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Abstract

This paper provides conditions under which the inequality constraints generated
by either single agent optimizing behavior, or by the Nash equilibria of multiple
agent problems, can be used as a basis for estimation and inference. We also add to
the econometric literature on inference in models defined by inequality constraints
by providing a new method of inference for the boundaries of the model’s identified
set. An application illustrates how the use of inequality constraints can simplify
estimation and inference in complex behavioral models, and a Monte Carlo with
sample design based on the application considers the performance of alternative
inference procedures for boundary points.

1 Introduction

This paper provides conditions under which the inequality constraints generated by single
agent optimizing behavior, or by the Nash equilibria of multiple agent games, can be
used as a basis for estimation and inference. The conditions do not restrict choice sets
(so the controls can be discrete, continuous, or have more complex domains) or require
the researcher to specify a parametric form for the disturbance distributions (though
some restrictions are imposed on those distributions), and they do allow for endogenous
regressors. In addition, the conditions do not require specification of the contents of
agents’ information sets or an equilibrium selection mechanism (in cases in which there
may be multiple equilibria).

The generality provided by these conditions does come with some costs, however. First,
perhaps not surprisingly, under our conditions partial identification of the parameters of
interest is likely. We add to the econometric literature on inference for such models
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by providing new inferential procedures for boundary points of the model’s identified
set which are not computationally burdensome. Second, though we provide sufficient
conditions to generate a set of moment inequalities for inference, we do not have necessary
conditions, and hence do not know the limits of our framework. So there remains the
question of precisely which of the models typically used to structure data satisfy our
sufficient conditions.

We show that a number of familiar single agent models do and often can be analyzed
with our framework using less restrictive assumptions than typically assumed. Moreover
the multiple agent analogs of these models, models which typically do not satisfy the
assumptions originally used for the single agent problems, satisfy our conditions also. We
then use our framework to empirically analyze a multiple agent problem of policy interest.
Finally we provide a Monte Carlo analysis based on a sample design taken from the
empirical analysis which compares alternative inference procedures for boundary points.

The next section of the paper provides our analytic framework. We begin by assuming
that our agents maximize their expected returns. This yields a “revealed preference”
inequality; the expected returns from the strategy played should be at least as large as
the expected returns from feasible strategies that were not played. Since we do not want
to specify how these expectations are formed, we consider only the implications of this
assumption on the difference between the realized returns at the agent’s observed strategy
(or “choice”) and the returns the agent would have earned had it played an alternative
feasible strategy. What the revealed preference theory tells us is that the expectation of
this difference is nonnegative. When there are interacting agents these inequalities are
necessary conditions for any (of the possibly many) Nash equilibria.

We assume that the econometrician can construct an approximation to the realized
returns from both the actual choice and from at least one feasible alternative, and that
these approximations depend on only a finite dimensional parameter vector of interest and
observable random variables. We then consider the difference between the returns at the
observed choice and at the alternative. This difference has an actual value given by the
difference in actual realized returns (whose expectation is positive at the true value of the
parameter), and it has an approximated value given by the difference in the approximated
returns. The difference between the expectation of the increment in realized values and
the increment in the approximated values becomes the disturbance.

This disturbance can be decomposed into two terms. The first is mean independent
of the variables known to the agent when the agent makes its decision. It consists of
expectational error (due to asymmetric or other forms of incomplete information) and/or
measurement and approximation errors that satisfy the mean independence condition.
The second, or structural, error is defined as that part of the difference between the
approximated and actual difference in returns that was known to the agent when it
made its decision, but is not observed by the econometrician. Since the agent knew the
value of this disturbance when it made its choice, and the disturbance is a component
of the expected profit differences from that choice, the choice itself potentially depends
on this disturbance’s value. So when we observe a decision we know that the value of
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the structural disturbance associated with it must have been “selected” from the subset
of the possible values that would lead to that decision. As a result, the expectation
of the structural disturbance corresponding to the decision can be non-zero, even if the
structural disturbance corresponding to any fixed value of the possible choices is mean
zero in the relevant population. This non-zero expected disturbance implies that the
differences in approximated returns based on observables may not mirror the revealed
preference assumption of a non-negative expectation at the true value of the parameter.

We provide a sufficient condition for overcoming this hurdle, and a number of ways
of satisfying it. In some models certain linear combinations of differenced returns will
not depend on the structural disturbance (they will “difference out” that error). Exam-
ples include (generalizations of) the standard assumptions underlying models which use
matched observations to control for unobservables, and Industrial Organization (or social
interaction) models with market (or network) specific unobservables known to the agents
but not to the econometrician. A second possibility results from an ability to choose linear
combinations of differenced returns that are additive in the structural errors regardless of
the decision made. This case allows us to use standard assumptions on the availability
of instruments to construct sample analogues to moments of the structural error that do
not condition on decisions, and the expectation of these unconditional moments will be
non-negative at the true value of the parameter vector. Examples include multiple agent
ordered choice models and contracting models where not all the determinants of the pay-
ments specified in the contract are observed by the econometrician. A third possibility
occurs when it is reasonable to assume that the distribution of the structural distur-
bance is symmetric and we can use the symmetry to correct for the selection bias in that
disturbance (this extends an idea due to Powell (1986) for use in moment inequalities).
Examples include models with either continuous or ordered controls that are bounded
on one side (such as Tobit models or auction models with bids that must be above a
reservation value).

When there is no structural disturbance our framework is a natural extension of the
first order condition estimator for single agent dynamic problems proposed in Hansen and
Singleton (1982), and extended to allow for transaction costs, and hence inequalities, by
Luttmer (1996). Our extension is to allow for arbitrary (including discrete) choice sets
and interacting agents. As in Hansen and Singleton, we do not require either parametric
assumptions on the distribution of the disturbance term, or a specification for what each
agent knows at the time the decision is made (and we allow for asymmetric and other
forms of incomplete information). Since it is rare for the econometrician to know what
each agent knows about its competitors’ likely actions, the fact that we need not specify
information sets is particularly appealing in multiple agents settings. Ciliberto and Tamer
(2009) and Andrews, Berry, and Jia (2004) provide alternative methods for estimating
models with discrete choice sets and interacting agents. The two approaches are not
nested and Pakes (2010) provides a formal comparison of their assumptions and a Monte
Carlo analysis of the resultant estimators’ robustness to deviations from their modeling
assumptions.
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Section 3 of this paper adds to the econometric literature on moment inequality infer-
ence with methods for providing conservative inference for boundary points of the identi-
fied set generated by moment inequalities. In models with three or more dimensions it will
be difficult for empirical researchers to provide a full description of the identified set, and
they are likely to look for lower dimensional descriptive statistics. Methods of inference for
extreme points provide empirical researchers with an analogue to the standard approach
in point identified empirical models of reporting dimension-by-dimension parameter esti-
mates with associated standard errors; i.e. we provide dimension-by-dimension extreme
points and associated confidence intervals.

Our approach differs from methods that focus on confidence sets for the whole identi-
fied set or the true value of the parameter. Such methods could be modified, for instance,
through projections onto a given dimension, to provide the same end product, and we
compare our procedures to some of the alternative possiblities in a Monte Carlo example
in section 4. A difference between our estimators and the estimators designed to form
confidence sets for the true point or for the identified set, is that our inference procedure is
developed through a local approximation to the limiting distribution of an extreme point
estimator. This has computational advantages, as we need not compute the value of the
objective function on a grid that covers all possible parameter values. The computational
advantages grow with the dimension of the parameter vector being estimated and are
likely to be larger in problems where a fixed point must be calculated to evaluate any
given value of the parameter vector. Our procedure does, however, assume the identified
set has a non-empty interior and that the extreme point in the dimension of interest is
not a singleton.

Section 4 provides our empirical example and a Monte Carlo with a sample design
based on the empirical problem. While our econometric approach is not computation-
ally demanding, both the precision of inference and the relevance of our behavioral as-
sumptions are still open questions. Our empirical application is both informative and
encouraging in this respect. It is a problem which does not satisfy the assumptions which
justify the use of more traditional tools; an investment problem with interacting agents
and non-convex or “lumpy” investment alternatives (it analyzes banks’ choices of the
number of their ATM locations). It also illustrates the ease with which the proposed
framework can handle environments in which there can be many possible “network” equi-
libria. Formally it is a multiple agent ordered choice problem; a problem which arises
frequently in industrial organization and one which illustrates the intuition underlying
the use of our framework quite clearly. The small sample sizes do force us to use parsi-
monious specifications. However, the results make it clear even with the small sample the
new techniques provide useful information on important parameters. The more detailed
policy implications of the estimates are discussed in Ishii (2011).

The Monte Carlo is based on a model with only two parameters. This make it easy to
compare alternative estimators. The results indicate that different estimators are likely
to be preferable in problems with different, observable, properties.
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2 A Framework for the Analysis

This section derives the moment inequalities that serve as the basis for econometric infer-
ence. We start from a player’s (or “agent’s”) best response condition in a simultaneous
move game (single agent problems are treated as a special case), and add two more as-
sumptions; one which allows us to compute counterfactual profits if we had access to the
agent’s profit function, and one which constrains the relationship between the agent’s
perceived profits and the profits that we can actually measure. These assumptions place
restrictions on the stochastic environment which imply a set of moment inequalities. We
discuss the restrictions implied by each assumption immediately after introducing it.

2.1 Agents’ Problem

Agents are indexed by i = 1, . . . , n. Let Ji be a random variable denoting the information
set available to agent i when actions are chosen (“decisions” are made), where Ji ∈ Ii,
the space of such information sets. Let Di be the set of actions agent i could take. Then
the strategy played by agent i is a mapping si : Ii → Di. The strategy and information
set for each player generate observed decisions di = si(Ji). For notational convenience we
assume these are pure strategies1, so Di is the support for di. Note that we distinguish
between di and the realization of the decision, say di, by using boldface for the former
random variable.

When Di ⊂ R it can be either a finite subset (as in “discrete choice” problems),
countable (as in ordered choice problems), uncountable but bounded on one or more
sides (as in continuous choice with the choice set confined to the positive orthant), or
uncountable and unbounded. If di is vector-valued then Di is a subset of the appropriate
product space.2

The payoff (or profit) to agent i will be determined by agent i’s decision, the other
agents’ decisions, and an additional set of variables zi with support Zi. Profits will be
given by the function π : Di × D−i × Zi → R, where D−i denotes ×j 6=iDj. Not all
components of zi need to be known to the agent at the time it makes its decisions and
not all of its components need to be observed by the econometrician. Notice that by
indexing profits by zi we abrogate the need to keep track of inter-agent differences in
profit functions.

1We could obtain a moment inequality of exactly the same form as the inequality derived below from
a game in which agents used mixed strategies provided each pure strategy with positive probability in the
mixed strategy had the same expected return. Notice that this implies that when using our inequalities
there is no need for the econometrician to specify whether the underlying strategies are pure or mixed.
However if we did know mixed strategies were being played, and we could distinguish the mixed strategies
associated with particular information sets, then more information would be available for use in estimation
than the information we use; see Beresteanu and Molinari (2008).

2For example Di might be a vector of contract offers, with each contract consisting of a fixed fee and a
price per unit bought (a two-part tariff). If a contract with one buyer precludes a contract with another,
as in exclusive deals which ensure a single vendor per market, Di becomes a proper subset of the product
space of all possible two part tariffs.
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The functions π and si (i = 1, . . . , n), and the joint probability distribution for
(Ji,Zi)i=1,...,n, are basic elements of the game. So the expectation operator introduced
below (i.e., E(·)) is with respect to this joint distribution,3 and the observed decisions di
are generated by these strategies and information sets.

We begin with an assumption that characterizes the behavior of agents in the game.

Assumption 1 (Best Response Condition) If si is the strategy played by agent i

supd∈DiE[π(d,d−i, zi)|Ji,di = d] ≤ E[π(di,d−i, zi)|Ji,di = si(Ji)], (a.s. Ji),

for i = 1, . . . n. ♠

In single agent problems, this assumption would simply be derived from optimizing
behavior. For instance, with n = 1 and Di a finite set, Assumption 1 is an implication
of a standard discrete choice problem. If Di is an interval, then Assumption 1 generates
the standard first order (or Kuhn-Tucker complementarity) conditions for optimal choice
of a continuous control. When there are multiple interacting agents, Assumption 1 is
a necessary condition for any Bayes-Nash equilibrium. It does not rule out multiple
equilibria, and it does not assume anything about the selection mechanism used when
there are multiple equilibria.

Note that Assumption 1 does not put any restrictions on the information structure of
the game, which is an aspect of the problem that the econometrician typically has little
information on. In particular we will not have to specify whether (d−i, z−i) is in agent
i’s information set, Ji, at the time decisions are made. So, Ji, could contain their values,
could contain a signal on their likely values, or may not contain any information on their
values at all.

Finally note that at the cost of increased notational complexity we could have used
a weaker version of Assumption 1. More specifically, Assumption 1 will typically be
used to form moment inequalities with particular alternative decisions considered by the
econometrician. Formally, we could only require Assumption 1 to hold for this subset of
alternative decisions. For example, if we limited the econometrician’s choice to D(di) =
{d : |d − di| ≥ αdi, d ∈ Di} ⊂ Di for a known α > 0, we would allow agents to take
actions which were not optimal but within α percent of the optimal decision. Similarly
we could have specified that expected profits from alternative possible decisions were
less that (1 + δ) times expected profits from the decision taken (for a known δ > 0),
allowing agents to make decisions which led to expected profits which were close to, but
not necessarily equal to, maximal expected profits.

3We could have defined the expectation operator that results from the agents’ perceptions, and then
put constraints on the relationship between the agents’ perceptions and the expectation operator emanat-
ing from the data generating process. Though correct perceptions are certainly sufficient for Assumption 1
to be true, they are not necessary; see Pakes (forthcoming), and the literature cited there, for further
discussion.
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Counterfactuals

To use Assumption 1, we want to be able to compare the profits actually earned to
those that would have been earned had the agent made a different decision. Under the
next assumption, the distribution of i’s counterfactual profits can be obtained by simply
changing the decision made by agent i and evaluating π(·) at the alternative decision.

Assumption 2 (Counterfactual Condition) The distribution of (d−i, zi) conditional
on Ji and di = d does not depend on d.

In either single agent problems, or multiple agent problems with simultaneous moves,
conditional independence of other agents’ decisions (of d−i) from di is an assumption of
the model.4 So then the main restriction in this assumption is that zi does not depend
on di. In many examples the profit function is naturally written in a way that depends
on additional variables that, in turn, depend on the decisions of all agents. For example,
our empirical study analyzes the number of ATMs chosen by banks. The profits a bank
earns from its ATM investments depend on the equilibrium interest rates in the periods
in which those ATM’s will be operative. So the profit function would naturally be written
as a function of interest rates, the number of ATM’s, and other (exogenous) variables.
The interest rates, in turn, depend on the number of ATM’s installed by the bank and its
competitors. Assumption 2 states that to use a comparison between the profits actually
earned to those that would have been earned had the bank chosen a different number of
ATMs we will need to compute the interest rate that would result from the counterfactual
ATM choice, and then use that calculaton to express the profit difference in terms of
(d′, d−i) and variables which do not change with a different choice of the number of ATMs.

More formally, suppose a profit function π̃ is a function of decisions (di,d−i) and po-
tentially endogenous additional variables yi (endogenous in the sense that the realization
of yi depends upon the realizations of di, thus violating Assumption 2). Then, to satisfy
Assumption 2, one will typically need a model of how yi is related to agents’ decisions.
That is, we need a function y such that yi = y(di,d−i, zi) for a random variable zi satis-
fying Assumption 2. Then the π(d, d−, z) which appears in Assumption 2 is constructed
as π̃(d, d−, y(d, d−, z)). We note that if there is not a one to one map between yi and
di conditional on (d−i, zi) (or if the researcher is not sure of what that map is), but the
researcher can construct a lower bound to the counterfactual profits that the agent could
make, the researcher could replace the counterfactual profits in Assumption 2 with that
lower bound.

4If, in non-simultaneous move games, we were to construct counterfactuals for agents who move
early, Assumption 2 would generally be violated because the decisions of those who move later would be
components of d−i, and their distribution, conditional on (Ji, di = d), would typically depend on d. To
derive counterfactuals for that case we would either need a model for how the agent making the early
period decision believes a change in that decision is likely to change the behavior of agents who move
later, or we would need to compute the later agent’s response that minimizes the profits earned from the
counterfactual by the agent who moves early (for examples, see Ho, 2009, Pakes, 2010, and Crawford and
Yorukoglu, forthcoming).
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Assumption 2 implies that Assumption 1 can be rewritten without conditioning on
different d. So if we define

∆π(d, d′, d−i, zi) = π(d, d−i, zi)− π(d′, d−i, zi)

and recall that di = si(Ji), then Assumptions 1 and 2 imply that for any d′ ∈ Di

E[∆π(di, d
′,d−i, zi)|Ji] ≥ 0. (1)

2.2 Econometrician’s Problem

We assume that the econometrician has access to a parametric function r that can be
used to approximate the payoff function π. The function r(·) has arguments di, d−i, an
observable vector of the determinants of profits, say zoi , and θ. The parameter θ ∈ Θ has
an unknown true value, say θ0, which is the parameter vector of interest. We let zoi be the
random variable whose realizations are given by zoi . For convenience, we assume zoi ⊂ zi
so that Assumption 2 applies to zoi as well. We obtain our approximation to ∆π(d, d′, z),
which we label ∆r(d, d′, zo, θ), by evaluating r(·) at d and d′ and taking the difference, so
that ∆r : D2

i ×D−i × Zo × Θ → R. The relationships between ∆π(·) and ∆r(·) and zi
and zoi define the following unobservables.

Definitions. For i = 1, . . . , n, and (d, d′) ∈ D2
i define

ν2,i,d,d′ = E[∆π(d, d′,d−i, zi)|Ji]− E[∆r(d, d′,d−i, z
o
i , θ0)|Ji], and (2)

ν1,i,d,d′ = νπ1,i,d,d′ − νr1,i,d,d′ (3)

where

νπ1,i,d,d′ = ∆π(d, d′,d−i, zi)− E[∆π(d, d′,d−i, zi)|Ji], and

νr1,i,d,d′ = ∆r(d, d′,d−i, z
o
i , θ0)− E[∆r(d, d′,d−i, z

o
i , θ0)|Ji].

It follows that

∆π(d, d′,d−i, zi) = ∆r(d, d′,d−i, z
o
i , θ0) + ν1,i,d,d′ + ν2,i,d,d′ . (4)

The function ∆r(·, θ) is the observable measure of the change in profits that would
result from a change of di = d to di = d′. The random variables ν1 and ν2 are the
determinants of the true profit difference that are not observed by the econometrician.
Different versions of these random variables are defined for every different (d, d′) and every
agent. We distinguish between two types of unobservables (i.e. ν1 and ν2) because the
difference in their properties has important implications for alternative estimators.
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The unobservables ν1 and ν2 differ in what the agent (in contrast to the econome-
trician) knows about them. While the agent “knows” its ν2 values before it makes its
decision (ν2,i ∈ Ji), realizations of ν1,i do not change the agent’s expected profits at the
time decisions are made. Since the decision depends on the information set, di = si(Ji),
di can depend on the values of ν2,i. Consequently the distribution across agents of ν2,i,d,d′

(for a fixed d) and ν2,i,di,d′ (for the di chosen) can differ. In particular even if the former is
mean zero, the latter will generally not be. In contrast E[ν1,i,d,d′|Ji] = 0 by construction,
and since di is a function of the variables in Ji, ν1,i,di,d′ is mean independent of di. So the
mean of ν1,i,di,d′ across agents is also zero.

The importance of accounting for one or both of (ν1, ν2) is likely to be different in
different applied problems. The unobservable ν1 realizations can arise from either expec-
tational errors or measurement errors. There are two sources of expectational errors: (i)
incomplete information on the environmental variables (the zi or zoi ); and (ii) asymmetric
information resulting from incomplete information on d−i. The measurement error in
profits (νπ1,i − νr1,i) can result from either measurement error in the observables that go
into the profit function or from specification error in r(·) per se.

In contrast, ν2 is a “structural” disturbance, i.e. a source of variance in the difference
in profits that the agent conditions its decisions on, but that the econometrician does
not observe. Variation in ν2 will be important when ∆r(d, d′, ·) does not account for
an important source of variation in E[∆π(d, d′, ·)|Ji] that the agent accounts for when it
makes its decision. The examples below clarify how this can happen.5

Selection

The assumptions thus far are not very stringent. In addition to not assuming what
each agent knows about either its competitors or zi, we have not specified a particular
form for the distribution of either ν1 or ν2, and we have allowed for discrete choice sets
and regressors that are correlated with the unobserved ν2,i. We do, however, require an
additional assumption. This assumption is due to the fact that di is both a determinant of
profits and is, in part, potentially determined by an unobservable determinant of profits
(the ν2,i). This implies that the ν2,i’s that correspond to the observed decisions are a
selected subset of the possible values of the ν2,i’s. More formally, equation (4) implies
that si is a strategy satisfying Assumption 1 only if

E[∆r(si(Ji), d
′,d−i, z

o
i , θ0)|Ji] ≥ −ν2,i,si(Ji),d′ . (5)

5Notice that equation (4) nests the familiar model in which zoi = zi, and ∆π(·) consists of a primitive
function (our ∆r(·)) and an additively separable disturbance. Then the zi are the observed determinants
of profits, and the ν2,i and ν1,i are, respectively, the unobserved determinants of profits that the agent
knows, and does not know, when it makes its decisions. The only change that is required to allow for
measurement error in a zi that enters the model linearly is to increase the sources of ν1. Note, however,
that if ∆π(·) was a non-linear function of an unobservable then this interpretation would fail, and if we
wanted to derive ∆r(·) from ∆π(·) we would require more assumptions.
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That is, draws on ν2,i corresponding to the observed decisions are selected from a subset
of the support of the ν2 distribution.

The econometrician only has access to ∆r(·, θ) and Assumption 1 is in terms of the
conditional expectation of ∆π(·). So, to use Assumption 1 to restrict the observed data
we will need to impose restrictions on the distribution of the ν2,i. The next assumption
provides such a restriction. It considers certain weighted averages of ∆r(di, d

′, ·; θ) across
values of d′ and agents i. The weights are allowed to be nonnegative functions of observable
components of the information sets of the agents. The condition will then imply that the
weighted average of ∆r(·, θ0) will have nonnegative mean as shown in section 2.3 below.

Assumption 3 Let hi(d′; di, Ji,x−i) : Di → R+ be a nonnegative function whose value
can depend on the alternative choice considered (on d′), on the information set Ji (which
determines di), and (possibly) on some observable component of the other agents’ infor-
mation sets, x−i ⊂

�

j 6=i Jj. Assume that

E[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν2,i,di,d′ ] ≤ 0,

and

E[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν
r
1,i,di,d′

] ≥ 0.

�

Assumption 3 does not require us to specify particular distributions for ν1 and/or
ν2, the contents of agents’ information sets, or the nature of the agent’s choice set. In
particular since both the choice set and the distributions of the unobservables are unspec-
ified, Assumption 3 allows us to analyze models with discrete choice sets and regressors
that are correlated with ν2,i without making particular distributional assumptions. On
the other hand, particular distributional assumptions can sometimes generate Assump-
tion 3 in models where it would not hold without them. The examples below elaborate on
both these points, and in addition, show that our combination of assumptions can help
determine difficult to estimate parameters of continuous choice problems.

To see the difficulty in satisfying the condition on ν2 in Assumption 3 recall that the
observed strategy di = si(Ji) must satisfy (5) which favors larger, more positive values
of ν2,i,di,d′ . Assumption 3 requires that the ν2,i associated with the observed decision
and counterfactual d′ is not positively correlated with the hi(d′,di, Ji) function. We are,
however, helped by the fact that both the counterfactual choice (d′) and the h(·) function
(our “instrument”) can vary both with di and with individual characteristics.

Notice that the condition on νr1 in Assumption 3 is trivially satisfied in two important
cases: 1) the weight function for agent i does not depend on x−i; and 2) νr1,i,di,d′ is mean
independent of ∪jJj. When the weight function for i does not depend on variables outside
of Ji, then it can be written as hi(d′; di, Ji) and, since we have constructed νr1,i,di,d′ so that
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E[νr1,i,di,d′ |Ji] = 0, the condition on νr1 in Assumption 3 is satisfied. The assumption that
νr1,i,di,d′ is mean independent of ∪jJj is natural when the νr1,i,di,d′ part of the disturbance
represents measurement error as in example 2 below,6 or when the game is a symmetric
information game as then Ji = ∪jJj (see the discussion in example 4). Typically the ν2

condition in Assumption 3 is satisfied by finding some combination of: a) an observable
instrument in Ji that is uncorrelated (or negatively correlated) with ν2,i; and/or b) re-
strictions on ν2,i,di,d′ for carefully chosen values of d′. Examples 1 and 3 below illustrate
with two familiar models. Example 4 provides a case where distributional assumptions
enable one to satisfy Assumption 3.

The condition on νr1 in Assumption 3 is nontrivial when the weight function depends
on observables x−i from other agents that are not a part of i’s information set but might be
a determinant of agent i’s realized profits. An example where this might occur is in games
with asymmetric information where the weight function depends on a competitor’s control.
We allow the weight function to depend on x−i because it provides additional flexibility; in
particular it enables us to satisfy the ν2 condition by restricting the relationship between
the ν2,i,di,d′ of different agents (see examples 2 and 4 below). This flexibility comes at the
cost of the additional requirement on νr1 .

2.3 Inequality Conditions

Recall that the data we observe for agent i will be based on his strategy si that satisfies
Assumption 1. So realized decisions for agent i will be determined by si, i.e. di = si(Ji).
Accordingly equation (4) implies that

∆r(d, d′,d−i, z
o
i , θ0) = ∆π(d, d′,d−i, zi)− νπ1,i,d,d′ + νr1,i,d,d′ − ν2,i,d,d′

= E[∆π(d, d′,d−i, zi)|Ji] + νr1,i,d,d′ − ν2,i,d,d′ .

Then,

E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)∆r(di, d
′,d−i, z

o
i , θ0)

]

= E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)E[∆π(di, d
′,d−i, zi)|Ji]

]
(6)

+ E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν
r
1,i,di,d′

]
− E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν2,i,di,d′

]
6A third case, which can be thought of as a special case of the second, that sometimes occurs is

νr1,i,di,d′
≡ 0. This happens when the function r depends only on observables in Ji. For instance, in single

agent problems, d−i does not enter profits, and so νr1,i,di,d′
= 0 if zoi is in agent i’s information set (there

is no uncertainty). Since νr1,i,di,d′
is identically zero, the second part of Assumption 3 is satisfied for any

weight function, so that function need only satisfy the first part of Assumption 3.
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We consider each of the three terms following the equality in equation (6) in turn. Since
E[∆π(si(Ji), d

′,d−i, zi)|Ji] ≥ 0 by Assumptions 1 and 2, each term in the first summand
is nonnegative by the assumed nonnegativity of the weights hi(d′; di, Ji,x−i).

As noted before, the definition of νr1 in equation (3) yields E[νr1,i,di,d′ |Ji] = 0. So, when
the weight function does not depend on x−i, the summation over νr1 terms in equation (6)
is zero. More generally, Assumption 3 states that the last two terms in equation (6) are
non-negative. As a result

E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji)∆r(di, d
′,d−i, z

o
i , θ0)

]
≥ 0. (7)

Equation (11) depends only on observables and θ0, so we can form its sample analog and
look for values of θ that satisfy it.7

2.4 Examples

The examples in this section show how conditions in specific applications lead to Assump-
tions 1, 2, and 3 holding. We especially emphasize conditions for satisfying Assumption 3.

Example 1. Suppose that for each di ∈ Di there is some d′(di) such that ∆π(di, d
′(di), zi)

is observable up to a parameter vector of interest and an error which is mean zero con-
ditional on the agent’s information set (so ν2,i,di,d′(di) is zero). Then Assumption 3 is
satisfied with h(d′(di); di, Ji,x−i) = h(d′(di); di, Ji) > 0, and h(·) zero elsewhere. This is a
familiar special case as it implies that

∆π(di, d
′(di),d−i, zi) = ∆r(di, d

′(di),d−i, zi, θ0) + ν1,i,di,d′ ,

so our assumptions on the disturbance are the analog of those used by Hansen and Single-
ton (1982) for their first order condition estimator. However our estimator: (i) allows for
more general (discrete and/or bounded) choice sets, and (ii) allows explicitly for interact-
ing agents (without having to fully specify the information structure). We now provide a
discrete and then a continuous control example that show why these extensions might be
useful.

For the discrete control example we show that these assumptions enable us to ap-
ply Euler’s perturbation method to the analysis of single agent dynamic discrete choice
problems. This simplifies the analysis of those problems dramatically. For specificity
consider a discrete choice model with switching costs so that the observable model for
the agent’s profits (or utility) in a given period, say U(di,t, di,t−1, zi,t, θ), depends on the
decision in the prior period. For simplicity we drop the i subscript in this discussion and
assume there are just two choices, D = {0, 1}. The strategy for the agent is a sequence of

7In general Assumptions 1, 2, and 3 are sufficient but not necessary for the inequalities in (11), which,
in turn, provide the basis for estimation and inference. That is, we expect that there are alternative
conditions that will also suffice.
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functions, say {st(·)}t mapping Jt into {0, 1}. The observed value generated by the strat-
egy is r(·) =

∑
t β

tU(st(Jt), dt−1, zt, θ0). Consider a one-period “perturbation” setting
d′(d0) = (1−d0). For periods t > 0 the strategy function is unchanged so ∀t > 0, d′t = dt,
while U(st(Jt), dt−1, zt, θ0) is unchanged ∀t > 1. Then the assumptions imply

0 ≤ E[∆r(d0, 1− d0, z0, θ0)|J0)] ≡

E[U(d0,d−1, z0; θ0)−U(1−d0,d−1, z0; θ0)+β(U(s1(J1),d0, z1; θ0)−U(s1(J1), 1−d0, z1; θ0))|J0]

at θ = θ0. Similarly if x ∈ J0 and h(·) is positive valued, E[∆r(d0, 1−d0, z0; θ0)h(x0)] ≥ 0.
Notice that if we base estimation off of such inequalities we obtain our estimates without
ever computing the fixed point which defines the value function, thus circumventing the
need for a nested fixed point algorithm, and, as a result, significantly increasing our ability
to analyze richer models (see, for example, Morales 2011).8

For a continuous choice example we consider a uniform-price electricity auction (see
Wolak 2001). Each day multiple generators bid in supply functions. An independent
system operator sums those functions horizontally, intersects the sum with the hourly
demand curve to determine the price, and directs generators to produce the quantity they
bid at that price. The econometrican knows the bids each agent makes and the market
clearing rule and so can compute the returns an agent would have made had it submitted
a different bid function (holding other agents’ bids and demand fixed).

The revenues of the generator i equal the equilibrium price, p(di, d−i, Dt) ≡ p(d,Dt),
where di is i’s bid function and Dt is the demand function in hour t, times the quantity
it produces (qi,t(d,Dt)). Its hourly costs are the variable costs of producing that quantity
(vc(qi,t(d,Dt), θ1)) plus the startup cost θ2 of bringing the generator up when it had been
inoperative in the previous hour (θ2{qi,t(d,Dt) > 0}{qi,t−1(d,Dt) = 0}). For simplicity we
assume there are no shutdown costs and that the generator will go down for maintenance
at the end of the day. Then today’s bid influences only current profits, and our measure
of those profits is

r(di, d−i, zi; θ) =∑
t

p(d,Dt)qi,t(d,Dt)−
∑
t

vc(qi,t(d,Dt), θ1)− θ2[
∑
t

{qi,t(d,Dt) > 0}{qi,t−1(d,Dt) = 0}].

This is a simultaneous move game. So if r(·) were differentiable in di and agents
were maximizing expected profits we could differentiate the profit function with respect
to a continuous determinant of di and average those derivatives to form a moment which,
provided the usual regularity conditions hold, has expectation zero at the true θ0. In fact
the derivative of the term θ2[

∑
t{qi,t(d,Dt) > 0}{qi,t−1(d,Dt) = 0}] will be zero almost

8We emphasize that this does assume that ∆ν2,d,d′,t = 0. To relax the ∆ν2,d,d′,t = 0 assumption
and still derive moment inequalities that circumvent the need for a nested fixed point we would need to
restrict the distribution of {ν2,·}, though not necessarily to a parametric family (see Example 4 below).
On the other hand, in contrast to the literature which uses nested fixed points to analyze this problem,
we do allow for measurement and/or specification error (our {ν1,·}), and we do not need to specify how
the agent forms its perceptions on the evolution of zi.
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everywhere (and undefined elsewhere). So the sample first order conditions would not
contain information on θ2, the parameter we are often most interested in. However if we
evaluated counterfactual bid functions which differed from the actual bid by enough to
induce changes in the periods in which the generator was called, the difference in returns
between the counterfactual and actual bid, together with the Assumptions above, would
produce inequalities which could be used for inference on θ2.9

Two final points on the assumptions underlying this example. First its assumptions
cover the familiar case where there is a ν2 but we can find a “control function” that al-
lows us to condition on its value. Second, as can be seen from our examples, they often
generate inequalities which are extremely easy to use. So we might want to use moment
inequality techniques in conjunction with more computationally intensive procedures ei-
ther as a check for the robustness of different assumptions or as starting values for the
more computationally intensive techniques.

Example 2. This example formalizes conditions that suffice for inequality estimators
based on “matched observations,” and since each of our “observations” consists of a
difference between an observed and a counterfactual choice, these conditions also suffice
for inequality estimators based on differences-in-differences. For specificity we describe
these conditions in the context of an analysis of the determinants of hospital choice (for
more detail on this problem, see Ho and Pakes 2011).

Hospital choices depend on a complex interaction between the patient’s health condi-
tion and the quality of the hospital’s services for that health condition, as well as other
hospital and patient specific characteristics. The role of the non-health related patient
characteristics, the health plan, and the hospital characteristics in hospital choice have
important policy implications (e.g. the interaction between the prices at the hospital a
doctor sends its patient to and the incentives the patient’s health plan gives the doctor).
However, the analysis of those effects must contend with the confounding effects of the
patient-health/hospital -quality interaction induced by the endogeneity of the hospital
choice decision. The health condition of the patient is recorded in some detail when the
patient enters the hospital, but selection and other problems make it difficult to measure
hospital quality in treating the patient’s condition.

Assume the expected utility which determines hospital choice (di) is additively separa-
ble in two components: 1) a non-health related function which is known up to a parameter
vector of interest; and 2) an unobserved expected health outcome which depends on the
patient’s initial health condition and hospital characteristics. The non-health related com-
ponent depends on patient and hospital characteristics to be denoted by zi (distance from
home to hospital, hospital prices, patient’s insurance plan,...). The unobserved expected
health outcome of patient i at hospital d is denoted by ν2,i,d. If we allow r(d, zoi , θ) to

9Reguant (2011) estimates parameters of this type for the Spanish electric utility market by using a
computationally intensive simulation to approximate firms’ perceptions of the distributions of competi-
tors’ bids.
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measure the non-hospital component up to a conditional mean zero error10, we have

π(d, zi; θ0) = r(d, zoi , θ0) + ν2,i,d − νr1,i,d,

with decisions made to maximize E(π(d, zi)|Ji) = E[r(d, zoi ; θ0)|Ji] + ν2,i,d. Since νr1,i,d is
caused by measurement (or specification) error we assume that ∀(i, d), E[νr1,i,d| ∪j Jj] = 0.

There are two points about this decision problem that should be noticed. First we
assume that hospital choice is a single agent problem in the sense that the decisions of
other patients (d−i) does not effect i’s choice. Second we have not put any restriction
on the interaction between the patient health condition and hospital choice (ν2,i,d) other
than its additive separability from r(·). We now show that Assumption 3 can be satisfied
by assuming that the ν2,i,d depend only on the patient’s observed initial health condition
and the hospital choice. That is, if qi gives us the initial health condition of individual i,
then we can write ν2,i,d as ν2,qi,d (∀(i, d)).

We “match” patient i, with a patient, say j, with the same initial condition, i.e. qj =
qi, but who chose a different hospital, so di 6= dj. This match yields two counterfactuals.
For patient i consider the counterfactual of choosing hospital dj, and for patient j consider
hospital choice di. The first counterfactual yields a difference in expected utility of

E[∆π(di, dj, zi)|Ji] = E[∆r(di, dj, z
o
i ; θ0)|Ji] + ν2,qi,di,dj

where ν2,qi,di,dj = ν2,qi,di − ν2,qi,dj . The second counterfactual yields the same difference
with the i and j indices reversed. Since qi = qj, we have ν2,qi,di,dj = −ν2,qj ,dj ,di . So, when
we sum the difference in utilities from these two individuals and their counterfactuals, the
ν2 component of utility will be eliminated, i.e.

E[∆π(di, dj, zi)|Ji] + E[∆π(dj, di, zj)|Jj] = E[∆r(di, dj, z
o
i ; θ0)|Ji] + E[∆r(dj, di, z

o
j ; θ0)|Jj].

The elimination of the ν2 component in this sum of expected profit increments implies
that the first part of Assumption 3 holds with “matched pair” weight functions. More
formally we choose the weight functions to pick out all possible matched pairs; or x−i =
�

j 6=i(dj,qj), and hi(d′,di, Ji,x−i) =
∑

j 6=i 1{qi = qj}1{di 6= dj}1{d′ = dj}. With

a similar choice for hj, all matched pairs with identical health conditions and different
choices of hospital will be summed. Since the sum of the ν2’s for each matched pair will
be zero

n∑
i=1

∑
d′∈Di

hi(d′,di, Ji,x−i)ν2,i,di,d′ = 0,

which satisfies the first part of Assumption 3, and since

E[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν
r
1,i,di,d′

] = 0

10This could be caused either by mis-specification or measurement error, though Ho and Pakes (2011)
are particularly worried about measurement errors in their price and distance measures.
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by virtue of the assumption that ∀(i, d), E[νr1,i,d| ∪j Jj] = 0, the second part of Assump-
tion 3 is satisfied also. It follows that for the matched pairs weight function

E

[
n∑
i=1

∑
d′∈Di

hi(d′,di, Ji,x−i)∆r(di, d
′, zoi , θ0)

]
≥ 0.

The example above does not have interacting agents, but the matched pair approach
can enable one to mitigate estimation problems in multiple agents settings as well.11

However, as we now show, when one agent’s returns depend on another agent’s decision
to satisfy Assumption 3 we may need to impose constraints on the information structure
of the game. For a familiar example consider an Industrial Organization model in which
there is a market-specific component of costs or demand that is known to the agents at
the time decisions are made, but not to the econometrician; say an entry model with
a market-specific sunk cost of entering (for the role of market specific unobservables in
the entry literature see Berry and Reiss, 2007). We take matched pairs consisting of
potential entrants who did, and did not, enter a specific location, and counterfactuals
which are the opposite of the decision the agent made. If we sum the difference in
expected profits between the actual and counterfactual behavior of the pair, we would
eliminate the market-specific unobservable (our ν2) and the first part of Assumption 3
would be satisfied. Now however, the other agent’s decisions would generally affect each
agent’s realized profits and there is a x−i component of hi(·) (the determinants of the
entry decisions of the other agent). So if there were asymmetric information and one
agent’s decision depended on variables not in other agents’ information set, then the νr1
error of the second agent could be correlated with the weight assigned to the first agent’s
counterfactual and this might violate the second part of Assumption 3. Notice that if
it was appropriate to assume a “symmetric information” equilibrium, as is often done in
applied work, this difficulty would not arise (then d−i ∈ Ji so that the second part of
Assumption 3 would follow from the definition of νr1). It could still hold if there were
asymmetric information, but additional assumptions would be needed.12.

Example 3. This example shows that ordered choice models impose a restriction on
the structural disturbance (our ν2) that enables us to satisfy Assumption 3. This implies
that we can analyze both the familiar single agent ordered choice model and multiple
agent ordered choice models; and we can do so without parametric assumptions on the
structural disturbance. We conclude by noting that the restriction used in this example

11There are also natural extensions to the more aggregate cases often used in Labor Economics and
Public Finance; see for example, Card and Krueger 1994, who use pairs of similar states or regions to
eliminate the influence of additive unobservables from before and after a policy intervention.

12For instance if there are only two agents, the only uncertainty is with respect to the competitor’s
decision, and we were willing to assume that an agent’s returns to entry fell if the other agent entered, the
covariance between both νr1,i,di,d′

and νr1,j,dj ,d′
and the weight function can be shown to be positive. In

this case our matched pair estimator would satisfy the last part of Assumption 3 with a strict inequality.
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is a special case of a more general restriction that is often appropriate. The next section
provides an empirical example of a multiple agent ordered choice model and a Monte
Carlo study of the performance of alternative estimators based on this empirical example.

Lumpy investment decisions (say in the number of stores or machines) are often treated
as ordered choice problems. Our example has interacting firms each deciding on how many
units of a machine to purchase and install in a number of independent markets.13 Let
di denote the number of units chosen by firm i. Then revenue, R(di, d−i, z

o
i ) depends on

the number of units chosen by i and the other firms in the market, as well as some other
observed determinants, zoi . The marginal cost to firm i of an additional unit is θ0 + ηi,
where θ0 reflects the average marginal cost (across firms) of the machines, and ηi captures
firm-level heterogeneity in costs known to each firm when it makes its decision but not
observed by the econometrician. Thus the unconditional mean of η is zero, or E(ηi) = 0.

Allowing for the uncertainty and measurement errors that generate ν1, profits to firm
7 ∗ 4.87 = i are: π(di,d−i, zi) = R(di,d−i, z

o
i ) − di(θ0 + ηi) + ν1,i,di . So profit differences

from a counterfactual d′ are

∆π(d, d′,d−i, zi) = ∆R(d, d′,d−i, z
o
i ) + (d′ − d)(θ0 + ηi) + ν1,i,d,d′ .

where ∆π, ∆R, and ν1,i,d,d′ are defined as differences using notation as before. The observ-
able (or econometrician’s) approximation to the differenced profits is ∆r(d, d′,d−i, z

o
i ; θ) =

∆R(d, d′,d−i, z
o
i ) + (d′ − d)θ. The structural disturbance is, ν2,i,d,d′ = (d′ − d)ηi.

We now show that the assumption that ν2,i,d,d′ = (d′−d)ηi enables us to choose weights
that satisfy the first half of Assumption 3. Consider a counterfactual choice of d′ = di + t;
a fixed number of units (t) away from di. Then

ν2,i,di,di+t = ν2,i,di,di+t = tηi, and, Eν2,i,di,di+t = tE(ηi) = 0.

For now assume that the counterfactual d′ = di + t is feasible for all i (the case where it
may not be is considered in the next example). Taking h(d′; di, Ji) = n−1 if d′ = di + t,
and zero otherwise, we have

E[
n∑
i=1

∑
d′∈Di

h(d′; di, Ji)ν2,i,di,d′ ] = E[n−1

n∑
i=1

ν2,i,di,di+t] = n−1

n∑
i=1

tE(ηi) = 0.

The form of the structural disturbance and this choice of counterfactual allows the for-
mation of averages that avoid the selection problem by including the structural error no
matter the choice each agent made. The second half of Assumption 3 is automatically
satisfied because the weight function depends only on di and not on variables for the
other agents (x−i). So, E[hi(d′; di, Ji)ν

r
1,i,di,d′

] = E[hi(d′; di, Ji)E(νr1,i,di,d′ |Ji)] = 0.
In the empirical example in the next section we focus mostly on counterfactuals with

t set to 1 or −1. These counterfactuals lead to moment inequalities that form lower and

13For a single agent example of the use of moment inequalities for a lumpy investment problem in
which there is dependence in the outcomes across markets, see Holmes, 2011.
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upper bounds on the parameter θ0. However additional weight functions can be formed
from traditional instrumental variables. That is, if xi ∈ Ji and Eηig(xi) = 0 for some
positive function g, then h(d + t; d, Ji) = g(xi) (and zero otherwise). These weights
generate additional moment inequalities potentially containing more information on θ0.
The additional moments also enable us to get bounds on each parameter when we consider
extensions which allow for richer marginal cost functions indexed by several parameters,
as we do in the Monte Carlo example.

The ordered choice model is a particular example of a more general structure which we
can analyze. We can form inequalites which satisfy Assumption 3 in any model in which
we can always find a counterfactual which generates a difference between the actual and
counterfactual choices that is a linear function of the structural error (regardless of the
observed choice). The vertical discrete choice model used in Bresnahan (1987) and Katz
(2007), and contracting models where the source of the structural error is a component
of the transfers among agents that agents condition on but the econometrician does not
observe (for details see Pakes, 2010), are two examples of other models which can be
shown to satisfy this condition.

Before leaving this example we note an issue that can arise in using an inequality
which does not condition on the choice agents make to satisfy Assumption 3. We do so in
the context of the ordered choice model discussed above. To construct the (unconditional)
moment used to estimate its parameter, it was not necessary to have the counterfactual
be d′ = di + t for the same t for each i, as we could have divided the inequalities formed
from the different observations by different ti and, as long as all the ti were positive,
we would have still obtained a moment whose expectation was positive. However it is
essential that there is a feasible counterfactual which has the same sign for the t chosen
for each observation. If the choice set is bounded this is not always possible. For instance,
in choosing how many machines to install, it is sometimes natural to bound the choice
set below by zero. The boundary implies we can not find feasible counterfactuals with
d′ = di − t when di = 0 for any t > 0, and if we drop the observations with di = 0 before
we form our averages we generate another selection problem. The next example considers
this case, and, in so doing, presents another set of assumptions leading to satisfaction of
Assumption 3.

Example 4. The last example illustrated how the selection problem reappears in the
inequality approach to the ordered choice problem when there is a boundary to the choice
set which is chosen by some agents. A similar problem will occur when controls are
continuous but bounded from one side (as in a tobit model, or in a bidding model where
there is a cost or benefit which is known to the agent but unobserved to the econometrician
and induces some agents to not bid). As we now show if, in these cases, it is reasonable to
assume that the distribution of the ν2 component is symmetric, or at least not skewed in
the direction of truncation (see below), we can use the distribution of the ν2 component in
the untruncated tail to ensure we obtain a bound also in the direction of truncation. To
do this, we show that ideas similar to those in Powell (1986), can be extended to obtain
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moment inequalities that account for truncation.
For specificity, we go back to the example of the last section but assume that choices

were bounded from below by zero and that some agents chose di = 0. As a result we need
a truncation correction to obtain an upper bound for θ0. We now show that an assumption
of a symmetric distribution enables us to form a moment which satisfies Assumption 3
and delivers this bound. Let L = {i : di > 0}, the set of firms that install a positive
number of machines and are not on the boundary, and let nL be the number of firms in L.
It will be helpful to use standard order statistic notation, i.e. η(1) ≤ η(2) ≤ · · · ≤ η(n). Let
Lη = {i : ηi ≤ η(nL)} and Uη = {i : ηi ≥ ηnL+1}. Similarly, let ∆R+

i = ∆R(di,di + 1, zi)
and ∆R+

(1) ≤ ∆R+
(2) ≤ · · · ≤ ∆R+

(n). Let UR = {i : ∆R+
i ≥ ∆R+

(nL+1)}. Sets L and UR are
observable to the econometrician, but sets Lη and Uη are not.

As in section 2.3, we want to obtain a moment inequality based on weighted averages
of ∆r. We start by looking at a particular weighted average that uses the observations
where it is feasible to consider the counterfactual d′ = di − 1 and specific observations
with the counterfactual d′ = di + 1. In particular we let

hi(d′; di, Ji,x−i) = n−1
[

1{d′ = di − 1}1{i ∈ L}+ 1{d′ = di + 1}1{i ∈ UR}
]
,

then
∑

i

∑
d′∈Di h

i(·)∆r(·) =

1

n

∑
i∈L

∆r(di,di − 1,d−i, z
o
i , θ0) +

1

n

∑
i∈UR

∆r(di,di + 1,d−i, z
o
i , θ0)

≥ 1

n

∑
i∈L

∆r(di,di − 1,d−i, z
o
i , θ0) +

1

n

∑
i∈Uη

∆r(di,di + 1,d−i, z
o
i , θ0)

=
1

n

∑
i∈L

{
E[∆π(di,di − 1,d−i, zi)|Ji]− ν2,i,di,di−1 + νr1,i,di,di−1

}
+

1

n

∑
i∈Uη

{
E[∆π(di,di + 1,d−i, zi)|Ji]− ν2,i,di,di+1 + νr1,i,di,di+1

}
≥ − 1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 +
1

n

∑
i∈L

νr1,i,di,di−1 +
∑
i∈Uη

νr1,i,di,di+1

(8)

The first inequality holds because ∆r(di,di + 1,d−i, z
o
i , θ0) = ∆R+

i + θ0. The second in-
equality follows by the conditional expectation of the profit increments being nonnegative
by Assumptions 1 and 2.
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Now consider the asymptotic behavior of the sums in (8). Assume nL/n
p−→ q. Then

1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 =
1

n

∑
i∈L

−ηi +
∑
i∈Uη

ηi


≤ 1

n

∑
i∈Lη

−ηi +
∑
i∈Uη

ηi

 = − 1

n

nL∑
i=1

η(i) +
n∑

i=nL+1

η(i)

p−→ −E[η1{η ≤ F−1
η (q)}] + E[η1{η ≥ F−1

η (1− q)}] = E(η) = 0

where Fη is the c.d.f. of η, and we assume that Fη is continuous and strictly increasing
in a neighborhood of q to get the convergence above. The assumed symmetry of the η
distribution about zero implies the last two equalities.

This shows that the first half of Assumption 3 holds asymptotically for large n (al-
ternatively we could have averaged over markets and used asymptotics in the number
of markets). To show that the second half holds also we have to show that the sums
involving νr1 in (8) are non-negative asymptotically. The first sum is

1

n

∑
i∈L

νr1,i,di,di−1 =
1

n

n∑
i=1

1{di > 0}νr1,i,di,di−1

p−→ E[1{di > 0}νr1,i,di,di−1] = 0

since di ⊂ Ji. The second sum is 1
n

∑
i 1{i ∈ Uη}νr1,i,di,di+1, and since the event, {i ∈ Uη},

depends on realizations of η−i, the limit of this sum will depend on the information
structure of the game. If η−i is in agent i’s information set, as would be the case in full
information games, then the fact that E[νr1,i,di,di+1|Ji] = 0 would insure that 1

n

∑
i 1{i ∈

Uη}νr1,i,di,di+1converged to zero. If there was asymmetric information then to sign this
sum we would require assumptions on the relationship between the unexpected part of
agent i’s profit measure and η−i.

This example provided a set of assumptions which generates a lower bound for the
parameter of interest despite the fact that the choice set is bounded from below. The ap-
pendix shows that we can use instruments along with a symmetry assumption to generate
more moment inequalities for the lower bound. The example in section 4 provides both
empirical and Monte Carlo results which use these estimators.

3 Estimation and Inference for Extreme Points

In section 2.3, we derived the inequality conditions that result from Assumptions 1, 2, and
3. These inequalities fit into the general econometric framework of moment inequalities.
A rapidly expanding literature provides a number of possibilities for moment inequal-
ity estimation and inference (Andrews and Guggenberger 2009, 2010; Andrews and Jia
2008; Andrews and Shi 2010; Andrews and Soares 2010; Beresteanu and Molinari 2008;
Bugni 2010; Canay 2010; Chernozhukov, Hong, and Tamer 2007; Fan and Park 2009;
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Guggenberger, Hahn, Kim 2008; Imbens and Manski 2004; Menzel 2008; Romano and
Shaikh 2008, 2010; Stoye 2010). Here, we add to this literature with an approach which
approximates the distribution of the extreme points of the estimated identified set.

The approach given below is designed to mimic the standard practice, in empirical pa-
pers with point identified models, of reporting a table of parameter estimates along with
dimension by dimension confidence intervals (typically formed by adding and subtract-
ing twice the estimated standard error). A corresponding notion for set-valued estimates
would be to start with dimension-by-dimension extreme point estimates. Then, an analog
of “twice the standard error” could be added or subtracted from the extreme point esti-
mates to yield confidence intervals for each dimension of the identified set. We provide
such analogs to twice the standard error here.

This approach differs from methods that focus on confidence sets for the whole iden-
tified set or coverage of the true parameter alone. Such methods could be modified, for
instance, through projections onto a given dimension, to provide the same end product.
Here, however, the inference procedure is developed through a local approximation to the
limiting distribution of an extreme point estimator. In the next section, a Monte Carlo
designed to mimic the empirical example there compares confidence intervals formed in
various ways.

Though we will assume that the expectation of the moments used in estimation are
continuously differentiable, the fact that the objective function used in estimation in
moment inequality problems only penalizes values of the parameter vector that violate
the inequalities implies that it can converge to a function which is non-differentiable at
its extreme points. As a result the limiting distribution for the extreme point estimator
cannot, in general, be obtained from the usual expansion and a normal approximation to
the distribution of the objective function. We suggest a simple simulation to conservatively
approximate this asymptotic distribution. It is the quantiles of this simulated distribution
which we use to mimic the confidence intervals of point identified problems. Andrews
and Han (2009) show that this non-differentiability can lead to problems for inference
based on simulations of extreme point distributions. In particular, they note that the
most straightforward bootstrap of confidence interval endpoints will not generally be
uniformly asymptotically valid. The simulation proposed below differs from the Andrews-
Han investigation by allowing for some moment selection in the spirit of Andrews-Soares
(2010). Additionally, the framework we consider is more restrictive. In particular, our
assumptions imply that the class of identified sets under consideration have non-trivial
interiors and that the extreme point of interest is a well identified singleton. These
assumptions allow for the local approximation that is behind our approach. The pay-off
for these more restrictive assumptions is the ability to do direct dimension-by-dimension
inference with a computationally simple simulation. In section 4.3 below, Monte Carlo
results are shown for the case when our assumptions are “suspect” to alternative degrees.

Our results also allow us to do inference on extreme points in other directions of the
parameter space.14 Further it is straightforward to generalize our results to obtain the

14If the identified set is convex, the boundary of that set is defined by the extreme points in all
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joint distribution of two or more extreme points and correspondingly alter our inference
procedure. For example we could provide the joint distribution to the upper and lower
bound of a subvector of the parameter estimates, which, in turn could be used to construct
shorter confidence intervals for the actual value of the parameter vector (instead of for
the extreme points). Alternatively we could find the joint distribution of the maximum
in several directions, thereby approximating the distribution of a section of the boundary
of the identified set.

We assume that there is data on J markets indexed by j = 1, . . . , J , and a j su-
perscript will be added to previously defined variables to denote what market they are
from. A market is a draw on wj = (dj, zoj,xj) where dj ≡ {dji}n

j

i=1, zoj, xj are defined
similarly, and xji is the observable component of Jji that is used in the weight function hi

in Assumption 3. Assume that the observed markets are independent draws from a pop-
ulation whose distribution is an element of a given class of distributions F that respects
our Assumptions 1, 2, and 3. If F is a distribution function in F, then we let PF denote
the corresponding measure.

The M(≡ dim(m)× dim(h)) dimensional moment function from equation (11) is:

m(wj, θ) =

nj∑
i=1

∑
d′∈Dji

hi(d′; dji ,x
j
i )∆r(d

j
i , d
′,dj−i, z

oj
i , θ0)]

The inequality in (11) can then be expressed simply as PFm(w, θ0) ≥ 0. Let elements of
the moment vector be denotedmk with covariances σkl,F (θ) = PF [(mk(w, θ)−PFmk(w, θ))
(ml(w, θ)−PFml(w, θ))]. Let ΩF (θ) be the correlation matrix of the moments and DF (θ)
is the diagonal matrix with diagonal elements σkk,F (θ). Let ΓF (θ) = ∂

∂θ
PFm(w, θ) be the

matrix of partial derivatives of the expected moments at θ.
Let Θ ⊂ RK denote the parameter space. For a given distribution F ∈ F, the set

of parameters satisfying the moment inequalities is the identified set and denoted by
Θ0,F = {θ ∈ Θ : PFm(w, θ) ≥ 0}. For notational simplicity, we focus on a particular
extreme point of the identified set, the minimizing value of the first dimension of the
identified set,

θF = {θ ∈ Θ0,F : θ1 = arg min
θ̃∈Θ0,F

θ̃1}

where θ1 denotes the first element of the vector θ, and θF ∈ RK .15 In what follows one
could equally well consider the minimum or maximum along any other direction in the Θ
space. When Θ0,F is convex, each boundary point can be expressed as the extreme point
of some linear combination of dimensions of θ, though convexity of the identified set will
not be required for the results to come.

directions. In general, however, by reporting extreme points for each parameter dimension, we are only
giving the smallest hypercube containing the set estimate, and this hyper-cube could be a very poor
approximation to that set estimate (Stoye 2010)

15Assumptions below will ensure that θF is well-defined. In general, θF could be a set, but the notation
and terminology foreshadow our assumption, below, that this set is a singleton.
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For specificity we consider estimation of θ1,F . Let PJ denote the empirical distribution

so that PJm(w, θ) = 1
J

∑J
j=1m(wj, θ). Assume that a consistent estimator D̂J of DF (θF )

is available, where D̂J is itself a diagonal matrix. Then, estimation proceeds as follows.
Set

Θ̂J = arg min
θ∈Θ
‖
(
D̂
−1/2
J PJm(w, θ)

)
−
‖ (9)

where (·)− = min{·, 0}, and then set

θ̂1,J = arg min
θ∈Θ̂J

θ1. (10)

Let θ̂J be any element of Θ̂J with first element θ̂1,J . Note that the criterion in (9) is in
the class of criteria considered in Andrews and Soares (2010), and can also be used for
specification testing of the moment inequality model as discussed there.

Consider the implications of two different outcomes of the estimation given in equation
(9). If there exists some value of θ such that PJm(w, θ) ≥ 0, then the solution in (9) is
the same as the solution to arg minθ∈Θ ‖(PJm(w, θ))−‖, as long as the diagonal elements
of D̂J are positive. Then Θ̂J = {θ ∈ Θ : PJm(z, θ) ≥ 0}, and we can estimate Θ̂J without
constructing an initial estimator D̂J . The econometric assumptions below will imply that
this case occurs with probability approaching one.

The other outcome occurs when there is no θ ∈ Θ such that PJm(w, θ) ≥ 0. Typically
then Θ̂J will be a point, so that θ̂J = Θ̂J and the solution to (9) is likely to differ from
either the solution to

arg min
θ∈Θ
‖(PJm(w, θ))−‖, or to arg min

θ∈Θ
‖(D̂J(θ)−1/2PJm(w, θ))−‖,

where D̂J(θ) denotes an estimate of DF (θ) (so the latter estimator is an analogue of the
continuous updating estimator). In this case the estimation in (9) and (10) assumes an
estimator D̂J of DF (θF ). A simple way to obtain such an estimator is as follows. Esti-
mate Θ0,F without the weights, i.e. Θ̃J = arg minθ∈Θ ‖(PJm(w, θ))−‖. Then a consistent
estimator for θF comes from θ̃1,J = arg minθ∈Θ̃J

θ1 with θ̃J any element of Θ̃J with first

element θ̃1,J . Finally the sample variances of the moments evaluated at θ̃J can be used

as the diagonal elements of the matrix D̂J .
Next we derive the asymptotic distribution of the estimator θ̂1. This result is presented

for a fixed choice of F as this clarifies the nature of the estimation problem. However it
does not lead directly to inference. For the inference result the uniformity in coverage will
require a stronger version of the limiting distribution result under sequences of F ’s. We
will discuss this step following the asymptotic distribution result. The formal assumptions
for our results are discussed briefly here. Many of the assumptions require conditions to
hold in a uniform sense, which will generally be needed for the inference result but not
the limiting distribution result presented first.

The first assumption restricts the identified sets to be closed and not intersecting
the boundary of the parameter space. It also imposes what becomes a key condition in
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our derivation; the extreme point we focus on is point identified. In principle, one could
consider the case when a set of points form the extreme boundary in one direction, but our
approach is to localize around the identified point and use the derived behavior to suggest
inference. This condition restricts the class of distributions we consider. In particular, we
require Θ0,F to be a set with a nonempty interior (satisfying a degeneracy-type property
as in CHT, see Assumption A4) with a singleton extreme point in the direction of interest.
Following the inference result, we note how this condition affects its generality.

Assumption A2 gives one side of local identification at every boundary point of the
identified set. This could be weakened to focus only on identification of θF . Assump-
tion A3 ensures that θF is a singleton and clearly distinguished from other points in the
identified set. Assumption A4 ensures strong local identification of θF through conditions
on the derivative of the moments evaluated at the extreme point. In particular, there
exists a direction toward the interior of the identified set such that, for the nearly binding
moments, the derivative in this direction is positive and bounded away from zero. The
other part of Assumption A4 ensures that when moving in a direction away from the
identified set some binding moment has a strictly negative derivative.

Assumptions A5-A8 impose standard conditions on the moments in a uniform sense.
The assumptions ensure that: (A5) the sample average of the moments is uniformly
consistent for the mean; (A6) D̂J is consistent for DF (θF ); (A7) the expectation of the
moments is continuously differentiable in a neighborhood of θF ; and (A8) the sample mo-
ments satisfy a stochastic equicontinuity condition. Assumptions A6 and A7 also bound
the variance and derivatives of the moments, which simplifies the uniformity arguments in
the inference result and also implies that Lyapunov’s central limit theorem can be applied
to the sample moments.

Under these assumptions, we can provide a limit distribution for
√
J(θ̂1,F − θ1,F ). Let

the subvector of moments which are binding at θF , i.e. for which PFmk(w, θF ) = 0, be
denoted by a 0 superscript, and let any matrix with a 0 superscript refer to the submatrix
with rows corresponding to the elements of m0.

Theorem 1 Suppose Assumptions A1 -A8 hold and let

τ̂ 1 = min

{
τ1 : τ = arg min

τ̃

∥∥∥∥(D0
F (θF )−1/2Γ0

F (θF )τ̃ + Z0
)
−

∥∥∥∥} ,
where Z0 ∼ N(0,Ω0(θF )). Then,

√
J(θ̂1,J − θ1,FJ

)
d−→ τ̂ 1.

�

Under our assumptions, there will always exist τ̃ such that D0
F (θF )−1/2Γ0(θF )τ̃ + Z0

≥ 0. So, the definition of τ̂ 1 could be rewritten as

τ̂ 1 = min{τ1 : D0
F (θF )−1/2Γ0(θF )τ̃ + Z0 ≥ 0}. (11)
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That is, τ̂ 1 is simply the solution to a stochastic linear program.
Notice that the asymptotic distribution given by τ̂ 1 depends only on the characteristics

of the subvector of moments, m0. The remaining moments, m1, are non-binding when
evaluated at θF , i.e. PFm

1(w, θF ) > 0. Looking at the criterion for estimation in (10), the
intuition is that for J sufficiently large the sample average of the non-binding moments
will be positive with arbitrarily large probability when evaluated in a neighborhood of θF .
So these moments will not determine the extreme point asymptotically, and, as a result,
will have no influence on the asymptotic distribution of the estimator.

Given the binding moments in m0, the distribution defining τ̂ 1 could be straight-
forwardly approximated with estimates of D0

F (θF ), Γ0
F (θF ), and Ω0

F (θF ). Using these
estimates, the stochastic linear program above could be simulated to yield the desired ap-
proximation. As an inference procedure, this approximation has two related drawbacks.
First, a priori, which moments fall into the subvector m0 and which are in m1 is un-
known. Second, the discontinuity in the limit distribution with respect to binding versus
non-binding moments corresponds to lack of uniformity in the coverage of this approxi-
mation method. As a result, the simulated limit distribution obtained in this way may
provide a poor approximation to the finite sample distribution of the estimator (since the
simulated data would not reflect the fact that nearly binding moments affect the finite
sample distribution). The problem posed by the discontinuity is handled by providing an
estimator which accounts for nearly binding moments in addition to the binding moments.

Suppose we have consistent estimators Γ̂J and Ω̂J for ΓF (θF ) and ΩF (θF ) (uniformly
in F ). Consider the following bootstrap simulation. Take a draw on Z∗ ∼ N(0, Ω̂J) and

consider the inequalities 0 ≤ D̂
−1/2
J Γ̂Jτ +Z∗ +rJ ·

(
D̂
−1/2
J PJm(w, θ̂J)

)
+

for a nonnegative

sequence rJ = o(
√
J/
√

2 ln ln J). If these inequalities have a solution, then we find the
solution that minimizes τ1. If the system of inequalities does not have a solution, then we
eliminate inequalities in order of the corresponding value of D̂

−1/2
j,J PJmj(w, θ̂J) starting

with the largest value. Eliminate inequalities until a solution to the remaining system
exists. Let the s subscript denote the indices corresponding to the remaining inequalities.
Then,

τ ∗1,J = min

{
τ1 : 0 ≤ D̂

−1/2
s,J Γ̂s,Jτ + Z∗s + rJ ·

(
D̂
−1/2
s,J PJms(w, θ̂J)

)
+

}
. (12)

The criterion in (12) mimics the (infeasible) linear program in (11). The influence of
non-binding moments is moderated in two ways. First, inequalities corresponding to the
largest values of D̂

−1/2
j,J PJmj(w, θ̂J) can possibly be eliminated. Second, the shift term

rJ(D̂
−1/2
s,J PJms(z, θ̂J))+ is included in the remaining system. Such a term is used in one of

the moment selection procedures considered in Andrews and Soares (2010). For the nearly
binding moments, this shift term should be close to zero, which will in turn cause these
moments to more likely bind in the simulations and have an impact on the simulated
distribution. On the other hand for moments which have larger positive values when
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evaluated at the extreme point, the shift term will tend to be more strongly positive, so
these moments will have little influence on the simulated distribution. The scaling rJ
ensures that the simulated distribution is, if anything, a conservative approximation to
the distribution obtained from Theorem 1.

Let q∗
J

denote the αth quantile of the τ ∗1,J distribution conditional on the data, so
Pr∗(τ ∗1,J ≤ q∗

J
) = α. This quantile can be used to provide conservative inference on θ1,F

by the following result.

Theorem 2 Suppose Assumptions A1-A9 hold. Then,

lim infJ−→∞ inf
F∈F

Pr
(√

J(θ̂1,J − θ1,F ) ≤ q∗J

)
≥ α. (13)

�

The proof of Theorem 2 is obtained by working along a sequence of distributions FJ
in F that attain the limit infimum in (13), and is provided in Appendix 6.2.

As noted above, we focus on distributions where the extreme point of interest is well
identified, and, in particular, narrow our focus to Θ0,F which have non-empty interior.
To the extent that this restriction reduces the class of distributions considered relative
to moment inequality inference papers like Andrews and Guggenberger (2009, 2010),
Andrews and Soares (2010), Romano and Shaikh (2008), the coverage result in Theorem 2
is weaker than in these other papers. That is, our inference method may have coverage
uniform over a smaller class of distributions. Computation of confidence intervals is also
distinctly different here than in the papers mentioned above. All that’s required here are
stochastic linear program solutions, which are quite cheap computationally.

The result in Theorem 2 can be used to provide one-sided α-level confidence intervals
for θ1,F , [θ̂1,J − q∗J/

√
J,∞). By combining this result with the analogous interval for the

“upper” extreme point θ̄1,F = arg maxθ̃∈Θ0,F
θ̃1, one can obtain a confidence interval for

the first dimension of the identified set [θ1,F , θ̄1,F ]. Such a confidence interval can also
serve as a confidence interval for the first dimension of the true parameter θ0, introduced
in section 2.2. Imbens and Manski (2004) point out that confidence intervals for the
identified set are conservative for interior true points, see also Guggenberger, Hahn, and
Kim (2008). Additionally, if we had considered joint estimation of the two endpoints, we
could have obtained a possibly shorter confidence interval by accounting for the correlation
in estimation. We do not pursue these improvements here.

4 An Empirical Example and Monte Carlo Analogue.

Our empirical example is based on the work of Ishii (2004) who studies the welfare im-
plications of alternative market designs for ATM networks (with particular interest in
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designs that do not allow discriminatory surcharges). Her analysis requires estimates of
the cost of installing and operating ATMs; estimates we provide here.

The framework for analysis is a two period model with simultaneous moves in each
period. In the first period each bank chooses a number of ATMs to maximize its expected
profits given its perceptions on the number of ATMs likely to be chosen by its competitors.
In the second period interest rates are set conditional on the ATM networks in existence,
and consumers choose banks, make deposits, and use ATM’s. The second period game is
analyzed in Ishii (2004). A careful empirical analysis of the demand system for banking
services and an interest rate setting equation enables Ishii (2004) to estimate the param-
eters needed to compute what the earnings of each bank would have been conditional
on alternative choices of ATM networks and to provide an algorithm for doing so. Note
that this requires calculating the equilibrium interest rates that would prevail were the
alternative possible networks in place.16

We now use Ishii’s results on the second stage of the game to analyze its first stage;
the choice of the number of ATM’s. Since the result of these choices is a network, multiple
equilibria are likely (for an analysis of the multiple equilibria aspect, see Lee and Pakes
2009). As a result, only the necessary conditions for an equilibrium are available for use
in estimation. These conditions form the basis for a multiple agent ordered choice model,
and we use the moment inequalities for that model outlined in Examples 3 and 4 of section
2 for inference.

Section 4.1 reviews the model and section 4.2 presents the empirical results. In section
4.3 we build Monte Carlo data sets based on the characteristics of Ishii’s data, and use
them to compare alternative procedures for inference on the cost parameters.

4.1 The Model and Its Moment Inequalities.

We begin with a brief review of the basic features of the model. Each firm chooses the
number of its ATMs, or a di ∈ D ⊂ Z+ (the non-negative integers). The difference in
profits from the counterfactual of installing d′(di) instead of di machines is the sum of
a revenue difference and a cost difference. The revenue difference, taken directly from
Ishii’s (2004) results, is denoted by ∆R(di, d

′(di), d−i, z
o
i ). The cost difference is (d′(di)−

di)(θ0 + ηi), where {ηi}i are firm specific marginal cost differences known to the firms but
not to the econometrician, and θ0 is the mean marginal cost (so E(ηi) = 0). Thus the
difference in profits from installing and operating di rather than d′(di) ATMs is

∆π(di, d
′(di),d−i, zi) = ∆R(di, d

′(di),d−i, z
o
i )− (di − d′(di))(θ0 + ηi) + ν1,i,di,d′(di),

16The banks’ earnings are calculated as the earnings from the credit instruments funded by the deposits
minus the costs of the deposits (including interest costs) plus the fees associated with ATM transactions.
The ATM fee revenue is generated when non-customers use a bank’s ATMs, and revenue is both generated
and paid out when customers use a rival’s ATMs. Note also that to calculate banks’ earnings under
alternative ATM networks one must either assume a unique interest rate setting equilibrium, or common
knowledge about which equilibrium is selected.

27



where, as in section 2, E[ν1,i,d,d′|Ji] = 0 (the ν1,i,d,d′ result from expectational and/or cond-
tional mean zero specification or measurement error). The assumption that ν2,i,d,d′ =
−ηi(d − d′) mimics the standard ordered choice assumption for the impact of the unob-
servable known to the agent but not to the econometrician. From Example 3, note that
∆r(di, d

′, d−i, z
o
i , θ) = ∆R(di, d

′, d−i, z
o
i ) −(di − d′)θ.

Two necessary conditions for Assumption 1 are that the expected increment to returns
from the last ATM the bank installed (d′(di) = di − 1) were greater than its cost of an
ATM, while the expected increment to returns from adding one ATM more than the
number actually installed ( d′(di) = di + 1) was less than that cost.17 So,

0 ≤ E

[(
∆π(di,di − 1,d−i, zi)
∆π(di,di + 1,d−i, zi)

) ∣∣∣∣Ji] =

(
E[∆R(di,di − 1,d−i, z

o
i )|Ji]− θ0 − ηi

E[∆R(di,di + 1,d−i, z
o
i )|Ji] + θ0 + ηi

)
=

(
E[∆r(di,di − 1,d−i, z

o
i , θ0)|Ji]− ηi

E[∆r(di,di + 1,d−i, z
o
i , θ0)|Ji] + ηi

)
Now, adopt notation for the vector of differences, ∆ri(θ)

′ ≡ [∆r(di,di− 1,d−i, z
o
i , θ),

∆r(di,di + 1,d−i, z
o
i , θ)] with E(ηi) = 0. More generally, suppose there are “instruments”

xi ∈ Ji with E[ηi|xi] = 0. If h(·) is a vector of nonnegative functions while ⊗ denotes the
Kronecker product, moments formed as

m(w, θ) =
1

n

∑
i

∆ri(θ)⊗ h(xi)

have non-negative expectations, and can be used in estimation and inference as discussed
in the last section. Notice that the moment above is for one market. As in section 3, we
can add a j superscript to index the markets.

The simplicity of the model makes this a particularly good example for illustrating
how inequality analysis works. Consider first using only the moment conditions generated
by h(xi) ≡ 1, i.e. m(wj, θ) = n−1

∑
i ∆rji(θ). Then, temporarily assuming all banks have

at least on ATM, the moment condition from the profitability difference that arises as a
result of decreasing the value of di, or the change “to the left”, is (nj)−1

∑
i[∆R(dji , d

j
i −

1, dj−i, z
o
i
j)−θ] ≡ ∆Rj

L−θ, while the moment condition from the profit change that would

result from increasing the value of dji , or the change to the right, is (nj)−1
∑

i[∆R(dji , d
j
i +

1, dj−i, z
o
i
j) + θ] ≡ ∆Rj

R + θ. Averaging across markets then yields ∆RL = PJ∆Rj
L and

∆RR = PJ∆Rj
R. Since (∆RL,∆RR) are the average changes in revenue resulting from

first an increase and then a decrease in the number of ATM’s, on average we expect ∆RL

to be positive and greater than the average cost of an ATM, while ∆RR should be negative
with absolute value less than that cost. Assuming this to be the case, our estimate of an
interval that covers θ0 is

Θ̂J = {θ : −∆RR ≤ θ ≤ ∆RL}.
17These conditions will also be sufficient if the expectation of π(·) is (the discrete analogue of) concave

in di for all values of d−i. We can not check this condition without specifying information sets etc., but
the realizations of profits evaluated at the estimated value of θ were concave in di for almost all banks.
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If we add instruments, each new instrument produces a pair of additional inequalities.
That is, if k indexes instruments and E(ηi|xk,i) = 0, then

0 ≤ E[(∆R(di,di−1,d−i, z
o
i )−θ0)h(xk,i)|Ji], 0 ≤ E[(∆R(di,di+1,d−i, z

o
i )+θ0)h(xk,i)|Ji].

Again, including the market index superscript, we compute

∆Rk,L =
1
J

∑
j

1
nj

∑
i(∆R(dji , d

j
i − 1, dj−i, z

o
i
j))h(xjk,i)

1
J

∑
j

1
n

∑
i h(xjk,i)

,

∆Rk,R =
1
J

∑
j

1
nj

∑
i(∆R(dji , d

j
i + 1, dj−i, z

o
i
j))h(xjk,i)

1
J

∑
j

1
nj

∑
i h(xjk,i)

which also estimate bounds for θ0 from above and below, respectively. The identified set
then becomes

Θ̂J = [maxk{−∆Rk,R}, mink{∆Rk,L}],

when this interval is well defined. So Θ̂J becomes shorter (weakly) as the number of
instruments increases. Now we expect some of the bounds not to bind, so our estimate
of the lower bound is the greatest lower bound while our estimate of the upper bound
becomes the least upper bound.

The greatest lower bound is the maximum of a finite number of moments each of
which will, in finite samples, distribute approximately normally about a separate mean,
say θk ≤ θ0. So when we use this max as our estimator in small samples we should expect
a positive bias in the greatest lower bound (the expectation of the maximum of normal
random variables is greater than the maximum of the expectations), and the bias should
be (weakly) increasing in the number of inequalities. Analogously, since the estimate of
the upper bound is a minimum, we should expect a small sample negative bias in it. As a
result, even if the model is correctly specified, the estimated lower bound can be greater
than the estimated upper bound, in which case the estimation criterion from the previous
section will choose Θ̂J to be a singleton. The other reason why we may obtain a point
estimate is that the model is misspecifed; i.e. there is no value of θ which satisfies all the
population moment restrictions.18

Boundaries. For those agents with di = 0, di−1 is not a feasible choice and ∆R(di, di−
1, ·) can not be calculated. As noted in Examples 3 if, in cases like this, we base averages
only on those observations with di ≥ 1 we introduce a selection problem; those observa-
tions with di = 0 may have disproportionately high costs of aquiring an ATM. In Example
4 of section 2 we showed that we can correct for this selection provided the distribution for
the ηi is symmetric. In our example, a small fraction, just under 5.5%, of the observations
have di = 0. We present results both with the symmetry assumption and the associated
correction as well as without this correction.

18Hirano and Porter (2009) discuss implications of the bias from taking the minimum and maximum
as endpoint estimates.
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4.2 Empirical Results

The data set consists of a cross-section of all banks and thrifts in Massachusetts metropoli-
tan statistical areas in 2002. A market is defined as a primary metropolitan statistical
area, and the sample is small: it contains a total of 291 banks in 10 markets.19 The
number of banks varies quite a bit across markets (from 8 in the smallest market to 148
in Boston), as does the number of distinct ATM locations per bank (which averages 10.1
and has a standard deviation of 40.1). The estimation routine is as described above.

Table 1 contains the inequality estimators of the cost parameter. The first two rows
provide the results when only a constant term is used as an instrument; the first row uses
only those observations with d ≥ 1 to calculate the upper bound, while the second row
adds in the observations with d = 0 and uses the symmetry assumption to correct for the
fact that banks which decided not to invest in ATM’s may have had higher than average
ATM related costs (see Example 4 in section 2). The lower bound of the estimates of
the identified set from the two rows have to be identical, but we would expect the upper
bound from the estimates that correct for selection to be higher than those that do not.
This is what we find, though the difference in upper bounds is relatively small (25,283
vs 26,644), about equal in percentage terms to the fraction of observations with di = 0.
Even after the correction the estimate of the identified interval is quite short ([24,452,
26,444]), but its confidence interval, using the method described in the previous section,
is larger ([20,472, 30,402]) .

Rows 3 and 4 repeat the exercise in Rows 1 and 2 after expanding h(x) to include the
constant term, the market population, the number of banks in the market, and the number
of branches of the bank (its mean is 6 and standard deviation is 15). Θ̂J is then a singleton
and its value is about equal to the lower bound of the confidence intervals obtained using
only the constant term as an instrument. The fact that we obtained a point estimate
reflects that there is no parameter value such that all the sample moment inequalities are
satisfied. This could be due to the small sample bias discussed above or a misspecification;
say a violation of Assumption 3 due to correlation between the instruments and η. When
we formally tested for misspecification, we found that we rejected the null.

There is at least one more source of information in the data. Currently, we are only
using profit differences based on the counterfactuals d′ = di ± 1. We also try including
profit differences based on counterfactuals d′ = di ± 2, adding the rows [∆r(di,di −
2,d−i, z

o
i , θ), ∆r(di,di+2,d−i, z

o
i , θ)]

′ to the vector ∆ri(θ). If the expected profit function
is (the discrete analogue of) concave in d, then adding the extra moments should not
change the identified interval; but it may change the confidence interval associated with
it. We note that the fraction of banks with di < 2 is much larger than the fraction
with di < 1(25.5% vs 5.5%), so the truncation issue corresponding to the counterfactual
d′ = di − 2 is potentially worse. However, if the interval itself is set by the d′ = di − 1

19The data set is described in Ishii (2004), and is carefully put together from a variety of sources includ-
ing the Summary of Deposits, the Call and Thrift Financial Reports, the 2000 Census, the Massachusetts
Division of Banks, and various industry publications.
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Table 1: Inequality Method, ATM Costs∗

θJ 95% CI for θ
LB UB

1. h(x) ≡ 1, d ≥ 1 for u.b. θ̂ [24,452, 25,283] 20,544 29,006
2. h(x) ≡ 1, d ≥ 0 [24,452, 26,444] 20,472 30,402
h(x) =(1,pop, # Banks in Mkt, # Branches of Bank)

3. d ≥ 1 for u.b. θ̂ 19,264 16,130 23,283
4. d ≥ 0 20,273 17,349 24,535

{d : |d− di| = 1, 2}, h(x) = 1

5.{d : |d− di| = 1, 2}; d ≥ 1 for u.b. θ̂ [24,452, 25,283] 20,691 28,738
6.{d : |d− di| = 1, 2}; d ≥ 0 [24,452, 26,644] 20,736 29,897

First Order Conditions (analogue of Hansen and Singleton,1982)

7. h(x)=1 28,528 23,929 33,126
8. h(x)=(1,pop, # Banks in Mkt, # Branches of Bank) 16,039 11,105 20,262

∗ There are 291 banks in 10 markets. The first order condition estimator requires deriva-
tives with respect to interest rate movements induced by the increment in the number of
ATMs. We used two-sided numerical derivatives of the first order conditions for a Nash
equilibria for interest rates.

moment, the greater truncation for d′ = di − 2 should not impact our interval estimate.
Rows 5 and 6 present the results from interacting these four profit differences with a
constant term. The interval estimates are in fact unchanged by this addition. This
implies that when we add the moments formed from the counterfactuals d′ = di ± 2
the confidence intervals can not become larger; in fact they shrink by about a thousand
dollars.

Alternative Models and Estimation Methods There are at least two alternative
econometric models that have been used in analogous empirical problems; ordered choice
models, and models which base estimation on first order conditions. In our notation, the
ordered choice model sets ν1 ≡ 0, assumes a particular distribution for ν2 conditional on
the other determinants of profits, and forms the likelihood of the observed d. For this
to be correct in an interacting agent model there must also be a unique equilibrium and
no correlation among the ηi of the firms in a market. The first order condition estimator
ignores the discrete nature of our control, and then goes to the opposite extreme: it
assumes that ν2 ≡ 0 (there is no structural error). It does not restrict the distribution of
the remaining (ν1) disturbance nor does it require a unique equilibrium.
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The ordered choice model can not be estimated with our data. The issue is that for
some of our observations the revenue “difference from the left” is less than the revenue
“difference to the right”. Then there is no value of θ + ηi that rationalizes the observed
choice: if it was profitable to purchase the last ATM, the model says that it must have
been profitable to purchase the next ATM (the log likelihood is minus infinity for any θ
and any distribution for the ηi). If there is either some uncertainty when decisions are
made or measurement error in revenues, we should not be surprised to find an agent whose
observed revenue “difference from the left” is less than that “difference to the right,” even
if all agents acted optimally.20

Assuming the control to be continuous and that agents act optimally, the first order
condition for agents with d > 0 must have an expectation of zero conditional on their
information sets. Maintaining the continuous control assumption and provided xi ∈ Ji, a
consistent estimator of θ0 can be found by minimizing∥∥∥∥ 1

n

∑
i

{di > 0}

(
∂R(d, d−i, z

o
i )

∂d

∣∣∣∣
d=di

− θ

)
× h(xi)

∥∥∥∥
with respect to θ. Given the discrete nature of the ATM application, we approximate the
first order condition by replacing the derivative in the above equation with one half of
the sum of the change in profits from first increasing and then decreasing the observed
number of ATM’s by one. So the simplest first order condition approximation adds the
two moment inequalites used in row 1 together for those observations with d ≥ 1, divides
by two, and imposes that on average the result should converge to zero at θ = θ0. The
estimates are presented in rows 9 and 10 of the table. Again the estimates that use
the added instruments give different results than those that just use the constant term,
so we focus on the latter. The first order condition point estimate is outside of the
interval estimate obtained from the inequality estimators (by 15 to 20%), but about equal
to the upper bound of the confidence interval obtained from the moment inequalities.
Interestingly the confidence interval from the first order condition estimator is only a bit
shorter than that from the moment inequalities; the latter uses inequalities, the former
uses equalities, but the latter uses more inequalities than the former uses equalities.

4.3 Monte Carlo

We focus on the performance of alternative inference methods for the upper and lower
bounds of the parameters, corresponding to single dimensional confidence intervals that
are likely to be reported in empirical work. By “performance” we mean both distance to
the true values of these bounds and coverage.

20Of course one could modify the simple ordered choice model and avoid the possibility of events that
the model assigns zero probability to. For example, one could specify a particular form for measurement
error and then construct a likelihood by numerical integration or simulation. This, however, would require
more modelling assumptions and a more complicated estimation algorithm.
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We want to use the Monte Carlo to investigate a multi-dimensional parameter model
so we modify Ishii’s (2004) model to allow marginal cost to be a function of the number of
ATM’s bought. In the Monte Carlo the cost of the dth ATM for firm i is θ1 +θ2(d−1)+ηi.
The definiton of ∆ri(θ) is changed accordingly

∆ri(θ) =

(
∆r(di,di − 1,d−i, z

o
i , θ0)

∆r(di,di + 1,d−i, z
o
i , θ0)

)
=

(
R(di,d−i, z

o
i )−R(di − 1,d−i, z

o
i )− θ1 − θ2(di − 1)

R(di,d−i, z
o
i )−R(di + 1,d−i, z

o
i ) + θ1 + θ2di

)
,

and Assumptions 1 and 2 yield

0 ≤ E

[(
∆π(di,di − 1,d−i, zi)
∆π(di,di + 1,d−i, zi)

) ∣∣∣∣Ji] =

(
E[∆r(di,di − 1,d−i, z

o
i , θ0)|Ji]− ηi

E[∆r(di,di + 1,d−i, z
o
i , θ0)|Ji] + ηi

)
.

Setting N =
∑

j n
j, the equation N−1

∑
i,j ∆rji(θ) = 0 produces two lines in (θ1, θ2)

space. One has slope [N−1
∑

i,j d
j
i ]
−1 and, using the sample moment inequality, bounds

acceptable (θ1, θ2) combinations from below. The other has slope [N−1
∑

i,j(d
j
i − 1)]−1

and bounds them from above. Θ̂J is the intersection of these two half-spaces. Each time
we add an instrument we add two additional moments to the estimation inequalities.
These inequalities generate further half-spaces with boundaries given by the zeroes of the
moments. One boundary line has slope [N−1

∑
i,j h(xji )]/[N

−1
∑

i,j d
j
ih(xji )] and the other

has slope [N−1
∑

i,j h(xji )]/[N
−1
∑

i,j(d
j
i − 1)h(xji )] The estimated identified set Θ̂J then

becomes the intersection of a larger set of half-spaces. If that intersection is the null set
we obtain a point estimate of Θ0.

Constructing the Monte Carlo Data Sets. We begin each Monte Carlo data set
with a random drawing of firms from Ishii’s data set. For each firm, the Monte Carlo
data set uses the observables variables (other than di) associated with each firm that is
drawn.21 An initial di for each firm is also obtained in this way but then is adjusted,
as described below, to insure that

∑
i ηidi < 0, as we might expect if di were chosen

optimally.
We use two different algorithms to adjust the di and this produces two different data

sets. In one we insure that there are no observations with di = 0. Then we can compute
the change in profits when we decrease or increase the number of ATMs by one for
all observations. In the other we allow observations with di = 0, so there are some
observations for which we can not compute the change in profits when we decrease di. To
correct for the selection problem this induces in moments that involve profit changes from
decreasing di we use the symmetry of the ηi distribution and the algorithm described in
Example 4 of section 2 for constructing our moment inequalities.

In both data sets the “true” values of (θ1, θ2) are set equal to (14, 846; 1, 312.5) and
four separate unobservables are assigned to each observation. The unobservables are a

21This includes Ishii’s data on R(d, d−i, zi) and an xi vector consisting of the number of branches of
bank i, the population of the city it operates in, and the total number of banks in that city.

33



component of marginal cost (ηi, which determines ν2,i), and three separate “shocks” which
combine to form ν1,i. The components of ν1,i consist of a shock to the increment in returns
(to ∆R(·)) which has the same effect on the increment in going from di to di+1 as it does
to the increment in going from di−1 to di, and separate shocks for each of the increments
that are independent of one another and of the common shock.22

The procedure for adjusting di differed for the truncated and non-truncated case. For
both we begin with the draw ηi on the cost shock. If the draw was less than one standard
deviation from the mean we left di alone. If it was positive (negative) and between one and
two standard deviations from the mean we decreased (increased) di by one, and if it was
positive (negative) and more than two standard deviations from the mean we decreased
(increased) di by two. In constructing the sample with no observations at di = 0, after
doing the procedure described above we changed all di that were less than one to one.
For the sample that allowed for observations with di = 0, at the end we set all di that
were less than or equal to zero equal to zero.

Inference Methods. We use the bounds estimator introduced in Section 3 along with
the simulation-based inference method introduced there. Below we refer to this inference
method as the ”interval inference method.” In addition, we consider three other methods
of constructing confidence sets which we will refer to collectively as “grid methods”. Each
method has a point coverage and a set coverage version. These methods fall in the class
of inference procedures developed in Andrews and Soares (2010). Each method compares
a sample criterion function to a simulated critical value to determine the confidence set.
We do not vary the criterion function, see (9), across methods; only the critical value
simulation changes. The first method, introduced in Chernozhukov et. al (2007), simulates
each moment after re-centering at zero. The second method selects a subset of “nearly
binding” moments to re-center and then simulates. The last method re-centers based on
the sample moments as in (12). Details of the confidence interval construction methods
follow.

For all but the bounds inference method, we begin by defining a grid of points in
(θ1, θ2) space; the points that will be considered for inclusion in the confidence sets. Both
the boundaries for the grid and the fineness of its partition will typically be determined
empirically and require some prior analysis. Since we have the advantage of knowing the
true parameter values and will not be concerned with the computational costs of proce-

22All of the unobservables are random draws from a normal distribution with mean zero. The ηi shock
was assigned a standard error that was 10% of the median of the cross-sectional distribution of θ1 + θ2di.
To obtain the standard error of the ν1,i components that were independent across increments we took one
half of the cross-sectional variance of the difference in the two increments, and then took one half of the
associated standard error. To obtain the standard error of the ν1,i component that was common to the
two increments we took one half of the cross sectional variance in the sum of the two increments minus
the variance in both the cost shock and the idiosyncratic shocks to the increment in returns, and then
took one half of the standard error of the resultant variance. So about half of the observed cross-sectional
variance in profit increments is being attributed to random variables that were not known when decisions
were made.
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dures for defining these points, we simply set these details up front. The boundaries were
set as zero to two times the parameter value in each dimension, and within the rectangle
formed from these boundaries we placed over 20,000 grid points. The distance between
the grid points was made smaller for points that were close to, or actually members of,
the true identified set.23 We refer to the separate grid points as {θg}ngg=1.

The grid methods treat the criterion function as a test statistic. Then compare the
test statistic evaluated at each grid point to a critical value to determine a confidence
set. Let l index the Monte Carlo data sets, and consider the criterion function from (9),

Ql(θ) = ‖
(

(D̂l
J)−1/2PlJm(wl, θ)

)
−
‖. To form an α-level pointwise confidence set, critical

values, cl,α(θ), are simulated in three different ways at each grid point, θg. Then the
pointwise confidence set is defined as those θg where Ql(θ

g) ≤ cl,α(θg).
To compute cl,α(θg), an approximation to the distribution of the criterion function un-

der the null (θg = θ0) is simulated by three methods. In the first method, the distribution
of the sample moments in the expression for Ql(θ

g) is approximated by a normal with
mean zero and variance given by the sample moment variance estimated using the lth

Monte Carlo data set. These Gaussian simulations generate a corresponding approximate
distribution for Ql(θ

g) (under the null). The 1−α quantile of this distribution is defined as
the critical value cl,α(θg). Two other methods are used to generate critical values through
variants of the first method which take account of the moments that are binding or close
to binding. The second method (“moment selection”) selects only the nearly binding
moments at each θg and simulates this subset as in the first method. The kth moment
is dropped in the simulation at θg if

√
JPlJmk(w

l, θg)/σ̂(mk(w
l, θg)) ≥

√
2 ln(ln(J)). The

third method uses “moment shifting” similar to the procedure proposed in section 3. All
moments are simulated, as in the first method, but rather than centering the normal distri-

bution at zero, the mean of the normal is set to
(√

J(D̂l
J)−1/2PlJm(wl, θg)/

√
2 ln(ln(J))

)
+

.

This shift moderates the influence of highly positive moments at θg in the simulated dis-
tribution.

To form a setwise confidence set (for coverage of Θ0), the same criterion function is
used, but a critical value, c̄l,α that does not depend on θg is obtained through simulation.
For a given Monte Carlo data set, we obtain a conservative estimate of the identified set,
Θ̂l(ε)24. To obtain Θ̂l(ε), we first find the minimum value of the criterion Ql(θ) over all θ.

23We first divided each dimension of the rectangle into one hundred equally spaced intervals and took
the Cartesian product of their endpoints to produce 10,000 points. We then looked over the estimated
identified sets from the samples of firms we drew, and added another 10,000 points obtained in the same
way but using as endpoints the fifth percentile of the lower bound in a given dimension and the ninety
fifth percentile of the upper bound in the same dimension as the endpoints. Finally for samples for which
our estimator was a point, we added that point, and for samples where the estimator was a set too small
to include any of the points in our grid, we added a midpoint from that set to our set of points. This
insured that the identified set contained at least one point for each sample, and therefore insured an
ability to compute coverage for each sample.

24We used ε =
√
F−1
χ2
m

(1− α) + (lnn) as suggested by CHT. The values of ε for the four and eight

moment models presented below were 9.49 and 15.51, respectively.
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Then, Θ̂l(ε) consists of the parameter grid points where the criterion function is within ε
of the minimum, i.e. Ql(θ

g) ≤ (minθQl(θ)) + ε. This set estimate Θ̂l(ε) is used for the
setwise versions of all three grid methods. Each method above describes a way to simulate
an approximation to the criterion function at a given value of θ. Let Q∗l,s(θ) denote the sth

simulation draw from the simulation distribution for any one of the methods. Fixing s,
form supθ∈Θ̂l(ε) Q

∗
l,s(θ). Then the critical value c̄l,α is the 1− α quantile of this simulated

distribution. Each method of simulating moments produces a method to simulate Q∗l,s(θ),
which in turn generates a critical value. These critical values determine the confidence
set as the θg such that Ql(θ

g) ≤ c̄l,α.
For each inference method, we computed: (i) the average of the intervals obtained by

projecting the confidence set onto each axis and taking its endpoints, and (ii) empirical
coverage rates for; the point θ0, each θ ∈ Θ0, the set Θ0, and the interval formed by the
extreme points of the identified set (θ1, θ1) and (θ2, θ2).

The different inference methods differ in their computational burden. The method
of Section 3 begins by estimating the extreme points of the identified set. When the
inequalities are linear (as in our example), this only requires checking the vertices of
a simplex (see Dickstein and Morales, in process, for details). In non-linear problems
a search algorithm would be employed to reduce the number of θ values at which the
criterion function needs to be evaluated while searching for the extreme points. Once the
extreme points are found, the original criterion function is used to obtain the correlation
and Jacobian term estimates (Ω̂J and Γ̂J). In the inference method’s simulations, the
criterion function is never re-evaluated. For the grid methods that generate confidence
sets for the point θ0 we need to evaluate the criterion function at every grid point. The
methods that generate confidence sets for the Θ0 have a first stage which estimates the
identified set, and a second stage which evaluates the criterion at all grid points in the
estimate of the identified set. In our simple example it is not difficult to evaluate the
criterion at different values of θ. However, in examples that require the computation of a
fixed point every time the criterion function is evaluated at a different θ, the computational
burden will rise with (i) the number of grid points that need to be evaluated, and (ii) the
dimensionality of the fixed point. As either of these grow, and they typically both grow
rapidly with the complexity of the problem being analyzed, the grid methods will become
increasingly computationally burdensome.

Monte Carlo Results. All Monte Carlo results are based on one thousand samples
of eight hundred and seventy three firms each. The simulated critical values for the
confidence sets and the simulated distribution for the interval estimator were based on
four hundred simulation draws for each sample. We begin with two and then increase the
number of instruments. The two instruments are a constant and the number of markets
the bank operates in. They generate four moments; just identifying the upper and lower
bounds of each parameter. Nominal coverage for all our experiments was 95%.

The interval inference method in section 3 generates a confidence interval for each
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dimension of the parameter. The grid methods provide confidence sets which we project
onto each dimension. Table 2 provides the average interval endpoints in each dimension
for each of the methods for both the non-truncated and the truncated samples. Table 2
also shows the empirical coverage of the intervals given by the upper and lower extreme
points of the identified set in each dimension. The coverage numbers show that all the grid
coverage methods provide conservative inference for the intervals. The grid methods were
designed to provide coverage of either the point θ0 or the set Θ0, so the finding that they
provide conservative coverage for intervals is not a sign of poor performance. All methods
designed to cover the point θ0 also generated conservative coverage of that point, but the
methods designed for point coverage are designed to provide coverage for any value of
θ ∈ Θ0, so it may be more appropriate to judge their coverage by the minimum coverage
over all points in the true Θ0. The minimal coverage of the point coverage methods over
all θ ∈ Θ0 was more in line with the nominal coverage, ranging from 93.2 to 97.2%.

The coverage of the interval inference method developed in Section 3 is close to the
nominal coverage for [θ1, θ1] but it under-covers [θ2, θ2]. Taking a closer look at the
nature of the under-coverage, we found that generally in the Monte Carlo samples where
the confidence interval did not cover, the confidence interval endpoints were barely inside
the true values of the endpoints. To evaluate the likely impact of the under-coverage we:
(i) moved the two endpoints of the actual interval back in equal percentages until the
simulated coverage equaled 95% and then reported the required percentage reduction,
and (ii) calculated the minimum of the pointwise coverage of for any value of θj that is a
component of some θ ∈ Θ0 (for j = 1, 2). Over the four cases; (i) the maximum perentage
reduction of the interval needed was .65%, and (ii) the minimum coverage for any point
in the set was 95.3%.

This brings us to the most striking result in the table: the confidence interval endpoints
generated by the interval inference method are much closer to the true endpoints than
those from the other procedures. In the non-truncated sample the lengths of the average
intervals in the θ1 and θ2 dimensions generated by the interval estimates were [4,214; 251].
Even if we only consider the confidence intervals designed to cover the point θ0 the grid
methods generated lengths which ranged from [20,184; 1,803] to [10,891; 929]. That is,
the average length of the intervals generated by the projections from the grid methods
were 2.5 to 5 times (for θ1) and 3.5 to 7 times (for θ2) the average length of the interval
obtained from the interval method. Interestingly the shortest interval obtained from any
of the grid methods is always that produced by the inference method that combines
the same shifted mean adjustment the interval method makes with the grid inference
procedure. The results from the truncated sample are similar in these respects. Indeed,
the only notable difference for the truncated sample is that the truncation together with
our correction for it lead to a noticeable increase in the endpoint corresponding to θ1 (but
not θ2).

Figure 1, which plots the average value of the sample criterion function evaluated at
different θ values (averaged over Monte Carlo data sets), helps to see how these differences
can arise. The minimum of the average criterion function is 1.00 and it occurs at θ ≈ θ0.
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Table 2: Average Intervals and Coverage: Four Moments.

Inference Method [θ1; θ1] % Cover [θ2; θ2] % Cover

Non-Truncated Sample
1. True Intervals [13,876;15,688] [1,266;1,366]

2. Interval Inference [12,754;16,968] 96.1 [1,190;1,441] 93.7
% ↓ in interval for 95% Cov. & Min. Cov. of θ ∈ Θ0(∗) 0 & 98.5% .125 & 96.5%
3. Point Inference [2,081;22,665] 100 [633;2,436] 100
4. Set Inference [2,042;22,665] 100 [626;2,441] 100
5. Point with Moment Selection [2,088;22,666] 100 [633;2,436] 100
6. Set with Moment Selection [2,042;22,749] 100 [626;2,441] 100
7. Point with Shifted Mean [8,339;19,230] 99.8 [932;1,860] 100
8. Set with Shifted Mean [2,349;22,268] 100 [668;2,410] 100

Truncated Sample
9.True Intervals [13,538;18,095] [1,169;1,405]

10. Interval Inference [12,409;19,268] 92.9 [1,065;1,500] 89.4
% ↓ in interval for 95% Cov. & Min cov for θ ∈ Θ0.(∗) .5 & 96.5% .65 & 95.3%
11. Point Inference [1,623;30,443] 100 [147;2,567] 100
12. Set Inference [1,552;30,529] 100 [143;2,575] 100
13. Point with Moment Selection [1,165;31,314] 100 [98;2,623] 100
14. Set with Moment Selection [719;32,058] 100 [70;2,672] 100
15. Point with Shifted Mean [7,938;23,802] 100 [633;1,949] 99.9
16. Set with Shifted Mean [2,186;29,520] 100 [201;2,504] 100

(∗)Percentage decrease in endpoints of intervals to obtain 95% coverage, and the minimum
covarage for any value of the component of the parameter vector that lies inside the identified
set.
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The criterion function increases rather rapidly as we move one component of θ away from
θ0 holding the other component fixed. However there is a set of (θ1, θ2) values that define
a diagonal oblong-shaped area at which the criterion function increases only slowly as
we move away from θ0. It is this set of parameter values that are generally below the
critical values generated by the grid method procedures and hence form their confidence
sets. When these sets are projected onto each dimension, the resulting rectangle covers
a much larger area then the sets themselves. Of course in this two-dimensional case, the
applied researcher could easily communicate which points are in the confidence set, and
the rectangle might never be needed; but, as noted, this gets much harder for higher
dimensional problems.

The confidence sets for the grid methods rely on the estimate of a covariance matrix
which depends on θ. These methods compare the value of the objective function at
different θ, a value which depends on the estimated variances at that θ, to a critical value
for that function obtained from simulating data from a mean zero normal distribution with
a correlation matrix which depends on θ. To obtain the critical value of the objective
function we drew one set of normal draws and used then used the Cholesky transform of
the estimated correlation matrix at that θ to find the appropriate critical value. In the
interval method only the covariance matrix at the endpoints of the estimated intervals
and the derivative matrix at those points are used to determine whether any θ is in
the confidence set. So the grid methods will be sensitive to the variance-covariance of
the objective function at points outside the estimated identified set, while the interval
estimate will be sensitive to the estimate of the derivative matrix at the endpoints of the
estimated intervals. In our case the inequalities are derived from discrete analogues to
first order conditions and, at least in the non-truncated case, are linear in the parameter
vector (so the derivative matrix does not involve estimated parameters).

There is one other aspect of this example we pursued. All the data sets drawn for
our Monte Carlo runs yielded set estimates of both parameters. Our experience in using
moment inequalities in applied work is that point estimates do occur; even in cases in
which one can accept the null that all the moment inequalities are satisfied at some θ.
To explore the properties of the various estimators in situations where point estimates
are more likely to arise we added moments and then recomputed the estimators. First
we added two moments which interact our unit differences in the number of ATM bought
with the number of branches the bank has in all markets the bank operates in. This
generated only a modest number of samples for which there was a point estimate (1.7%),
but it shortened the true intervals dramatically. In particular, the new θ1 interval was one
third of its prior length, and the new θ2 interval was forty percent of its previous length.
Next we added two interactions with the number of branches the bank has in the given
market. These additional moments both increased the number of samples that generated
point estimates sharply (to 37.1%) and further reduced the true intervals (particularly for
the θ2 parameter). Table 3 presents a summary of the results.25

25We omit the results for the truncated sample and for the grid methods designed to provide coverage
for sets (rather than points) because their relationship to the results Table 3 mimics the relationship
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Looking first to the six moment case, all estimators cover the true intervals with more
than the nominal coverage rates. The lengths of the confidence intervals estimated by the
grid estimators relative to that of the interval estimator have all decreased substantially.
Again the grid method which uses a shifted mean does noticeably better than the other
grid methods. Now the lengths of the confidence intervals it generates for the θ1 parameter
are comparable to those generated by the interval estimator (the mean length is shorter
and the median is longer than those of the interval method), but the interval estimator
still generates shorter confidence intervals for the θ2 parameter.

When we move to the eight moment case the results change rather sharply. This is a
case which is quite demanding of the interval estimator; the length of the true θ2 interval
is only about 1% of its value, so we are nearly point identified in that dimension in the
population we are drawing from. Accordingly the coverage of the interval estimator falls
dramatically, to 64% for the estimator for the θ1 interval and 70% for θ2. Looking closer
at the data, it is clear that the under-coverage was a result of the fact that many of the
Monte Carlo data sets generated point estimators. When we only use the Monte Carlo
data sets that generated estimated sets the coverage is above 95%. Just as before, the
grid method with the shifted mean does much better than all the other grid methods, and
it has more than adequate coverage.

We conclude that, at least in our example, when data sets generated set estimators of
the parameters of interest, the interval estimator did quite well, and its advantages over
the grid methods grew with the length of the estimated intervals. However, when the
sample drawn generated a point estimator, the coverage of the interval estimator went
down dramatically. This is not that surprising given that our theoretical results do not
necessarily hold when the population generates moments which point identify the true
parameter vector. The grid method which uses the same shifted mean adjustment used
in the interval estimator does better in all experiments than the rest of the grid methods;
and it always has adequate coverage.

In one sense these results are heartening; one estimator of the confidence interval does
well when there is an estimated set while the other does well when a point is estimated,
so the applied researcher can look at the resulting estimator and choose an appropriate
confidence interval. The problem that remains is that there are many cases in which
computational burdens make grid point methods infeasible, and some of them will generate
point estimators. For example, in Ho and Pakes (2011), there are over one hundred and
fifty parameters to estimate, and it takes several hours just to compute the covariance
matrix associated with one vector value for those hundred and fifty parameters. Of course
when computation of the objective function at a particular θ requires computing a fixed
point, as in a nested fixed point algorithm, the grid point methods will be infeasible with
a much smaller dimensional parameter space.

between the analogous results in Table 2.
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Table 3: Intervals and Coverage

Inference Method [θ1; θ1] % Coverage [θ2; θ2] % Coverage

Non-Truncated Sample, Six Moments. Point estimates in 1.7% of Data Sets.
True Intervals [14,232;15,417] [1,293;1,334]

Interval Inference 97.1 95.6
Mean [13,081;21,049] [1,133;1,393]
Median [13,104;17,394] [1,192;1,388]
Point Inference [10,325;17,951] 100 [1,100;1,641] 100
Point with Moment Selection [10,358;17,933] 100 [1,100;1,641] 100
Point with Shifted Mean 99.8 99.9
Mean [12,145;17,161] [1,172;1,477]
median [12,334;16.960] [1,210;1,440]

Non-Truncated Sample, Eight Moments. Point estimates in 37.1% of Data Sets
True Intervals [14,376;15,298] [1,305;1,320]

Interval Inference 63.8 70.1
Mean [12,617;19,480] [1,203;1,353]
Median [12,138;17,834] [1,201;1,351]
Interval: Estmated Sets Only (*). 95.1 100
Mean [11,930,21,690] [1,151;1367]
Median [11,863,19,120] [1,220;1362]
Point Inference [11,860;17,243] 100 [1,174;1,498] 100
Point with Moment Selection [11,961;17,183] 100 [1,221;1,417] 100
Point with Shifted Mean 99.8 99.9
Mean [12,759;16,276] [1,221;1,417]
Median [12,850;16.632] [1,242;1,400]

(*) Drop all Monte Carlo data sets that result in degenerate estimates of the identified
sets.
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5 Summary

This paper provides conditions which ensure that the inequality constraints generated by
either single agent optimizing behavior, or by the best response functions of problems with
interacting agents, can be used in estimation. The conditions do not place any restrictions
on the choice sets of the agents, or on what the agents know about either the exogenous
conditions that will be a determinant of their profits or about their competitors’ play.

If agents maximize expected returns conditional on their information sets, then profit
realizations will contain a set of disturbances whose expectations, conditional on those
information sets, are necessarily zero. These disturbances, together with any conditional
mean zero measurement and/or approximation error in the measurement of profits, gen-
erate our ν1. The distribution of ν1 can be quite complex as it depends on the information
sets of agents and, in multiple agent problems, on the details of the equilibria selected by
the market participants. However the fact that the realizations of ν1 have zero conditional
expectations allows us to form estimators which account for this complexity without ever
specifying these details or computing an equilibria.

The other possible source of error is a difference between the agent’s conditional ex-
pectation of the profit variable and the conditional expectation that is implicit in the
researchers’ parametric structural model for realized profits, a difference which we label
ν2. We provide conditions which suffice to obtain inequality constraints for the parameters
of interest when both types of disturbances are present. The conditions do impose restric-
tions on the structure of these errors, but they do not require a parametric specification
for the form of the joint distribution of ν1 and ν2, and allow for endogenous regressors
and discrete choice sets.

We then add to the growing literature on estimation subject to inequality constraints
by providing a procedure for generating conservative inference on the boundary points
of an identified set; a procedure which can be used to provide dimension by dimension
confidence intervals for parameters of interest. An empirical example illustrates the use-
fulness of our assumptions, and a Monte Carlo example with a sample design based on
the empirical example compares the dimension by dimension confidence intervals obtained
from direct estimation of the endpoints to those obtained from projecting the confidence
sets from other procedures onto alternative axis. It indicates that different methods for
constructing confidence intervals are likely to be preferred in different situations.

A number of unanswered questions remain. Among them, we would like to know
necessary, as well as sufficient, conditions for our generating the moment inequalities
useful for inference. We have not investigated either what can be learned if we replace the
parametric structural model of profits with a non-parametric one, or how to combine the
many moment inequalities our assumptions generate to achieve more desirable estimators
(and the use of moments inequalities, instead of equalities, is likely to accentuate precision
problems). Still our example makes it clear that the framework proposed here enables
us to obtain information on parameters of interest in environments where estimation has
proven difficult in the past, and which are of significant applied interest.
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6 Appendix

6.1 Example 4 Generalization

This appendix generalizes example 4. Now instead of estimating the unidimensional
parameter θ we will be interested in estimating f(zi, θ) and instead of using just a constant
term as our instrument we will use the positive valued h(zi). Recall that L = {i : di > 0},
xli = E[∆r(di, di− 1, ·)|Ji] and xri = E[∆r(di, di + 1, ·)|Ji], and that our model implies that
∀i, xri − f(zi, θ) ≤ 0, while for i ∈ L, xli − f(zi, θ) ≥ 0.

We assume that h(·) is an instrument, or N−1
∑
ν2,ih(zi) →P 0, and that the distri-

bution ν2, F (·), is symmetric so that for any 0 ≥ q ≥ 1, F−1(q) = −F−1(1 − q). To
proceed as we did in the example for this, more general, case we need to find an upper
bound for N−1

∑
i(x

l
i − f(zi, θ))h(zi). As in the example we have

N−1
∑
i

(xli − f(zi, θ))h(zi){i ∈ L} ≥ N−1
∑
i

ν2,ih(zi){i ∈ L}.

So what is needed is an upper bound for
∑

i ν2,ih(zi){i /∈ L}.
Order the observations so that i /∈ L preceed all others and for i /∈ L the ob-

servations are ordered by their values of h(zi), and let r permute the i index so that
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r(1) = {i : i = maxi=1,...,Nν2,i}, r(2) is the second largest ν2,i and so on. Consequently
N−1

∑
i ν2,ih(zi){i /∈ L} ≤ N−1

∑
i ν2,r(i)h(zi){i /∈ L}, and from symmetry

N−1
∑
i

ν2,r(i)h(zi){i /∈ L} −N−1
∑
i

−ν2,(n−r(i)+1)h(zi){i /∈ L} →P 0

by summetry of F (·). So for N large enough

N−1
∑
i

−ν2,(n−r(i)+1)h(zi){i /∈ L} ≥ N−1
∑
i

ν2,ih(zi){i /∈ L}

with arbitrarily large probability. Now let j(i) permute the value of the i index such that
j(1) = {i : i = maxi=1,...,Nx

r
i}, (2) is the second largest xri and so on. Then from our

modeling assumptions

N−1
∑
i

(f(zj(i), θ)− xrj(i))h(zi){i /∈ L} ≥ N−1
∑
i

−ν2,(n−r(i)+1)h(zi){i /∈ L}.

It follows that for N large enough

N−1
∑
i

(f(zj(i), θ)− xrj(i))h(zi){i /∈ L} ≥ N−1
∑
i

ν2,ih(zi){i /∈ L},

with arbitrarily large probability. ♠.

6.2 Econometric Assumptions

Assumption A1 (a) Θ is compact; and for all F ∈ F (b) for some ε > 0, Θε
0,F ⊂ int(Θ),

where Θε
0,F = {θ ∈ Θ : infθ′∈Θ0,F

‖θ − θ′‖ ≤ ε}; (c) Θ0,F is closed; (d) θF is a singleton.

Assumption A2 For any ε > 0, there exists δ > 0 such that

inf
F∈F

inf
θ∈(Θε0,F )c

‖
(
PFm(z, θ)

)
−
‖ > δ.

Assumption A3 Define, for each F ∈ F, TF =
{

θ−θF
‖θ−θF ‖

: θ ∈ Θ0,F , θ 6= θF

}
. Let δ̄

= inf{τ1 : τ ∈ TF , F ∈ F}. Assume δ̄ > 0.

Assumption A4 For some δ > 0, there exists ηΓ, εΓ > 0 and for each F there is

λF with ‖λF‖ = 1 such that (a) infF min
j:D
−1/2
j,F PFmj(z,θF )<ηΓ

D
−1/2
j,F Γj,FλF > εΓ; (b)

supF supτ :τ1≤δ,‖τ‖=1 minj:PFmj(z,θF )=0 D
−1/2
j,F Γj,F τ < −εΓ, where the index j is running over

the elements of the vector ma.

Assumption A5 For any δ > 0,

sup
F

PrF

(
sup
θ∈Θ
‖PJ,Fm(z, θ)− PFm(z, θ)‖ ≥ δ

)
−→ 0.
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Assumption A6 (a) For some d > 0 and δ > 0, d ≤ infF minj VarF (mj(z, θF )) and
supF maxj PF‖m(z, θF )‖2+δ <∞;
(b) for any δ > 0,

sup
F

PrF

(∥∥∥D̂−1/2
J,F D

1/2
F − I

∥∥∥ ≥ δ
)
−→ 0.

Assumption A7 There exists ν > 0 such that for all F , PFm(z, θ) is continuously

differentiable in the neighborhood N
θF
ν and there exists C <∞ such that ‖ ∂

∂θ
PFm(z, θ)‖ ≤

C for θ ∈ N
θF
ν . For any δ ↓ 0,

sup
F

sup
θ:‖θ−θF ‖<δ

∥∥∥∥ ∂∂θPFm(z, θ)− ∂

∂θ
PFm(z, θF )

∥∥∥∥ = o(δ)

and there exists ηd > 0 such that

sup
F

sup
θ′:‖θ′−θF ‖<ηd

sup
θ:‖θ−θ′‖<δ

∥∥∥∥[PFm(z, θ)− PFm(z, θ′)− ∂

∂θ
PFm(z, θ′)(θ − θ′)

]∥∥∥∥ = o(δ).

Assumption A8 For any δ > 0 and all sequences η ↓ 0,

sup
F

PrF

(
sup

θ:‖θ−θF ‖≤η

∥∥∥√J [PJ,Fm(z, θ)− PFm(z, θ))− (PJ,Fm(z, θF )− Pm(z, θF ))]
∥∥∥ ≥ δ

)
−→ 0
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