Appendix

Contains proofs for “Moment Inequalities and Their Application” by Pakes, Porter, Ho, and
Ishui

Notation

Let [ denote a vector of ones. Below we suppress the random variable argument in all
notation for the moment functions.

Let Qp = Qr(0p), Dp = Dp(0y), and ¥ = Varg(m(0y)) with estimators OmAegaJ,F,
D J.F, and )y ¢ (and the dependence of the estimators on F' will usually be suppressed). We
will assume the diagonal elements of D J,F are positive.

Assumptions

Assumption A1 (a) © is compact; and for all F' € F (b) for some ¢ > 0, ©f . C int(O),
where ©f p = {0 € © :infoce, , |0 — 0'|| < €}, (¢c) O is closed; (d) O is a singleton.

Assumption A2 For any e > 0, there exists 6 > 0 such that

inf inf ||
FeF 9e(0§ p)°

(Ppm(0)>_|| > 6,

Assumption A3 Define, for cach F € F, Ty — {% L0 € Opp. 0 # QF}. Let § —
inf{r, : 7 € Tp, F € F}. Assume § > 0.

Assumption A4 For some § > 0, there exists np,er > 0, and for each F there is Ap with

: ) ~1/2

|Ar|| = 1 such that (a) infp My 1/2 s (0) <o D, 7T pAr > er; (b) SUpp SUD,.., <5 |71
. ~1/2

MNPy, 0,)=0 Djp "Ly pT < —er.

Assumption A5 For any d > 0,
sup Prp (sup Py rm(0) — Prm(0)|| > 5) — 0.
F EE)

Assumption A6 (a) For some d > 0 and 6 > 0, d < infpmin; Varp(m;(8z)) and supp
mase; Ppl[m()][ < oo;
(b) for any § > 0,

sup Prg (HD;%QQ}/Q — IH > (5) — 0.
F 9



Assumption A7 There exists v > 0 such that for all F', Prm(0) is continuously differ-
entiable in the neighborhood No¥ and there exists C' < oo such that | ZPrm(0)] < C for
0 N&. For any§ ] 0,

0 0

sup  sup
F0:)10-05| <5

= 0(d)

and there exists ng > 0 such that

sup sup sup
F 00/ —0p||<na 0:[0—0"]| <6

{Pme) _Pem(0) — a%PFm(e')(e _ 9')] H — o(0).

Assumption A8 For any 6 > 0 and all sequences n | 0,

sup Prp sup
F 0:(10—0<n

VT [Pyrm(8) = Prm(6)) = (Byrm(r) - Pm(g))]| = 5) —0

Proofs

ProOOF OF THEOREM 2:
Let

o' = liminf; . inf Pr (ﬁ(@l 0 )< qj;F) (1)
e 1 b 9
Then, there’s a sequence F'; such that
Pr <\/‘7(Q1,J,FJ - Q1,FJ) < CI},FJ> — a’

We will work along this sequence and its subsequences to show the desired result, see Andrews
and Guggenberger (2009).

By continuity, for each J, Pp,mi(fr,) = 0 for some dimension /. Hence, for some
dimension [, liminf; ﬁQ;}ﬁ 27DFJm1(QFJ) = 0. Such a moment is “classified” as bind-

ing. Consider the subsequence F);; such that PFJ/ml(QFJ,) = 0. Now along this subse-

quence, search for any other moment my; such that liminf \/TQ;}F/JQIPFJ,mZ/ 0 FJ,) = 0.
Pick a further subsequence such that P ,my(0p,) = 0. Continue in this fashion until
lim inf j» v/ J" DI, F =" 2PFJ,,ml(QFJ") > 0 for all remaining moments m;. The moments
that have been “chosen” are called the binding moments. Let m® denote the vector contain-
ing the binding dimensions, and let k, denote the length of the vector.

Let F; denote the last subsequence that emerges from the above procedure. Along
this subsequence, we now search among the remaining moments (not included in m®) for
a moment my; such that liminf; ﬁQ;%QPFJmZ(QFJ) is finite. For such a moment, let v =
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lim inf ; ﬁQ;}éQPFsz (0F,), and take a subsequence of F; such that \/TQ;%,ZPFJ, my (QFJ,) —
v. Notice that v > 0. Continue working along the subsequences to find such moments, just

as in the procedure for the binding moments. The moments chosen are collected together
with the binding moments to form the “nearly binding” moments and are denoted m° (with
size ko). Let F; denote the last subsequence taken in this procedure. If there are any re-
maining moments m; not contained in m°, then v/.J Q;}é ZPFJml (0p,) — co. Such moments
are called non-binding and are collected in the vector m! (with size ki).

For notational convenience, assume that the moments are ordered with the binding mo-
ments first and the non-binding moments last. Also, an a superscript will be used to denote
the sub-vector or -sub-matrix corresponding to the rows from m® (similarly for superscripts
0 and 1).

Lastly, using boundedness implied by Assumptions A6 and A7, take a further subsequence
such that I'y, and X converge. Let I' and X denote the limits.

The propositions below will be stated with respect to the final subsequence that results
from this process. For notational convenience, we will denote it by F';. Proposition 6 yields
the desired result. O

PROOF OF THEOREM 1:

Propositions 4 and 5 give the limiting distribution for v/.J (é 7 —U8r,) along a sequence F.
For Theorem 1, we only need the limiting distribution for a fixed F', which is a special case.
Notice that for a fixed F, if Ppm;(0;) > 0, then /JPpm;(0;) — co. So, in this case m;
is in the non-binding moments m'. As a result, m® consists only of moments m; such that
Prm;(0r) = 0. Thus, for a fixed F, u° = 0, which gives the form of the result stated, where
D° = Dy (0r), I" = T%(0r), and Q° = Q4. (0F). =

Proposition 1 Under Assumptions A1-A8, for any e >0, Prp, ([0, — Op,|| > € —0.

PROOF:

Without loss of generality, assume € satisfies Assumption A1(b). First, we will show that
the set estimator cannot be too much larger than the identified set, i.e. 8, € @3{ ;J for some
appropriately chosen > 0 and J large enough. Then we will show that the set estimator
cannot be too small, implying Ql’ 7 <0, p, +0/2. Together these two findings will yield the
desired result.

In particular, given e above and § defined in Assumption A3, let § = € - min{4,¢,1}/2.
Assumption A3 implies that if 0 € O p and 0," — 0, p < 4, then ||/ — || < §/0 < ¢/2.
Then, @g{; N{0' €O :01 <0, p+0/2y C{O: |0 —0F|l < €}, so it remains to show that
these last two events occur w.p.a. 1.

. . ’ . 1 '
By Assumption A2, there exists ¢’ > 0 such that mfee(eg%)c \/—ﬁH(PFJm(O))_H > ¢'. By
Assumption A5, supy.ce \/%HIP’Jm(O’) — Pr,m(0)] < d'/2 w.p.a. 1, and by Assumption A6,
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#JI < 15;1/2 < \/gf w.p.a. 1. Suppose these conditions hold, then

inf 4||(D 2R ym(9)) |

> (Pl H—sup\f [Bym(@) — Pe,m(@)]

6/2

> —6’/2_5’/2.

And, for any 0" € O p,, ”< D-1/2p am(0))_|| < \/gH(PFJm(Q’))fH +\/g\|PJm(6’)_7DFJm(0/>”
< §'/2. Hence, 0 ¢ (O, 6/2 r,)S e 0 e @g{FJ, and so 0, € ©; C @g{i w.p.a. 1.

Let ¢} = min;{[v/J(D},)/*Pr,m'(Z,0;,)];} where j indexes the elements of the vector
m!. Recall that ¢} — co. Let (; = min{v/J,(}}, and define ¢, = 0, + )\E,% for A\p,
as defined in Assumption A4. Note that by its definition, ||0; — 05 || — 0. We will show
that Q;j/Q P;m(6;) > 0 w.p.a. 1. By Assumption A6, it will follow that D;1/2 Pym(6;) >0
w.p.a. 1.

By Assumptions A6 and A8 and Lyapunov’s CLT, there exists (', < oo such that

|VIDz) Ban(8)) = Pe,m@))| < |VIDE Pomier,) - Prm(es,)] |

+H\/72;j/2 [B,m(8)) — Pr,m(0)) — (Pym(fy,) —PFJm(QFJ))H < Oy wpa 1. By As
sumptions A6 and A7,

|VTD5) [Prm(©) = Prm(@r,) = L, (8 = 02,)]|| = Vo8 = 05, 1) = o(\/S)- (2

By the bounds on Dy and 'z implied by Assumptions A6 and A7, there exists a bound
Cr such that [[(Dp,)""°Lk, || < Cr, so (Dp,) L, (0% — 0r,) = V((Dk,) T, Ar,
> —/(;Crl. For large enough J, the o(y/(;) term in (2) is bounded in absolute value by
VC;and (5 > (Cy + 1) + /{5 + Crv/(s, so that
VI(Dy,) PR (6)) = V(DY) Prm (0r,) — || VI(DE,) 2[R (8)) - Prm! (6)] 1
— VIR [Pem(@)) = Prmibr,) - Tr, (0 — 05,)]] |1
+(Dy,) "Lk, (0 - 0r,)

> (¢ = (Cr+1) = V¢ = CrV/ Gl

> 0
w.p.a. 1 and VJ(DY)"V2P;m!(0,) > 0 w.p.a. 1.

For some Cy < 00, |[VJ(D%,)™V*Pr,m®(@p,)|| < Cs. For J large, the o(y/(;) term in
(2) is bounded in absolute value by £+/(;, Co/V'J < nr, and L/ > Cy + Co + 1 for er



and nr defined in Assumption A4. Then w.p.a. 1,

V(D) 2R m(0)
> V(DY) (0 — 0r,) — IV T(D%,) "2 [BmO () — Pr,m® (@)1
—|VID,) 2 [P @)) — Pl er,) ~ T4, (0 — 0]
—IVI(D%,) P, m (O,
> VD)L e, — (o 1) = /G -

> 0

and /J(D9)"1/2P,;m%(¢,) > 0 w.p.a. 1.
Now, vJD;"’P,m(¢,) > 0 implies that 91J <0< 05 HVG/IVI < 0y p, + 5/2
w.p.a. 1. The result follows as argued above.

Proposition 2 Under Assumptions A1-A8, for any € > 0, there exists C' < oo such that
Pre, (VT(0, — 0p)]| < C) > 1—e.

PROOF:
First, we will show that for some ¢; > 0, 15;1/2 Pym(0p, +c1 Ar, /v J) > 0 with probability

approaching one (w.p.a. 1). Then, QLJ < b p +cah 7, /VJ wp.a 1. Second, we show

Pr,(0 ¢ By.,) — 1 where B, = {e- ot f; L < 60— 0, || > ¢/VT } and § as defined

in Assumption A4.

Suppose, for some cy > 0, 91 <0 p, M FJ/\/j and 0 ¢ Bj,,. If HHTHIPIJ <9, then
Fy

10 — Op || < c2/V/T. Tt eﬁ; ; L2 > 5, then |0 — 05 || < (81— 01.p,)/0 < e1/3V/J. In either

case, || — 0 r, |l < max{ei /6, 02} /v/J. So the above two conclusions will be sufficient to prove
the result.

Let 0 =0 +c1dp, /VJ and VJ (DY )7V2Pym (0} ) = (DY) "2e1 L% Ag, +n5. Note
that ||nY| is bounded w.p.a. 1 by Assumptions A6, A7, A8, and Lyapounov’s central limit
theorem. Hence, by Assumption A4, by choosing ¢; sufficiently large, the sum of the last
two terms is nonnegative w.p.a. 1. So, using Assumption A6, we have (D9)~1/2 P,;m" (O, +
aAp, /VJT) >0 wpa. 1.

Let V' J(Dj)"V2Pym! (0f,) = VJ(Dy,) " *Pr,m'(0p,) +c1(Dy,) L Ar, +n}. By
the bounds in Assumptions A6 and A4, there exists Cr such that (Q%J)_l/ ZE}WJ)\FJ > —Crl,
so VJ (D )7V*Pym!(05)) > VJ(Dp,) V2 Pr,m!(0g) —eCrl —|n||. As with the m® ar-
gument above, |[n}|| can be bounded w.p.a. 1. Every element of v/J(Dj )~Y/*Pr,m!(0;,)
is approaching infinity, so with J large enough the whole expression is nonnegative with



probablhty arbitrarily close to one. Again, using Assumptlon A6 and putting the m® and
m! results together, we have the desired first result that D 12 Pym(0p, + cMF]/\/_) >0
w.p.a. 1.

Next, we show that for some positive constant c,, 0 7 & By, wp.a. 1.
By consistency, there exists K; | 0 such that ||, — 0, | < K; w.p.a. 1. Let A;, =

{ |60 — 6F1H<KJ,”9;01FFﬂ<5 10 — O, H>c/\/_} So, it will suffice to show 0, & A,

w.p.a. 1. We'll prove this by showing that w.p.a. 1 for some n; > 0, ||(\/jl5;1/2PJm(QFJ))_|| <

m while ||[(VID;*P;m(0))_|| > 2n, for all 6 € Ay,
Note that

VI(DE,) " PPym! (Or,) 2 VI (D)2 Pr,m 0r, )~ IV I (D,) 2 Bym! (8r,)~Pr,m' (85,1l

The last term is bounded w.p.a. 1, and since the first term is tending to infinity, v'.J(D}, )"/?Pym! (0,,) >

0 w.p.a. 1. And, by Assumption A6, ﬁ(ﬁ})_l/QPJml(QFJ) > (0 w.p.a. 1. So, the following
holds w.p.a. 1,

I(VID PP ym(0p,)- || = (VDY) 2P ym®(0,)) |

(
< IVIDG VPR m (@p, )|l < V2IVI(DE,) PP m° (G,
V2|V I(DE,) " @ m (Op,) — Pr,m® (@, )| + V2V I(DE,) 2 Pr,m® ()|

The last two terms are bounded w.p.a. 1, and we can set 7, equal to this bound.

.....

Next, we show that suppe,,  minjeqi,. k) \/_D] J/2lP’Jm (0) < —2m; with probability
approaching one. Noting that PFJ “(0F,) =0,

sup  min \/_D_1/2IP’Jm?(9))

96AJP2 ]E{l ~~~~~ ka

< sup min VD2 [PFJm?(é’) — PFJm;?(QFJ)} (3)

F
0€A; .y QL ka}y T

+d7 sup VIR ma(8) = Pryma(8) = (Byma(@r,) = Pryma(Br,)]

9614])62

+ V(D)2 Psma(@r,) — Prymallr, )

By Assumptions A6 and A8, the last two terms are bounded w.p.a. 1.
It will, then, suffice to show that for large enough J,

QEA]CQJE{]- ~~~~~ ka

is less than an arbitrary negative number through choice of ¢5. Given appropriate ¢y, we will
then have SUDgea,,, minjeq1,. k. }\/_DJ J/ P;m5(0)) < —2m w.p.a. 1.

.....



For any 0 # 0, there exists wgp > 0 and Mg p with |[Agp| = 1 such that 0 = 05 +
wp,pAg,p. For any A with [|[A|| = 1, let j\ p be a solution to min e, .} Q;;/2£j7F)\. Then,

limsup sup  min \/_D_l/2 [Pr,mi(0) — Pp,m$(0p,)]

J—00 0€Ay oy i€{1ka} T;

< limsup sup V.JD- 1/2 [pFJm?AG(Q)_PE]m?AQ(QFJﬂ =V

.
J—00 0€Ay,, Txg-E

Let J' be a subsequence along with 6 such that j Mo, is the same value for all J', ie j* = j,, S
—1/2 a a 77
for all J', and v/J'D;.'2, [PFJ,mj*(eJ,) - PFJ,mj*(QFJ,)} N
For the sequence 6 defined above, there exist corresponding Wo,, F and A, r,, (for
notational simplicity, we suppress the dependence on Fj). Define 0 as

éj/ = QFJ/ + 2 )\QJ,

2
VT

and wy , = .. Now note, for J’' large enough,
» T & &

VID;E, [PFJ/mwm)—PFJ,m;*<QFJ,> —VTDE, [Pryms(00) = Pr, s (0,)

- VT D—lﬁ,aem], % (Op, )N, (wy,, — g,

B o ~ 0
+vJ D 1/2 { PFJ/ (GJ’) 90 ;FJ/ (QPJ/):| )\OJ’ (wﬁ’J' U_)éﬂ)
< 0

where 6 is a mean value and 0, — 05 = Ao, (we, — wg, ). By Assumptions A6 and A7,

D3P, [P 00) — 5Pa, 5. (05,)] Ao, — 0. By Assumption A4, D12, &P, ms

< —er, leading to the last inequality. So,

lim \/_D] 14—‘2, [PFJ/mq* (QJ’) - PFJ/m?* (QFJ/)]

J'—00
< lbm sup \/_DJ 192/ [PFJ/ .(0) — Pr,mi (0 ,)}
'— 00
= JNIE}OO V J,/D *147‘2 7 |:PFJII ‘?* (e_JU> - PFJ” m‘?* (QFJ// )]

(for some subsequence J")

— 1/2
- @ J’/linooDJ F“EJ FJ”)\GJ”

< —eer
By choosing ¢, large enough, we can conclude that for large enough J,

sup mm \/_D]_117/J2 [ijmg(ﬁ) - PFJm?(QFJ)}

QEAJ co ]6{17 7

is bounded above by any given negative number. O
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Define 65 = min{#6 : D&%]QEQFJ(H —0p,) + D&};{]ZPJmO(QE]) > 0} and take 6* to be any
vector in the infimum set with first element 6;.

Proposition 3 Under Assumptions A1-AS8, for any € > 0, there exists C' < oo such that
Pre, (V05 — 0 <C) > 1 —e.

PROOF:
We can choose J large enough that (D} )=?*Pp,m°(@y,) < nr, so that by Assump-
tion A4, for ¢ large enough, V.J(D} )V2LY (cAp, /VJ) + VJI(DY,) 2Pym°(6p,) > 0.
Hence, 6% is well-defined.
leen p > 0. Choose c such that Prp, (c(D%)™/?L% Ap, — ||\/7(Q%J)*1/2PJmO(QFJ)||l >
0) > 1— p for J > J for some .J.
Now, ¢(D,) L, A, +V T (D, ) "2 Pym®(Or,) > e(Dy, )™ /*Th, A, =V T (D, )7/ *Pym® (O, Il >
0 implies that 0p + cAg,/ V7 is in the infimum set over which 0% is chosen, so v/J (0} Ty
0,p,) <chip, e
Also, c(DY,) V20 A, ~V/T(D2,) V2 m(6y,) > oD, ) VL Ar, —[[VI(D ) B (@, 1
0 implies (D%, )~Y2I% [V J(05—0p,)+cAF,] > 0 and (D}, )~/°L%, [\/7(9* O, )—i—c/\FJ] > 0.
By Assumption A4, this last event would imply ||v/.J (6% — Op,)+cAp,||d < \/_(QI g0 )+
cAr,p,. By the triangle inequality, [|[v/J(65 — 0, )| < [V J (85 — 8p,) + cAp, || + [[cAs, |-
For J > J,

2¢cA 20\
Pr (V65— 01 < 22505 4 fors, ) 2 Pr (IVF65 - 85,) + chey | < 22522

> ({5||\/_(9J QFJ) cArp, || < \/_(QTJ 1FJ) +ch Fz} N {\/_(QTJ 1F ) < C/\I,FJ})
> Pr(cL% Ap, — [VIP,m (05|l > 0)
> 1—p

So set C' = (2¢/8) + ¢ > (2cAy,r,/8) + ||cAr, || to show Pr(|VJ (65 — 0p)|| < C) > 1 —p for
J > J and yield |[VJ (0% — 0,)|| = O,(1). O

Proposition 4 Let 7, = min{r, : (D°)"Y2I°r + Z 4+ 1° > 0}, where Z ~ N(0,92°) and

10 = limy_ oo VI (DY) V2Pp,m®(05 ). Under Assumptions A1-A8, VJ(05, — 0, ) N

T1.

PROOF:
For J large enough, (D} )~"*Pp,m®(0,,) < nr and (D}, )"/*T% Ap, > er by Assump-
tion A4. Since ||)\FJ|| 1, there exists a convergent subsequence )\F, — A With ||)\|| =1,

-----



.....

0. Continuity of the optimal value of the linear program is then shown in Lemma A1l. The
result then follows by the definition of 8}, Lyapunov’s CLT and Assumption A6, and the con-
tinuous mapping theorem. Note that the distribution of the solution to the linear program
is the same if the equations are scaled by (D, )~/ 0

Proposition 5 Under Assumptions A1-A8, for any e > 0, PrFJ(H\/j(QLJ =01 )l >€) —
0.

PROOF:

Let Ly(0) = (D%)"Y2L% VIO — 05,) + V(DY) ?Pym°(p,). First, show there
exists hy | 0 such that Ly(0, + hyp,/VJ) > V(D% )"V?*P;m°(0,) w.p.a. 1 and it will
follow that 67 ; < QLJ + hJ)\LFJ/\/j w.p.a. 1. Second, show there exists r; | 0 such
that v/ 7(D% )" V2RymO (05 + ryAp, /VT) > Ly(075) wp.a. 1. Also, VJ(D3)"V2Pm! (05 +
77 r, /v J) > 0 w.p.a. 1 by the v/J-consistency of 6%. It will follow that QLJ <01, +
TJ)\17FJ/\/j w.p.a. 1. Then, —hJ)\l,FJ/ﬁ < QLJ —0i; < TL])\LFJ/ﬁ w.p.a. 1, and the

conclusion will follow.

Define
gy = —\/a_](Q%J)ilﬂ[,PFJmO(éJ) - PFJmO(QFJ) o E%J(QJ o QFJ)]

—VJ(D%,) V2B ym°(0,) = Prym®(0y) — (Bym®(Or,) — Pm®(0r,))],

s0 Ly(0; + Aryhy [V T) = VI(D5,) 7P ymO(8,) = (D%,) " /*Th, Ar,hy + €.

By +/J-consistency of 0 ; and Assumptions A6, A7, and A8, there exists a sequence
v; L 0 such that |le;|| < 77 wp.a. 1. Set hy = ~y/er, then L0, + hyhp, /VJ) —
ﬂ(Q%J)*l/Q]P)JmO(QJ) > 0. Using Assumption A6 and the result from the proof of con-
sistency that (D9)"Y/2P;m°(@,) > 0 w.p.a. 1, we conclude that L;(8; + hyp, /v J) > 0
w.p.a. 1. Hence, w.p.a. 1, 0] ; = infg..;9)>0 01 < QLJ +hdip, [V

By the v/J-consistency of 0%, there exists Cy such that

CU)\F
sup VJ L —0
we(0,1] \/j F

w.p.a. 1. By Assumptions A6 and A7, there is 8; | 0 and CT such that

< CO

05 +

sp DR |Peym(6) — Prym(8,) — Ty (0 — 0 )] < 2L

100, 11<Co /T VT
and (Dp )""/*L'p 7 > —Cpl when ||7|| < Cy. By Assumptions A6 and A8, there is 6, | 0
such that

sup  VIDGR?|Bym(0) — Pe,m() — [Pym(@p,) — Prym(0p)]|| < 6
1665, 1<Co/VJ



w.p.a. 1. By Lyapunov’s Central Limit Theorem, there is C such that || (Q}?J)*l/Q\/j[PJml(QFJ)_
Pyt (5, )] < Cy wopa 1

Let 1y = (8 + B1)/er. 1 subyy_y, j<cova VID 2P ym(0) — Prym(0) — [Bym(0p,) —
Prym(@p)ll < 85 and 05+ rode, /T — 0g, || < Co/V/T, then V/I(D%,) Y2Bmo(05 +
riAe, [NV T)=Ly(05) > (D)L Aeyry—(85+0,)1 > 0. And if | (Df, )~ /*V I [Pym" (8, )~
Pr,m!(0p,)]]| < C1, then \/_(Q}DJ)fl/QPJml(Q‘*] +7505, [V T) = VI (D)~ *Pr,m! (O, ) —
(874354 Cr+Cy)l. For J large enough v'J(Dp )~Y2Pr,m'(0p,) — (87 +6,+Cr+Cy)l > 0.
Thus, by the above and Assumption A6, v/ JD; 1/Q]P’ﬂn(@* + 75\, /VJ) > 0 w.p.a. 1, and
SO€1J<01J+TJ)\1F]/\/7Wpa]_ O

Proposition 6 Suppose Assumptions A1-A8 hold and o € (0,1). Also, for any § > 0,
Supp PI’F (H(FJ,Fa EJ,F) — (EFJ,ZFJ)H > 5) — 0. Then,

liminf, . Prp, (\/3(@17 )= <0 J> > a. (4)

PROOF:

Let Z% ~ N(0,92°) and Z* ~ N(0,Q;), and define the infeasible simulation estimators:
71 =min{r : 0 < (QO)*l/QEAOT + 2%} A
71 = min{r : 0 < (DY) V2097 + 2% + (r;(DY)~V/2Pym° (0 ))+}
Recall 77 = min{r : 0 < D;}/zfsJT + Z; + (TJDS7J/ IP’JmS(QJ))+}. Let g, denote the a'*
quantile of the limit distribution 77. Let @ s Gas and g, denote the o' quantile of the 77, 7,
and 71 distributions. If the inequalities satisfying 77 have no solution, a similar elimination
of moments as used in the definition of 7] can be used.

Since u° > 0, Go—e > Go—.. By Lemma A2, PrFJ(\/j(éLJ —0ip,) < Gae) — a—c¢.
So there exists J, such that for J > J,, PrFJ(\/b_T(QLJ —t ) < Gac) > a—2e. Next, let
N = Ga — Ga_e > 0. Then, by Lemma A3, there exists > 0 such that |¢5+2 — 202" <
for (T, 11, 2) € Ny "= For J large enough, [|(L%,, % ) — (I% £°)|| < 6/3 and [|(1), 529) —
(%, 20| < 5/3 w.p.a. 1.

By Assumptions A6, A7, and A8 along with the v/.J-consistency of QJ, | \/_D;;(IQPij 0,)—

\/_Dj }ﬁQPFij (6,)|| can be bounded with probability approaching one. Since v/J (D% )~/*Pp,m°(0;)

is bounded HTJ(DO) 1/QIP)Jm( Pl <(5/3Wpa 1. It follows that Go—c < Ga.s wpa 1

-----

.....

procedure to ehmlnate mequahtles untll a solutlon to the system of inequalities is found will
eliminate the moments in m! first with probability approaching one. If inequalities corre-
sponding to m® in the definition of 7; have a solution, and the m° inequalities are contained
in the m, inequalities in the definition of 77, then ¢ ;= Ga, since the possibly additional in-

equalities determining 7, can only increase the mlmmlzmg solution. S0, Ga,s < ¢° oy Wep-a. 1.
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So, for J large enough, we can ensure that Prp, (Ga—. < a, J) > 1 —e. It follows that for J
large PrFJ(\/j(éLJ — b p,) < ¢ ;) = a—2e. Since this holds for any ¢ > 0, the conclusion

follows. O
Lemmas
Define

lp .

(. Z)= min T

1< ’ ) T7:0<I't+Z72 b

and use the following notation for a neighborhood, N2 = {A : |4 — A|| < 6}.
For each Lemma below, we make the following assumptions:
(a) Given [, assume there exists A with ||[A|| =1 and A; > 0 such that TyA > 0;
(b) Assume that for each I' in some open neighborhood of I';, the unique solution to
min,.r;>o 71 1S zero.

Lemma A1l Under the assumptions above, there exists n > 0 such that T{p(F, Z) is contin-
uous at each I' € /\/},EO and Z € R™.

ProoF: Find 7 > 0 such that given I' € /\/’nzo, ar}yiz, and € > 0, we can find a § > 0 such
that |717(I', Z) — 1*(T', Z)| < ¢ for all (I, Z) € N 7. There exists §, > 0 such that ./\/550 is
contained in the open neighborhood in the assumptions and I'\ > 0 for all I € ./\fé%’. We

note that by Kall (1970) Theorem 4, for all I" € /\/'(550 and any Z, 77(T', Z) is well defined
and a solution to the corresponding linear program exists.
Next show (uniform) boundedness of the solutions of the linear programs on some neigh-

borhood contained in N, (io’z, following the approach in the proof of Bereanu (1976) Lemma
2.1. In fact, it will be useful (for other results in the paper) to show a stronger result. Take
any constant C, > 0 we will show uniform boundedness for (I', Z) € J\/:;£0 x{Z 7| < C.},
for some § < J, (take C, large enough that ||Z|| +d, < C.). If solutions are not bounded on
any such set, then there exists a sequence §,, — 0 and (I',,, Z,,) € ./\f(io x{Z:||Z|| < C.}
such that for some solution 7;° to the linear program min{n : I',7 + Z,, > 0}, ||7}]] — oo.
By the Duality Theorem (of Linear Programming), for any solution 7,° to the primal linear
program, there exists a corresponding solution /3! to the dual linear program. The compact-
ness of {Z : ||Z|| < C.} implies that there exists a convergent subsequence {n'} such that
Zy — Z€{Z:|Z| <C.}. Let A, =, —T,], A =1[Ly —Ly), e/’ = (1,0,...,0),
d = (e, —ey’), and

A, 0 A 0 —Z,,
Bu=| 0 —A/ |, Be=| 0 A/ | dv=[ —c
- Z)/ - 7 0
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Then there is u} = (7,7,7,,8%) > 0 such that B,u? > d, and 7} = 7,7 — 7. Also,

B, IIZELII ”ul* idn (and ||un|| — 00). Since u},/||u|| is a sequence on the compact unit ball,
it has a convergent subsequence {n”} such that u}, /||u’, || — v* = (7*, 77, 8%), |[u*|| = 1,

u* > 0 and Byu* > 0. The last conclusion implies I'j3* = 0. Note that 1f B*#0 (recalhng
B* > 0), then 3*TyA > 0 and hence *'T, # 0. So, 3* = 0. So we have [y;7* > 0 and 77 <0
(with 7% # 0), which contradicts an assumption of the lemma. Hence, for some &, < d,,
there exists C' such that for any solution, 7, of the linear program min{r : I'r + Z > 0}
with (I, Z) € N} x {Z : [|Z] < C.}, |I7] < C.

Let v = min, ento min;[[A]; > 0. Take any T' € /\/'62(}2. Choose p > 0 small enough that

pA1 < €. And take 5 > 0 such that § < &,/2 and |[(T —=D)7|| +[|Z — Z|| < py for all ||7]| < C

and (I', Z) € Ny~ 12 Take any (', Z) e Ny~ I'Z and let 7 be any solution to the linear program
min{7r : I'T + Z > 0}. Then,

TF+pN+Z2=T-D)7+(Z—=2Z)+Tpr+ (T7+2Z) >0,

so Ti(T', Z) 4 ¢ > 7i(T, Z). Similarly, 7°(T, Z) + ¢ > 71’(T, Z), and the result follows with
n= 51)/2 O

Lemma A2 Let 7y = min{n : [y7 + Z > 0} where Z ~ N(u,X). 71 has a continuous
distribution (continuous c.d.f.). Also, R is the support of T1; in particular, for any q € R,
PI‘(7A'1 S Q) S (07 1)

Proor: Let F denote the c.d.f. of 7y. Suppose F' is discontinuous at some t. Let ¢ =
Pr(7; = t). Then ¢ > 0. Let A, = {Z : 7/°(L), Z) = t}. Then, e = Pr(Z € A,). For ¢ > 0,
define B, ={Z :Z =Z'+Tjc) for Z' € A;}. For ¢ small enough, Pr(Z € E.) > €/2.

Take any Z € A;. Let 7 be a solution to min{r : [y7 + Z > 0}, so t = 7. Let T be a
solution to min{r : [y7 + (Z 4+ LycA) > 0}. Since 0 < Ly7+ Z =Ly(T — cA) + (Z + LyeN),
T <71 —ch. Also, 0 < TT+ (Z+TLyeh) =Ly(T+cN\) + Z,s07 <71+ chi. Hence,
T =t—ch. So, Pr(qy =t —c\) > Pr(Z € E.) > ¢/2. We can pick an infinite number
of small ¢’s yielding such mass points, which yields a contradiction. Hence, F' is continuous
everywhere.

Now take ¢ € R. Choose ¢ such that c\; = ¢q. Then,

0<Pr(Z>-LycA) =Pr(lyecA+Z >0) <Pr(r <c\) =Pr(r <q).

And, similarly, we can show Pr(q < 71) > 0. O

Define ¢L*> = inf{q : Pr*(7{"(I', Z*) < q) > a} where Z* ~ N(u, X).
Lemma A3 Given o € (0,1), ¢.** is continuous in (', u, %) at (Lo, 1, Xg) for any finite
1.

PROOF:  Given n > 0, show that there exists § > 0 such that |¢/**® — qEO’H’Z°| < n for
e
(T, 1, 2) € NGH2°
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Take 1, > 0 such that n, < n/2, max{qii’gfo - qEO’H’ZO, qEO’H’EO - qZO gnzo} < n/2, and
o € (214, 1 —27,). From Lemma A1, choose 6, > 0 such that 71*(I, Z) is continuous at each
I'e ./\/:io and all Z. Choose C, such that Pr*(||Z*|| < C.) > 1—mn, for all (u,>) € Ni’zo and
Z* ~ N(p,¥). Then 7/ is uniformly continuous in I' on /\/'(;EO x{Z :||Z]| < C,}. Choose
0 < & < 8, such that ||717(T, Z) — 7°(Ly, Z)|| < n, for all T € /\/’*O and all | Z|| < C..

Define Ay = {Z : 7°(L,, Z) < ;OM*O}. Now take 0 < 0 < 9 such that max{|Pr*(Z*
Anion,) — (a4 2n,)|, |IPr™(Z* € An—ay,) — (@ — 20,)|} < g for Z* ~ N(p,X), and all
(u, %) € N(SH’ZO.

Then, for Z* ~ N(u, %) with (T, 1, 5) € NF o2,

Lo, %

Pr*({r{"(Ly, Z°) < qo25,. } N {1 Z7] < C.})
Pri(Z* € Agyan,) +Pr(| 27| < C,) — 1
(O‘+277a>_77a+(1_77a)_1:04'

Pr(ri? (T, Z*) < qu0522 + 1a)

AVAR VARV

Similarly, Pr*(r*(T", Z*) > q;o ’2‘,;0 — 1) >1—a, so Pr*( P, z2%) < q;o gfo —1a) < a. So,

F b 72 k) 9.
@ —n < qgo_%fo -1, < grE < q;ﬂrgnzo +17, < qgo oy + n by the definition of 7,. The
result follows. O
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