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Background: Methodological
Developments in IO.

• We have been developing tools that enable
us to better analyze market outcomes.

• Common thread: emphasis on incorporat-
ing the institutional background needed to
make sense of the data used in analyzing
the likely causes of historical events, or the
likely responses to environmental and pol-
icy changes.

• Focus. Incorporate
(i) heterogeneity (in plant productivity,
products demanded, bidders and/or con-
sumers) and,
(ii) equilibrium conditions when we need
to solve for variables that firms could change
in response to the environmental change of
interest.
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We largely relied on earlier work by our game

theory colleagues for the analytic frameworks.

• Each agent’s actions affect all agents’ pay-

offs, and

• At the “equilibrium” or “rest point”

(i) agents have correct perceptions, and

(ii) the system is in some form of ”Nash”

equilibrium (policies such that no agent has

an incentive to deviate).

• Our contribution is the development of an

ability to adapt the analysis to the richness

of different real world institutions.
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The difficulties encountered in incorporating

sufficient heterogeneity and/or using equilib-

rium conditions differed between “static” and

“dynamic” models. We were less successful in

adapting these models to empirically analyzing

dynamic issues.

The initial frameworks by our theory colleagues

made assumptions which insurred that the

1. state variables evolve as a Markov process

2. and the equililbrium is some form of Markov

Perfection (no agent has an incentive to

deviate at any value of the state variables).

E.g. Maskin and Tirole (1988) for theory and

Ericson and Pakes (1995) for applied frame-

work. We now consider each of these in turn.
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On the Markov Assumption. Except in situ-
ations involving active experimentation to learn
(where policies are transient), we are likely to
stick with the assumption that states evolve as
a time homogenous finite order Markov pro-
cess. Reasons:
• It is a convenient and fits the data well.
• Realism suggests information access and re-
tention conditions limit the memory used.
• We can bound unilateral deviations (Ifrach
and Weintraub, 2014), and have conditions
which insure those deviations can be made ar-
bitrarily small by letting the length of the kept
history grow (White and Scherer, 1994).

On 2: Perfection. The type of rational-
ity built into Markov Perfection is more ques-
tionnable; even though it has been useful in
the simple models used by our theory and com-
putational colleagues to explore possible out-
comes in a structured way, and to generate
solutions to selection problems that appear in
what are essentially static estimation problems.
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I want to start from the premise that the com-

plexity of Markov Perfection not only limits our

ability to do dynamic analysis of market out-

comes it also

• leads to a question of whether some other

notion of equilibria will better approximate

agents’ behavior.

So the fact that Markov Perfect framework be-

comes unwieldily when confronted by the com-

plexity of real world institutions, not only limits

our ability to do empirical analysis of market

dynamics

• it also raises the question of whether some

other notion of equilibrium will better ap-

proximate agents’ behavior.
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Question. If we abandon Markov Perfection

can we both

• better approximate agents’ behavior and,

• enlarge the set of dynamic questions we are

able to analyze.

The complexity issue. When we try to in-

corporate ”essential” institutional background

we find that the agent is required to:

• Access a large amount of information (all

state variables), and

• Either compute or learn an unrealistic num-

ber of strategies (one for each information set).

How demanding is this? Consider markets

where consumer, as well as producer, choices

are dynamic (e.g.’s; durable, experience, or



network goods); need the distribution of; cur-

rent stocks × household characteristics, pro-

duction costs, . . .. In a symmetric information

MPE an agent would have to access all state

variables, and then either compute a doubly

nested fixed point, or learn and retain, policies

from each distinct information set.

Obvious Fix: Assume agents only have access

to a subset of the state variables.

• Since agents presumably know their own

characteristics and these tend to be per-

sistent, we would need to allow for assy-

metric information: the “perfectness” no-

tion would then lead us to a “Bayesian”

Markov Perfect solution.



Is assuming ”Bayesian MP” more realis-

tic? It decreases the information access and

retention conditions but increases the burden

of computing the policies significantly over the

burden of computing in symmetric information

MPE models. The additional burden results

from the need to compute posteriors, as well

as optimal policies; and the requirement that

they be consistent with one another.

Could agents learn these policies? I will

come back to the issue of what the agents

could and could not learn below.
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Rest of Talk.

• I am going to introduce a notion of equi-

librium that is less demanding than Markov

Perfect for both the agents, and the ana-

lyst, to use and show how to

(i) compute the equilibrium and

(ii) estimate off of equilibrium conditions.

• Consider restrictions that mitigate multi-

plicity issues.

• Provide a computed example of this equi-

librium (dynamic auctions).

I start with strategies that are “rest points”

to a dynamical system. Later I will consider

institutional change, but only changes where it

is reasonable to model responses to the change
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with a simple reinforcement learning process (I

do not consider changes that lead to active

experimentation). This makes my job much

easier because:

• Strategies at the rest point likely satisfy a

Nash condition of some sort; else someone

has an incentive to deviate.

• However it still leaves opens the question:

What is the form of the Nash Condition?



What Conditions Can We Assume for the

Rest Point at States that are Visited

Repeatedly?

We expect (and I believe should integrate into

our modelling) that

1. Agents perceive that they are doing the

best they can at each of these points, and

that

2. These perceptions are at least consistent

with what they observe.

Note. It might be reasonable to assume more

than this: that agents (i) know and/or (ii) ex-

plore, properties of outcomes of states not vis-

ited repeatedly. I come back to this below.
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Formalization of Assumptions.

• Denote the information set of firm i in period

t by Ji,t. Ji,t will contain both public (ξt) and

private (ωi,t) information, so Ji,t = {ξt, ωi,t}.

• Assume (J1,t, . . . Jnt,t) evolves as a finite state

Markov process on J (or can be adequately

approximated by one).

• Policies, say mi,t ∈ M, will be functions of

Ji,t. For simplicity assume #M is finite, and

that it is a simple capital accumulation game,

i.e. ∀(mi,m−i) ∈Mn, & ∀ ω ∈ Ω

Pω(·|mi,m−i, ω) = Pω(·|mi, ω),

(relaxed when we consider auctions below).

The public information, ξ, is used to predict

competitor behavior and common demand and

cost conditions (these evolve as an exogenous

Markov process).
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• A “state” of the system, is

st = {J1,t, . . . , Jnt,t} ∈ S,

#S is finite. ⇒ any set of policies will insure

that st will wander into a recurrent subset of

S, say R ⊂ S, in finite time, and after that

st+τ ∈ R w.p.1 forever. Note that the agents

does not keep track of all of st, only Ji,t.

• Let the agent’s perception of the expected

discounted value of current and future net cash

flow were it to chose m at state Ji, be

W (m|Ji), ∀m ∈M & ∀Ji ∈ J ,

• and of expected profits be

πE(m|Ji).
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Our assumptions imply:

• Each agent choses an action which max-

imizes its perception of its expected dis-

counted value, and

• For those states that are visited repeatedly

(are in R) these perceptions are consistent

with observed outcomes.
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Formally

A. W (m∗|Ji) ≥W (m|Ji), ∀m ∈M & ∀Ji ∈ J ,

B. &, ∀Ji which is a component of an s ∈ R

W (m(Ji)|Ji) = πE(m|Ji)+β
∑
J
′
i

W (m∗(J
′
i)|J

′
i)p

e(J
′
i|Ji),

where, if pe(·) provides the empirical probability

(the fraction of periods the event occurs)

πE(m|Ji) ≡
∑
J−i

E[π(·)|Ji, J−i]pe(J−i|Ji),

and {
pe(J−i|Ji) ≡

pe(J−i, Ji)

pe(Ji)

}
J−i,Ji

,

while {
pe(J

′
i|Ji) ≡

pe(J
′
i, Ji)

pe(Ji)

}
J
′
i ,Ji

. ♠
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“Experience Based Equilibrium”

These are the conditions of a (restricted) EBE
(Fershtman and Pakes, 2012; for related earlier
work see Fudenberg and Levine, 1993 on self
confirming equilibria). Bayesian Perfect satisfy
them, but so do weaker notions. We now turn
to its :
(i) computational and estimation properties,
(ii) overcoming multiplicity issues,
(iii) and then to an example.

Computational Algorithm. Asynchronous
“Reinforcement learning” algorithm (Pakes and
McGuire, 2001). Can be viewed as a learning
process. Makes it a candidate to:
(i) analyze (small) perturbations to the envi-
ronment, as well as
(ii) to compute equilibrium. In this context it
formally circumvents the traditional sources of
the curse of dimensionality; but there is still
lots of room for improvement.
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Iterations defined by

• A location, say Lk = (Jk1, . . . J
k
n(k)) ∈ S: is the

information sets of agents active.

• Objects in memory (i.e. Mk):

(i) perceived evaluations, W k,

(ii) No. of visits to each point, hk.

Must update (Lk,W k, hk). Computational bur-

den determined by; memory constraint, and

compute time. I use a simple (not neccesarily)

optimal structure to memory.

Update Location.

• Calculate “greedy” policies for each agent

m∗i,k = arg max
m∈M

W k(m|Ji,k)

• Take random draws on outcomes conditional

on m∗i,k: i.e. if we invest in “payoff relevant”
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ωi,k ∈ Ji,k, draw ωi,k+1 conditional on (ωi,k,m
∗
i,k).

• Use outcomes to update Lk → Lk+1.

Update W k.

• “Learning” interpretation: Assume agent ob-

serves b(m−i) and knows the primitives;

πi(·), p(ωi,t+1|ωi,t,mi,t).

• Its ex poste perception of what its value

would have been had it chosen m is

V k+1(Ji,k,m) =

π(ωi,k,m, b(m−i,k), dk)+max
m̃∈M

βW k(m̃|Ji,k+1(m)),

where Jk+1
i (m) is what the k + 1 information

would have been given m and competitors ac-

tual play.



Treat V k+1(Ji,k) as a random draw from the

possible realizations of W (m|Ji,k), and update

W k as in stochastic integration (Robbins and

Monroe,1956)

W k+1(m|Ji,k) =

1

hk(Ji,k)
V k+1(Ji,k,m)+

(hk(Ji,k)− 1)

hk(Ji,k)
W k(m|Ji,k),

or

W k+1(m|Ji,k)−W k(m|Ji,k) =

1

hk(Ji,k)
[V k+1(Ji,k,m)−W k(m|Ji,k)].

(other weights are more efficient, it would be

good to know how to aggregate states ....)

Notes.

• If we have equilibrium valuations we tend to

stay their, i.e. if ∗ designates equilibrium

E[V ∗(Ji,m
∗)|W ∗] = W ∗(m∗|Ji).



• To learn equilibrium values we need to visit

points repeatedly; only likely for states in R.

• Agents (not only the analyst) could use the

algorithm to find equilibrium policies or adjust

to perturbations in the environment.

• Algorithm has no curse of dimensionality.

(i) Computing continuation values: integration

is replaced by averaging two numbers.

(ii) States: algorithm eventually wanders into

R and stays their, and #R ≤#J .

• The stochastic approximation literature for

single agent problems often augments this with

functional form approximations (“TD learning”;

Sutton and Barto,1998). The computational

burden can still be quite large, so a way of

decreasing it would be useful.



Convergence and Testing.

• Testing. The algorithm does not necessar-

ily converge, but a test for convergence exists

and does not involve a curse of dimensionality

(Fershtman and Pakes, 2012).

• The test is based on simulation. It produces

a consistent estimate of an L2(P (R)) norm of

the percentage bias in the implied estimates of

V (m,Ji); where P (R) is the invariant measure

on the recurrent class.

• Basis. Simulate sample paths and ∀(m,Ji)
store mean (W̃ (m|Ji)) and variance (Ṽ (W̃ (m|Ji))

of EDV of playing m at Ji. (W̃ (m|Ji)−W (m|Ji))2

is the MSE of W̃ (m|Ji) as an estimate of W (m|Ji).

%Bias2(m|Ji) =
(W̃ (m|Ji)−W (m|Ji))2

W (m|Ji)2
−
Ṽ (W̃ (m|Ji)
W (m|Ji)2

.
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Details. Any fixed W , say W̃ , generates poli-
cies which define a finite state Markov process
for {st}. Gather the transition probabilies into
the Markov matrix, Q(s′, s|W̃ ).

To test if the process satisfies our equilbirium
conditions need:
(i) a candidate for R, and checks for
(ii) optimality of policies and
(iii) consistency of W .

Candidate for R(W̃). Start at any s0 and use
Q(·, ·|W̃ ) to simulate a sample path {sj}J1+J2

j=1 .
Let R(J1, J2, ·) be the set of states visited at
least once between j = J1 and j = J2.

(J1, J2)→ (∞,∞), & J2 − J1 →∞

⇒ R(J1, J2, ·)→ R̃,

a recurrent class of Q(·, ·|W̃ ) (C1 satisfied).

C2 (optimality of policies). Satisfied by con-
struction, since we use the policies generated
by W̃ to form Q(·, ·|W̃ ).



C3 (consistency of W̃ with outcomes). Does

W̃ (m∗|Ji) = πE(Ji) +β
∑
J
′
i

W̃ (m∗(J
′
i)|J

′
i)p

e(J
′
i|Ji)

(∀Ji ∈ s ∈ R.)?

Direct summation. Computationally burden-

some; indeed brings the curse of dimensionality

back in.

Alternative. Check for consistency of simu-

lated sample paths with evaluations.

• Start at s0 ∈ R and forward simulate. At

each Ji compute perceived values (our V k+1(·)),

keep track of the average and the sample vari-

ance of those simulated perceived values, say(
µ̂(W̃ (m∗(Ji)|Ji)), σ̂2(W̃ (m∗(Ji)|Ji))

)
.
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• Let E(·) take expectations over the simulated

random draws (where draws will be indexed by

a tilde), let l index locations, and note that we

can compute Tl, where

Tl ≡ E
(µ̂(W̃l)− W̃l

W̃l

)2

= E
(µ̂(W̃l)− E[µ̂(W̃l)]

W̃l

)2
+
(E[µ̂(W̃l)]− W̃l

W̃l

)2
.

= %V ar(µ̂(W̃l)) + %Bias2(µ̂(W̃l)).

• Tl is observed, as is fl, the fraction of visits

to l. As the number of simulation draws grows

∑
l

fl
(σ̂2(W̃l)

W̃2
l

)
−
∑
l

fl
(µ̂(W̃l)− E[µ̂(W̃l)]

W̃l

)2
→a.s. 0,



⇒∑
l

flTl−
∑
l

fl
(σ̂2(W̃l)

W̃2
l

)
→a.s.

∑
fl
(E[µ̂(W̃l)]− W̃l

W̃l

)2
,

an L2(PR) norm in the percentage bias (PR is

the invariant measure associated with (R, W̃ )).

Estimation.

• Need a candidate for Ji. Either:

(i) empirically investigate determinants of con-

trols (determinants of controls), and/or

(ii) ask actual participants.

• Does not require nested fixed point algo-

rithm. Use estimation advances designed for

MP equilibria (POB or BBL), or a perturba-

tion (or “Euler” like) condition (below).



Euler-Like Condition.

• With assymetric information the equilibrium

condition

W (m∗|Ji) ≥W (m|Ji)

is an inequality which can generate (set) esti-

mators of parameters.

• Ji contains both public and private informa-

tion. Let J1 have the same public, but differnt

private, information then J2. If a firm is at J1

it knows it could have played m∗(J2) and its

competitors would respond by playing on the

equilbrium path from J2.

• If m∗(J2) results in outcomes in R, we can

simulate a sample path from J2 using only ob-

served equilibrium play. The Markov property

insures it would intersect the sample path from
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the DGP at a random stopping time with prob-

ability one and from that time forward the two

paths would generate the same profits.

• The conditional (on Ji) expectation of the

difference in discounted profits between the

simulated and actual path from the period of

the deviation to the random stopping time,

should, when evaluated at the true parame-

ter vector, be positive. This yields moment

inequalities for estimation as in Pakes, Porter,

Ho and Ishii (2015), Pakes, (2010).



Multiplicity.

• R contains both “interior” and “boundary”

points. Points at which there are feasible strate-

gies which can lead outside of R are boundary

points. Interior points are points that can only

transit to other points in R no matter which

(feasible) policy is chosen.

• Our conditions only insure that perceptions

of outcomes are consistent with the results

from actual play at interior points. Perceptions

of outcomes for some feasible (but inoptimal)

policy at boundary points are not tied down by

actual outcomes.

• ”MPBE” are a special case of (restricted)

EBE and they have multiplicity. Here differing

perceptions at boundary points can support a

(possibly much) wider range of equilibria.
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Narrowing the Set of Equilibria.

• In any empirical appliction the data will rule

out equilibria. m∗ is observable, at least for

states in R, and this implies inequalities on

W (m|·). With enough data W (m∗|·) will also

be observable up to a mean zero error.

• Use external information to constrain percep-

tions of the value of outcomes outside of R.

If available use it.

• Allow firms to experiment with mi 6= m∗i at

boundary points (as in Asker, Fershtman, Ji-

hye, and Pakes, 2014). Leads to a stronger

notion of, and test for, equilibrium. We insure

that perceptions are consistent with the results

from actual play for each feasible action at

boundary points (and hence on R).
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Boundary Consistency.

Let B(Ji|W) be the set of actions at Ji ∈ s ∈
R which could generate outcomes which are

not in the recurrent class (so Ji is a bound-

ary point) and B(W) = ∪Ji∈RB(Ji|W). Then

the extra condition needed to insure “Bound-

ary Consistency” is:

Extra Condition. Let τ index future periods,

then ∀(m,Ji) ∈ B(W)

W (m∗|Ji) ≥

E
[ ∞∑
τ=0

δτπ(m(Ji,τ),m(J−i,τ))|Ji = Ji,0,W
]
,

where E[·|Ji,W] takes expectations over future

states starting at Ji using the policies gener-

ated by W. ♠
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Testing for Boundary Consistency.

Fix (m,Ji) ∈ B(i). Simulate independent sam-
ple paths from it with initial J−i drawn from the
empirical distribution of pe(J−i|Ji). Calculate
mean, Ŵ (m|Ji), and the variance, V̂ (Ŵ (m|Ji)),
of simulated sample path for each (m,Ji) ∈
B(i).

Basis of Test. Average(
(W (m∗|Ji)− Ŵ (m|Ji))−

)2

V̂ (Ŵ (m|Ji))

over (m,Ji) ∈ B(i) and then a weighted aver-
age of these over boundary points. This is an
Inequalities based test and one needs to simu-
late the test statistic’s critical values.

Each path which we simulate either will or will
not re-enter R. Provided prior test is satisfied
we have the correct expectation of the future
value from any (Ji, J−i) = s ∈ R.
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Let; r index simulation samples,

γr index the periods simulated for sample r,

γ∗r be the first period when sγr ∈ R (or some

sufficiently large number if it does not enter),

{sγr}
γ∗r
γ=1 be the sequence of states simulated

for sample path r.

Then an unbiased estimate of the actual value

of the feasible play is

Ŵr(m|Ji) ≡

γ∗r−1∑
γr=1

δγrπ(m(Ji,γr),m
∗(J−i,γr))+δγ

∗
rW (m∗|Ji,γ∗r).

If there are R simulated paths, let WR(m|Ji) be

their average, and V ar[WR(m|Ji)] be the stan-

dard estimate of the variance of this average.
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Let B(Ji) = {m : (m,Ji) ∈ B} and #B(Ji) be

the number of elements in B(Ji). So

T (Ji) =
1

#B(Ji)

∑
m∈B(Ji)

(
[WR(m|Ji)−W (m∗|Ji)]+

W (m∗(Ji))
),

is a measure of the deviation of the boundary

point from boundary consistency.

Let JB = {Ji : (b, Ji) ∈ B for at least one b},
h(Ji) be the number of times times the point

Ji was visited in the test run, and

q(Ji) =
{Ji ∈ B}h(Ji)∑

Ji∈B h(Ji)
.

Then our test statistic is

T (B) =
∑

Ji∈JB
q(Ji)T (Ji).

We have to simulate its distribution under the

null that W (m|Ji) = W (m∗|Ji) for each (m,Ji) ∈
B (this insures the size of the test), and check



whether the 95th percentile of the simulated

distribution is larger then T (B). We accept

H0 : Boundary Consistency

if and only if it is not.



Eg.: Dynamic Procurement Auctions:

The Impacts of Information Sharing.

J. Asker, C. Fershtman, J. Jeon, A.

Pakes.

Dynamic auctions are sequential auctions in

which the state of the bidders, and therefore

their evaluation of the good that is auctioned,

change endogenously depending on the history

of auction.

The value of winning an auction to produce

aircraft or ships depends on the backlog or the

order book of the firm, and the value of win-

ning a highway repair project or a timber auc-

tion depends on whether the inputs currently

under the control of the firm are already fully

committed for the following period.
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Structure of game.

• There is an auction for the right to harvest

timber on a parcel of land in each period.

• Firms enter the period with a stock of lum-

ber ωi,t. They harvest, process, and sell at

a fixed price of one on the world market in

each period. The harvest/processing out-

come is stochastic.

• Firms decide whether to pay a fee (F ) and

enter the auction. Simultaneously those

who do enter submit a bid, b ∈ {b1, . . . b} =

B ⊂ Z+.

• If there is information exchange it occurs

between the time the bids are submitted,

and the outcome of the auction is announced.
25



When information is shared the reported

information is truthful.

• The winner discovers the amount of timber

on the plot [(θ + η); η ∼ Fη(·)], and each

firm gets a random draw on harvest/processing

[(e+ ε); ε ∼ Fε(·)].

• If {iw(Ji, J−i)} is one when the firm wins

the auction and zero elsewhere

π(Ji, J−i, εi, ηi) =

min{ωi+{iw(·)}(θ+η), e+εi}−{iw}bi−g(Ji)F.



Information Sets.

• Basic question: what are the implications

of different information structures in dynamic

auctions and do those implications depend on

the extent to which we discount the future.

• Compare institutions which generate

• revelation in each period,

• revelation every T > 1 periods, and

• every T periods firms chose whether to re-

veal in each of the next T periods. They

both have to want to reveal before any of

them reveals. The decision is made just

after information revelation.
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• Information sets. Let τt be the time since

last iteration, iw(t) provide the identity of the

winning bidder bw(t) its bid, pt be the partic-

ipation decisions, and ωt = (ωi,t, ω−i,t). Then

Ji,t = (ωi,t, ξt), and if there is no information

revelation

ξt = {pt, iw(t), bw(t), τt} ∪ ξt−1,

while if there is information revelation

ξt = {ωt−1, iw(t), bw(t), τt = 1}.

• Note: this is not a capital accumulation game.

I.e. one agent’s choice of control will affect the

evolution of the other firm’s state. This com-

plicates both the computation and the eco-

nomics; an agent can refrain from bidding to-

day in order to let its competitors’ accumulate

today so that it will be less aggressive in the

future.



Value function

V (Ji) = max{W (0|Ji),max
b∈B

W (b|Ji)}

Let

πE(Ji) =
∑
J−i,η,εi

π(Ji, J−i, εi, η)p(J−i|Ji)p(εi)p(η).

Then if bi > 0 the firms participate and

W (b 6= 0|Ji) = πE(Ji) +

βpw(b|Ji)
∑
εi,η,ξ′

V (ω′(ωi, η, εi), ξ
′)p(ξ′|Ji, b, i = iw)p(η, ε)+

β(1− pw(b|Ji))
∑
εi,ξ′

V (ω′(ωi, εi), ξ
′)p(ξ′|Ji, b, i 6= iw)p(ε).

If bi = 0 (the firm does not participate)

W (0|Ji) = πE(Ji) + β
∑
εi,ξ′

V (ω′(ωi, εi), ξ
′)p(ξ′|Ji)p(ε).



Parameter Values

B IE V IE
Parameters:

Periods between ω revelation T 4 1 {1,4}

Common Parameters:

Distribution of fixed cost of participation Fi U[0,1]
Discount factor β 0.9

Mean timber in a lot θ 3.5
Disturbance around θ η {-0.5,0.5}
Probability on η realizations {0.5,0.5}

Mean harvest capacity e 2
Disturbance around e ε {-1,0,1}
Probability on ε realizations {0.33,0.33,0.33}

Bidding grid {0.5,1,1.5,2}
Number of firms/bidders 2
Retail price of a unit of timber 1



Computational Details.

Size of recurrent class:
B IE V IE

325,843 2,081 328,692

Number of all states visited during computation:
B IE V IE

7,495,307 2,724 7,908,122

Computation times per 5 million iterations (in hours):
B IE V IE

1:38 1:06 1:56
Computation times for testing for a REBE (5 million iterations, in hours):

B IE V IE
1:43 1:09 2:00

Computation times for testing for boundary consistency (100,000 iterations, in hours):
B IE V IE

3:03 0:16 75:41

Notes: Computation was conducted in MATLAB version R2013a
using (a Dell Precision T3610 desktop with) a 3.7 GHz Intel Xeon
processor and 16GB RAM on Windows 7 Professional.

Six rounds of computation were required for B to pass the REBE
test, eight for VIE and one for IE. We estimated models with several
other parameter values. All that past the REBE test but one
were boundary consistent, but we started with very high initial
conditions.
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Summary Statistiics

B IE V IE SP
Avg. bid 1.09 0.94 1.04 -
Avg. bw (revenue for the auctioneer) 1.11 0.98 1.07 -
Avg. bw when ≥ 1 firm 1.16 0.98 1.12 -
Avg. bw with 1 firm 1.06 0.67 0.99 -
Avg. bw with 2 firms 1.23 1.16 1.20 -
Avg. # of participants 1.52 1.63 1.52 1
Avg. # of participants, with ≥ 1 firm 1.59 1.63 1.59 1
Avg. participation rate 0.76 0.81 0.76 0.50
% of periods with no participation 4.39 0.15 3.85 0.004
Avg. total revenue 3.35 3.49 3.37 3.50
Avg. profit 0.81 0.87 0.84 -
% of periods; lowest omega wins 66.37 60.80 65.32 85.96
Average total social surplus 2.73 2.72 2.74 3.10

Procurement Revenue = winning bid.
πi(·) = min{ωi + {iw}(θ + η), e+ εi} − {iw}bi − g(Ji)F.
Revenue min{ωi + {iw}(θ + η), e+ εi}.
Social surplus

∑
i
[πi(·)− g(Ji)F ].

• IE has lower bids but more participation. We would
not expect that combination in a static auction as
we expect less aggressive bidding to occur with less
participation.

• VIE is very close to B, indicating that when there
is a choice as to whether to exchange information
most of the time they do not exchange information.
On the other hand the average profit and hence
the average value is higher in the setting where
information is exchanged.
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States and Profits.

Prob. Dist. (%) Profit
(ωi, ω−i) B IE SP B IE

(≤ 4,≤ 4) 65.51 32.59 90.12 0.68 0.52
(≤ 4,5− 7) 12.61 19.09 4.52 0.57 0.58
(≤ 4,≥ 8) 4.05 10.55 0.28 0.60 0.59

(5− 7,≤ 4) 12.61 19.09 4.52 1.51 1.26
(5− 7,5− 7) 0.88 5.72 0.22 1.49 1.46
(5− 7,≥ 8) 0.14 1.12 0.02 1.49 1.13

(≥ 8,≤ 4) 4.05 10.55 0.28 1.62 1.58
(≥ 8,5− 7) 0.14 1.12 0.02 1.66 1.87
(≥ 8,≥ 8) 0.01 0.17 0.00 1.72 1.56

Notes: This table shows the probability of intervals of
ω-tuples for B, IE and SP . Here the per-period profit is
a probability weighted average, over the states underly-
ing each ω-tuple.

• B has higher profits in just about every state, yet
IE has higher value.

• The reason is that IE spends disproportionate time
in states where stocks are higher, bidding is less
aggressive and both equilibria have more value.

• The control here is bids; so to understand how the
additional info on the competitor enables IE to do
this we look at bids.
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Differences in Policies.

Bids Profit
(ωi, ω−i) B IE B IE

0 0.5 1 1.5/2 0 0.5 1 1.5/ 2
(≤ 4,≤ 4) 0.22 0.13 0.27 0.38 0.07 0.13 0.28 0.53 0.68 0.52
(≤ 4,5− 7) 0.11 0.32 0.45 0.13 0.02 0.53 0.37 0.08 0.57 0.58
(≤ 4,≥ 8) 0.08 0.58 0.29 0.06 0.00 0.88 0.12 0.00 0.60 0.59

(5− 7,≤ 4) 0.43 0.18 0.34 0.05 0.33 0.10 0.52 0.05 1.51 1.26
(5− 7,5− 7) 0.37 0.50 0.09 0.03 0.40 0.59 0.01 0.00 1.49 1.46
(5− 7,≥ 8) 0.39 0.53 0.06 0.02 0.11 0.89 0.00 0.00 1.49 1.13

(≥ 8,≤ 4) 0.51 0.25 0.22 0.02 0.60 0.14 0.26 0.00 1.62 1.58
(≥ 8,5− 7) 0.53 0.39 0.06 0.01 0.84 0.16 0.00 0.00 1.66 1.87
(≥ 8,≥ 8) 0.61 0.36 0.03 0.00 0.47 0.53 0.00 0.00 1.72 1.56

Items in boldface are probabilities that are greater in IE than in B

Note:

• IE bids more intensely at low states, and in middle states
when the competitor is lower, but less intensely at middle
states when both are middle, and high states.

• This enable more time spent at higher states and at high
states the bidder either stays out or bids .5, so these are
profitable states. I.e. the extra information allows them to
coordinate better at high states, and this provides the incen-
tives to bid so as to get their.
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Static Incentives, β = 0

β = 0.9 β = 0
B IE B IE

Avg. bid 1.09 0.94 0.61 0.59
Avg. bw (revenue for the auctioneer) 1.11 0.98 0.54 0.53
Avg. bw with ≥ 1 firm participating 1.16 0.98 0.62 0.60
Avg. bw with 1 firm participating 1.06 0.67 0.55 0.53
Avg. bw 2 firms participating 1.23 1.16 0.82 0.82
Avg. # of participants 1.52 1.63 1.10 1.10
Avg. # of participants with ≥ 1 firm 1.59 1.63 1.25 1.25
Avg. participation rate 0.76 0.81 0.55 0.55
% of periods with no participation 4.39 0.15 11.98 11.65
Avg. total revenue 3.35 3.49 3.08 3.09
Avg. profit 0.81 0.87 1.03 1.04
% of periods; lowest ω wins 66.37 60.80 96.24 96.15
conditional on ≥ 1 firm participating
Average total social surplus 2.73 2.72 2.60 2.61

Notes

• History still matters here, as the information gathered from it
is still a signal on competitor’s ω.

• Very little difference between B and IE when firms do not care
about the future.

• The advantage of extra information on a competitors’ likely
bid is that it enables better coordination at high states, but
to get to them we need to bid more aggressively at middle
states, and without a future there is no incentive to do that.
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Voluntary Information Exchange.

(%) Pr(∪iχi ≥ 1) Pr(Πiχi = 1 Profit
(ωi, ω−i) V IE V IE B IE

(≤ 4,≤ 4) 62.98 24.75 4.76 0.68 0.52
(≤ 4,5− 7) 13.17 24.57 4.47 0.57 0.58
(≤ 4,≥ 8) 4.58 28.06 6.09 0.60 0.59

(5− 7,≤ 4) 13.17 21.38 4.47 1.51 1.26
(5− 7,5− 7) 1.13 18.94 4.59 1.49 1.46
(5− 7,≥ 8) 0.19 24.38 9.73 1.49 1.13

(≥ 8,≤ 4) 4.58 23.39 6.09 1.62 1.58
(≥ 8,5− 7) 0.19 24.60 9.73 1.66 1.87
(≥ 8,≥ 8) 0.02 38.14 20.34 1.72 1.56

χi ∈ {0,1}, χi = 1 indicates that firm i chose to reveal, so ∪iχi ≥ 1
indicates that at least one firm chose to reveal and Πiχi = 1 in-
dicates both firms chose to reveal. Only periods in which firms
decide on information sharing (or periods with τ = 0) are used in
the calculation.

Notes

• Firms only chose to share info in 5% of the possible states
(thought one of the two shares 24% of time).

• Recall that value in IE is higher, so why only 5%?

• The propensity to share info. is only large at high ω states.
However we start in B which is predominantly low ω states.
In those states profits are higher in B and hence to progress
to IE we would have to give up intermediary profits with no
guarantee that we will stay at IE four periods hence. Lack of
an ability to commit generates this.
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