reject | H0) = Pr(Qn(θ) ≥ c(α, θ) ∀θ | H0)

≤ Pr(Qn(θ0) ≥ c(α, θ0) | H0)

≤ α. ♠



Inference on Functions of Parameters.

We typically want to find a CS for β = f(θ). The most

frequent case is β is a component of θ for then we can

univariate CI’s for all parameters.

Projection Method. If we already have a confidence

set for θ, then to find out if a particular β is acceptable

all we need do is find out if ∃θ ∈ CS(θ), s.t. β = f(θ). If

all we need is the CS(β), then sometimes it will be com-

putationally easier to look for this directly (see below)

i.e.

CS(β) =
{

min
θ∈Θ:f(θ)=β

R(·)− Cα,·(·, θ) ≤ 0
}
.
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Critical Values That Condition on Binding

Moments; Andrews and Pakes (2016)

This is also a tuning parameter free method. It is mo-

tivated by two facts

• When there are many moments we are likely to get

very large CS’s. As in RSW we mitigate this prob-

lem but we don’t have a comparison of when one

procedure works better than the other.

• There are simplifying computational procedures when

the model is linear in ”nuisance” parameters when

17



we use the conditional moments that are not cur-

rently available for other procedures.

For a fixed θ let

mk(w, θ)

Σk,k(θ)
≡ hk(θ), Ωk,i(θ) ≡

Σi,k(θ)√
Σi,i(θ),Σk,k(θ)

,

that is we use the means relative to their standard error,

and their correlation (here it is understood that all these

terms are implicitly indexed by J the sample size).

Let k(max) ≡ argmaxk hk(w, θ). So hk(max)(w, θ) is the

binding constraint and if it is negative we accept the

null. So we are only concerned with cases where it is

positive. We now derive a distribution for the binding



constraint conditional on it being binding. It will depend
on a statistic, V lo

k(max)(θ), which we now define.

Assume Σ(θ) is of full rank and define

V lok(max)(θ) ≡ maxi 6=k(max)

hi(θ)−Ωi,k(θ)hk(max)(θ)

1−Ωi,k(θ)

which, if we let

∆k(max)(θ) ≡ maxi6=k(max)

hi(θ)− hk(max)(θ)

1−Ωi,k(θ)

can be written as

V lok(max)(θ) = ∆k(max)(θ) + hk(max)(θ),

which, since we are only concerned with the case where
hk(max) ≥ 0, ⇒ V lo

k(max) ≤ hk(max), with probability
one.



Also V lo
k(max)is increasing (in absolute value) in the: (i)

correlation and (ii) distance between, the binding con-
straint and the (covariance adjusted) next to binding,
constraint.

Note that ∀i 6= k

ξi,k(θ) =
hi(θ)−Ωi,khk(θ)

1−Ωi,k(θ)
⇒ E[hk(θ)ξi,k(θ)] = 0.

Moreover, since both the ξi,k and hk(θ) are normal, this
means that hk(θ) is independent of the K − 1 dimen-
sional vector [ξ1,k, . . . ξK,k]. But V lok,max is just a linear
function of [ξ1,k(max), . . . ξK,k(max)], so it is independent
of hk(max) also. Moreover since ∆k(max) < 0, we have
constructed k(max) so that

hk(max)(θ) > V lok(max)(θ).



So the distribution of hk(max)(θ) is the distribution of a

truncated normal random variable∗, truncated at V lo
k(max).

This implies that our critical value we look for a num-

ber, say Cα,C(θ) such that the probability that the trun-

cated normal distribution is greater than Cα,C(θ) is less

than α or

Pr(hk(max)(θ)) > Cα,C(θ)) =
1−Φ(Cα,C(θ))

1−Φ(V lok (θ))
= α,

or

Cα,C(θ) = Φ−1
(
1− α+ αΦ(V lok (θ))

)
.

∗This result follows from the work of R. Tibshirani, J. Taylor,
R. Lockhart, and R.J. Tibsirani (2014). Exact Post-Selection
Inference for Sequential Regression Procedures, Unpublished
Manuscript.



Notes.

• Once we have V lok (θ) the truncation point Cα,C(θ) can
be gotten from a standard computer program.
• The test will be powerful if V lok (θ) is very small which
will happen if the second highest (covariance adjusted)
constraint is far from the first, and the correlation is
very positive.
• The extreme case is when Ωi,k(θ)→ 1, as then V lok (θ)→
−∞ and we are back to a standard normal test. In the
extreme case we need not worry about the possibility
of other binding constraints.
• On the other hand if V lok (θ) is very large (when Ωi,k,(θ)
is very negative or the difference between the two mo-
ments is small) we will not reject much.
• V lo(θ) is increasing in hk(max)(θ), and so is less pow-
erful the larger the binding moment (it has no power



when hk(max)(θ)→∞).

• This test is not sensitive to the addition of extraneous

moments; as long as the extra moments do not bind at

θ and are not the second highest (covariance adjusted)

moment, the extra moments have no effect at all on

the test statistic.

• Similar to RSW we can form hybrid critical values

Cα−β,C = min(Cα−β,C(θ), Cβ,LF (Σ(θ))) which sacrifices

a bit of power when there is a lot of power in return

for insurance against cases where V lo
k(max)(θ) is large.



Simplifications in the linear case with conditional
moments; Andrews and Pakes (2016).

Let θ = (β, δ) and our moment be

m(·, β, δ) = m(D, β,0) +Xδ,

with

E[m(·, β0, δ0)|Xt] ≤ 0.

The linearity here will help us with computation while
the fact that we have conditional expectations will, as
before, reduce the variance used in calculating critical
values, and is likely to reduce the size of the CS.

Define

m(X) ≡ EP [m(·, β, δ)|X], µJ =
√
J−1∑

j

m(Xj)

18



Σ(β) = EP (V arP [m(·, β, δ)|X])

XJ =
√
J−1∑

j

Xj, YJ(β) =
√
J−1∑

j

m(Dj, β,0).

Then

YJ(β0) +XJδ
0 → N (µJ ,Σ(β0)) with µJ ≤ 0.

This formulation lets us use linear programming to find

a CS for β0.

First, find a critical value, say Cα(Σ(β)). Note that

since we are using conditional variances the critical

value does not depend on δ.



Then solve the LP

∆(β) ≡ minδ∆(δ, β),

subject to

YT (β) +XT δ + ∆ ≤ Cα(Σ(β)).

Then

β ∈ CS(θ) iff ∆(β) ≤ 0.

There are fast linear programming solutions that do not

require you to cycle through the δ’s – indeed the number

of evaluations is tied to the number of moments, so

this will be quick. Of course if everything was linear we

could do this for every component of θ separately.
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