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Abstract

This paper provides conditions under which the inequality constraints generated

by either single agent optimizing behavior, or by the best response condition of

multiple agent problems, can be used as a basis for estimation and inference. An

application illustrates how the use of these inequality constraints can simplify the

analysis of complex behavioral models.

1 Introduction

This paper provides conditions under which the inequality constraints generated by single

agent optimizing behavior, or by the best response condition of multiple agent games, can

be used as a basis for estimation and inference. The conditions do not restrict choice sets

or the equilibrium selection mechanism, and do not require the researcher to specify either

a parametric form for the disturbance distributions or the contents of agents’ information

sets. However, assumptions are required on the difference between the econometrician’s

measure of returns and the returns the agent is maximizing, and this approach will often

result in partial (instead of point) identification of the parameters of interest.

The next section begins by assuming that agents maximize their expected returns.

This assumption yields a “revealed preference” inequality; the expected returns from the

strategy played should be at least as large as that from alternative feasible strategies. We

avoid the restrictions that would be imposed by modeling how expectations are formed.

Instead we focus on the implications of revealed preference on the difference between

∗The authors are from Harvard University, Research, the University of Wisconsin, Columbia University,
and Stanford University. We thank four referees, the editor, and numerous seminar participants.
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the realized returns from the agent’s observed strategy and the returns the agent would

have earned had it played a feasible alternative. When there are interacting agents these

inequalities are necessary conditions for any (of the possibly many) Nash equilibrium. The

advantage of using these inequalities to guide estimation is that we can use them without

detailing a model for strategies as functions of the agents’ information sets.

We assume that the econometrician constructs an approximation to the returns that

depends on agents’ actions, other observables, and a finite dimensional parameter vec-

tor. The difference between the approximated returns at the observed and an alternative

feasible choice is used in estimation. We emphasize two ways in which the econometri-

cian’s approximation of profit differences is distinct from the expected profit difference

expressed in the best response assumption. One source of (unobserved) error comes from

the difference between the actual returns and econometrician’s measure of returns. The

other source of error comes from observing information on realized, rather than expected,

returns. The expectational error and possibly part of the approximation error will be

mean independent of the agent’s information set (and hence of the choice itself). However

there may be a component of the agent’s perceived difference in expected profits that the

econometrician does not control for and is both a part of the approximation error and a

determinant of the choice made. We call this component the “structural” disturbance.

When we can measure profits up to a mean zero measurement error, then there is no

structural disturbance. In this case, the proposed identification and estimation algorithm

is particularly simple and powerful. When the structural disturbance is nonzero, then a

classic selection problem arises. The structural disturbance associated with the observed

choice will necessarily come from the possible values that make the observed choice best.

As a result, even if the a priori mean of the structural disturbances for any fixed choice

is zero, the mean of the structural disturbance corresponding to the returns from the

observed choice can be non-zero. To deal with this possibility, we propose a condition

that can viewed as generalizing an instrumental variables approach to this inequality set-

ting. The formal assumption provides a “high level” sufficient condition for dealing with

selection, and we show a number of ways of satisfying this condition in particular exam-

ples. The paper closes with an empirical example; estimating the costs of a non-convex

(or lumpy) investment choice by banks. The example illustrates ways of circumventing

problems posed by the structural error in models with and without boundary conditions.

The detailed policy implications of the estimates are discussed in Ishii (2004).

When there is no structural disturbance the proposed framework is a natural exten-
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sion of the first-order condition estimator for single agent dynamic problems proposed in

Hansen and Singleton (1982), and extended to allow for transaction costs, and hence in-

equalities, by Luttmer (1996). Our generalization allows for arbitrary (including discrete)

choice sets and interacting agents. Ciliberto and Tamer (2009) provide alternative meth-

ods for estimating models with discrete choice sets and interacting agents that only allows

for the structural error. The two approaches are not nested and Pakes (2010) provides

both a formal and a Monte Carlo comparison of the two sets of assumptions.1

2 A Framework for the Analysis

This section outlines a set of behavioral and statistical assumptions that generate moment

inequalities that are informative about payoff or profit functions.2 We start from a player’s

best response condition in a simultaneous move game (this reduces to a revealed preference

condition for single agent problems). Then we add two assumptions. One assumption

allows us to compute counterfactual profits, and the other constrains the relationship

between the agent’s perceived profits and the profits that we can actually measure.

The Agent’s Decision Problem. Suppose there are n decision-making agents indexed

i = 1, . . . , n. Let Ji ∈ Ii denote the information set available to agent i when actions are

chosen, and Di be the set of actions agent i could take. Then the strategy played by

agent i is a mapping si : Ii → Di. The strategy and information set for each player

generate observed decisions di = si(Ji) (so boldface di is a random variable, and di will

denote the realization of the decision). For notational convenience we assume these are

pure strategies.3 Notice that we place no restrictions on Di. If Di ⊂ R it can be either a

finite subset (“discrete choice”), countable (“ordered choice”), or uncountable and either

bounded (so “corner solutions” are possible) or not. If di is vector-valued, as is typical in

1There are also a number of papers that use inequalities to simplify estimation algorithms that, absent
computational problems, could be estimated in standard ways; e.g. Bajari, Benkard, and Levin (2007).

2A more detailed discussion of these assumptions and examples that use them can be found in the
longer version of this paper available on the authors’ web sites.

3We could obtain a moment inequality of the same form as the inequality derived below from a game
in which agents used mixed strategies, provided each pure strategy assigned a positive probability in the
mixed strategy has the same expected return. This implies that when using our inequalities there is no
need for the econometrician to specify whether the underlying strategies are pure or mixed. However if
we did know mixed strategies were being played, and we could distinguish the mixed strategies associated
with particular information sets, then more information would be available for use in estimation; see
Beresteanu and Molinari (2008).
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contracting problems, then Di is a subset of the appropriate product space.

The payoff (or profit) to agent i (π(·)) is determined by its decision, the other agents’

decisions (d−i ∈ D−i ≡ ×j 6=iDj), and an additional set of variables yi ∈ Yi; so π : Di ×
D−i×Yi → R. The functions π and si (i = 1, . . . , n), and the joint probability distribution

of (Ji,Yi)
n
i=1 are primitives of the game. So the expectation operator appearing in our

assumptions (i.e., E(·)) is with respect to this joint distribution,4 and observed decisions

di are generated by these strategies and information sets.

Assumption 1 (Best Response Condition) If si is the strategy played by agent i

supd∈DiE[π(d,d−i,yi)|Ji,di = d] ≤ E[π(di,d−i,yi)|Ji,di = si(Ji)], (a.s. Ji),

for i = 1, . . . n. ♠

In single agent problems Assumption 1 is a consequence of optimizing behavior. When

there are multiple interacting agents, Assumption 1 is a necessary condition for any Bayes-

Nash equilibrium. It does not rule out multiple equilibria and does not restrict the selec-

tion mechanism used when there are multiple equilibria. Equally important, Assumption 1

does not put any restriction on the contents of Ji or on the functional form of the mapping

from Ji to di (which depends on the form of the agents’ priors); aspects of the problem

the analyst typically knows little about.

Models that involve maximizing behavior require assumptions on the agent’s percep-

tions of what the outcome would have been had it chosen an alternative action. This

generates a need for an assumption on the agent’s perceptions of what d−i and yi would

have been had the agent taken action d different from the action si(Ji) given by their

strategy. In either single agent problems, or multiple agent problems with simultaneous

moves, conditional independence of other agents’ decisions (of d−i) from di is an assump-

tion of the model.5 However often the profit function is naturally written as a function of

4We could have defined the expectation operator that results from the agents’ perceptions, and then put
constraints on the relationship between the agents’ perceptions and the expectation operator emanating
from the data generating process. Though correct perceptions are certainly sufficient for Assumption 1,
they are not necessary; see the literature cited in Pakes, 2010.

5In non-simultaneous move games, when considering counterfactuals for agents who move early, d−i
typically includes the decisions of those who move later, and the distribution of d−i conditional on
(Ji,di = d) will typically depend on the value d. One way to construct counterfactuals is to develop
a model for the beliefs of the early period agents about the effect of their decisions on the behavior of
later period agents. Alternatively one could compute the later agents’ responses (to early agent actions)
that minimize profits by the early agent. Either strategy could be used to form inequalities based on
counterfactuals as is done here (for an empirical example see Crawford and Yurukoglu, 2012).

4



variables yi that would change with different actions d taken by agent i. In our empirical

study we analyze the number of ATMs chosen by banks. The profits a bank earns from

its ATM investments depend on the equilibrium interest rates in the periods in which

those ATMs will be operative. So the profit function is a function of interest rates, the

number of ATMs, and other variables. The interest rates, in turn, depend on the number

of ATMs installed by the banks. So to compute our counterfactual profits we need a model

of what the agent perceives interest rates would have been were it to choose a d 6= si(Ji).

Moreover, we require that the model yields interest rates as a function of variables whose

distribution is independent of the choice d.

More generally, if yi is endogenous in the sense that its distribution depends on the

choice di, then we require a model which generates yi conditional on d−i and variables,

say zi, that do not change when di changes.6 Assumption 2 formalizes this condition.

Note that not all of the variables in zi need to be observed by the researcher.

Assumption 2 (Counterfactual Condition) yi = y(zi, d,d−i) and the distribution of

(d−i, zi) conditional on Ji and di = d does not depend on d. ♠

Assumption 2 implies that Assumption 1 can be rewritten without conditioning on differ-

ent d. That is, if we substitute y(zi, d,d−i) for yi in π(di,di,yi), and define

∆π(d, d′, d−i, zi) = π(d, d−i, y(zi, d, d−i))− π(d′, d−i, y(zi, d
′, d−i)),

then, recalling that di = si(Ji), Assumptions 1 and 2 imply that for any d′ ∈ Di,

E[∆π(di, d
′,d−i, zi)|Ji] ≥ 0. (1)

Assumptions 1 and 2 are common in econometric models of decision making. The

distinction in the current work is that estimation and inference are based directly on the

empirical analogues of the profit inequalities in equation (1), rather than on the model’s

implications for di. As a result we require a different set of measurement and informational

assumptions. In particular the distribution of di conditional on observables can remain

unspecified, but the disturbances in the measures of E[∆π(di, d
′,d−i, zi)|Ji] will need to

be treated. We turn to this task now.

6If there is not a one-to-one map between yi and (di, zi) conditional on d−i and exogenous variables
(or if the researcher is not sure of what that map is), but the researcher can construct a lower bound to
the counterfactual profits that the agent could make, the researcher can replace the counterfactual profits
in Assumption 2 with that lower bound.

5



Observables and Disturbances. We assume that the econometrician has a parametric

function, say r(·), that approximates π(·). r(·) has arguments di, d−i, an observable vector

of the determinants of profits, say zoi ⊂ zi (so zoi satisfies Assumption 2), and θ. The

parameter θ ∈ Θ has an unknown true value of θ0. Our approximation to ∆π(d, d′, d−, z)

is ∆r(d, d′, d−, z
o, θ), which is obtained by evaluating r(·) at d and d′ and taking the

difference, so ∆r : D2
i ×D−i × Zo ×Θ→ R. For i = 1, . . . , n and (d, d′) ∈ D2

i define

ν2,i,d,d′ = E[∆π(d, d′,d−i, zi)|Ji]− E[∆r(d, d′,d−i, z
o
i , θ0)|Ji], and (2)

ν1,i,d,d′ = νπ1,i,d,d′ − νr1,i,d,d′ , where (3)

νπ1,i,d,d′ = ∆π(d, d′,d−i, zi)− E[∆π(d, d′,d−i, zi)|Ji], and

νr1,i,d,d′ = ∆r(d, d′,d−i, z
o
i , θ0)− E[∆r(d, d′,d−i, z

o
i , θ0)|Ji].

We let ν2,i be the collection of random variables ν2,i,d,d′ over values (d, d′) ∈ D2
i , and define

ν1,i, ν
r
1,i, ν

π
1,i similarly.

The function ∆r(d, d′,d−i, z
o
i , θ) is the observable measure of the change in profits that

would result from a change of di = d to di = d′. The random variables ν1,i and ν2,i are the

determinants of the true profit difference that are not observed by the econometrician. ν1,i

and ν2,i differ in what agent i knows about them at the time decisons are made. Agent i

“knows” its ν2,i realization before it makes its decision (ν2,i ∈ Ji), and since di = si(Ji),

di can depend on the values of ν2,i. Consequently the expectation of ν2,i,di,d′ (for the di

chosen) will depend on Ji and this can cause a selection problem. In contrast the values

of ν1,i do not change expected profits so ν1,i,di,d′ is mean independent of Ji. The ν1,i are

generated by expectational errors (νπ1,i) and/or approximation errors (νr1,i). There are two

sources of expectational errors: (i) incomplete information on the environmental variables

(on zi); and (ii) asymmetric information which generates uncertainty in d−i.

The relative importance of ν1,i and ν2,i will vary across problems. One advantage of

working directly with profit functions, rather than with the implications of those functions

on the choice of d, is that some applied problems have access to (usually error prone) profit

measures. Then it might suffice to only allow for a ν1 error. There will also be a need for

a ν2 error if the profit measure omits sources of returns that help determine di = si(Ji).
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Moment Inequalities. The econometrician only has access to ∆r, and equation (1)

is expressed in terms of the conditional expectation of ∆π. So to use that equation to

restrict the moments we obtain from ∆r we need restrictions on the distributions of ν2,i

and ν1,i. We now provide conditions under which weighted averages of ∆r(di, d
′, zoi , θ)

across values of d′ and i have non-negative expectation when θ = θ0. The weights can be

any nonnegative function of observable components of the agents’ information sets.

Assumption 3 Let hi(d′; di, Ji,x−i) : Di → R+ be a nonnegative function whose value

can depend on the alternative choice considered (on d′), on the information set Ji (which

determines di), and on observable components of the other agents’ information sets, x−i ⊂
�

j 6=i Jj. Assume that

(a) E[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν2,i,di,d′ ] ≤ 0,

and

(b) E[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν
r
1,i,di,d′

] ≥ 0. ♠.

Before discussing the economic content of this assumption we show why it suffices.

Assumption 3 combined with non-negative expected profit differentials (Assumptions 1

and 2) yields a weighted sum of profit differences that has non-negative expectation. From

(2) and (3), ∆r(di, d
′,d−i, z

o
i , θ0) = E[∆π(di, d

′,d−i, zi)|Ji] + νr1,i,di,d′ − ν2,i,di,d′ , so

E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)∆r(di, d
′,d−i, z

o
i , θ0)

]

= E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)E[∆π(di, d
′,d−i, zi)|Ji]

]
(4)

+ E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν
r
1,i,di,d′

]
− E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji,x−i)ν2,i,di,d′

]

Since E[∆π(si(Ji), d
′d−i, zi)|Ji]≥ 0 by Assumptions 1 and 2, and the weights ({hi(d′; di, Ji,x−i)})

are non-negative, the first term is non-negative. The two conditions of Assumption 3 in-
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sure that the last two summands are also nonnegative. So given our three Assumptions

E

[
n∑
i=1

∑
d′∈Di

hi(d′; di, Ji)∆r(di, d
′,d−i, z

o
i , θ0)

]
≥ 0. (5)

Equation (5) depends only on observables and θ0, so we can form its sample analog and

look for values of θ that satisfy the resulting inequality.7

We now consider the substantive content of Assumption 3. Notice that if the weight

function hi does not depend on x−i then Assumption 3(b) is automatically satisfied by the

construction of νr1,i, since it implies E[νr1,i,di,d′|Ji] = 0. This implies that Assumption 3(b) is

satisfied in single agent problems.8 We include x−i in the weight function to provide more

flexibility in satisfying Assumption 3(a) in multiple agent problems. Assumption 3(b) will

be satisfied with x−i in the weight function if νr1,i,di,d′ is mean independent of ∪jJj, since

x−i ∈ ∪jJj. This condition holds in symmetric information games. So Assumption 3(b)

can only be problematic in games with asymmetric information when the weight function

depends on variables that are not a part of i’s information set. Our empirical example

shows how this can happen when the weights depend nontrivially on d−i.

When ν2,i,d,d′ ≡ 0, Assumption 3(a) is automatically satisfied and our measure of

the difference in profits (∆r) is an unbiased measure of the actual differenced profits.

Assumptions 1 and 2 insure that agents actions are best responses so if Assumption 3(b)

is satisfied the weighted average of the expected difference in returns in equation (5) will

be nonnegative at θ = θ0. This extends Hansen and Singleton (1982)’s first order condition

estimator to problems with discrete and/or bounded choice sets and interacting agents.

Now consider the case where ν2,i,d,d′ 6= 0 so Assumption 3(a) is not automatically

satisfied. Notice that the selected choice, di = si(Ji), must satisfy Assumption 1 which,

in turn, implies that larger, positive values of ν2,i,di,d′ are more likely. This selection

problem is the chief challenge to weight function selection to satisfy Assumption 3(a),

which states that the weighted sum of ν2,i,di,d′ has nonpositive expectation. Our empirical

example illustrates two weight function choices that satisfy Assumption 3(a). First, we

use an ordered choice problem to illustrate that if particular counterfactual choices lead

to expressing ν2,i,di,d′ as a linear function of a fixed error distribution, then the selection

7Assumptions 1, 2, and 3 are sufficient but not necessary for equation (5) which, in turn, generates
our estimates. That is, alternative conditions may also suffice.

8As shown in Morales (2011), this can be used to simplify the analysis of dynamic discrete and/or
bounded choice problems by eliminating the need for a nested fixed point algorithm.
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problem can be avoided. Next, we show that symmetry assumptions, similar to those used

by Powell (1986), can be used in conjunction with inequalities to circumvent selection

problems when choice sets are bounded.9

3 An Example: Semiparametric Ordered Choice.

Our empirical example is based on Ishii (2004) who studies the welfare implications of al-

ternative market designs for ATM networks. Her analysis requires estimates of the cost of

installing and operating ATMs. We show that this can be treated as a multiple agent or-

dered choice estimation problem and that a simple inequality estimator enables us to infer

costs without making parametric assumptions on unobserved disturbance distributions.

Many “lumpy” investment models can be analyzed similarly.10 We conclude by noting

that the restriction used in this example is a special case of a more general restriction

that is appropriate in a wider range of cases.

The framework for Ishii’s analysis is a two period model with simultaneous moves in

each period. In the first period each bank chooses a number of ATMs to maximize its

expected profits given its perceptions on the number of ATMs likely to be chosen by its

competitors. In the second period interest rates are set conditional on the ATM network,

and consumers choose banks, make deposits, and use ATMs. The second period game is

analyzed in Ishii (2004), and her results can be used to generate the profits that would be

earned by each bank conditional on any choices for its own and its competitors’ ATMs.11

We use Ishii’s results on the second stage to analyze the game’s first stage, the choice

of ATMs. Let di ∈ D = Z+ denote the number of ATM’s chosen by bank i. The second

stage provides the bank revenue conditional on di, d−i, and observables (zoi ) which do not

change with d. Denote this revenue by R(di, d−i, z
o
i ). The marginal cost of an ATM for

9Ho and Pakes (2012) provide another example where the unobservable driving the selection problem
is additively separable and has the same value for two agents (the assumption underlying estimators
which use matched observations to analyze continuous dependent variables). In this case, a difference in
difference inequality can be constructed to satisfy Assumption 3(a).

10For a single agent example without a ν2,i error see Holmes (2011).
11Ishii (2004) estimated a demand system for banking services and an interest rate setting equation.

Since we need the equilibrium interest rates that would prevail were alternative possible networks in
place we must either assume a unique interest rate setting equilibrium, or common knowledge about
which equilibrium is selected. Given the demand system and interest rates, the banks’ earnings are
calculated as the earnings from the credit instruments funded by the deposits minus the costs of the
deposits (including interest costs) plus the fees associated with ATM transactions. The ATM fee revenue
is generated when non-customers use a bank’s ATMs, and revenue is both generated and paid out when
customers use a rival’s ATMs.
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bank i is θ0 + ηi, where θ0 is the average (across firms) marginal cost (so Eηi ≡ 0). ηi

captures bank-specific cost heterogeneity known to the bank when it determines di but

not observed by the econometrician.

Allowing for mean zero errors (denoted ν1,i,d) in the specification of the banks profits,

we have: π(di,d−i, zi) = R(di,d−i, z
o
i )−di(θ0+ηi)+ν1,i,di , where we assume E(ν1,i,d|Ji) = 0.

So if ∆π, ∆R, and ν1,i,d,d′ are defined as the corresponding differences, then for any (d, d′)

∆π(d, d′,d−i, zi) = ∆R(d, d′,d−i, z
o
i ) + (d′ − d)(θ0 + ηi) + ν1,i,d,d′ .

Notice that, in the notation of section 2, the econometrician’s approximation to differenced

profits is ∆r(d, d′,d−i, z
o
i ; θ) = ∆R(d, d′,d−i, z

o
i ) + (d′ − d)θ, so ν2,i,d,d′ = (d′ − d)ηi.

12 As-

sumptions 1 and 2 insure that if d′ ∈ D, E[∆π(di, d
′,d−i, zi)|Ji] = E[∆R(di, d

′,d−i, z
o
i ) +

(d′ − di)(θ0 + ηi)|Ji] ≥ 0 regardless of the equilibrium selection rule (and, since this is a

network game, there are likely to be many equilibria).

Next we exhibit weights that satisfy Assumption 3(a). Consider a counterfactual choice

of d′ = di + t; a fixed, positive number of units (t) away from di. Then, ν2,i,di,di+t = tηi,

which does depend on di, and

Eν2,i,di,di+t = tE(ηi) = 0. (6)

Assume that the counterfactual d′ = di + t is feasible for all i (the case where it is not is

considered below). Taking h(d′; di, Ji) = n−1 if d′ = di + t, and zero otherwise, we have

E[
n∑
i=1

∑
d′∈Di

h(d′; di, Ji)ν2,i,di,d′ ] = E[n−1

n∑
i=1

ν2,i,di,di+t] = n−1

n∑
i=1

tE(ηi) = 0.

Notice that Assumption 3(b) is also satisfied, E[n−1
∑

i h(d′; di, Ji)ν
r
1,i,di,d′

]

= E[n−1
∑

i h(d′; di, Ji)E(νr1,i,di,d′ |Ji)] = 0, since the weight function depends only on Ji

(and not on J−i). Additional inequalities that satisfy Assumption 3 can be formed if

instrumental variables are available. That is, if xi ∈ Ji and Eηig(xi) = 0 for some positive

function g(·), then we can take h(d′; di, Ji) = g(xi) if d′ = di + t and zero otherwise to

generate another inequality that satisfies equation (5).

We have just shown that we can derive inequalities from the ordered choice model

12Also, νr1,i,d,d′ = ∆R(d, d′,d−i, z
o
i )−E[∆R(d, d′,d−i, z

o
i )|Ji] and νπ1,i,d,d′ = ν1,i,d,d′ +∆R(d, d′,d−i, z

o
i )−

E[∆R(d, d′,d−i, z
o
i )|Ji] so that ν1,i,d,d′ = νπ1,i,d,d′ − νr1,i,d,d′ , as in section 2.
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that avoid the selection problem. Analogous results are available for other models in

which we can find a counterfactual which generates a difference between the actual and

counterfactual choices that is a known linear function of the structural error regardless

of the observed choice. The vertical discrete choice model (e.g. Bresnahan 1987), and

contracting models where the source of the structural error is a component of the transfers

among agents (see Pakes 2010), are two examples of other models which can be shown to

satisfy this condition.

Boundaries. To construct the (unconditional) moment used to estimate the parameter

of the ordered choice model, the weight function h placed positive weight only on counter-

factuals d′ = di+t for fixed (positive) t. More generally, we could consider counterfactuals

d′ = di + ti where ti depends on i, if the ti are fixed (i.e. nonstochastic) and if the ti have

the same sign for all i. In this case, weight proportional to 1/|ti| satisfy Assumption 3. If

the choice set is bounded this kind of weighting is not always possible. In the ATM choice

model, different weight functions can be used to generate different inequalities for iden-

tification and estimation. Typically, we want at least one inequality based on weighting

positive ti counterfactuals and one inequality based on weighting negative ti counterfactu-

als in order to get both upper and lower bounds for θ0. For any agents with di = 0, there

are no feasible counterfactuals with d′ = di + t for any t < 0. Dropping the observations

with di = 0 before forming the inequalities generates a standard truncation problem. A

similar problem will occur when controls are continuous but bounded from one side (as in

a tobit model, or in an auction model where there is a cost to formulating the bid which

causes some agents not to bid).

Recall that ν2,i,di,di+t = tηi in the ATM model. By definition of the parameter θ0,

Eηi = 0. To deal with the boundary problem, we make an additional assumption that the

ηi are i.i.d. with a distribution that is symmetric (about zero). Extending the argument

of Powell (1986), the symmetry assumption allows for the use of the information from the

untruncated direction (e.g. ν2,i,di,di+t with positive t) to obtain a bound in the truncated

direction (e.g. ν2,i,di,di−t). We use the truncation of choices di ≥ 0 in the ATM model to

illustrate, but the idea extends to other one-sided boundary models.

Let L = {i : di > 0} denote the set of firms that install a positive number of machines

and so are not on the boundary, and let nL be the number of firms in L. It will be

helpful to use standard order statistic notation, i.e. η(1) ≤ η(2) ≤ · · · ≤ η(n). Let Lη

= {i : ηi ≤ η(nL)} and Uη = {i : ηi ≥ η(nL+1)}. Similarly, let ∆R+
i = ∆R(di,di+1,d−i, zi)

11



and ∆R+
(1) ≤ ∆R+

(2) ≤ · · · ≤ ∆R+
(n). Let UR = {i : ∆R+

i ≥ ∆R+
(nL+1)}. Sets L and UR

are observable to the econometrician, but sets Lη and Uη are not. Consider the following

choice of weight function

hi(d′; di, Ji) = n−1
[

1{d′ = di − 1}1{i ∈ L}+ 1{d′ = di + 1}1{i ∈ UR}
]
,

and form∑
i

∑
d′∈Di

hi(d′; di, Ji,x−i)∆r(di, d
′,d−i, z

o
i , θ0)

=
1

n

∑
i∈L

∆r(di,di − 1,d−i, z
o
i , θ0) +

1

n

∑
i∈UR

∆r(di,di + 1,d−i, z
o
i , θ0)

≥ 1

n

∑
i∈L

∆r(di,di − 1,d−i, z
o
i , θ0) +

1

n

∑
i∈Uη

∆r(di,di + 1,d−i, z
o
i , θ0)

=
1

n

∑
i∈L

{
E[∆π(di,di − 1,d−i, zi)|Ji]− ν2,i,di,di−1 + νr1,i,di,di−1

}
+

1

n

∑
i∈Uη

{
E[∆π(di,di + 1,d−i, zi)|Ji]− ν2,i,di,di+1 + νr1,i,di,di+1

}
(7)

≥ − 1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 +
1

n

∑
i∈L

νr1,i,di,di−1 +
∑
i∈Uη

νr1,i,di,di+1

 .

The first inequality holds by the definition of UR and noting ∆r(di,di + 1,d−i, z
o
i , θ0) =

∆R+
i + θ0. The second follows from Assumptions 1 and 2.

We first focus on the first term in the last expression in (7) to show Assumption 3(a)

is satisfied,

− 1

n

∑
i∈L

ν2,i,di,di−1 +
∑
i∈Uη

ν2,i,di,di+1

 =
1

n

∑
i∈L

ηi −
∑
i∈Uη

ηi


≥ 1

n

∑
i∈Lη

ηi −
∑
i∈Uη

ηi

 =
1

n

{
nL∑
i=1

η(i) −
n∑

i=nL+1

η(i)

}
.

Under the assumption that ηi are i.i.d. and symmetrically distributed about zero, the last

term above has mean zero. So, E
[
−n−1

∑
i∈L ν2,i,di,di−1 − n−1

∑
i∈Uη ν2,i,di,di+1

]
≥ 0.

Next we consider the second term in the last expression in (7) to verify Assumption

12



3(b). The mean of the first sum is:

E

[
1

n

∑
i∈L

νr1,i,di,di−1

]
=

1

n

n∑
i=1

E[1{di > 0}νr1,i,di,di−1] =
1

n

n∑
i=1

E[1{di > 0}E(νr1,i,di,di−1|Ji)︸ ︷︷ ︸
=0

] = 0

since di ⊂ Ji. The second sum is 1
n

∑
i 1{i ∈ Uη}νr1,i,di,di+1, and since the event, {i ∈ Uη},

depends on η−i, the expectation of this sum will depend on the information structure

of the game. If η−i ∈ Ji, as would be the case in a symmetric information game, then

the fact that E[νr1,i,di,di+1|Ji] = 0 would insure that E[ 1
n

∑
i 1{i ∈ Uη}νr1,i,di,di+1] = 0. If

there was asymmetric information then signing the mean would require assumptions on

the relationship between the unexpected part of agent i’s profit measure and η−i.

So taking expectations of the weighted sum in the first term of (7) and using the

derived inequalities with symmetric information, we find that Assumptions 3(a) and 3(b)

hold, leading to:

E

[
1

n

∑
i∈L

∆r(di,di − 1,d−i, z
o
i , θ0) +

1

n

∑
i∈UR

∆r(di,di + 1,d−i, z
o
i , θ0)

]
≥ 0.

We have provided a set of assumptions which generates a lower bound for the parameter

of interest despite the fact that the choice set is bounded from below. The Appendix shows

that we can use instruments along with a symmetry assumption to generate more moment

inequalities for the lower bound.

Moments. For now, assume that there are no observations on a boundary. Then two

necessary conditions for Assumption 1 are that the expected increment to returns from

the last ATM the bank installed (t = −1) were greater than its cost, while the expected

increment to returns from adding one ATM more than the number actually installed

(t = +1) was less than the corresponding cost.13 Let the vector of differences be ∆ri(θ)
′

≡ [∆r(di,di−1,d−i, z
o
i , θ), ∆r(di,di+1,d−i, z

o
i , θ)]. Also suppose there are “instruments”

xi ∈ Ji with E[ηi|xi] = 0. If g(·) is a vector of nonnegative functions while ⊗ denotes the

13These conditions will also be sufficient if the expectation of π is concave with respect to the discrete
values of di for all values of d−i. We can not check this condition without specifying information sets, but
the realizations of profits evaluated at the estimated value of θ were concave in di for almost all banks.
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Kronecker product, sample analog moments formed as

m(w, θ) =
1

n

∑
i

∆ri(θ)⊗ g(xi)

have non-negative expectations at θ = θ0. It is useful to consider inference based directly

on these sample moments. In the empirical work we add a market index (j) and sum

m(wj, θ) over markets.

To start, consider using only the moment conditions generated by g(xi) ≡ 1, i.e.

m(wj, θ) = n−1
∑

i ∆rji(θ). Then the moment condition that results from decreasing the

value of di, or the change “to the left”, is (nj)−1
∑

i[∆R(dji , d
j
i−1, dj−i, z

o
i
j)−θ] ≡ ∆Rj

L−θ,
while the moment condition from that results from increasing the value of dji , or the

change to the right, is (nj)−1
∑

i[∆R(dji , d
j
i +1, dj−i, z

o
i
j)+θ] ≡ ∆Rj

R+θ. Averaging across

markets yields ∆RL ≡ J−1
∑

j ∆Rj
L which should be positive and provide an estimated

upper bound on the average cost of an ATM, and ∆RR = J−1∆Rj
R which should be

negative with −∆RR yielding an estimated lower bound on the average ATM cost. So

our estimate of an interval that covers θ0 is simply

Θ̂J = {θ : −∆RR ≤ θ ≤ ∆RL}.

Now suppose we add instruments (or xk with E(ηi|xk,i) = 0) indexed by k. Each

instrument generates a pair of inequalities 0 ≤ E[(∆R(di,di − 1,d−i, z
o
i ) − θ0)g(xk,i)|Ji],

and 0 ≤ E[(∆R(di,di + 1,d−i, z
o
i ) + θ0)g(xk,i)|Ji].14 Averaging over i and j to form sam-

ple versions of these moments, yields additional sample upper and lower bounds: ∆Rk,L ≡
1
J

∑
j

1

nj

∑
i(∆R(dji ,d

j
i−1,dj−i,z

o
i
j))g(xjk,i)

1
J

∑
j

1
n

∑
i g(x

j
k,i)

and−∆Rk,R ≡ −
1
J

∑
j

1

nj

∑
i(∆R(dji ,d

j
i+1,dj−i,z

o
i
j))g(xjk,i)

1
J

∑
j

1

nj

∑
i g(x

j
k,i)

. So pro-

vided maxk{−∆Rk,R} ≤ mink{∆Rk,L} an interval estimate for θ0 is

Θ̂J = [maxk{−∆Rk,R}, mink{∆Rk,L}],

based on taking the greatest lower bound and the least upper bound over all the sample

bounds for each instrument.

Empirical Results. The data set consists of a cross-section of all banks and thrifts in

Massachusetts metropolitan statistical areas in 2002. A market is defined as a primary

14Andrews and Shi (2012) provides a method of inferences based on conditional moment inequalities,
as given here.
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metropolitan statistical area, and the sample is small: it has 291 banks in 10 markets.15

The number of banks varies considerably across markets (from 8 to 148 in Boston), as does

the number of distinct ATM locations per bank (which averages 10.1 and has a standard

deviation of 40.1). Just under 5.5% of the banks have no ATMs (di = 0).

Table 1 contains the inequality estimators of the cost parameter.16 The first two rows

provide the results when only a constant term is used as an instrument; row (1) uses only

observations with d ≥ 1 when calculating the upper bound while row (2) keeps all the

observations and uses the symmetry assumption to correct for truncation (banks with

di = 0 may have had higher than average ATM costs). The lower bounds provided in the

two rows are based on the same estimator and hence identical, but we expect the upper

bound from row (2) to be higher due to correcting the truncation bias in row (1). Indeed,

we do find that the corrected truncation bias leads to a larger upper bound, though the

difference is small (25,283 vs 26,644), about equal in percentage terms to the fraction of

observations with di = 0. Even after the correction, the estimate of the identified interval

is quite short [24,452, 26,444], with a confidence interval of [20,472, 30,402].

Rows 3 and 4 repeat the exercise in Rows 1 and 2 using the market population, the

number of banks in the market, and the number of branches of the bank (its mean is 6

and standard deviation is 15), as well as the constant term, as instruments. Θ̂J reduces to

a singleton, reflecting the fact that there was no value of the parameters that satisfied all

of the inequalities, and the estimated value closest to satisfying all the inequalities is less

than the lower bounds in rows 1 and 2. The fact that we obtained a point estimate could

be due to sampling error17 or a misspecification; say a violation of Assumption 3. A test for

misspecification rejected the null, casting doubt on the estimates in rows 3 and 4. We also

tried adding profit differences based on additional counterfactuals d′ = di ± 2, i.e. adding

the rows [∆r(di,di − 2,d−i, z
o
i , θ), ∆r(di,di + 2,d−i, z

o
i , θ)]

′ to the vector ∆ri(θ). The

fraction of banks with di < 2 is much larger than the fraction with di < 1 (25.5% vs 5.5%),

15The data set is described in Ishii (2004), and is carefully put together from a variety of sources includ-
ing the Summary of Deposits, the Call and Thrift Financial Reports, the 2000 Census, the Massachusetts
Division of Banks, and various industry publications.

16Confidence intervals are calculated using the technique described in the longer version of this paper.
17The greatest lower bound is the maximum of a finite number of moments each of which will, in finite

samples, distribute approximately normally. So in small samples we should expect a positive bias in the
estimated lower bound which is (weakly) increasing in the number of inequalities. Analogously we should
expect a negative bias in the upper bound. That is, the simple maximum and minimum estimators tend
to be “inward biased” even if the model is correctly specified, and the inward bias tends to generate the
a singleton for Θ̂J . Hirano and Porter (2009) discuss implications of the bias from taking the minimum
and maximum as endpoint estimates.
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Table 1: Inequality Method, ATM Costs∗

θJ 95% CI for θ
LB UB

1. h(x) ≡ 1, d ≥ 1 for u.b. θ̂ [24,452, 25,283] 20,544 29,006
2. h(x) ≡ 1, d ≥ 0 [24,452, 26,444] 20,472 30,402
h(x) =(1,pop, # Banks in Mkt, # Branches of Bank)

3. d ≥ 1 for u.b. θ̂ 19,264 16,130 23,283
4. d ≥ 0 20,273 17,349 24,535

{d : |d− di| = 1, 2}, h(x) = 1

5.{d : |d− di| = 1, 2}; d ≥ 1 for u.b. θ̂ [24,452, 25,283] 20,691 28,738
6.{d : |d− di| = 1, 2}; d ≥ 0 [24,452, 26,644] 20,736 29,897

First Order Conditions (analogue of Hansen and Singleton,1982)

7. h(x)=1 28,528 23,929 33,126
8. h(x)=(1,pop, # Banks in Mkt, # Branches of Bank) 16,039 11,105 20,262

∗ There are 291 banks in 10 markets. The first order condition estimator requires deriva-
tives with respect to interest rate movements induced by the increment in the number of
ATMs. We used two-sided numerical derivatives of the first order conditions for a Nash
equilibria for interest rates.

so the truncation issue corresponding to the counterfactual d′ = di−2 is potentially worse.

Rows 5 and 6 present the results from interacting all four profit differences with a constant

term. The interval estimates from using only the data on di ≥ 1 for the upper bound

are unchanged by this addition, as would be expected if the profit function was concave

in discretely valued di. Moreover, as expected, when we use all the data and correct for

truncation, the estimated upper bound increases, but only by a small amount.

Alternative Estimators. At least two alternative estimation techniques have been

used in similar problems: ordered probit (or logit), and estimators based on first order

conditions. In our notation, ordered probit sets ν1,i ≡ 0, assumes independent normal

distributions for each level of marginal cost heterogeneity ηi conditional on the other

determinants of profits, and forms the likelihood of the observed di. To apply this to an

interacting agent model we need to assume a unique equilibrium and that η−i /∈ Ji. The

first order condition estimator ignores the discrete nature of the control and goes to the
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opposite extreme: it assumes that ν2,i ≡ 0 but does not restrict the ν1,i distribution nor

does it require a unique equilibrium.

The probit model can not be estimated with our data. The issue is that for some of our

observations the revenue difference from the left (∆RL,i) is less than the revenue difference

to the right (∆RR,i). In this case there is no value of θ + ηi that rationalizes di so the

likelihood is not well defined for these observations (the model when combined with the

data say that if it was profitable to purchase the last ATM, it must have been profitable

to purchase the next ATM). In a world with either uncertainty or approximation errors

in revenues we would not be surprised to find at least one agent with ∆RL,i < ∆RR,i.

However, adding either approximation error or uncertainty would require additional as-

sumptions and complicate the ordered probit model significantly.

If we act as if the control is continuous and assume that agents maximize expected

profits, the first order condition for agents with di > 0 must have an expectation of

zero conditional on their information sets. We approximated the derivative of the profit

function by averaging the incremental profits obtained from changing di to di + 1 and to

di− 1 and then obtained the estimate of θ by minimizing ‖ 1
n

∑
i{di > 0}(∂R(d,d−i,zoi )|d=di

∂d
−

θ) × g(xi)‖. So, operationally, row 7 in Table 1 is obtained by adding the two moment

inequalities used in row 1 together for observations with d ≥ 1, dividing by two, and

searching for a θ that makes the average as close as possible to zero. Row 8 is similar with

the added instruments. Again the estimates that use the added instruments are lower

than the bounds in rows 2 and 4. The row 7 estimate is outside of the interval estimate

obtained from the inequality estimators (by 15 to 20%), but about equal to the upper

bound of the confidence intervals in those rows. Interestingly the confidence interval from

this (point) estimator has about the same length as that from the moment inequalities.

4 Conclusion

This paper provides conditions which ensure that the inequality constraints generated by

either single agent optimizing behavior, or by the best response functions of problems with

interacting agents, can be used for inference. The conditions do not place any restrictions

on the choice sets of the agents, the contents of the agents’ information sets, or the

equilibrium selection mechanism.

We work directly with a model for expected profits rather than modeling the strategy

for making choices. As a result, we focus on the difference between our approximation for
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profits and the agent’s expectations for profits. This difference can generate two types of

disturbances. The first which we label ν1,i, has zero expectation conditional on the agent’s

information set, and can be caused by either realizations of variables that were unknown

to the agent when it made its decision or approximation error. The distribution of ν1,i can

be quite complex as it depends on the information sets of agents and, in multiple agent

problems, on the details of the equilibria selected by the market participants. However,

the fact that ν1,i has zero conditional expectations allows the formation of moment in-

equalities which account for this complexity without either needing to specify these details

or computing an equilibria.

The other possible disturbance arises when there is a source of profit differences that

the econometrician does not observe and is a determinant of the choice. Formally it is

the difference between the agent’s conditional expectation of the profit variable and the

conditional expectation that is implicit in the researchers’ model for realized profits, a

difference which we label ν2,i. We provide conditions which suffice to obtain inequality

constraints for the parameters of interest when both types of disturbances are present.

The conditions do impose restrictions on the structure of these errors, but they do not

require a parametric specification for the form of the joint distribution of ν1,i and ν2,i

while allowing for endogenous regressors and general choice sets.

Our main example shows how the framework proposed here can enable us to obtain in-

formation on parameters of interest in environments where estimation has proven difficult

in the past, and which are of significant applied interest.
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Appendix: Boundaries Generalization

In this Appendix, the derivation of moment inequalities in the Boundaries section is gener-

alized in two ways. First, we allow for instruments xi ∈ Ji in the formation of our moment

inequalities. Second, a more general marginal cost parametrization that can depend on

observed random variables will be allowed. For example, the suppose the marginal cost

function for firm i is c(zoi , θ0) + ηi, where ηi represents firm heterogeneity, as before, and

19



c(zoi , θ0) is the average marginal cost function across firms. Then, the profit function takes

the form: π(di,d−i, zi) = R(di,d−i, z
o
i )− di(c(zoi , θ0) + ηi) + ν1,i,di . The econometrician’s

differenced profit function is then ∆r(d, d′,d−i, z
o
i ; θ) = ∆R(d, d′,d−i, z

o
i )+(d′−d)c(zoi , θ).

We assume that (xi, ηi) is i.i.d. over i = 1, . . . , n. As before, assume that ηi is dis-

tributed symmetrically about zero. In addition, assume ηi is independent of xi.

Let gηi denote g(xi)ηi, and let gr+
i denote g(xi)∆r(di,di + 1,d−i, z

o
i , θ0). Then, using

order statistic notation gη(1) ≤ gη(2) ≤ · · · ≤ gη(n), and gr+
(1) ≤ gr+

(2) ≤ · · · ≤ gr+
(n). Define

L = {i : di > 0} and nL, as before. Also, define Lgη = {i : gηi ≤ gη(nL)}, Ugη = {i : gηi ≥
gη(nL+1)}, and Ugr = {i : gr+

i ≥ gr+
(nL+1)}. Finally, define the weight function to include a

positive function g of the instrument: hi(d′; di, Ji, gr
+
−i) = n−1

[
g(xi) 1{d′ = di − 1}1{i ∈

L}+ g(xi) 1{d′ = di + 1}1{i ∈ Ugr}
]
.

Now the derivation follows the steps in (7) with Ugη replacing Uη, and Ugr replacing

UR. So, we have

∑
i

∑
d′∈Di

hi(d′; di, Ji, gr
+
−i)∆r(di, d

′,d−i, z
o
i , θ0) ≥ − 1

n

∑
i∈L

g(xi)ν2,i,di,di−1 +
∑
i∈Ugη

g(xi)ν2,i,di,di+1


+

1

n

∑
i∈L

g(xi)ν
r
1,i,di,di−1 +

∑
i∈Ugη

g(xi)ν
r
1,i,di,di+1


As in the Boundaries section, it can be argued that the second term in the last expression

has mean zero in symmetric information games.

Now focus on the first term in the last expression. As before,

− 1

n

∑
i∈L

g(xi)ν2,i,di,di−1 +
∑
i∈Ugη

g(xi)ν2,i,di,di+1

 ≥ 1

n

{
nL∑
i=1

gη(i) −
n∑

i=nL+1

gη(i)

}

Note that since ηi is symmetrically distributed about zero and ηi is independent of xi, gηi

is also distributed symmetrically about zero. Hence, as argued before, the last term above

has expectation zero, and E
[
− 1
n

{∑
i∈L g(xi)ν2,i,di,di−1 +

∑
i∈Ugη g(xi)ν2,i,di,di+1

}]
≥ 0.

So, we can conclude that

E

 1

n

∑
i∈L

g(xi)∆r(di,di − 1,d−i, z
o
i , θ0) +

1

n

∑
i∈Ugr

g(xi)∆r(di,di + 1,d−i, z
o
i , θ0)

 ≥ 0.
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