
Appendix

Contains proofs for “Moment Inequalities and Their Application” by Pakes, Porter, Ho, and
Ishii

Notation

Let l denote a vector of ones. Below we suppress the random variable argument in all
notation for the moment functions.

Let ΩF = ΩF (θF ), DF = DF (θF ), and ΣF = VarF (m(θF )) with estimators ˆOmegaJ,F ,

D̂J,F , and Σ̂J,F (and the dependence of the estimators on F will usually be suppressed). We

will assume the diagonal elements of D̂J,F are positive.

Assumptions

Assumption A1 (a) Θ is compact; and for all F ∈ F (b) for some ε > 0, Θε
0,F ⊂ int(Θ),

where Θε
0,F = {θ ∈ Θ : infθ′∈Θ0,F

‖θ − θ′‖ ≤ ε}; (c) Θ0,F is closed; (d) θF is a singleton.

Assumption A2 For any ε > 0, there exists δ > 0 such that

inf
F∈F

inf
θ∈(Θε0,F )c

‖
(
PFm(θ)

)
−
‖ > δ.

Assumption A3 Define, for each F ∈ F , TF =
{

θ−θF
‖θ−θF ‖

: θ ∈ Θ0,F , θ 6= θF

}
. Let δ̄ =

inf{τ1 : τ ∈ TF , F ∈ F}. Assume δ̄ > 0.

Assumption A4 For some δ > 0, there exists ηΓ, εΓ > 0, and for each F there is λF with

‖λF‖ = 1 such that (a) infF min
j:D
−1/2
j,F PFmj(θF )<ηΓ

D
−1/2
j,F Γj,FλF > εΓ; (b) supF supτ :τ1≤δ,‖τ‖=1

minj:PFmj(θF )=0 D
−1/2
j,F Γj,F τ < −εΓ.

Assumption A5 For any δ > 0,

sup
F

PrF

(
sup
θ∈Θ
‖PJ,Fm(θ)− PFm(θ)‖ ≥ δ

)
−→ 0.

Assumption A6 (a) For some d > 0 and δ > 0, d ≤ infF minj VarF (mj(θF )) and supF
maxj PF‖m(θF )‖2+δ <∞;
(b) for any δ > 0,

sup
F

PrF

(∥∥∥D̂−1/2
J,F D

1/2
F − I

∥∥∥ ≥ δ
)
−→ 0.
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Assumption A7 There exists ν > 0 such that for all F , PFm(θ) is continuously differ-

entiable in the neighborhood N θF
ν and there exists C < ∞ such that ‖ ∂

∂θ
PFm(θ)‖ ≤ C for

θ ∈ N θF
ν . For any δ ↓ 0,

sup
F

sup
θ:‖θ−θF ‖<δ

∥∥∥∥ ∂∂θPFm(θ)− ∂

∂θ
PFm(θF )

∥∥∥∥ = o(δ)

and there exists ηd > 0 such that

sup
F

sup
θ′:‖θ′−θF ‖<ηd

sup
θ:‖θ−θ′‖<δ

∥∥∥∥[PFm(θ)− PFm(θ′)− ∂

∂θ
PFm(θ′)(θ − θ′)

]∥∥∥∥ = o(δ).

Assumption A8 For any δ > 0 and all sequences η ↓ 0,

sup
F

PrF

(
sup

θ:‖θ−θF ‖≤η

∥∥∥√J [PJ,Fm(θ)− PFm(θ))− (PJ,Fm(θF )− Pm(θF ))]
∥∥∥ ≥ δ

)
−→ 0

Proofs

Proof of Theorem 2:
Let

α∗ = lim infJ−→∞ inf
F∈F

Pr
(√

J(θ̂1,J,F − θ1,F ) ≤ q∗J,F

)
(1)

Then, there’s a sequence FJ such that

Pr
(√

J(θ̂1,J,FJ
− θ1,FJ

) ≤ q∗J,FJ

)
−→ α∗

We will work along this sequence and its subsequences to show the desired result, see Andrews
and Guggenberger (2009).

By continuity, for each J , PFJml(θFJ ) = 0 for some dimension l. Hence, for some

dimension l, lim infJ
√
JD

−1/2
l,FJ
PFJml(θFJ ) = 0. Such a moment is “classified” as bind-

ing. Consider the subsequence FJ ′ such that PFJ′ml(θFJ′ ) = 0. Now along this subse-

quence, search for any other moment ml′ such that lim infJ ′
√
J ′D

−1/2
l′,FJ′
PFJ′ml′(θFJ′ ) = 0.

Pick a further subsequence such that PFJ′′ml′(θFJ′′ ) = 0. Continue in this fashion until

lim infJ ′′
√
J ′′Dl, FJ ′′

−1/2PFJ′′ml(θFJ′′ ) > 0 for all remaining moments ml. The moments
that have been “chosen” are called the binding moments. Let ma denote the vector contain-
ing the binding dimensions, and let ka denote the length of the vector.

Let FJ denote the last subsequence that emerges from the above procedure. Along
this subsequence, we now search among the remaining moments (not included in ma) for

a moment ml such that lim infJ
√
JD

−1/2
l,FJ
PFJml(θFJ ) is finite. For such a moment, let γ =
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lim infJ
√
JD

−1/2
l,FJ
PFJml(θFJ ), and take a subsequence of FJ such that

√
J ′D

−1/2
l,FJ′
PFJ′ml(θFJ′ ) −→

γ. Notice that γ > 0. Continue working along the subsequences to find such moments, just
as in the procedure for the binding moments. The moments chosen are collected together
with the binding moments to form the “nearly binding” moments and are denoted m0 (with
size k0). Let FJ denote the last subsequence taken in this procedure. If there are any re-

maining moments ml not contained in m0, then
√
JD

−1/2
l,FJ
PFJml(θFJ ) −→∞. Such moments

are called non-binding and are collected in the vector m1 (with size k1).
For notational convenience, assume that the moments are ordered with the binding mo-

ments first and the non-binding moments last. Also, an a superscript will be used to denote
the sub-vector or -sub-matrix corresponding to the rows from ma (similarly for superscripts
0 and 1).

Lastly, using boundedness implied by Assumptions A6 and A7, take a further subsequence
such that ΓFJ and ΣFJ

converge. Let Γ and Σ denote the limits.
The propositions below will be stated with respect to the final subsequence that results

from this process. For notational convenience, we will denote it by FJ . Proposition 6 yields
the desired result. 2

Proof of Theorem 1:
Propositions 4 and 5 give the limiting distribution for

√
J(θ̂J −θFJ ) along a sequence FJ .

For Theorem 1, we only need the limiting distribution for a fixed F , which is a special case.
Notice that for a fixed F , if PFmj(θF ) > 0, then

√
JPFmj(θF ) −→ ∞. So, in this case mj

is in the non-binding moments m1. As a result, m0 consists only of moments mj such that
PFmj(θF ) = 0. Thus, for a fixed F , µ0 = 0, which gives the form of the result stated, where
D0 = D0

F (θF ), Γ0 = Γ0
F (θF ), and Ω0 = Ω0

F (θF ). 2

Proposition 1 Under Assumptions A1-A8, for any ε > 0, PrFJ (‖θ̂J − θFJ‖ ≥ ε) −→ 0.

Proof:
Without loss of generality, assume ε satisfies Assumption A1(b). First, we will show that

the set estimator cannot be too much larger than the identified set, i.e. θ̂J ∈ Θ
δ/2
0,FJ

for some
appropriately chosen δ > 0 and J large enough. Then we will show that the set estimator
cannot be too small, implying θ̂1,J ≤ θ1,FJ

+ δ/2. Together these two findings will yield the
desired result.

In particular, given ε above and δ̄ defined in Assumption A3, let δ = ε · min{δ̄, ε, 1}/2.
Assumption A3 implies that if θ′ ∈ Θ0,F and θ1

′ − θ1,F ≤ δ, then ‖θ′ − θF‖ ≤ δ/δ̄ ≤ ε/2.

Then, Θ
δ/2
0,F ∩ {θ′ ∈ Θ : θ′1 < θ1,F + δ/2} ⊂ {θ : ‖θ − θF‖ < ε}, so it remains to show that

these last two events occur w.p.a. 1.

By Assumption A2, there exists δ′ > 0 such that inf
θ∈(Θ

δ/2
0,FJ

)c
1√
2d̄
‖(PFJm(θ))−‖ > δ′. By

Assumption A5, supθ′∈Θ

√
2
d
‖PJm(θ′)−PFJm(θ′)‖ < δ′/2 w.p.a. 1, and by Assumption A6,
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1√
2d̄
I < D̂

−1/2
J <

√
2
d
I w.p.a. 1. Suppose these conditions hold, then

inf
θ∈(Θ

δ/2
0,FJ

)c
‖(D̂−1/2

J PJm(θ))−‖

≥ inf
θ∈(Θ

δ/2
0,FJ

)c

1√
2d̄
‖(PFJm(θ))−‖ − sup

θ′∈Θ

√
2

d
‖PJm(θ′)− PFJm(θ′)‖

> δ′ − δ′/2 = δ′/2.

And, for any θ′ ∈ Θ0,FJ , ‖(D̂−1/2
J PJm(θ′))−‖ ≤

√
2
d
‖(PFJm(θ′))−‖+

√
2
d
‖PJm(θ′)−PFJm(θ′)‖

≤ δ′/2. Hence, θ̂ 6∈ (Θ
δ/2
0,FJ

)c, i.e. θ̂ ∈ Θ
δ/2
0,FJ

, and so θ̂J ∈ Θ̂J ⊂ Θ
δ/2
0,FJ

w.p.a. 1.

Let ζ1
J = minj{[

√
J(D1

FJ
)−1/2PFJm1(Z, θFJ )]j} where j indexes the elements of the vector

m1. Recall that ζ1
J −→ ∞. Let ζJ = min{

√
J, ζ1

J}, and define θ′J = θFJ + λFJ
√
ζJ√
J

for λFJ
as defined in Assumption A4. Note that by its definition, ‖θ′J − θFJ‖ −→ 0. We will show

that D
−1/2
FJ

PJm(θ′J) > 0 w.p.a. 1. By Assumption A6, it will follow that D̂
−1/2
J PJm(θ′J) > 0

w.p.a. 1.
By Assumptions A6 and A8 and Lyapunov’s CLT, there exists C1 < ∞ such that∥∥∥√JD−1/2

FJ
[PJm(θ′J)− PFJm(θ′J)]

∥∥∥ ≤ ∥∥∥√JD−1/2
FJ

[
PJm(θFJ )− PFJm(θFJ )

]∥∥∥
+
∥∥∥√JD−1/2

FJ

[
PJm(θ′J)− PFJm(θ′J)−

(
PJm(θFJ )− PFJm(θFJ )

)]∥∥∥ ≤ C1 w.p.a. 1. By As-

sumptions A6 and A7,∥∥∥√JD−1/2
FJ

[
PFJm(θ′J)− PFJm(θFJ )− ΓFJ (θ′J − θFJ )

]∥∥∥ =
√
Jo(‖θ′J − θFJ‖) = o(

√
ζJ). (2)

By the bounds on DFJ
and ΓFJ implied by Assumptions A6 and A7, there exists a bound

CΓ such that ‖(D1
FJ

)−1/2Γ1
FJ
‖ ≤ CΓ, so (D1

FJ
)−1/2Γ1

FJ
(θ′J − θFJ ) =

√
ζJ(D1

FJ
)−1/2Γ1

FJ
λFJ

≥ −
√
ζJCΓl. For large enough J , the o(

√
ζJ) term in (2) is bounded in absolute value by√

ζJ and ζJ > (C1 + 1) +
√
ζJ + CΓ

√
ζJ , so that

√
J(D1

FJ
)−1/2PJm1(θ′J) ≥

√
J(D1

FJ
)−1/2PFJm1(θFJ )−

∥∥∥√J(D1
FJ

)−1/2
[
PJm1(θ′J)− PFJm1(θ′J)

]∥∥∥ l
−
∥∥∥√JD−1/2

FJ

[
PFJm(θ′J)− PFJm(θFJ )− ΓFJ (θ′J − θFJ )

]∥∥∥ l
+(D1

FJ
)−1/2Γ1

FJ
(θ′J − θFJ )

≥ [ζJ − (C1 + 1)−
√
ζJ − CΓ

√
ζJ ]l

> 0

w.p.a. 1 and
√
J(D̂1

J)−1/2PJm1(θ′J) > 0 w.p.a. 1.

For some C2 < ∞, ‖
√
J(D0

FJ
)−1/2PFJm0(θFJ )‖ < C2. For J large, the o(

√
ζJ) term in

(2) is bounded in absolute value by εΓ
2

√
ζJ , C2/

√
J < ηΓ, and εΓ

2

√
ζJ > C1 + C2 + 1 for εΓ
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and ηΓ defined in Assumption A4. Then w.p.a. 1,

√
J(D0

FJ
)−1/2PJm0(θ′J)

≥
√
J(D0

FJ
)−1/2Γ0

FJ
(θ′J − θFJ )− ‖

√
J(D0

FJ
)−1/2[PJm0(θ′J)− PFJm0(θ′J)]‖l

−
∥∥∥√J(D0

FJ
)−1/2

[
PFJm0(θ′J)− PFJm0(θFJ )− Γ0

FJ
(θ′J − θFJ )

]∥∥∥ l
−‖
√
J(D0

FJ
)−1/2PFJm0(θFJ )‖l

>
√
ζJ(D0

FJ
)−1/2Γ0

FJ
λFJ − (C1 + 1)l − εΓ

2

√
ζJ l − C2l

> 0

and
√
J(D̂0

J)−1/2PJm0(θ′J) > 0 w.p.a. 1.

Now,
√
JD̂

−1/2
J PJm(θ′J) > 0 implies that θ̂1,J ≤ θ′1,J≤ θ1,FJ

+
√
ζJ/
√
J ≤ θ1,FJ

+ δ/2
w.p.a. 1. The result follows as argued above. 2

Proposition 2 Under Assumptions A1-A8, for any ε > 0, there exists C < ∞ such that
PrFJ (‖

√
J(θ̂J − θFJ )‖ ≤ C) ≥ 1− ε.

Proof:
First, we will show that for some c1 > 0, D̂

−1/2
J PJm(θFJ+c1λFJ/

√
J) ≥ 0 with probability

approaching one (w.p.a. 1). Then, θ̂1,J ≤ θ1,FJ
+ c1λ1,FJ/

√
J w.p.a 1. Second, we show

PrFJ (θ̂ 6∈ BJ,c2) −→ 1 where BJ,c =
{
θ :

θ1−θ1,FJ

‖θ−θFJ ‖
≤ δ, ‖θ − θFJ‖ ≥ c/

√
J
}

and δ as defined

in Assumption A4.

Suppose, for some c2 > 0, θ̂1,J ≤ θ1,FJ
+ c1λ1,FJ/

√
J and θ̂ 6∈ BJ,c2 . If

θ̂1,J−θ1,FJ

‖θ̂−θFJ ‖
≤ δ, then

‖θ̂ − θFJ‖ ≤ c2/
√
J . If

θ̂1,J−θ1,FJ

‖θ̂−θFJ ‖
> δ, then ‖θ̂ − θFJ‖ < (θ̂1,J − θ1,FJ

)/δ ≤ c1/δ
√
J . In either

case, ‖θ̂−θFJ‖ ≤ max{c1/δ, c2}/
√
J . So the above two conclusions will be sufficient to prove

the result.

Let θ′FJ = θFJ + c1λFJ/
√
J and

√
J(D0

FJ
)−1/2PJm0(θ′FJ ) = (D0

FJ
)−1/2c1Γ0

FJ
λFJ + η0

J . Note
that ‖η0

J‖ is bounded w.p.a. 1 by Assumptions A6, A7, A8, and Lyapounov’s central limit
theorem. Hence, by Assumption A4, by choosing c1 sufficiently large, the sum of the last
two terms is nonnegative w.p.a. 1. So, using Assumption A6, we have (D̂0

J)−1/2 PJm0(θFJ +

c1λFJ/
√
J) ≥ 0 w.p.a. 1.

Let
√
J(D1

FJ
)−1/2PJm1(θ′FJ ) =

√
J(D1

FJ
)−1/2PFJm1(θFJ ) +c1(D1

FJ
)−1/2Γ1

FJ
λFJ +η1

J . By

the bounds in Assumptions A6 and A4, there exists CΓ such that (D1
FJ

)−1/2Γ1
FJ
λFJ ≥ −CΓl,

so
√
J(D1

FJ
)−1/2PJm1(θ′FJ ) ≥

√
J(D1

FJ
)−1/2PFJm1(θFJ ) −c1CΓl −‖η1

J‖. As with the m0 ar-

gument above, ‖η1
J‖ can be bounded w.p.a. 1. Every element of

√
J(D1

FJ
)−1/2PFJm1(θFJ )

is approaching infinity, so with J large enough the whole expression is nonnegative with

5



probability arbitrarily close to one. Again, using Assumption A6 and putting the m0 and
m1 results together, we have the desired first result that D̂

−1/2
J PJm(θFJ + c1λFJ/

√
J) ≥ 0

w.p.a. 1.

Next, we show that for some positive constant c2, θ̂J 6∈ BJ,c2 w.p.a. 1.

By consistency, there exists KJ ↓ 0 such that ‖θ̂J − θFJ‖ < KJ w.p.a. 1. Let AJ,c ={
θ : ‖θ − θFJ‖ < KJ ,

θ1−θ1,FJ

‖θ−θFJ ‖
≤ δ, ‖θ − θFJ‖ ≥ c/

√
J
}

. So, it will suffice to show θ̂J 6∈ AJ,c2
w.p.a. 1. We’ll prove this by showing that w.p.a. 1 for some η1 > 0, ‖(

√
JD̂

−1/2
J PJm(θFJ ))−‖ ≤

η1 while ‖(
√
JD̂

−1/2
J PJm(θ))−‖ ≥ 2η1 for all θ ∈ AJ,c2 .

Note that

√
J(D1

FJ
)−1/2PJm1(θFJ ) ≥

√
J(D1

FJ
)−1/2PFJm1(θFJ )−‖

√
J(D1

FJ
)−1/2[PJm1(θFJ )−PFJm1(θFJ )]‖.

The last term is bounded w.p.a. 1, and since the first term is tending to infinity,
√
J(D1

FJ
)−1/2PJm1(θFJ ) >

0 w.p.a. 1. And, by Assumption A6,
√
J(D̂1

J)−1/2PJm1(θFJ ) > 0 w.p.a. 1. So, the following
holds w.p.a. 1,

‖(
√
JD̂

−1/2
J PJm(θFJ ))−‖ = ‖(

√
J(D̂0

J)−1/2PJm0(θFJ ))−‖
≤ ‖

√
J(D̂0

J)−1/2PJm0(θFJ )‖ ≤
√

2‖
√
J(D0

FJ
)−1/2PJm0(θFJ )‖

≤
√

2‖
√
J(D0

FJ
)−1/2(PJm0(θFJ )− PFJm0(θFJ ))‖+

√
2‖
√
J(D0

FJ
)−1/2PFJm0(θFJ )‖

The last two terms are bounded w.p.a. 1, and we can set η1 equal to this bound.

Next, we show that supθ∈AJ,c2 minj∈{1,...,ka}
√
JD̂

−1/2
j,J PJma

j (θ) ≤ −2η1 with probability

approaching one. Noting that PFJma(θFJ ) = 0,

sup
θ∈AJ,c2

min
j∈{1,...,ka}

√
JD

−1/2
j,FJ

PJma
j (θ))

≤ sup
θ∈AJ,c2

min
j∈{1,...,ka}

√
JD

−1/2
j,FJ

[
PFJma

j (θ)− PFJma
j (θFJ )

]
(3)

+ d−1/2 sup
θ∈AJ,c2

‖
√
J [PJma(θ))− PFJma(θ)− (PJma(θFJ )− PFJma(θFJ ))]‖

+ ‖
√
J(Da

FJ
)−1/2[PJma(θFJ )− PFJma(θFJ )]‖

By Assumptions A6 and A8, the last two terms are bounded w.p.a. 1.
It will, then, suffice to show that for large enough J ,

sup
θ∈AJ,c2

min
j∈{1,...,ka}

√
JD

−1/2
j,FJ

[
PFJma

j (θ)− PFJma
j (θFJ )

]
is less than an arbitrary negative number through choice of c2. Given appropriate c2, we will
then have supθ∈AJ,c2 minj∈{1,...,ka}

√
JD̂

−1/2
j,J PJma

j (θ)) ≤ −2η1 w.p.a. 1.
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For any θ 6= θF , there exists wθ,F > 0 and λθ,F with ‖λθ,F‖ = 1 such that θ = θF +

wθ,Fλθ,F . For any λ with ‖λ‖ = 1, let jλ,F be a solution to minj∈{1,...,ka}D
−1/2
j,F Γj,Fλ. Then,

lim sup
J−→∞

sup
θ∈AJ,c2

min
j∈{1,...,ka}

√
JD

−1/2
j,FJ

[
PFJma

j (θ)− PFJma
j (θFJ )

]
≤ lim sup

J−→∞
sup

θ∈AJ,c2

√
JD

−1/2
jλθ ,FJ

[
PFJma

jλθ
(θ)− PFJma

jλθ
(θFJ )

]
= ν

Let J ′ be a subsequence along with θJ ′ such that jλθJ′
is the same value for all J ′, ie j∗ = jλθJ′

for all J ′, and
√
J ′D

−1/2
j∗,FJ′′

[
PFJ′m

a
j∗(θJ ′)− PFJ′m

a
j∗(θFJ′ )

]
−→ ν.

For the sequence θJ ′ defined above, there exist corresponding wθJ′ ,FJ′ and λθJ′ ,FJ′ (for
notational simplicity, we suppress the dependence on FJ ′). Define θ̄J ′ as

θ̄J ′ = θFJ′ +
c2√
J ′
λθJ′

and w̄θJ′ = c2√
J ′

. Now note, for J ′ large enough,

√
J ′D

−1/2
j∗,FJ′

[
PFJ′m

a
j∗(θJ ′)− PFJ′m

a
j∗(θFJ′ )

]
−
√
J ′D

−1/2
j∗,FJ′

[
PFJ′m

a
j∗(θ̄J ′)− PFJ′m

a
j∗(θFJ′ )

]
=
√
J ′D

−1/2
j∗,FJ′

∂

∂θ
PFJ′m

a
j∗(θFJ′ )λθJ′ (wθJ′ − w̄θ̄J′ )

+
√
J ′D

−1/2
j∗,FJ′

[
∂

∂θ
PFJ′m

a
j∗(θ̃J ′)−

∂

∂θ
PFJ′m

a
j∗(θFJ′ )

]
λθJ′ (wθJ′ − w̄θ̄J′ )

≤ 0

where θ̃J ′ is a mean value and θJ ′ − θ̄J ′ = λθJ′ (wθJ′ − w̄θ̄J′ ). By Assumptions A6 and A7,

D
−1/2
j∗,FJ′

[
∂
∂θ
PFJ′m

a
j∗(θ̃J ′)− ∂

∂θ
PFJ′m

a
j∗(θFJ′ )

]
λθJ′ −→ 0. By Assumption A4, D

−1/2
j∗,FJ′

∂
∂θ
PFJ′m

a
j∗(θFJ′ )λθJ′

< −εΓ, leading to the last inequality. So,

lim
J ′−→∞

√
J ′D

−1/2
j∗,FJ′

[
PFJ′m

a
j∗(θJ ′)− PFJ′m

a
j∗(θFJ′ )

]
≤ lim sup

J ′−→∞

√
J ′D

−1/2
j∗,FJ′

[
PFJ′m

a
j∗(θ̄J ′)− PFJ′m

a
j∗(θFJ′ )

]
= lim

J ′′−→∞

√
J ′′D

−1/2
j∗,FJ′′

[
PFJ′′m

a
j∗(θ̄J ′′)− PFJ′′m

a
j∗(θFJ′′ )

]
(for some subsequence J ′′)

= c2 lim
J ′′−→∞

D
−1/2
j∗,FJ′′

Γj∗,FJ′′λθ̄J′′

≤ −c2εΓ

By choosing c2 large enough, we can conclude that for large enough J ,

sup
θ∈AJ,c2

min
j∈{1,...,k0}

√
JD

−1/2
j,FJ

[
PFJm0

j(θ)− PFJm0
j(θFJ )

]
is bounded above by any given negative number. 2
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Define θ∗1 = min{θ1 : D
−1/2
0,FJ

Γ0,FJ
(θ − θFJ ) +D

−1/2
0,FJ

PJm0(θFJ ) ≥ 0} and take θ∗ to be any
vector in the infimum set with first element θ∗1.

Proposition 3 Under Assumptions A1-A8, for any ε > 0, there exists C < ∞ such that
PrFJ (‖

√
J(θ∗J − θFJ )‖ ≤ C) ≥ 1− ε.

Proof:
We can choose J large enough that (D0

FJ
)−1/2PFJm0(θFJ ) < ηΓ, so that by Assump-

tion A4, for c large enough,
√
J(D0

FJ
)−1/2Γ0

FJ
(cλFJ/

√
J) +

√
J(D0

FJ
)−1/2PJm0(θFJ ) ≥ 0.

Hence, θ∗J is well-defined.
Given ρ > 0. Choose c such that PrFJ (c(D0

FJ
)−1/2Γ0

FJ
λFJ −‖

√
J(D0

FJ
)−1/2PJm0(θFJ )‖l >

0) > 1− ρ for J ≥ J̄ for some J̄ .
Now, c(D0

FJ
)−1/2Γ0

FJ
λFJ+

√
J(D0

FJ
)−1/2PJm0(θFJ )≥ c(D0

FJ
)−1/2Γ0

FJ
λFJ −‖

√
J(D0

FJ
)−1/2PJm0(θFJ )‖l ≥

0 implies that θFJ + cλFJ/
√
J is in the infimum set over which θ∗J is chosen, so

√
J(θ∗1,J −

θ1,FJ
) ≤ cλ1,FJ ≤ c.

Also, c(D0
FJ

)−1/2Γ0
FJ
λFJ−

√
J(D0

FJ
)−1/2PJm0(θFJ )≥ c(D0

FJ
)−1/2Γ0

FJ
λFJ −‖

√
J(D0

FJ
)−1/2PJm0(θFJ )‖l ≥

0 implies (D0
FJ

)−1/2Γ0
FJ

[
√
J(θ∗J−θFJ )+cλFJ ] ≥ 0 and (Da

FJ
)−1/2ΓaFJ [

√
J(θ∗J−θFJ )+cλFJ ] ≥ 0.

By Assumption A4, this last event would imply ‖
√
J(θ∗J−θFJ )+cλFJ‖δ ≤

√
J(θ∗1,J−θ1,FJ

)+

cλ1,FJ . By the triangle inequality, ‖
√
J(θ∗J − θFJ )‖ ≤ ‖

√
J(θ∗J − θFJ ) + cλFJ‖+ ‖cλFJ‖.

For J ≥ J̄ ,

Pr

(
‖
√
J(θ∗J − θFJ )‖ ≤ 2cλ1,FJ

δ
+ ‖cλFJ‖

)
≥ Pr

(
‖
√
J(θ∗J − θFJ ) + cλFJ‖ ≤

2cλ1,FJ

δ

)
≥ Pr({δ‖

√
J(θ∗J − θFJ ) + cλFJ‖ ≤

√
J(θ∗1,J − θ1,FJ

) + cλ1,FJ} ∩ {
√
J(θ∗1,J − θ1,FJ

) ≤ cλ1,FJ})
≥ Pr(cΓ0

FJ
λFJ − ‖

√
JPJm0(θFJ )‖l ≥ 0)

≥ 1− ρ

So set C = (2c/δ) + c ≥ (2cλ1,FJ/δ) + ‖cλFJ‖ to show Pr(‖
√
J(θ∗J − θFJ )‖ ≤ C) ≥ 1− ρ for

J ≥ J̄ and yield ‖
√
J(θ∗J − θFJ )‖ = Op(1). 2

Proposition 4 Let τ̂1 = min{τ1 : (D0)−1/2Γ0τ + Z + µ0 ≥ 0}, where Z ∼ N(0,Ω0) and

µ0 = limJ−→∞
√
J(D0

FJ
)−1/2PFJm0(θFJ ). Under Assumptions A1–A8,

√
J(θ∗1,J − θ1,FJ

)
d−→

τ̂1.

Proof:
For J large enough, (D0

FJ
)−1/2PFJm0(θFJ ) < ηΓ and (D0

FJ
)−1/2Γ0

FJ
λFJ > εΓ by Assump-

tion A4. Since ‖λFJ‖ = 1, there exists a convergent subsequence λFJ′ −→ λ with ‖λ‖ = 1,

λ1 > 0, and (D0)−1/2Γ0λ > εΓ/2. By continuity, supτ1≤δ,‖τ‖=1 minj∈{1,...,ka}D
−1/2
j Γjτ <
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−εΓ/2. And, for ‖D−1/2Γ−(D0)−1/2Γ0‖ small enough, supτ1≤δ,‖τ‖=1 minj∈{1,...,ka}D
−1/2
j Γjτ <

0. Continuity of the optimal value of the linear program is then shown in Lemma A1. The
result then follows by the definition of θ∗1, Lyapunov’s CLT and Assumption A6, and the con-
tinuous mapping theorem. Note that the distribution of the solution to the linear program
is the same if the equations are scaled by (D0

FJ
)−1/2. 2

Proposition 5 Under Assumptions A1-A8, for any ε > 0, PrFJ (‖
√
J(θ̂1,J − θ∗1,J)‖ ≥ ε) −→

0.

Proof:
Let LJ(θ) = (D0

FJ
)−1/2Γ0

FJ

√
J(θ − θFJ ) +

√
J(D0

FJ
)−1/2PJm0(θFJ ). First, show there

exists hJ ↓ 0 such that LJ(θ̂J + hJλFJ/
√
J) ≥

√
J(D0

FJ
)−1/2PJm0(θ̂J) w.p.a. 1 and it will

follow that θ∗1,J ≤ θ̂1,J + hJλ1,FJ/
√
J w.p.a. 1. Second, show there exists rJ ↓ 0 such

that
√
J(D0

FJ
)−1/2PJm0(θ∗J + rJλFJ/

√
J) ≥ LJ(θ∗J) w.p.a. 1. Also,

√
J(D̂1

J)−1/2PJm1(θ∗J +

rJλFJ/
√
J) > 0 w.p.a. 1 by the

√
J-consistency of θ∗J . It will follow that θ̂1,J ≤ θ∗1,J +

rJλ1,FJ/
√
J w.p.a. 1. Then, −hJλ1,FJ/

√
J ≤ θ̂1,J − θ∗1,J ≤ rJλ1,FJ/

√
J w.p.a. 1, and the

conclusion will follow.

Define

εJ = −
√
J(D0

FJ
)−1/2[PFJm0(θ̂J)− PFJm0(θFJ )− Γ0

FJ
(θ̂J − θFJ )]

−
√
J(D0

FJ
)−1/2[PJm0(θ̂J)− PFJm0(θ̂J)− (PJm0(θFJ )− Pm0(θFJ ))],

so LJ(θ̂J + λFJhJ/
√
J)−

√
J(D0

FJ
)−1/2PJm0(θ̂J) = (D0

FJ
)−1/2Γ0

FJ
λFJhJ + εJ .

By
√
J-consistency of θ̂J and Assumptions A6, A7, and A8, there exists a sequence

γJ ↓ 0 such that ‖εJ‖ ≤ γJ w.p.a. 1. Set hJ = γJ/εΓ, then LJ(θ̂J + hJλFJ/
√
J) −√

J(D0
FJ

)−1/2PJm0(θ̂J) ≥ 0. Using Assumption A6 and the result from the proof of con-

sistency that (D̂0
J)−1/2PJm0(θ̂J) ≥ 0 w.p.a. 1, we conclude that LJ(θ̂J + hJλFJ/

√
J) ≥ 0

w.p.a. 1. Hence, w.p.a. 1, θ∗1,J = infθ:LJ (θ)≥0 θ1 ≤ θ̂1,J + hJλ1,FJ/
√
J.

By the
√
J-consistency of θ∗J , there exists C0 such that

sup
ω∈[0,1]

√
J

∥∥∥∥θ∗J +
ωλFJ√
J
− θFJ

∥∥∥∥ ≤ C0

w.p.a. 1. By Assumptions A6 and A7, there is βJ ↓ 0 and CΓ such that

sup
‖θ−θFJ ‖≤C0/

√
J

D
−1/2
FJ
‖PFJm(θ)− PFJm(θFJ )− ΓFJ (θ − θFJ ))‖ ≤ βJ√

J

and (D1
FJ

)−1/2Γ1
FJ
τ ≥ −CΓl when ‖τ‖ ≤ C0. By Assumptions A6 and A8, there is δJ ↓ 0

such that

sup
‖θ−θFJ ‖≤C0/

√
J

√
JD

−1/2
FJ
‖PJm(θ)− PFJm(θ)− [PJm(θFJ )− PFJm(θFJ )]‖ < δJ
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w.p.a. 1. By Lyapunov’s Central Limit Theorem, there is C1 such that ‖(D1
FJ

)−1/2
√
J [PJm1(θFJ )−

PFJm1(θFJ )]‖ ≤ C1 w.p.a. 1.

Let rJ = (δJ + βJ)/εΓ. If sup‖θ−θFJ ‖≤C0/
√
J

√
JD

−1/2
FJ
‖PJm(θ)−PFJm(θ)− [PJm(θFJ )−

PFJm(θFJ )]‖ < δJ and ‖θ∗J + rJλFJ/
√
J − θFJ‖ ≤ C0/

√
J , then

√
J(D0

FJ
)−1/2PJm0(θ∗J +

rJλFJ/
√
J)−LJ(θ∗J)≥ (D0

FJ
)−1/2Γ0

FJ
λFJrJ−(βJ+δJ)l ≥ 0. And if ‖(D1

FJ
)−1/2

√
J [PJm1(θFJ )−

PFJm1(θFJ )]‖ ≤ C1, then
√
J(D1

FJ
)−1/2PJm1(θ∗J + rJλFJ/

√
J) ≥

√
J(D1

FJ
)−1/2PFJm1(θFJ )−

(βJ +δJ +CΓ +C1)l. For J large enough
√
J(D1

FJ
)−1/2PFJm1(θFJ )−(βJ +δJ +CΓ +C1)l ≥ 0.

Thus, by the above and Assumption A6,
√
JD̂

−1/2
J PJm(θ∗J + rJλFJ/

√
J) ≥ 0 w.p.a. 1, and

so θ̂1,J ≤ θ∗1,J + rJλ1,FJ/
√
J w.p.a. 1. 2

Proposition 6 Suppose Assumptions A1-A8 hold and α ∈ (0, 1). Also, for any δ > 0,

supF PrF

(
‖(Γ̂J,F , Σ̂J,F )− (ΓFJ ,ΣFJ

)‖ ≥ δ
)
−→ 0. Then,

lim infJ−→∞PrFJ

(√
J(θ̂1,J − θ1,FJ

) ≤ q∗
α,J

)
≥ α. (4)

Proof:
Let Z0∗ ∼ N(0,Ω0) and Ẑ∗ ∼ N(0, Ω̂J), and define the infeasible simulation estimators:

τ̄1 = min{τ1 : 0 ≤ (D0)−1/2Γ0τ + Z0∗}
τ̃1 = min{τ1 : 0 ≤ (D̂0

J)−1/2Γ̂0
Jτ + Ẑ0∗ + (rJ(D̂0

J)−1/2PJm0(θ̂J))+}.
Recall τ ∗1 = min{τ1 : 0 ≤ D̂

−1/2
s,J Γ̂s,Jτ + Ẑ∗s + (rJD̂

−1/2
s,J PJms(θ̂J))+}. Let qα denote the αth

quantile of the limit distribution τ̂1. Let q∗
α
, q̄α, and q̃α denote the αth quantile of the τ ∗1, τ̄1,

and τ̃1 distributions. If the inequalities satisfying τ̃1 have no solution, a similar elimination
of moments as used in the definition of τ ∗1 can be used.

Since µ0 ≥ 0, q̄α−ε ≥ qα−ε. By Lemma A2, PrFJ (
√
J(θ̂1,J − θ1,FJ

) ≤ qα−ε) −→ α − ε.
So there exists Ja such that for J ≥ Ja, PrFJ (

√
J(θ̂1,J − θ1,FJ

) ≤ qα−ε) ≥ α − 2ε. Next, let

η = q̄α − q̄α−ε > 0. Then, by Lemma A3, there exists δ > 0 such that |qΓ,µ,Σ
α − qΓ0,0,Σ0

α | ≤ η

for (Γ, µ,Σ) ∈ N Γ0,0,Σ0

δ . For J large enough, ‖(Γ0
FJ
,Σ0

FJ
)− (Γ0,Σ0)‖ ≤ δ/3 and ‖(Γ̂0

J , Σ̂
0
J)−

(Γ0
FJ
,Σ0

FJ
)‖ ≤ δ/3 w.p.a. 1.

By Assumptions A6, A7, and A8 along with the
√
J-consistency of θ̂J , ‖

√
JD

−1/2
j,FJ

PJmj(θ̂J)−√
JD

−1/2
j,FJ
PFJmj(θFJ )‖ can be bounded with probability approaching one. Since

√
J(D0

FJ
)−1/2PFJm0(θFJ )

is bounded, ‖rJ(D̂0
J)−1/2PJm0(θ̂J)‖ ≤ δ/3 w.p.a. 1. It follows that q̄α−ε ≤ q̃α,J w.p.a. 1.

Since
√
JD

−1/2
j,FJ

PJmj(θFJ ) −→∞ for each j ≥ k0+1, we have maxj∈{1,...,k0}
√
JD̂

−1/2
j,J PJmj(θ̂J)

< minl∈{k0+1,...,k}
√
JD̂

−1/2
l,J PJml(θ̂J) w.p.a. 1. This means that, in the definition of τ ∗1, the

procedure to eliminate inequalities until a solution to the system of inequalities is found will
eliminate the moments in m1 first with probability approaching one. If inequalities corre-
sponding to m0 in the definition of τ̃1 have a solution, and the m0 inequalities are contained
in the ms inequalities in the definition of τ ∗1, then q∗

α,J
≥ q̃α,J since the possibly additional in-

equalities determining τ 1 can only increase the minimizing solution. So, q̃α,J ≤ q∗
α,J

w.p.a. 1.
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So, for J large enough, we can ensure that PrFJ (q̄α−ε ≤ q∗
α,J

) ≥ 1− ε. It follows that for J

large PrFJ (
√
J(θ̂1,J − θ1,FJ

) ≤ q∗
α,J

) ≥ α− 2ε. Since this holds for any ε > 0, the conclusion

follows. 2

Lemmas

Define
τ lp1 (Γ, Z) = min

τ :0≤Γτ+Z
τ1,

and use the following notation for a neighborhood, N Ā
δ = {A : ‖A− Ā‖ ≤ δ}.

For each Lemma below, we make the following assumptions:
(a) Given Γ0, assume there exists λ with ‖λ‖ = 1 and λ1 > 0 such that Γ0λ > 0;
(b) Assume that for each Γ in some open neighborhood of Γ0, the unique solution to
minτ :Γτ≥0 τ1 is zero.

Lemma A1 Under the assumptions above, there exists η > 0 such that τ lp1 (Γ, Z) is contin-

uous at each Γ ∈ N Γ0
η and Z ∈ Rm.

Proof: Find η > 0 such that given Γ̄ ∈ N Γ0
η , any Z̄, and ε > 0, we can find a δ > 0 such

that |τ lp1 (Γ, Z) − τ lp1 (Γ̄, Z̄)| < ε for all (Γ, Z) ∈ N Γ̄,Z̄
δ . There exists δa > 0 such that N Γ0

δa
is

contained in the open neighborhood in the assumptions and Γλ > 0 for all Γ ∈ N Γ0
δa

. We

note that by Kall (1970) Theorem 4, for all Γ ∈ N Γ0
δa

and any Z, τ lp1 (Γ, Z) is well defined
and a solution to the corresponding linear program exists.

Next show (uniform) boundedness of the solutions of the linear programs on some neigh-

borhood contained in N Γ0,Z̄
δa

, following the approach in the proof of Bereanu (1976) Lemma
2.1. In fact, it will be useful (for other results in the paper) to show a stronger result. Take

any constant Cz > 0 we will show uniform boundedness for (Γ, Z) ∈ N Γ0
δ ×{Z : ‖Z‖ ≤ Cz},

for some δ ≤ δa (take Cz large enough that ‖Z̄‖+ δa ≤ Cz). If solutions are not bounded on

any such set, then there exists a sequence δn −→ 0 and (Γn, Zn) ∈ N Γ0
δn
× {Z : ‖Z‖ ≤ Cz}

such that for some solution τ ∗n to the linear program min{τ1 : Γnτ + Zn ≥ 0}, ‖τ ∗n‖ −→ ∞.
By the Duality Theorem (of Linear Programming), for any solution τ ∗n to the primal linear
program, there exists a corresponding solution β∗n to the dual linear program. The compact-
ness of {Z : ‖Z‖ ≤ Cz} implies that there exists a convergent subsequence {n′} such that
Zn′ −→ Z̃ ∈ {Z : ‖Z‖ ≤ Cz}. Let An = [Γn − Γn], A0 = [Γ0 − Γ0], e1

′ = (1, 0, . . . , 0),
c′ = (e1

′,−e1
′), and

Bn =

 An 0
0 −An′
−c′ Zn

′

 , B0 =

 A0 0
0 −A0

′

−c′ Z̃ ′

 dn =

 −Zn−c
0

 .
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Then there is u∗n = (τ+
n , τ

−
n , β

∗
n) ≥ 0 such that Bnu

∗
n ≥ dn and τ ∗n = τ+

n − τ−n . Also,
Bn

u∗n
‖u∗n‖
≥ 1
‖u∗n‖

dn (and ‖u∗n‖ −→ ∞). Since u∗n′/‖u∗n′‖ is a sequence on the compact unit ball,

it has a convergent subsequence {n′′} such that u∗n′′/‖u∗n′′‖ −→ u∗ = (τ ∗+, τ ∗−, β∗), ‖u∗‖ = 1,
u∗ ≥ 0 and B0u

∗ ≥ 0. The last conclusion implies Γ′0β
∗ = 0. Note that if β∗ 6= 0 (recalling

β∗ ≥ 0), then β∗′Γ0λ > 0 and hence β∗′Γ0 6= 0. So, β∗ = 0. So we have Γ0τ
∗ ≥ 0 and τ ∗1 ≤ 0

(with τ ∗ 6= 0), which contradicts an assumption of the lemma. Hence, for some δb ≤ δa,
there exists C such that for any solution, τ̄ , of the linear program min{τ1 : Γτ + Z ≥ 0}
with (Γ, Z) ∈ N Γ0

δb
× {Z : ‖Z‖ ≤ Cz}, ‖τ̄‖ ≤ C.

Let γ = min
Γ∈NΓ0

δb

minj[Γλ]j > 0. Take any Γ̄ ∈ N Γ0

δb/2
. Choose ρ > 0 small enough that

ρλ1 < ε. And take δ > 0 such that δ ≤ δb/2 and ‖(Γ̄−Γ)τ‖ +‖Z̄ −Z‖ ≤ ργ for all ‖τ‖ ≤ C

and (Γ, Z) ∈ N Γ̄,Z̄
δ . Take any (Γ, Z) ∈ N Γ̄,Z̄

δ and let τ̄ be any solution to the linear program
min{τ1 : Γτ + Z ≥ 0}. Then,

Γ̄(τ̄ + ρλ) + Z̄ = (Γ̄− Γ)τ̄ + (Z̄ − Z) + Γ̄ρλ+ (Γτ̄ + Z) ≥ 0,

so τ lp1 (Γ, Z) + ε ≥ τ lp1 (Γ̄, Z̄). Similarly, τ lp1 (Γ̄, Z̄) + ε ≥ τ lp1 (Γ, Z), and the result follows with
η = δb/2. 2

Lemma A2 Let τ̂1 = min{τ1 : Γ0τ + Z ≥ 0} where Z ∼ N(µ,Σ). τ̂1 has a continuous
distribution (continuous c.d.f.). Also, R is the support of τ̂1; in particular, for any q ∈ R,
Pr(τ̂1 ≤ q) ∈ (0, 1).

Proof: Let F denote the c.d.f. of τ̂1. Suppose F is discontinuous at some t. Let ε =
Pr(τ̂1 = t). Then ε > 0. Let At = {Z : τ lp1 (Γ0, Z) = t}. Then, ε = Pr(Z ∈ At). For c > 0,
define Ec = {Z : Z = Z ′ + Γ0cλ for Z ′ ∈ At}. For c small enough, Pr(Z ∈ Ec) ≥ ε/2.

Take any Z ∈ At. Let τ̄ be a solution to min{τ1 : Γ0τ + Z ≥ 0}, so t = τ̄1. Let ¯̄τ be a
solution to min{τ1 : Γ0τ + (Z + Γ0cλ) ≥ 0}. Since 0 ≤ Γ0τ̄ + Z = Γ0(τ̄ − cλ) + (Z + Γ0cλ),
¯̄τ1 ≤ τ̄1 − cλ1. Also, 0 ≤ Γ0

¯̄τ + (Z + Γ0cλ) = Γ0(¯̄τ + cλ) + Z, so τ̄1 ≤ ¯̄τ1 + cλ1. Hence,
¯̄τ1 = t − cλ1. So, Pr(τ̂1 = t − cλ1) ≥ Pr(Z ∈ Ec) ≥ ε/2. We can pick an infinite number
of small c’s yielding such mass points, which yields a contradiction. Hence, F is continuous
everywhere.

Now take q ∈ R. Choose c such that cλ1 = q. Then,

0 < Pr(Z ≥ −Γ0cλ) = Pr(Γ0cλ+ Z ≥ 0) ≤ Pr(τ̂1 ≤ cλ1) = Pr(τ̂1 ≤ q).

And, similarly, we can show Pr(q ≤ τ̂1) > 0. 2

Define qΓ,µ,Σ
α = inf{q : Pr∗(τ lp1 (Γ, Z∗) ≤ q) ≥ α} where Z∗ ∼ N(µ,Σ).

Lemma A3 Given α ∈ (0, 1), qΓ,µ,Σ
α is continuous in (Γ, µ,Σ) at (Γ0, µ,Σ0) for any finite

µ.

Proof: Given η > 0, show that there exists δ > 0 such that |qΓ,µ,Σ
α − q

Γ0,µ,Σ0
α | ≤ η for

(Γ, µ,Σ) ∈ N Γ0,µ,Σ0

δ .
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Take ηa > 0 such that ηa ≤ η/2, max{qΓ0,µ,Σ0

α+2ηa − q
Γ0,µ,Σ0
α , q

Γ0,µ,Σ0
α − qΓ0,µ,Σ0

α−2ηa } ≤ η/2, and

α ∈ (2ηa, 1− 2ηa). From Lemma A1, choose δa > 0 such that τ lp1 (Γ, Z) is continuous at each

Γ ∈ N Γ0
δa

and all Z. Choose Cz such that Pr∗(‖Z∗‖ ≤ Cz) ≥ 1−ηa for all (µ,Σ) ∈ N µ,Σ0

δa
and

Z∗ ∼ N(µ,Σ). Then τ lp1 is uniformly continuous in Γ on N Γ0
δa
× {Z : ‖Z‖ ≤ Cz}. Choose

0 < δb ≤ δa such that ‖τ lp1 (Γ, Z)− τ lp1 (Γ0, Z)‖ ≤ ηa for all Γ ∈ N Γ0
δb

and all ‖Z‖ ≤ Cz.

Define Aβ = {Z : τ lp1 (Γ0, Z) ≤ q
Γ0,µ,Σ0

β }. Now take 0 < δ ≤ δb such that max{|Pr∗(Z∗ ∈
Aα+2ηa) − (α + 2ηa)|, |Pr∗(Z∗ ∈ Aα−2ηa) − (α − 2ηa)|} ≤ ηa for Z∗ ∼ N(µ,Σ), and all

(µ,Σ) ∈ N µ,Σ0

δ .

Then, for Z∗ ∼ N(µ,Σ) with (Γ, µ,Σ) ∈ N Γ0,µ,Σ0

δ ,

Pr∗(τ lp1 (Γ, Z∗) ≤ q
Γ0,µ,Σ0

α+2ηa + ηa) ≥ Pr∗({τ lp1 (Γ0, Z
∗) ≤ q

Γ0,µ,Σ0

α+2ηa } ∩ {‖Z
∗‖ ≤ Cz})

≥ Pr∗(Z∗ ∈ Aα+2ηa) + Pr∗(‖Z∗‖ ≤ Cz)− 1

≥ (α + 2ηa)− ηa + (1− ηa)− 1 = α.

Similarly, Pr∗(τ lp1 (Γ, Z∗) > q
Γ0,µ,Σ0

α−2ηa − ηa) > 1− α, so Pr∗(τ lp1 (Γ, Z∗) ≤ q
Γ0,µ,Σ0

α−2ηa − ηa) ≤ α. So,

q
Γ0,µ,Σ0
α − η ≤ q

Γ0,µ,Σ0

α−2ηa − ηa ≤ qΓ,µ,Σ
α ≤ q

Γ0,µ,Σ0

α+2ηa + ηa ≤ q
Γ0,µ,Σ0
α + η by the definition of ηa. The

result follows. 2
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