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Abstract

In this paper we consider a class of discrete choice models in which con-
sumers care about a finite set of product characteristics. These models have
been used extensively in the theoretical literature on product differentiation
and the goal of this paper is to translate them into a form that is useful
for empirical work. Most recent econometric applications of discrete choice
models implicitly let the dimension of the characteristic space increase with
the number of products (they have “tastes for products”). The two mod-
els have different theoretical properties, and these, in turn, can have quite
pronounced implications for both substitution patterns and for the welfare
impacts of changes in the number and characteristics of the goods marketed.
After developing those properties, we provide alternative algorithms for es-
timating the parameters of the pure characteristic model and compare their
properties to those of the algorithm for estimating the model with tastes
for products. We conclude with a series of Monte Carlo results. These are
designed to illustrate: (i) the computational properties of the alternative
algorithms for computing the pure characteristic model, and (ii) the differ-
ences in the implications of the pure characteristic model from the models
with tastes for products.



1 Introduction.

The theory and econometrics of demand models that treat products as bun-
dles of characteristics dates back at least to Lancaster| (1971) and McFadden
(1974). Early applications of these models used restrictive assumptions and a
primary concern of the literature that followed (including many contributions
by McFadden himself) was that the structure of the discrete choice model
used would in some way restrict the range of possible outcomes, thereby
providing misleading empirical results. This paper is a continuation of that
tradition. In contrast to the empirical models currently available, we con-
sider estimation of a class of discrete choice models in which consumers care
about a finite set of product characteristics. These models have been used
extensively in the theoretical literature on product differentiation, but have
been used much less in empirical work.

Typical discrete choice empirical models (including those in our own
work) implicitly assume that the dimension of the product space increases
with the number of products. This assumption is often embedded in an
otherwise unexplained i.i.d. additive random term in the utility function.
One interpretation is that these terms represent variance in the “taste for
the product”, as opposed to a taste for the characteristics of the products.
Though these models can do quite a good job in approximating some aspects
of demand, they also have some counter-intuitive implications as the number
of products increases. As a result, we worry about their ability to analyze
substitution patterns when there are a large number of goods and also about
their ability to answer questions about changes in the number of goods.

Recent advances in econometric technique, computing power and data
availability have significantly increased the use of characteristic based models
with “tastes for products” in analyzing demand in differentiated products
markets. If one can condition on the major characteristics that consumers
value, the characteristic based demand models have a number of advantages
over the more traditional demand models in “product space”. One of those
advantages concerns the analysis of demand for products not yet marketed ]
Demand systems estimated purely in product space do not allow us to analyze
the demand for potential products. Provided that we are willing to specify
the characteristics of the new product and the form of the equilibrium in

!The other major advantage of estimating demand systems in characteristic space is
that they typically constrain own and cross price (and characteristic) elasticities to be
functions of a small number of parameters describing the distribution of tastes for charac-
teristics). In particular, the number of parameters needed is independent of the number
of products. In contrast, if we worked in product space a (log) linear demand system for
J products would require the estimation of a number of parameters which grows like J2.



the product market, the characteristic based models do (see, for e.g. Berry
Levinsohn and Pakes, 2004, henceforth MicroBLP.)

An important issue closely related to the demand for new products is the
problem of estimating the consumer surplus generated by previously intro-
duced products. This type of retrospective analysis dates back at least to
Trajtenberg (1989), and its usefulness is illustrated clearly in Petrin’s (2002)
investigation of the consumer surplus gains from the (privately funded) re-
search expenditures that lead to the development of a major innovation (the
Minivan), and Hausman’s (1997) investigation of the consumer surplus losses
caused by regulatory delay in the introduction of the cell phone. In addi-
tion, measuring the consumer surplus gains from new products is an integral
part of constructing ideal price indices (see, for e.g. [Pakes et al. (1993) or
Nevo (2000)). Moreover, at least according to the Boskin Commission Re-
port (1996) , failure to adequately measure the gains from new products is
the major source of bias in the Consumer Price Index (see also Pakes| (2003))).

The consumer surplus generated by products already introduced can, at
least in principal, be analyzed using either product based or characteristic
based demand systems. However in either case the results of the analysis
are likely to be particularly sensitive to a priori modeling assumptions. This
is because we typically do not have data on the demand for new products
at prices that are high enough to enable us to non-parametrically estimate
the reservation prices of a large fraction of consumers. When using product
based demand systems the utility gains for the infra-marginal consumers who
purchased the good at all observed prices are obtained by extrapolating the
demand curve estimated at lower prices to a higher price range, and these
extrapolations can be very sensitive to the assumptions build into the mode]E].
The characteristic based demand model uses slightly more information in its
estimation of consumer surplus gains, since it uses the price variance for
products with similar characteristics, but analogous problems can and do
ariseﬂ As a result, the measurement of gains from product introductions
is likely to be particularly sensitive to assumptions like those we discuss
extensively below.

The next section introduces our pure characteristics model and provides a
more extended discussion of the reason we think it might be useful. There are
at least two of these. The model with tastes for products implicitly places
a limit on substitution patterns between products and hence on markups,

2Hausman (1997) for e.g. reports infinite consumer surplus gains from some of his
specifications.

3See the discussion below or Petrin (2002) who reports large differences in consumer
surplus gains from differences in specifications and data sources.



while the pure characteristics model does not. As a result, at least in markets
with a large number of products, the substitution patterns implied by the
estimates from the two models might be expected to differ. Second, the model
with tastes for products has the implication that every consumer’s utility
grows without bound as the number of products are increased, no matter
the characteristics of those products. In the pure characteristic model with
standard regularity conditions, the increment in each consumer’s welfare as
the number of products grows must eventually decline to zero (often at an
exponential rate). So one might also expect the two models to give different
results for consumer welfare gains.

We then develop some of the properties of our model. These properties
enable us to build an algorithm for estimating the pure characteristics model
from market level data on prices, quantities, and characteristics (section 3).
This section provides an analog to the algorithm developed for the model
with “tastes for products” in Berry, Levinsohn and Pakes (2004) (henceforth
BLP). The paper concludes with some Monte Carlo evidence. The Monte
Carlo studies are designed to give the reader: (i) some indication of the per-
formance of our estimators, (ii) an indication of the computational burden of
the pure characteristics model relative to the model with a taste for products,
and (iii) an indication of the performance of the pure characteristic model
relative to the performance of a model with tastes for products.

The Monte Carlo studies suggest a number of important points for future
research. First, we find that the most precise of the computational techniques
works well, but can result in time-consuming estimation routines. Simpler
and faster techniques that are closer to the original BLP methods sometimes
work quite well in providing useful estimates, but not always. In some cases
we find that a practical compromise is to use a method very close to the
original BLP, but then to compute the predictions of the model using our
most precise computational techniques for the pure characteristics model.

2 Discrete Choice Models and Their Impli-
cations.

We consider models in which each consumer chooses to buy at most one
product from some set of differentiated products. Consumer i’s (indirect)
utility from the purchase of product j is

Uij - U(Xj,‘/;,e), (1)



where X is a vector of product characteristics (including the price of the
good), V; is a vector of consumer tastes and 6 is a vector of parameters to be
estimated.

Probably the earliest model of this sort in the economic literature is the
Hotelling (1929) model of product differentiation on the line. In that model
X is the location of the product and V is the location of the consumer.
Other well known industrial organization models in this class include the
vertical model of [Mussa and Rosen| (1978) (see also (Gabszewicz and Thisse
(1979), and the model of competition on a circle by [Salop| (1979)).) For early
empirical use of these models see Bresnahan| (1987), Feenstra and Levinsohn
(1995), |Greenstein| (1996), and more recently [Song| (2006).

To obtain the market share of good j (our s;) implied by the model we
simply add up the number of consumers who prefer good j over all other
goods. That is

sj = Pr{V;: U(X;,V;,0) > U(Xy, V;,0),Vk # j)} (2)

To ease the transition to empirical work we follow the notation in Berry,
Levinsohn and Pakes (2004) and

e partition the vector of consumer attributes, V;, into z;, which an econo-
metrician with a micro data set might observe, and v;, which the econo-
metrician does not observe

e and partition product characteristics, X, into x;, which is observed by
the econometrician, and §;, which is unobserved to the econometrician
(though observed to the agents@.

The models taken to data impose more structure. They typically assume
that the utility function is additively separable in a deterministic function of
the product attributes and the observed consumer data, and a disturbance
term, i.e.

Uij = f(Xj,2i;0) + paj, (3)
where 6 is a parameter to be estimated. The model is then completed by
making alternative assumptions on the joint distribution of the {u;;, X;, 2}
tuples.

10ften, especially in the study of consumer (in contrast to producer) goods, the &
refer to the aggregate impact of a large number of relatively unimportant characteristics,
some or all of which may in fact be observed. Even if they are potentially observed, the
researcher may not include them in the specification taken to data because of the worry
that the data cannot support an investigation of preferences on such a detailed space.



In particular we require: (i) an assumption on the distribution of the
p;; conditional on (X, 2;), and (ii) either an assumption on the distribution
of the unobserved product characteristic (on §) given (z,z) or a procedure
which estimates the & pointwiseﬂ. In this section we focus on the assumption
on /i;; conditional on (Xj, ;) as it is this assumption which differentiates the
pure characteristic model from the model with tastes for products.

Conditional Distributions for ;4;; and Their Implications. Both the
pure characteristics model and the model with tastes for products allow the
it to contain a set of interactions between the unobserved determinants of
consumer tastes (say v; ;) and the product characteristics X ; (both observed
and unobserved). As is typical, we will assume these interactions are linear:
i.e. given K characteristics then one component of p;; is >°p v, X; 5. This
component allows each consumer to have a different marginal utility for each
characteristic, which ameliorates many of the problems caused by the inde-
pendence of irrelevant alternatives property of earlier models E] The model
with tastes for products and the pure characteristic model differ in whether
i has an additional i.i.d. component.

The empirical specifications to date typically assume that each p;; has an
additional component whose conditional distribution, conditional on (X}, 2;)
and all other p;; (V' # j), that has support on the entire real line. Letting
that component be {¢;; }3]:1 and indexing the p;; from these models with a
tp superscript (for “tastes for products”), the model is usually written as

K
pif = 3 vaeXin + €. (4)
k=1

Special cases of this assumption include the random coefficient logit model
used in BLP and [McFadden and Train| (2000), and the random coefficient
probit discussed in Hausman and Wise, (1978), and McFadden (1981).

One way to obtain a model with an additive component with full support
(i.e. to obtain equation {4 is to make the dimension of the characteristic
space, K, be a function of the number of products. Indeed the suggestion of
Caplin and Nalebuff] (1991) is to think of the additive component as being
formed from the interaction of a set of product-specific dummy variables
and a set of tastes for each product that are distributed i.i.d. both across

5The choice typically depends on whether micro data, data which matches individuals
to the choice they made, is available; for a discussion see MicroBLP, 2004.

6See McFadden| (1981)) for a statement of the problem, and BLP and Berry, Levinsohn
and Pakes (2004) for its implications on estimates of market demand systems used in
Industrial Organization.



products, and across individuals for a given product. Thus our labeling of
these models as models with “tastes for products”.

The pure characteristic model only differs from the model with tastes for
products in that it does not contain the {¢;;}7_;. That is if we index the
i from the pure characteristic model with a superscript of pe, the pure
characteristic model is written as

K
1y =Y vin Xk (5)
k=1

One can show that equation is related to the “ideal point” models
which date back to Hotelling and have been used extensively in the theory
literature[] In the ideal point models consumers care about the distance
between their location (v;) and the products’ location (X;) in R*, that is

Uijj = HXj - VzH — Q;py, <6>

where ||-|| is some distance metric. If one assumes that ||| refers to Euclidean
distance and expands the squares, we get a utility functions where the mean
utility depends on characteristics and the error term depends on interactions
between product and individual characteristics as in equation (@

Differences In the Implications of the Two Specifications. The two
specifications for p;; place different a priori restrictions on the implications
of the model estimated. If the model with tastes for products is estimated
then the estimated model will imply that

1. there is a limit on substitution possibilities between products, and

2. that as we increase the number of products each individual’s utility
increases to infinity as the number of new products grows, regardless
of the observed characteristics of either the products which enter or of
the individual.

As is explained below, neither of these implications hold true when the model
without tastes for products is estimated.

An implication of the first point is that if we add products whose X char-
acteristic are very similar (indeed they can be identical) to those of product
A the markup of product A will remain bounded away from zero (a similar
point is made by Anderson, DePalma and Thisse, 1992, in the context of the

"See the discussion in Caplin and Nalebuff (1991) and |Anderson et al.| (1992).



logit model). This follows from the presence of the i.i.d. component, which
ensures that there will always be consumers who prefer the new product to
the old even if they have to pay a positive price difference, and in virtually
all equilibrium pricing models this will imply prices greater than costs.

The fact that markups will not go to zero no matter how much we fill up
the “product space” has at least two implications that might be problematic.
First, even with a large number of products there will always be a further in-
centive for product development. Second, market outcomes will not approach
a competitive equilibrium as the number of products grow large. One might
be particularly worried about using a model that imposes these restrictions
when studying markets where there are a large number of products.

The second itemized point, that each consumer’s utility must grow with-
out bound as we increase the number of products marketed no matter the
characteristics of the products, is a particular concern for the analysis of
prospective and retrospective gains from product introductions. Particularly
when we use the model to extrapolate outside of the range of the data, as we
must do to measure welfare gains from new products, we may obtain results
that are not meaningful.

The finite-dimensional pure characteristics model is very different in both
the itemized respects. In that model the agent’s utility gain from new product
introduction is limited by a smooth (usually linear) function of the distance
in characteristic space between the new and previously existing products.
As the number products increases, the products become increasingly good
substitutes for one another and oligopolistic competition will approach the
competitive case, with prices driven toward marginal cost and no additional
incentive for product development. As the product space fills up, the incre-
mental consumer gain from new product introductions will decline to zerof]
That is, the gains to “variety” will be bounded in the pure characteristics
model whereas they grow without bound in models with tastes for products.

On the other hand, models that include a taste for products do have a
number of important practical advantages. These models

e define all probabilities by integrals with simple limits of integration (see
McFadden (1981)),

e insure that all the purchase probabilities are nonzero (at every value

8In cases we have worked out this decline will be at an exponential rate. We note that
we are implicitly assuming the “environment” does not change as the number of products
grows. That is we are ruling out both technological changes and changes in competing
and/or complimentary products which alter the relative benefits of producing in different
parts of the characteristic space.



of the parameter vector), and (provided certain other regularity condi-
tions are satisfied) have smooth derivatives (McFadden (1981)), and

e aggregate into market shares which can be easily inverted to solve for
the unobservable characteristics ( the {{;}) as a linear function of the
parameters and the data, enabling the use of instrumental variable
techniques to solve simultaneity problem induced by correlation be-
tween the unobserved characteristics and price (see BLP).

2.1 Nesting the Two Models.

Looking at equations and one might think it easy to nest the two
models and let the data decide which of them is appropriate for the problem
at hand. In particular we could introduce the additional parameter o, and
then assume

K
Wij = Z Vik Xk + 0c€4j. (7)
k=1

The model with tastes for products is the special case of equation @ with
0. = 1 while the pure characteristic model is the special case with o, = 0.
To see the problems we run into with specifications like take the fa-
miliar case where the {¢;;} have extreme value distributions and let the inter-
actions with the observable individual characteristics in the utility function

in equation be f;;(0), so

K
uij = [i5(0) + > vinXje + oceij. (8)
k=1

Assume o, > 0 (though perhaps very small) so that we can define y, = 0!

and multiply all utilities by it (this does not change the ordering of utilities
and hence does not change the implications of the model; we come back
to a fuller discussion of normalizations below). Then if F(-) provides the
distribution of v = |1y, ..., vk, the familiar “logit” formula gives us

6xp<[fij(9) + 3 v X ue>

Pr(i chose j)= dF(v). (9)

" Syean( [fa0) + S X

Since we needed to assume o, > 0 to obtain the probabilities in @D
there is no “special case” of this formula that gives us the probabilities from
the pure characteristic model. However it is straightforward to show that

8



if we consider any sequence of probabilities obtained by letting yu. — oo
then, under standard regularity conditions, that sequence converges to the
probabilities from the pure characteristic model (indeed we can show that
the convergence is uniform in 9)E| That is, the probabilities from the pure
characteristics model are a limiting case of the probabilities in @

The question then is: what would happen if the data generating process
corresponded to the pure characteristics model and yet we estimated the
“modified BLP” model represented by @D? The hope would be that the
resulting estimate of u, would be large enough for the probabilities in @ to
approximate the probabilities from the pure characteristics model quite well.
Indeed, if this were so, then there would be no need for a separate estimation
algorithm for the pure characteristics model.

There are, however, reasons to doubt that the modified BLP model would
produce estimates that “mimic” the pure characteristic model. First, when
we consider consistency we generally assume the true value of the parameter
is in a compact set. So were we to apply standard consistency proofs we
would have to prove consistency of 1/p. = 0. (and not p. per se). Once we
do that, the model’s prediction for the sample shares will not converge to the
true shares uniformly in 6 (the sample shares are undefined at o, = 0). So
standard consistency proofs do not apply.

Second, one might think that to get estimated probabilities from the
modified BLP model that well approximate those of the pure characteristic
model we might need to set o, close to zero. However, as a practical matter,
we then have to compute the exponent of . = 1/0., and when g, is large
enough the computer can not compute exp[u]. Third, there is the usual
matter of efficiency, i.e. if we know that o, is zero, and we had an estimation
algorithm which could utilize this fact, we would expect that algorithm to
produce more precise estimators of the remaining parameters. Since demand
models are frequently estimated on market level data, this “efficiency” issue
can be important. Finally, to investigate whether these issues are important
in a given setting we need an estimation routine that does not rely on the
modified BLP approximation in equation @

This paper first develops that algorithm and then compares Monte Carlo
results from it to that from the modified BLP model. The comparison is done
in two ways. First we use the probabilities from @ and a p. exogenously set
to be as large as our computer can handle. Second we use the probabilities

9The convergence result follows from the fact that for every v, except for a measure zero
set of 1’s that generate a tie, the integrand in @[) converges to one or zero according as the
probability of the pure characteristic model is zero or one, and then applying dominated
convergence. A covering argument shows that the convergence is uniform in 6.



from @ to jointly estimate the parameters of the model and p.. We will
show that sometimes one obtains acceptable estimators for the pure charac-
teristics model using the modified BLP model in (9)), and sometimes we do
not. Moreover the difference typically depends on characteristics of the data
generating process.

We now proceed to provide an algorithm for estimating a pure charac-
teristics model that does not rely on the approximation in equation @D
We then generate data from the pure characteristic model and ask whether
we can characterize: (i) when is it easy to estimate the pure characteristic
model, and (ii) when would the estimates from the model with tastes for
products, possibly adjusted to allow for a p. as in the modified BLP model
in ([9), generate implications which are similar to the implications for the
pure-characteristics model. The implications we consider in this context are
own and cross-price elasticities, and the welfare gains from new goods.

3 Estimating The Pure-Characteristic Model.

Utility in our model is given by
uij = ;0 — aipj + Ni&j, (10)

for j = 0,...,J, where 0 designates the outside good and j = 1,...,J are

the goods competing in the market. Here 3, = By + vig, o = o + v, and

we assume that \; > 0 for all Z[T_UI That is (. is the mean of the utility for an

increment in z;, and v, is the individual specific deviation from that mean.
Two assumptions implicit in equation are worth emphasizing:

e Al. there is only one unobserved product characteristic; i.e. X =
(z,€) € R¥ x R, and

e A2. that ¢ is a “vertical” characteristic in the sense that every individ-
ual would prefer more of it.

3.1 Further Constraints and Normalizations.

Since the utility functions of consumers can only be identified up to a mono-
tone (in our case affine) transformation, theory implies that we can take each
consumer’s utility from every choice and

10We note that this would be identical to the model used in Das et al.|(1995) were we
to omit their i.i.d. disturbances with full support. Also if there were consumer level data
we would let §; be a function of those variables as in MicroBLP.

10



e multiply them by a consumer specific positive constant, and
e add to them a consumer specific constant.

We add —u; o to the utility of each choice so that the utility of the outside
option is zero and the utility of the inside options should be interpreted as
their utility relative to that of the outside option. Our second normalization
is to divide each u;; by A; (so that the coeflicient of £ is one for all consumers).
Imposing these normalizations and (for notational simplicity) reinterpreting
the characteristic values for option j to be the value of the j** option for that
characteristic minus the value of the outside option for that characteristic,
we have

ui; = ;3 — cuipj + &5, (11)
and
Ui 0 = 0.

This is identical to the model in BLP without their i.i.d. additive component
with full support. Our change of notation implies that the & variables repre-
sent the difference in the unobserved quality of the inside options from that
of the outside optionE.

We still need to chose unitd®l One useful normalization is to set the
mean of a; = 1, so that the units of utility and of £ are in terms of the mean
price coefficient.

Our previous work emphasized the reasons for (and the empirical impor-
tance of) allowing for unobserved product characteristics, £, in estimating
discrete choice demand (see Berry| (1994), BLP and Berry, Levinsohn and
Pakes (2004). The & are the analog of the disturbances in the standard de-
mand model, i.e. they account for the factors that are unobserved to the
econometrician but affect demand. Without them it will typically be im-
possible to find parameter values that make the implications of the model
consistent with the data. Moreover if we incorporate them and consider any
realistic model of market equilibrium we are lead to worry about a simulta-
neous equations bias resulting from price being a function of the &.

' This becomes important when we try to measure welfare gains over time, as we are
implicitly doing when we construct a price index. This because the difference in the average
estimated level of £ across periods can be due either to a change in the average unobserved
quality of the products in the market being analyzed, or to a change in the average value
of the outside alternative. For more details and an attempt to decompose movements in
¢ into its components see Pakes, Berry and Levinsohn (1993) and Song (forthcoming).

2Multiply all &, a4, and B;, by the same positive constant and the implications of the
model are not changed.
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Of course in reality there may be more than one unobserved characteris-
tic that is omitted from the empirical specification and, provided consumers
varied in their relative preferences for the different unobserved characteris-
tics, the model in is, at least strictly speaking, misspecified. Though
allowing for one unobserved factor seems to be particularly important in ob-
taining realistic implications for own and cross price elasticities, our ability
to estimate “multi-unobserved factor” discrete choice models with such data
seems extremely limitedﬁ.

As noted above the fact that the model with a single unobserved factor
might provide good fits “in sample” does not imply that it delivers meaning-
ful welfare measures. On the other hand, if we allow for as many unobserved
factors as there are products, then the pure characteristics model with mul-
tiple unobserved characteristics has the traditional models with tastes for
products as a special case. In this sense the pure characteristics model with
one unobserved characteristic is an opposite extreme to the model with tastes
for products. We might hope that the two models would bound the impacts
of unobserved product heterogeneity.

4 Estimating the Model.

The issues that arise when estimating the pure characteristics model are
similar to those found in estimating more traditional discrete choice models.
As a result we use the techniques in BLP (1995) and Berry, Levinsohn and
Pakes (2005), and the vast literature cited therein, as starting points. There
are, however, four modifications of those techniques we will need in order
develop an estimator for the pure characteristics model. The modifications
provide

1. amethod of calculating the aggregate market share function conditional
on the vectors of characteristics and parameters (6),

2. an argument that proves existence of a unique £ vector conditional on
any vector of model parameters and observed market shares,

3. an algorithm for computing that £ vector, and

13We note here that this is likely to change when richer data is available. For e.g.
Goettler and Shachar| (2001)) and a related literature in the field of marketing, successfully
estimate multiple unobserved product characteristics from data that observes the same
consumers making a repeated set of choices, and Heckman and Snyder have used multi-
factor discrete choice models to analyze political choice.
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4. a limiting distribution of the estimated parameter vector.

The modifications we use to accomplish these tasks imply different computa-
tional tradeoffs as opposed to the model with tastes for products — differences
that play out differently when using different types of data.

4.1 Computing Market Shares.

In the model with product-specific tastes, market shares can be calculated by
a two step method. The first step conditions on preferences for the product
characteristics (the (3;) and integrates out the product-specific tastes. This
provides market shares conditional on the ;. When the additive product-
specific tastes has a “logit” form the market shares conditional on the [;
have an analytic form, so that there is no approximation error in calculating
them, and they are a smooth function of the ;. The second step follows
Pakes| (1986]) and uses simulation to provide an approximation to the integral
defining the expectation (over f3;) of the conditional market shares (i.e. to
the aggregate market share).

When there are no additive product-specific tastes we must compute mar-
ket shares in a different way. A simple two-step replacement is to use the
structure of the vertical model to integrate out of one of the dimensions of
heterogeneity in the pure characteristics model, thereby producing market
shares conditional on the rest of the [3;, and then use the suggestion in Pakes
(1986) again to compute the aggregate share. Given an appropriate distri-
bution for the dimension of heterogeneity integrated out in the first step (see
below), this produces a smooth objective function.

To see how to do this we first consider the simple vertical model

Ui = 05 — a;py, (12)
for j =,...,J, where ¢; is product “quality”
0j = x;0 + &, (13)

and Ui 0 = 0.
Order the goods in terms of increasing price. Then good j is purchased
iff wi; > wig, Vk # 7, or equivalently

0j — aip; > Op — P, = ;i(pj — i) < 05 — Ok, Yk # 7. (14)

Recall that (pj —py) is positive if j > k and negative otherwise. So a consumer
endowed with «; will buy product j iff
5. —§ _
a; < min——* = A;(4,p), and
k<i (pj — Di)

13



Op — 05
o; > max

Sl —— =A;(d,p). (15)

These formula assume that 0 < 7 < J. However if we set
Ag=o00, and A; =0 (16)

they extend to the j = 0 (the outside good) and j = J cases.
If the cdf of o is F'(+), then the market share of product j is

5i(2,p,60,F) = (F(8;(z,p,€)) = F(A;(z,p,9)) 1 [A; > A, (17)

where here and below 1[-] is the indicator function for the condition in the
brackets and 6 is a vector containing all unknown parameters.

IfA; < A, then s;(-) = 0. Since the data has positive market shares the
model should predict positive market shares at the true value of the param-
eters. Note that the vertical model behaves differently then does the model
with tastes for products; the latter never predicts zero market shares for any
parameter value. In the vertical model any parameter vector which generates
an ordering which leaves one product with a higher price but lower quality
than some other product predicts a zero market share for that product.

4.1.1 The Extension to K Dimensions.

Recall that the difference between the vertical model and the pure charac-
teristics model is that in the pure characteristics model characteristics other
than price can have coefficients which vary over consumers (the 3;). However
if w;; = x;8; — cyp; + & then, conditional on f;, the model is once again a
vertical model with cut-off points in the space of a; (but now the quality
levels in those cut-offs depend on the ;). So to obtain market shares in this
case we do the calculation in conditional on the (3;, and then integrate
over the f3; distribution.

More precisely we begin as before by ordering the goods by their price.
Then for a fixed 8 we can compute the cut-off points A(z,p, &, 3); and
A(z,p, &, B);, so the market share function is

si(z,p, &0, F,G) = (18)

/(F(Zj((svpv X7ﬁ)|ﬁ) - F(éj<57p7 X76>|6)) 1 [ZJ(7B) > Aj(?ﬁ)} dG(ﬁ),
where F(-|3) is the cdf of a given [ and G(-) is the cdf of 5.

That is the pure characteristic model’s market share function can be
expressed as a mixture of the market share functions of the pure vertical
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models. The conditioning argument used here avoids the difficult problem
of solving for the exact region of the 3; space on which a consumer prefers
product jﬂ. It does, however, produce an integral which is typically not
analytic. So we use a simulation estimator to approximate it. That is we
obtain an unbiased estimator of the integral by taking ns draws from the
distribution G of the random coefficients 3 and then calculating

Sj(xapaf;eaF7Gns) = (19)

7,38 > (F&(,p. & B)I5) = F(A, (. p.&, 8)18,)) LBy, 8) > A5 8)]

(20)

where G,5(-) is notation for the empirical distribution of the simulated f; B
Note that if F(-) has a density (with respect to Lebesgue measure) which

is a differentiable function of the parameter vector, then the market share
function is a continuously differentiable function of the parameter vector. Of

course, this introduces simulation error into the calculated shares, just as in
the original BLP.

4.2 Existence and Uniqueness of the £(-) Function.

Recall that BLP proceed in three steps. First they show that their model
associates a unique £(-) with any triple consisting of a vector of parameters, a
vector of observed shares, and a distribution over individual characteristics.
They then provide a contraction mapping which computes the £(-). Finally
they make an identifying assumption on the distribution of &, and estimate
by finding that value of 6 that makes the theoretical restrictions implied by
the identifying assumption as “close as possible” to being satisfied.

We will mimic those steps. The first task is to show that for every 6
and distribution of consumer characteristics there is a unique value of &
that equates the model’s predicted shares to the observed shares, s°. As in
BLP, we assume that s°, the (J + 1-dimensional) vector of observed mar-
ket shares, is in the interior of the J-dimensional unit simplex (all mar-

Feenstra and Levinsohn directly calculate the region of integration, A; C RX such
that if (5, a) € A; then good j is purchased directly, but this becomes quite complicated.

15The calculation of market shares is further simplified by noting that a necessary and
sufficient condition for the indicator function’s condition for product j to be one conditional
on a particular value for § is that maz,<;Aq(-, 3;) < Aj(-, 8;) (recall that the j— ordering
is the price ordering). As a result for a given value of 3 our program first computes the
{A;(-, )}, then drops those goods for whom A(-, 3) are “out of order”, and then computes
the shares.
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ket shares are strictly between zero and one.) Simplify notation and let
5(0,€) = s(x,p, &0, F,G) for any fixed (F,G,x,p).
Consider the system of J + 1 equations

s(0,8) = s°. (21)

Our goal is to provide conditions under which, given the normalization &, = 0,
this system has exactly one solution, £(0, s°).

Let the discrete choice market share, as a function of all unobserved
product characteristics (including &) be

Sj(gjvg—jvo)v (22)

where ¢; is the own-product characteristic, £_; is the vector of rival-product
characteristics and 0 is the (normalized) value of &.
Now define the “element-by-element” inverse for product j, r;(s;,&_;), as

$j(rj,§-5,0) =s; (23)

The vector of element-by-element inverses, say 7(s,&), when viewed as a
function of &, takes R/ — R7. It is more convenient to work with a fixed
point defined by the element-by-element inverse than to work directly with
the equations defined by . In particular, the inverse of the market share
function (i.e. &(-)) exists and is unique if there is a unique solution to the
fixed point

§=r(s¢). (24)

Theorem 1 Suppose the discrete choice market share function has the fol-
lowing properties:

1. Monotonicity. s; is weakly increasing and continuous in &; and weakly
decreasing in £_j. Also, for all {_; there must be values of &; that set
s;j arbitrarily close to zero and values of §; that set s; arbitrarily close
to one.

2. Linearity of utility in £. If the & for every good (including the outside
good) is increased by an equal amount, then no market share changes.

3. Substitutes with Some Other Good. Whenever s is strictly between 0
and 1, every product must be a strict substitute with some other good.
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In particular, if & < &, with strict inequality holding for at least one
component, then there is a product (j) such that

Sj(ﬁjaéu*jao) < Sj(fj,fl_j70). (25)

Similarly, if & > &, with strict inequality holding for at least one com-
ponent, then there is a product (j) such that

$;(5,€-5:0) > 5;(§;, €25, 0). (26)
Then, for any market share vector s that is strictly interior to the unit sim-
plex: (i) an inverse exists, and (ii) this inverse is unique. @
Comments.

1. The theorem is true independent of the values of (6, F, G, x,p) that go
into the calculation of s(-) provided those values imply an s(-) function that
satisfies conditions (1) and (3). It is easy to verify that those conditions will
be satisfied for any finite 6 as long as F' has a density which is positive on the
real line (a.e. (). In particular G(-) need not have a density (w.r.t. Lebesgue
measure), and indeed the simulated G,(-) we typically use in computation
will not have a density.

2. The Linearity assumption is redundant if we stick with the model in (11]).
That is, a non-linear model that was linear only in £ would have exactly
the same properties as those developed here provided it satisfied the usual
identification conditions.

Proof. Existence follows from the argument in |[Berry (1994)). Our first step
in proving uniqueness is to show that the map (&, s) is a weak contraction
(a contraction with modulus < 1), a fact which we use later in computation.
Take any ¢ and ¢ € R’ and let [|€ — &'||ap = d > 0. From (23) and

Linearity
si(r;+d, & +d,d) =s;. (27)

By Monotonicity
sj(rj +d,&,0) > sj, (28)

and by (3) there is at least one good, say good ¢, which for which this
inequality is strict (any good that substitutes with the outside good). By
Monotonicity, this implies that for all 7,

7';- S 7’j + d (29)
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with strict inequality for good ¢. A symmetric argument shows that the
condition

sj(rj —d,§-j —d,—d) ='s; (30)

implies that for all j,
ri>ri—d (31)

with strict inequality for at least one good. Clearly then [|r(&', s) —r(&, s)|| <
d, which proves that the inverse function is a weak contraction.

Now assume that both ¢ and ¢’ satisfy (24), and that || —¢'||sup = & > 0,
i.e. that there are two distinct solutions to the fixed point. In particular
let &, — &, = k. Without loss of generality assume that g substitutes to the
outside good (if this were not the case then renormalize in terms of the good
that substitutes with ¢ and repeat the argument that follows). From above,
sq(rq + /,€,,0) > s, But this last expression equals s,(&;,¢",,0), which,
since ¢’ is a fixed point, equals s,, a contradiction.

4.3 Computation of £(-).
We provide three different methods for computing £(-). They are

e use of BLP’s contraction mapping for the modified BLP model given
in equation @D with . set as high as is computationally practical,

e use of the element by element inverse introduced in the proof of unique-
ness, and

e a homotopy method similar to those used in the literature on the com-
putation of general equilibrium models.

We introduce all three of these methods because no single method works
well in all situations. Each of the methods given above has a limitation
which has proven to be problematic in certain Monte Carlo examples. The
first method is fast but will be inaccurate if u. can not be set sufficiently
high, and there are data designs where good approximations require a p.
larger than this algorithm appears able to handle. The second method is
not guaranteed to converge at any particular speed and in fact appears to
converge very slowly in some of our Monte Carlo runs. The third method is,
at least in principal, guaranteed to be converge, but, as we shall show, can
also be fairly slow.

As a result our suggestion is to use the first method when practical,
and a combination of all three when necessary. As is explained below, the
combination begins with the modified BLP model with a large fixed p.. It
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then switches to a homotopy when the rate of change in the sup norm for the
contraction used in modified BLP is too small. The homotopy is constructed
from the element by element inverse introduced in the proof of uniqueness.
Finally when the homotopy is close to the truth and is not progressing quickly
enough, we switch to a Newton method.

BLP’s Contraction and the Modified BLP Model. For a fixed pu,
this method is just the BLP method applied using the normalization of this
paper. The question that remains is how to chose p.. As is explained above
if one chooses a value of u. which is too small the approximation will not
be adequate whereas if one chooses a value which is too high the computer
will not be able to calculate the needed exponents. Our Monte Carlo results
experiment with two ways of setting u.. In one we set p. as high a value as
seems initially practical, and then reduce it if necessary. In the second, we
estimate p. together with the rest of the parameters of the model.

Element-by-element Inverse. This procedure uses the element by ele-
ment inverse shown to lead to a weak contraction in the proof of the theorem
in section 4.2 (i.e the r(s, &) in the proof of Theorem 1). If the weak contrac-
tion had modulus that was strictly less than one, this contraction would be
guaranteed to converge to the fixed point at a geometric rate. Unfortunately
we have been unable to prove that the modulus is strictly less than one, and
in Monte Carlo studies we find that it sometimes contracts so slowly as to
become useless.

To implement this procedure we use the simulated pure characteristic
share function as given in . That is we begin with a candidate & vector,
hold & fixed, then find the value of &; that makes the simulated share for the
first product match the actual share for that produce, and proceed similarly
for j = 2,...J (always holding the {_; vector at its initial value). This
provides the new & vector, which is then passed through the same algorithm.
We continue in this fashion until the predicted shares at the new vector match
the observed shares.

In practice, sometimes this method provides large improvements for the
first few iterations and then slows nearly to a stop. If the predicted shares
at that point are positive, we can try a simple Newton method to look for
the solution. If that fails, we then require our third method.
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Homotopy. Homotopy methods are frequently used with great success to
find fixed points in the computable general equilibrium literaturem The basic
idea is to consider a sequence of objective functions formed as a weighted
average of the true fixed point problem and a similar problem with a known
solution. We begin with the objective function which places all weight on the
fixed point with a known solution, and slowly change the weights to place
more weight on the true problem.
Starting with the standard fixed-point homotopy we have

where
e t is a parameter that takes values between zero and one,

e the function r(-) returns the element-by-element inverse of the market
share function (see equation (23))), and

e & is agood initial guess at the true &, in particular take it as the output
one of the other methods when those have failed to converge.

For each value of ¢, consider the value of £ that sets h(¢, ¢, &) to zero. Call
this £(¢,&p). For t = 0 the solution is trivially the starting guess of &,. For
t = 1 the solution is the fixed point that we are looking for. The homotopy
methods suggest starting at ¢ = 0, where the solution is trivial, and slowly
moving t toward one. The series of solutions £(t) should then move toward
the fixed-point solution £(1). If ¢ is moved slowly enough, then by continuity
the new solution should be close to the old solution and therefore “easy” to
find (say by a Newton method starting at the prior solution).

In our problem a version of the fixed-point homotopy is a strong contrac-
tion when ¢t < 1 making it easy to compute the £ from successive t. L.e. the
homotopy implies that

€<t7§0) = (1_t>*£0+t*7”(87€(t>€0))7 (33>

which, when viewed as an operator which takes R” into itself, is a contraction
mapping with modulus less than ¢. This suggests a recursive solution method,
taking an initial guess, &, for the solution £(¢, &) and then placing this guess
on the RHS of to create a new guess, &'

=(1-t)x+txr(s). (34)
16Gee, for example, Whitehead| (1993) and |[Eaves and Schmedders| (1999).
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Equation is a recursive method suggested by the logic of the homo-
topy. We can set t close to one and get a reasonably good approximation to
€.

Our “homotopy” method involves using fixing a value for ¢ and then using
equation to recursively compute a value of £ that solves the fixed-point
implied by that equation. For ¢ sufficiently less than one, this is very fast.
As t approaches one, the modulus of contraction for fixed point in also
approaches one.

In practice, we can start with a fairly large value for ¢, say t = 0.99,
because that still gives us a quick answer. However, as t gets closer and
closer to one, it is sometimes necessary to move t very slowly while solving
for the next £*(t;) via Newton’s method. However, whereas the element-by-
element inverse can slow down fairly far away from the truth, the homotopy
method in practice gets us much closer to the correct answer before slowing
down.

When we refer to the “homotopy” method in remainder of the paper,
we actually mean an integrated routine that incorporates all of the meth-
ods of this subsection. First, we fix a “high” value of ;1 and use the BLP
contraction (switching to a lower value of p if numeric errors arise.) This is
quite fast. Then, if necessary we switch to the element-by-element inverse,
in conjunction with periodic Newton steps when possible, to see if this gives
us a quick answer. If not, we only then move to the homotopy method de-
fined by . For small problems (like our initial Monte Carlo examples),
we look for a very precise answer with ¢ very close to or equal to one and
often succeed in solving the original fixed point nearly exactly. For large and
difficult problems (like our last Monte Carlo example below), we apply
only for a limited set of values of ¢ (say, t = 0.99, t = 0.995 and t = 0.998)
without trying to push t closer to one. These few steps move the computed
0’s quite far and the resulting Monte Carlo estimates seem good, whereas the
computational burden is still manageable.

The computational burden in the pure characteristics model also turns
out to be related to asymptotic behavior as the number of products increases.
The next subsection provides an overview of related results on limit theorems.

4.4 Limit Theorems and Simulation Error

Berry, Linton and Pakes (2004) provides limit theorems for the parameter
estimates from differentiated product models both with and without tastes
for products. The limit theorems for the different models differ, which leads
to a better understanding of the differences in the computational properties
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of the estimators for these models. Indeed, together with the discussion
above, they imply computational tradeoffs which will make different models
easier to compute in different situations.

In particular, the argument in Berry, Linton and Pakes (2004) shows that
in BLP-style random coefficient logit models, the calculated unobservables,
&, are very sensitive to simulation error. Therefore, the number of simulation
draws has to increase rapidly with the number of products. On the other
hand, in pure characteristic models, the calculation of ¢ is much less sensitive
to simulation error. A practical implication is that we may be able to use
many fewer simulation draws to estimate pure characteristics models, as
opposed to random coefficient logit models. This advantage can partly offset
the otherwise more burdensome computational problem presented by the
pure characteristics model.

The difference in the limit properties of the estimators from the two model
stems from differences in the mapping from market shares to £(-) as the num-
ber of products, J, grows large (and therefore at least some of the market
shares become small.) Take the logit model as a special case of the origi-
nal BLP. In the pure logit model, no simulation is necessary, but errors in
observed market shares, s;, might similarly be introduced by sampling error
from a finite sample of consumers. Berry, Linton and Pakes (2004) show
that simulation error introduces the same sort of problem in the random
coefficients logit model that sampling error introduces in the logit model.

In the pure logit model, it is well-known that the solution for £ is analytic:

& =In(s;) — In(sg) — 03, (35)
so that o6, 1
8—(92 = g (36)

As J becomes large, by necessity many market shares must become small
and so the calculated {;’s become very sensitive to any error in s;, whether
from a small sample of consumers or from simulation error.

This effect is natural in logit-style models, where substitution patterns
between products are very diffuse. When there are many products in such
models, small changes in ¢ produce only small changes in observed market
shares —i.e. 0s;/0¢ is small. It may be intuitive, then, that the derivative of
the inverse mapping 0¢;/0s;, can be correspondingly large under the same
circumstances. But when ¢ is sensitive to errors in computed market shares,
a large number of simulation draws will be necessary to compute accurate

&'s.
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Pure characteristics models have different properties. In these models,
competition becomes very localized and “fierce” as the number of products
increases. That is, 0s;/0; becomes very large. It may be intuitive, then, that
the derivative of the inverse mapping 0¢;/0s;, can be correspondingly small
under the same circumstances. So, a relatively small number of simulation
draws may be adequate to compute accurate accurate &’s.

For example, Berry, Linton and Pakes (2004) formally show that to obtain
asymptotically normal estimates of the parameter vector in the vertical model
the number of simulation draws has to grow only at rate J, whereas in logit-
style models the number of draws has to grow at the much faster rate J2.

Similarly, in Monte Carlo exercises they show that as a practical matter
pure characteristics models can be estimated with many fewer simulation
draws than in BLP-style models. The differences between the two models
increase in the number of products marketed, but it is clear that they can
be large for numbers of products that are relevant for empirical work. For
example, for the limiting distribution to provide an accurate description of
the Monte Carlo distribution of the vertical model with up to two hundred
products, fifty simulation draws seem to suffice. In contrast, the logit model
with one hundred products requires over two thousand simulation draws.

The advantage held by pure-characteristics models in controlling simula-
tion error provides a partial offset to their otherwise greater computational
complexity. Readers desiring a (much) more formal treatment of simulation
error, sample size and limit theorems in these models should consult Berry,
Linton and Pakes (2004).

4.5 Computational Comparisons.

Gathering the results of prior sections, we have two theoretical reasons for
expecting the computational burden of the pure characteristics model to
differ from the computational burden of the model with tastes for products,
but they have opposite implications.

e First, the number of simulation draws needed to get accurate estimates
of the moment conditions must grow at rate J? in the model with
a taste for products, while it need only grow at rate J in the pure
characteristics model.

e Second the contraction mapping used to compute the inverse is ex-
pected to converge at a geometric rate for the model with tastes for
products, but we do not have such a rate for the pure characteristics
model.
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The first argument implies that computation should be easier in the pure
characteristics model, the second that computation should be easier in the
model with tastes for products. Of course which of the two effects turns
out to dominate may well depend on features of the data being analyzed:
the number of products, the number of times the inverse must be evaluated
in the estimation algorithm (which typically is related to the number of
parameters), and so on.

There is a great deal of evidence on the speed and accuracy of BLP’s algo-
rithm for estimating the model with tastes for products (and we will provide
a bit more below). As a result the next section focuses on the properties of
the algorithms available for estimating the pure characteristic model.

5 Evidence from Simulated Data

Our goal in this section is to investigate the properties of alternative algo-
rithms for estimating the pure characteristic model. As noted the compu-
tational difficulties that arise in the pure characteristic model are a result
of the need to compute the § which solve the fixed point in equation ([24)).
We compare algorithms based on the following three different methods for
computing this fixed point.

e The “homotopy” method outlined in the text. This begins with the
weak contraction obtained from the element by element inverse in equa-
tion , moves to the homotopy in equation when the element by
element inverse fails to improve the objective function, and then moves
to a Newton method when the homotopy method gets close enough to
the true solution.

e The second method sets the p. in equation @D to some fixed number,
and proceeds using BLLP’s contraction.

e The third method only differs from the second in that it estimates p.
along with the other parameters of the model.

The comparison will be done in terms of both compute times and the
precision of various estimates. We consider precision in three steps: first of
the estimates of the o themselves, then of the estimates of the parameters
of the underlying model, and finally of the estimates of the implications of
interest to applied studies (own and cross price elasticities, and welfare).
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5.1 A Model for Simulation

For most of the results we report, data is drawn from a model with utility
function

uij = 6]‘ + le/ml’j — (O{i * pj> (37)
where
In(a;) = opvip (38)
and
(Sj = ﬁo + 51373‘ + éj- (39)

The consumer-specific random terms (v;,, v4p) are distributed standard nor-
mal (so that a; is log normal, with a normalized mean.)

The z variable is drawn as twice a uniform (0,1) draw that is firm-specific
plus 1/2 a uniform (0,1) draw that is common to all firms in a market. This
is to allow for within market correlation across observables. Initially & is
drawn as a uniform on (-0.5,0.5). Note that the variance of x is then greater
than that of &, which is likely to help the Monte Carlo find good parameter
estimates with limited data. Later we will increase the variance of £ and see
how this affects the results. Price, p, is set equal to a convex function of
4, pj = €% /20, and this insures positive shares for all goods (though some
of the shares get very small when we consider markets with a large number
of products). Note also that p is a function of § and ¢ is a function of &,
so that p and £ are correlated in the simulated datasets. Finally the actual
consumer choice data is generated from 5000 independent draws on r; who
chose optimally given the true values of the parameter.

5.2 Calculating 9.

We begin with the calculation of delta. We can illustrate our results here
by looking at a simple example with only five products. The example uses
randomly drawn data from the base model of the last subsection. The first
column of Table [1] shows the “true” values of the randomly drawn ¢.

With 5 products and our data-creation model our homotopy method can
almost always find a 6 vector that exactly reproduces the “true” market
shares. The first homotopy column uses the same 5000 draws on v used to
create the data, so it has no simulation error and it recovers the exact values
of the true ¢’s. The second homotopy column uses only 500 simulation draws
and so some error is introduced. While the homotopy method with simulation
error fits the shares to computer precision, it does so with d’s that vary from
the originals. On the other hand even with simulation error the order of
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the 0’s is preserved. The last row of the table gives the computational time
relative to using the full homotopy method with 5000 draws. Decreasing the
number of draws on v decreases compute time almost in the proportion of
the decrease in the number of draws.

The columns labeled “Modified BLP Contraction: Fixed p.” use the con-
traction in BLP with the shares modified as in equation @ Recall that
this multiplies the variance of the Type II extreme value errors by pu-!. In
Table [1| we first look at columns that use the same 5000 draws on v with; u.
set at 1, which gives us back BLP’s contraction, and then p, set to 10 and
50 respectively. In the last column, simulation error is again introduced by
using only 500 draws with p. = 50 .

With p. = 1 there is little correlation between the true ¢ and those
obtained from the contraction. On the other hand the compute time is only
(1/50)" of the compute time for the full homotopy. With p, = 10 only one
of the ¢ obtained from the contraction is “out of order”. When we get to
tte = 50 the order of the § obtained from the contraction is correct, though
they still have a one or two percent error in their values. Now however the
compute time is 60% of the compute time for the full homotopy. There is
also some indication that even at u. = 50 the modified BLP contraction is
more sensitive to simulation error.

We note that this is illustrative of the results we got on computing ¢
with other sample designs. So we conclude that from the point of view of
estimating the 0 it might be efficient to go to the modified BLP contraction,
but only if p. is kept very high.

Table 1: An Example of Calculating 0 Using Different Methods

True | Homotopy. | Modified BLP Contraction; Fixed g, .
nsim | 5000 | 5000 500 | 5000 5000 5000 500
pe=1 p.=10 p.=50  p.=>50
01 299 | 299 3.14 | 3.08 3.02 3.04 3.25
09 3.21 | 3.21 336 | 2.09 3.19 3.26 3.51
3 3.56 | 3.56 3.71 | 3.13 3.60 3.62 3.94
04 4.04 | 4.04 427 | 4.13 4.10 4.10 4.61
05 4.10 | 4.10 4.32 | 2.68 4.06 4.16 4.65
Rel. Time: 1 015 0.02 0.12 0.58 0.03
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5.3 Sample Designs

The results for the remainder of the issues we investigated depended some-
what on the sample designs. The major feature of the design that seemed
relevant was the number of products marketed. So we focused on two sample
designs: one where there are a small number of products marketed but a rea-
sonably large number of markets, and one with a large number of products
marketed but a small number of markets.

The sample with a small number of products marketed consists of 20
markets, and for each market the number of products was chosen randomly
from a distribution which put equal weight on [2,...,10]. With this design
estimation is very fast and we have experimented with a number of alternative
assumptions some of which will be illustrated below. The sample with a large
number of products has one hundred products per market, but only three
markets. The homotopy’s compute time is quite large under this sample
design, and as a result we have done less experimentation with it. All samples
used five thousand simulation draws to construct the model’s predictions for
market shares (i.e. this is the size of the consumer sample).

5.3.1 Parameter Estimates: Small Number of Products.

First we look at estimates of parameter values in Tables 2 and 3. The instru-
ments used are a constant, z, 2%, the mean z in the market and the minimum
distance to the nearest afl’l

Starting with Table 2 we see that with a small number of products per
market, and a small variance on the unobservable, the modified BLP con-
traction mapping with a u. set exogenously to thirty does quite well; not
noticeably worse than our full homotopy. However to get the performance
of the two algorithms to be comparable when the distribution of £ had more
variance we needed to push p. up to fifty. Computational problems made it
difficult to push p. much higher than this.

The numbers reported underneath the coefficient estimates are the stan-
dard errors of the estimates across different Monte Carlo samples. Since the
estimates are a mean across these one hundred samples, the standard error of
this mean should be about one tenth of the reported standard error. So the
asymptotic approximation of the distribution of the estimator is underesti-
mating the estimator’s variance by quite a bit with these sample sizes. Also
all algorithms do worse when we increase the variance of &; i.e. intuitively

1"We also tried an approximation to “optimal instruments” as in |[Berry et al.| (1999) but
this had little effect on the results.
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we need more data to obtain a given level of precision as the unobservable
variance increases.

One problem with using the modified BLP contraction with a fixed .
is that we would not know how high we needed to set u. to get reasonable
approximations if we were working with a real data set. Moreover we exper-
imented some to find the best values for these runs. We rejected any value
for the fixed scale that resulted in numeric errors, and in the first experiment
1 = 30 worked a bit better than u = 50 even though there were no obvious
numeric errordl

An alternative which avoids the problem of choosing the scale is to let
the data try to estimate p.. Table 3 presents the results from this exercise.
We note that in several cases the scale parameter, which is now set by the
search algorithm, increased to the point where numeric errors occurred. In
those cases, we fixed p. at 50. In one of those cases, even y = 50 caused
problems and so we fixed . at 25"

Table 3 presents both the estimates of the parameter of interest, and of
the “auxiliary” parameter p.. In particular it provides both the mean and
median of the estimates of p,. across runs. The first column of results uses
the base specification for the unobservable, while the second column increases
the variance of the unobservable. In both cases this gives us results which
are worse than those obtained in Table 2, though probably still acceptable,
especially for the sample design with less variance in &.

We conclude that with a small number of products, the modified BLP
contraction with p. fixed at a large value we may do well, especially if the
variance of of the unobservable is small. However at high values of u, nu-
meric errors are quite common, and when we estimate pu. instead of fix it
exogenously, we do seem to do noticeably worse.

5.3.2 Substitution Effects: Small Number of Products.

Table 2 shows that, for the example data-generating process, if we could fix
1te at a large enough value the modified BLP estimation does about as well
as the homotopy. On the other hand if we did not know what value was large
enough and consequently decided to estimate p., then Table 3 indicates that
how well we do depends on the variance in £ relative to the variance in x.
On the other hand there is an advantage of the modified BLP algorithm that

18This could be because of approximation errors in the computer routines that calculate
the exponents of large numbers.

19We also tried experiments where we imposed the traditional logit scale normalization
of one, while dropping our current normalization on the price coefficient. Those runs where
much less likely to converge without numeric errors.
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Table 2: Monte Carlo Results, Small Number of Products
(Modifed BLP Contraction with Fixed p. vs Homotopy)

0 @ @) @
Method Mod. BLP | Homotopy | Mod. BLP | Homotopy
Scale (fie): 30 n.r. 50 n.r.
& = U(-%,4) | U(-3,3) | U-151.5) | U-1.5,1.5)
or (=1) 1.04 1.03 1.24 1.26
(0.04) (0.03) (0.06) (0.06)
op (=1) 1.00 0.98 1.02 1.02
(0.01) (0.01) (0.03) (0.03)
Bo (=2) 2.06 2.00 2.34 2.33
(0.05) (0.05) (0.10) (0.09)
Bz (=1) 0.99 1.00 1.04 1.05
(0.01) (0.01) (0.02) (0.03)

estimates p. over the fixed point homotopy; it is much easier to compute.
So just on the basis of parameter estimates which procedure seems the best
one to apply depends on the nature of the problem. Of course parameter
estimates are not usually the objects of interest; rather it is their implications
we are usually concerned with.

Own and cross-price elasticities are one frequent focus of empirical appli-
cations in [.O. If we use a modified BLP contraction to estimate parameters
we still have more than one option for computing own and cross-price elas-
ticities. The standard procedure would be to use the parameter estimates
obtained from the modified contraction together with its functional forms
to compute the elasticities. Alternatively, we could subsitute the parameter
estimates from the modified BLP contraction that estimates ftepsiion into the
share equations generated from the pure characteristic models and calculate
the own and cross price elasticities from this “hybrid” model.

There is some intuition for this hybrid model. We know that we could
chose a scale parameter large enough to make the predictions of the modified
BLP algorithm as close as we like to those of the pure characteristic model
that generates our data. The problem is that the BLP estimation algorithm
may not be able to pick out a value of u. which is large enough for the
approximation in equation @ to be accurate. However if the only error in the
BLP estimates were in the estimate of j., so that the problem in estimating
the scale did not “spill over” to other coefficients, we would expect the hybrid
model to produce exact estimates of the appropriate elasticities.
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Table 3: Small Number of Products, Estimated p.*

True (1) (2)
¢ distribution U(—%, %) U(-1.5,1.5)
nsim 500 500
Oy 1 1.14 1.64

(0.04) (0.08)
o 1 1.03 1.09
(0.01) (0.03)
ey P 2.19 2.79
(0.06) (0.12)
8, 1 1.00 1.03
(0.01) (0.03)
Scale, pi. 00 34.08 15.50
(3.31) (1.98)
e (Median) 00 17.81 4.67

*All estimates are means across 100 simulated datasets. Estimated standard
deviations of the mean estimates are given in parentheses. The homotopy
estimates took on the order of 10 times as long to compute.

Table 4 provides an example of results on how well the methods repro-
duce the true substitution patterns. The example considers one market from
the data-generating process that has more spread in the unobservables and
therefore less precise estimates (i.e. the one in the last column of Tables 2
and 3). The column labeled “true” gives the true derivatives of the market
share of the first (lowest-priced) product in that market with respect to the
row product. The first entry is therefore an own-price derivative, the second
entry is the cross-price derivative of product one with respect to product two,
and so forth.

The last five columns of Table 4 recompute those derivatives using five
different methods which differ from one another in either the parameters
used or in the functional forms used to compute the derivatives conditional
on the parameter estimates. They are: (i) estimates from the homotopy
and functional forms from the pure characteristic model, (ii) estimates from
the modified BLP algorithm with pu. set to fifty and those functional forms,
(iii) estimates from the modified BLP algorithm that estimates . and those
functional forms, (iv) estimates from the modified BLP algorithm that esti-
mates g, but functional forms from the pure charactersitic model, and (v)
estimates from the modified BLP algorithm that estimates p. but the func-
tional forms from the modified BLP algorithm with u. set to fifty. We do the
computation for each of the parameters generated by a single Monte Carlo
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run in the earlier tables, and then average across the Monte Carlo sample of
parameters. This approximates the answer we would get by averaging over
the asymptotic distribution of the parameters as estimated by the appropri-
ate method. We also provide the standard deviation of the calculated sample
mean.

Table 4 indicates that use of the homotopy estimates and the functional
form from from the pure characteristics model does a much better job of
reproducing the true substitution pattern than using either of the modified
BLP estimates and their functional forms. This is especially true relative to
the model with an estimated p., but even the model which fixed u. at a large
number, and consequently does not have great computational advantages,
misses rather dramatically on the fourth elasticity. The surprising result in
this table is how well we do using the parameters of the modified BLP algo-
rithm that estimates p. and the functional forms from the pure characteristic
model. Indeed even using the functional forms from the modified BLP al-
gorithm which sets p. to fifty, does fairly well, again except for the fourth
elasticity.

Of course this is just one example, and it need not be indicative of what
would happen under different data designs. Still this example does have the
following implications

e “good” parameter estimates from a particular model need not imply
that use of those parameter estimates and the model’s functional forms
lead to good predictions for the implications of interest; i.e. in our
case the functional form approximation used to compute derivatives
matters, and

e even if we use the modified BLP contraction for estimation, we may
not want to use the functional form in equation @ to compute our
estimates of the implications of the parameter estimates.

5.4 A Large Number of Products

In this section we consider a sample with a larger number of products (an
average of 100 per market) and a smaller number of markets (3) structurred
as a time series on a market with improving characteristics. In particular
we use the data on the evolution of megahertz in the computer market from
1995 to 1997, taken from Pakes (2003), to pattern the x’s in our sample.

Year: 1 2 3
Min Mhz: 25 25 33
Max Mhz: 133 200 240
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Table 4: Examples of Substitution Patterns.

Product | True | Homotopy Modified BLP Blp Parms, but ds/dp via
Fix p. = 50 | Estimate p. | Homotopy | Mod. BLP
1 -0.6027 | -0.6198 -0.7313 -0.4130 -0.5241 -0.6353
(0.0337) (0.0220) (0.0232) (0.0267) (0.0226)
2 0.1981 0.2093 0.2531 0.1656 0.1629 0.2034
(0.0233) (0.0140) (0.0139) (0.0133) (0.0144)
3 0.1621 0.1624 0.1183 0.0331 0.1461 0.1096
(0.0106) (0.0022) (0.0059) (0.0129) (0.0024)
4 0.0000 0.0002 0.0278 0.0348 0.0001 0.0172
(0.0001) (0.0038) (0.0042) (0.0001) (0.0031)
5 0.0204 0.0252 0.0292 0.0235 0.0212 0.0296
(0.0026) (0.0024) (0.0023) (0.0023) (0.0031)

The Monte Carlo sample lets the number of products increase across the
three years, from 75 to 100 and then to 125, and has x’s drawn from uniform
on min-max range of Mhz (divided by 10). So that the {’s scale with x, the
¢’s are set equal to the range of the megahertz for the year times (2u; — 1)
wheer u; is a draw from uniform on [0, 1].

The §’s are determined as above (6; = fo+012,;+&;) as are the parameters
and the distribution of ;. To mimic a high tech market we let prices fall
over time, ¢, according to

In(p;) = (t — 1) *In(0.7) + 1.1 = In(4;). (40)

Note that again price is convex in § thus assuring positive shares. However
the shares we generate are sometimes very small, smaller than we typically
observe in actual data sets”| (see below). Price for the same set of charac-
teristics declines at roughly 30% per year. This together with the increase in
the number of products and the improvement in the product characteristics
over time are consistent with a market which generates “large” increases in
welfare over time.

The instruments used here are a constant and x, both interacted with
a set of dummies for each market. That these seem to suffice is probably
a result of the fact that we are requiring the “same utility model” to fit
in each time period and letting the products in the market change rather
dramatically over time.

20This may well be more of a result of the data not reflecting reality than our simulation
not reflecting reality. That is goods which truly have very small market shares might exist
and simply not be included in traditional data sets.
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The fact that market shares are so small makes computation of the d more
difficult in this example. Partly as a result, we estimate on only one example
dataset, and use asymptotic standard errors. We obtain estimates from all
three algorithms discussed above. In the homotopy method we begin with
the 0 outputted by the modified BLP contraction with fixed u., say dp, and
then iterate only 25 times on the “homotopy” equation:

§ = 0.056 + 0.95r(9), (41)

where 7(9) is the element-by-element inversion.

We note that even this limited search greatly improves the calculated ¢’s.
In particular the mean of the calculated ¢’s are much too small if we stop at
the solution to the modified BLP contraction with fixed p.. This contrasts
with the case with a small number of products: the modified BLP contraction
with fixed p. did rather well with that sample design. The difference is that
the current sample design generates products with small market shares, and
though the pure-characteristic model will do that if the characteristics of
products are close enough to one another, the model with tastes for products
can only generate small shares if the ¢'s are very small.

Table 5: Parameter Estimates

(Dataset with a Large Number of Products)

Parameter | True | Homotopy Modified BLP
Fix p. | Estimate g,

Og 1 0.833 0.862 0.832
(0.194) (0.380) (6.956)

Op 1 1.192 1.188 1.207
(0.556) (0.621) (1.783)

Bo 2 1.956 1.354 -6.455
(2.013) (2.066) (66.864)

o 1 0.984 0.986 0.879
(0.209) | (0.198) |  (1.102)

scale, u 00 10* 0.934
(6.680)

* The scale was initially set to 10, but some combinations of parameter values
and markets this caused numeric problems and the scale in those cases was
halved until the numeric problems went away. In a few cases, a scale as low as
2.5 was necessary. Asymptotic standard errors are in parenthesis.

33



In Table 5 we see much bigger differences between the parameter estimates
from the different estimation algorithms than we did when we had a small
number of products. The estimates from the modified BLP algorithm with
estimated pu. are clearly the worst of the three. The estimated value of the
scale parameter u is relatively small which implies that the logit error is
being assigned a relatively important role. To counteract the effects of the
logit and still match the small shares, the constant in 0 is driven down to
less than -6. The modified BLP contraction with a fixed pu. does better, but
still suffers from a (3, which is too low.

Substitution Patterns and Own Price Elasticities In this example
all the models do a good job of capturing the general pattern of substitution
across products, although the BLP model is a bit more diffuse, as expected.
However, only the homotopy method does a good job of capturing the overall
level of elasticities. This is shown in Table 6 which gives, for the first five
products in the year 1 data (the lowest price products), actual share and
price data and then price elasticities (calculated from a discrete 1% change
in price.) The products with a very small share have excellent substitutes
in the pure characteristics model, but the modified BLP contraction with
estimated p. does not capture this effect and even the model with a fixed .
has a lot of trouble reproducing this result. Note that for the 4th product,
the share is truly tiny and that a 1% increase in price would wipe out all of
the sales of that product?T]

The last column of the table is particularly interesting. This column uses
the BLP estimates of o as given in the last column of Table 5. However,
given those o estimates we now solve for ¢ via the “homotopy” contraction
described above and re-calculate the linear  parameters from that new 0.
Because the BLP ¢’s are close to the truth, the recalculated 3’s are also close
to the truth. Finally, we use the BLP ¢’s and the recalculated 3’s to compute
the price elasticities in the last column of Table 6. These elasticities, unlike
the pure BLP elasticities, are quite close to the correct values.

The last column of Table 5 suggests the possibility that BLP might some-
times get the o’s correct even when the scale parameter is badly estimated —
i.e. there is information in the data on the relative importance (in determin-
ing substitution patterns) of various z’s, but there is not a lot of information
on exactly how “local” are the substitution patterns. In such a case, the
method of the last column of Table 6 may provide a good, and relatively

21Such a product would likely only survive in the market if produced by a multi-product
firm, so that some markup could be sustained and fixed-costs perhaps shared across prod-
ucts.
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easy to compute, estimate of elasticities. If nothing else, the calculation in
that column provides a robustness check in answering the question about
what elasticities would be if we held o fixed and took pu off to infinity.

Table 6: Predicted Elasticities
(Dataset with a Large Number of Products)

% Change in Share from a 1% Price Chg.
% Share Price True Homotopy  Modified BLP BLP, but

ds/0p via

Fixed p. Est. u. Homotopy
52109 1.26 -11.0 -14.6 -6.8 -1.8 -14.6
4.0180 1.8 -26.8 -24.5 -9.2 -2.3 -24.7
0.1078  2.93 -30.8 -46.3 -11.0 -2.9 -45.3
0.0038  3.85 -100.0 -100.0 -14.8 -3.7 -100.0
0.8855  4.01 -63.4 -58.5 -19.3 -4.9 -57.9

Welfare Effects. We now calculate the average per-person welfare gain
(in dollars) of moving from the year one choice set to the year three choice
set. Recall that we greatly increase both the number of goods as well as
their quality at the same time as lowering prices. As a result there is both
a large influx of consumers from the outside good over time, and a “large”
true welfare increase (much of it going to the new consumers).

Results on the total welfare gain are given in Table 7. The rows of that
table correspond to the last 5 columns of Table 6.

The surprising result here is that all methods do very well. The homotopy
is within .5% of the true result, but even the modified BLP algorithm with
an estimated p. is within three per cent of the truth. The modified BLP
methods do not do as well on the parameters, or on the elasticities, but the
fact that the contraction fits the shares exactly means that the extra gain
from the logit errors is offset by lower ¢’s and this roughly counteracts the
problems generated for welfare measurement by the model with tastes for
products.

6 Summary and Conclusion

This paper largely focuses on the practical and computational problems of
estimating the pure characteristics model. We provide several possible algo-
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Table 7: Welfare Effects

Method Gain
True 266.1
Homotopy 265.3
Modified BLP u. = 10 270.0

Modified BLP p. estimated — 259.0
Mod. BLP, pu, est., but
final homotopy contraction 272.1

rithms.

Of these algorithms, the easiest is to simply use the existing BLP method,
perhaps using the “units” normalization of this paper as opposed to the
traditional normalization on the scale of the i.i.d. term. One can hope that
even if the pure characteristics model is correct, then the estimated scale
parameter, p, will be large enough to closely reproduce the implications of
the true model. In Monte Carlo exercises, we did find this result when the
data was “high quality” in the sense that the number of products was not
large and the relative variance of the unobservable & was not too high.

If one prefers to impose the restriction of the pure characteristics model,
then one could consider the modified BLP algorithm with the scale parameter
i fixed at a large value. This method leads to relatively easy computation
using already-existing methods and we find in Monte Carlo exercises that it
can work quite well. As compared to tradtional BLP, it also gains efficiency
by estimating one fewer parameter. However, it is difficult to know a prior:
what value of p is sufficiently large to provide a good approximation and in
practice there are limits to how large a value of i can be used before numeric
errors start to arise.

Our most complicated computation method uses a homotopy argument to
compute an accurate but slow value for the mean utility §. For large numbers
of products, it proved difficult to let that algorithm fully converge, but the
method still provided good estimates, although at large computational cost.

We also had some success in estimating the model via either traditional
or modified BLP methods, and then using the homotopy computation only
to compute the implications of the model.

One conclusion, then, is that it would be strictly best to use the homotopy
method when that is feasible, but that the other methods may also work well
then the data quality is good. However, another practical suggestion is to
simply estimate the model via traditional BLP, but then also compute the
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predictions of the pure characteristics model via the homotopy method. At
the least this provides a robustness check, and in some cases may provide a
good approximation to the fully estimated pure characteristics model. The
exact conditions under which this idea will work well is a good topic for
further research.
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