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a b s t r a c t

Underdominance refers to natural selection against individuals with a heterozygous genotype. Here, we

analyze a single-locus underdominant system of two large local populations that exchange individuals

at a certain migration rate. The system can be characterized by fixed points in the joint allele frequency

space. We address the conditions under which underdominance can be applied to transform a local

population that is receiving wildtype immigrants from another population. In a single population,

underdominance has the benefit of complete removal of genetically modified alleles (reversibility) and

coexistence is not stable. The two population system that exchanges migrants can result in internal

stable states, where coexistence is maintained, but with additional release of wildtype individuals the

system can be reversed to a fully wildtype state. This property is critically controlled by the migration

rate. We approximate the critical minimum frequency required to result in a stable population

transformation. We also concentrate on the destabilizing effects of fitness and migration rate

asymmetry. Practical implications of our results are discussed in the context of utilizing under-

dominance to genetically modify wild populations. This is of importance especially for genetic pest

management strategies, where locally stable and potentially reversible transformations of populations

of disease vector species are of interest.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Overview

In population genetics, underdominance, also known as
heterozygote disadvantage or homozygote advantage, refers to
the fitness configuration where diploid individuals with hetero-
zygote genotypes have a lower fitness than the corresponding
homozygous genotypes. It is thus the opposite of overdominance
or heterozygote advantage. Here lower fitness is defined as
having on average relatively fewer descendants in the following
generation.

The properties of underdominant polymorphisms have long
been well described for a single population and are characterized
by an unstable equilibrium (Fisher, 1922; Wright, 1931, 1941;
Haldane, 1942; Wiener, 1942). Thus, a mutant allele that is less fit
when heterozygous does not have the capacity to increase in
frequency when rare and is predicted to be lost from the
population. However, in an underdominant fitness configuration,
an allele is predicted to proceed to fixation when starting at a

frequency greater than the unstable equilibrium value, p̂. There-
fore, in a single population, underdominance sets up a type of
evolutionary bi-stable switch where a population is expected to
exist in one of two stable states of allele frequency, p¼0 or p¼1.
We use + to denote a wildtype allele and T to denote a genetically
modified construct (or mutant allele). In a single population, the
latter has frequency p while the former is at frequency 1�p. The
alleles are underdominant with respect to each other if the fitness
of the heterozygote, wT +, is less than both homozygote fitnesses,
wTþowþ þ and wTþowTT , Fig. 1(a). Assuming random mating in
a single population, the average fitness of the modified allele is
fT ðpÞ ¼wTT pþwTþ ð1�pÞ (i.e. the T allele will be paired with
another T at frequency p which will result in a fitness of wTT; at
frequency 1�p, it will be paired with a wildtype allele, leading to
a fitness of wT +). Equivalently, the average fitness of a wildtype
allele is fþ ðpÞ ¼wþ þ ð1�pÞþwTþp. At the unstable equilibrium,
with both alleles present, the two average allele fitnesses are
equal to each other, fT ðp̂Þ ¼ fþ ðp̂Þ. At this point, p̂, the two alleles
are thus neither increasing or decreasing in frequency relative to
each other. By substituting the above relationship, this predicts
that the ratio of alleles at this equilibrium is equal to the inverse
ratio of fitness differences between the respective homozygotes
and the heterozygote,

p̂

1�p̂
¼

wþ þ�wTþ

wTT�wTþ
: ð1Þ
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This can be rearranged into the more familiar form of

p̂ ¼
wþ þ�wTþ

wþ þ�2wTþ þwTT
, ð2Þ

cf. Li (1955) and Hartl and Clark (1989). Note that, without loss of
generality, we set the fitness of the wildtype homozygote to one,
w+ +¼1. All other fitnesses are positive numbers relative to this
value.

Chromosomal rearrangements, such as translocations and
inversions, are classic examples of potentially underdominant
mutations. The offspring of heterozygous individuals are pre-
dicted to have high rates of segmental aneuploidy (disrupted
number of gene copies) in their offspring. This can result in
lethality of the offspring and thus partial sterility of the
heterozygote, which reduces fitness (Snell, 1946). It has long
been recognized that, with underdominance, the probability of
fixation of a new, rare mutant is exceedingly small in populations
of more than a few individuals (Wright, 1941; Kimura, 1962;
Bengtsson and Bodmer, 1976; Lande, 1979). Yet it is clear that
mutations, including translocations, with potential underdomi-
nant effects accumulate between species and are common even
among some closely related species (Bush et al., 1977; White,
1978). Several models have been proposed to try to explain this
discrepancy (Bengtsson and Bodmer, 1976; White, 1978; Hedrick,
1981; Walsh, 1982). This is discussed in Nachman and Searle
(1995) and Rieseberg (2001).

Rather than addressing the probability of naturally establish-
ing underdominant variants as in the ‘‘chromosomal speciation’’
literature cited above, we focus on artificially establishing
underdominant polymorphisms and the stability of these systems
once established. In contrast to the predicted loss of polymorph-
ism in a single population, when there are migrants between
multiple populations an underdominant polymorphism can be
stably maintained. In the case where different neighboring
populations are at high and low allele frequencies, respectively,
the offspring of rare migrants tend to be heterozygous. Due to
their lower fitness, the rarer allele tends to be removed from the

population resulting in different migration-selection equilibria in
the neighboring populations. However, if migration rates between
the populations are sufficiently high, the rarer allele is not
removed at a sufficient rate by selection. As a result the
underdominant polymorphism becomes destabilized. An analytic
solution describing this critical point of destabilization, as a
function of the strength of selection and the migration rate
between the two demes, has been described in a fully symmetric
model (Karlin and McGregor, 1972a), and for the limiting case of
migration in a single direction where homozygotes are at
different fitness values and the allele frequency in one of the
populations is fixed at zero (Lande, 1985). Diffusion approxima-
tions describing this property have been made for the two-deme
model (Barton and Rouhani, 1991). Also, a traveling wave
approximation (Fisher, 1937) has been used to describe the
conditions permissible for the establishment and spread, despite
underdominance, of an allele in continuous habitats with a higher
homozygous genotype fitness (Barton, 1979; Piálek and Barton,
1997; Soboleva et al., 2003). However, we do not mean to imply
that underdominance is commonly responsible for the main-
tenance of polymorphism in natural structured populations. In
addition to neutral mutations (Kimura, 1968), and mutation-
selection balance (Haldane, 1924), there are many other forms of
selection that can maintain polymorphism among demes, espe-
cially local adaptation, e.g., Nagylaki and Lou (2001), Lenormand
(2002), and Bürger (2009). Here, with underdominance, we focus
on the most efficient release strategy to achieve a stable local
transformation and cases with fitness and/or migration rate
asymmetry.

Part of our motivation to focus on the stability of established
underdominant differences is the proposal to use underdomi-
nance as a means to genetically transform wild populations with
desirable alleles, e.g., to render insects resistant to diseases to
prevent their transmission to humans (Curtis, 1968). In essence,
releases of individuals are made that result in a population allele
frequency in the wild greater than p̂. The transformation of the
population is then predicted to proceed by natural selection
without additional releases or intervention. This has the desirable
properties of reversibility and geographic stability. Releases of
wildtype alleles resulting in a frequency lower than p̂, Eq. (2), are
predicted to ultimately remove all modified alleles from the wild
population. Additionally, in certain situations, modified alleles are
not expected to spread far beyond the initial release range nor be
lost from the wild. This can be an important consideration for
initial testing of refractory effector constructs (e.g., Ito et al., 2002)
in field trials and for non-native invasive disease vectors that
threaten susceptible species (e.g., Warner, 1968); local popula-
tions can be stably transformed to be refractory while a wildtype
state is maintained in the vectors native range. Despite intensive
work to this end in the 1970–1980s, using radiation induced
chromosomal rearrangements, this approach ultimately failed.
This is partially because the genetically modified homozygous
individuals suffered from dramatically reduced fitness relative to
wildtypes (e.g., Foster et al., 1972; Lorimer et al., 1972; Boussy,
1988, and references therein; see also Harewood et al., 2010).
However, with new, more precise molecular genetic technologies,
there is a growing interest in systems, including underdominance,
that have the capacity to transform wild populations (Davis et al.,
2001; Sinkins and Gould, 2006; Magori and Gould, 2006; Gould,
2008).

In the second part of the introduction we introduce a
simplified symmetrical model governing the dynamics of an
underdominant polymorphism in two populations of infinite size
coupled by migration. We review the bifurcation pattern and
the linear stability analysis that allows one to find and classify the
different equilibria. Although all stable equilibria and some

Fig. 1. (a) Genotype configuration of underdominance with the fitness of the

homozygotes set to one, w+ +¼wTT¼1. The reduced fitness of the heterozygote,

wTþ ¼o, is a positive number which is less than one. (b) Migration between the

two populations. In each generation, migrants come and go with the rate m

ð0rmo0:5Þ, such that the fraction of immigrants in each population is m. (c)

Genotype configuration of underdominance in the asymmetric case. The fitness of

the wildtype homozygotes is 1. The fitness of the transgenic type homozygotes is

nr1. The underdominant fitness of the heterozygotes is oon. (d) Non-symmetric

migration between the two populations. For each generation, the contributions of

immigrants to the next generation in each of the two populations with p1, p2 are

m1 o0:5 and m2 o0:5, respectively.
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unstable ones can be calculated, a full phase portrait can only be
obtained by supporting numerical methods. In Section 2 we give a
quantitative estimate for the basin of attraction emerging in the
presence of the non-trivial stable equilibria. In Section 3 we
briefly discuss how the pattern in average fitness may affect the
outcome of a transformation. In Section 4 we then discuss
situations with broken symmetry, i.e. when there is unequal
migration between the two populations and/or unequal homo-
zygote fitnesses. Section 5 is a further discussion of our results
and gives suggestions for practical applications. Finally, Section 6
serves as a summary.

1.2. Wright–Fisher dynamics

Here, we introduce the equations governing the dynamics of
the system as it evolves from one generation to the next. This is
based on the Wright–Fisher model, i.e. sampling alleles with
replacement between discrete non-overlapping generations
(Wright, 1931), in two coupled infinitely large populations. In
the single population example, the contribution of an allele to the
next generation is the allele’s average fitness multiplied by its
frequency in the present generation. This product is divided by
the total average fitness of all alleles in the population, w, to
normalize it to a frequency from zero to one. Thus, the expected
frequency of allele T in the next generation, pu, is proportional to
the frequency in the present generation, p,

pu ¼
fT ðpÞ

w
p, ð3Þ

where w ¼ fT ðpÞpþ fþ ðpÞð1�pÞ is the total average fitness. Note
that the average fitnesses are independent of the specific
evolutionary model and could also be directly used in alternative
systems such as the Moran model with overlapping generations.

In the two population case we have to account for migration
rate, m, which is defined as the proportion of immigrant
individuals entering a population prior to mating. This implies
that 1�m is the fraction of non-migrants each generation. For
symmetric interactions see Fig. 1(b). The genotypic fitnesses are
fixed values: given the value of the reduced heterozygote fitness
wTþ ¼oo1, the simplest case emerges when both homozygote
fitnesses are set to one, w+ +¼wTT¼1 (Fig. 1(a)). The average
fitness of an allele changes with its frequency: in population
i¼1,2, let pi, and 1�pi be the frequencies of alleles T (a modified
allele) and + (wildtype), respectively. The wildtype allele has
average fitness fþ ðpiÞ ¼ 1�piþopi, whereas the average modified
allelic fitness amounts to fT ðpiÞ ¼ piþoð1�piÞ, compare to the
previous subsection. Due to equal homozygote fitnesses,
w++¼wTT¼1, we have the symmetry property fT(p)¼ f+(1�p).
Taking migration into account, in population i, the frequency of
allele T is ð1�mÞpiþmpj. As we express the average fitness of
allele + in terms of the frequency of allele T, the total average
fitness in population i is

wi ðpi,pjÞ ¼ ½ð1�mÞpiþmpj�fT ðð1�mÞpiþmpjÞ

þ½ð1�mÞð1�piÞþmð1�pjÞ�fþ ðð1�mÞpiþmpjÞ, ð4Þ

where ja i. The state of the system is characterized by the two
population allele frequencies p1 and p2 ð0rp1,p2r1Þ, which
evolve from one generation to the next as

pu

1ðp1,p2Þ ¼
½ð1�mÞp1þmp2�fT ðð1�mÞp1þmp2Þ

w1 ðp1,p2Þ
, ð5Þ

pu

2ðp1,p2Þ ¼
½ð1�mÞp2þmp1�fT ðð1�mÞp2þmp1Þ

w2 ðp2,p1Þ
: ð6Þ

We now focus on the equilibrium points of the dynamics, namely
we are interested in all points with Dpi ¼ pu

i�pi ¼ 0 for i¼1,2,
depending on o and m. Some of these fixed points are
independent of the parameters, others only emerge in a certain
parameter range. Trivial equilibrium points are ðp̂1,p̂2Þ ¼ ð0,0Þ and
ðp̂1,p̂2Þ ¼ ð1,1Þ, where both populations are fixed for the wildtype
or the modified allele. In the symmetric case, there is also an
unstable equilibrium or a saddle point (depending on m) at ð12 ,1

2Þ.
These three fixed points do not change position for any pair of
parameters o and m. For m¼0, the system behaves as two single
populations and all nine possible combinations of fixed points
exist (e.g., ð12,1Þ, ð0,1

2Þ, etc.). For m40, we take the symmetry of the
system into account. This allows for solving only one equation, for
instance Dp1 ¼ 0. With this, we find two fixed points on the axis
(p1,1�p1), namely ðp̂1,p̂2Þ ¼ ðxi,1�xiÞ, i¼1,2, where

x1,2 ¼
1

2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�oÞð1�o�4mÞ

p
2ð1�oÞð1�2mÞ

: ð7Þ

Note that with m¼0, this reduces to the two fixed points
ðp̂1,p̂2Þ ¼ ð1,0Þ or (0,1). For m40, the solution is real valued if
ð1�oÞð1�o�4mÞZ0. The first term is always positive, but the
second term becomes zero at critical value of the migration rate
m, where a bifurcation occurs

m1ðoÞ ¼
1�o

4
: ð8Þ

The interior solutions (7) exist for mrm1ðoÞ.
A linear stability analysis of these fixed points yields a second

critical point, m2 (see Appendix A), given by

m2ðoÞ ¼ 1
4ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ4o

p
Þ: ð9Þ

Note that we have m2ðoÞom1ðoÞ for underdominance, oo1. For
mom1ðoÞ, one eigenvalue of the Jacobian associated with the
fixed point is negative. For mom2ðoÞ, the second eigenvalue
becomes negative and a new pair of stable equilibria arises. They
are located on the diagonal (p1, 1�p1) in the joint allele frequency
space.

The bifurcation pattern is three-dimensional, given by the
coordinates (p1,p2,m) for a given heterozygote fitness o. In Fig. 2(a)
we use a projection to the plane (p,m), where p simultaneously
stands for p1 and p2. In both planes, the pattern looks the same,
which is due to the symmetry of the system. Although the second
bifurcation obeys this symmetry as well, we are not able to
calculate its actual shape – and thus the position of the associated
unstable fixed points – analytically. The set of all possible internal
equilibria, from analytical predictions as well as from numerical
root finding, is given in Fig. 2(b). Fig. 2(c) shows how the two
bifurcation points depend on the fitness of the heterozygotes o.

In Fig. 3 we show several slices of the (p1,p2)-plane for different
pairs of parameters ðo,mÞ; the phase portrait changes with the
control parameter m. Note that we have m2ðoÞom1ðoÞ for oo1.
For mom1ðoÞ, we have l1o0. In addition for mom2ðoÞ, we get
l2o0. A new pair of stable internal equilibria arises. They are
located on the diagonal (p1,1�p1) in the state space.

In Appendix B, we further discuss the system, also showing
that for sufficiently low migration rates, the dynamics are well
captured by a linearized system of equations. This is especially
interesting for further analytical examinations that go beyond the
scope of this manuscript, e.g., when a larger system of interacting
populations is considered.

Taking advantage of the symmetry in the system of two
populations coupled by migration allows one to analytically
calculate the emergence of stable internal equilibria depending on
the heterozygote’s fitness o. With the additional aid of numerical
methods we can also find the saddle points. In the next section we
discuss the pattern in more detail, addressing the problem of

P.M. Altrock et al., / Journal of Theoretical Biology 267 (2010) 62–7564
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finding the basins of attraction that belong to the internal stable
equilibria.

In Appendix C, we present results when considering three
alleles with underdominance, which necessarily becomes more
complicated and has implications for transformation strategies.
However, in certain situations bi-stable population transforma-

tions are still possible, even if underdominance is not present
between all pairs of alleles. Also, in the two population case, even
at the non-trivial stable equilibria, if only underdominance is
present, alleles are expected to be lost and the system returns to
the two-allele case. This suggests that in certain contexts the
results for a two-allele system are applicable to systems with
initially more than two alleles.

2. The basin of attraction

What is the region in the state space where the system is
attracted to a non-trivial stable equilibrium? Once the two non-
trivial stable equilibria are present, i.e. for 0omom2ðoÞ there is a
region where the system, once initiated there, will ultimately
reach one of the stable equilibria along (xi,1�xi), Eq. (7). This
region is the basin of attraction. Here, we give two estimates of
this subset of the state space and compare it to simulations.

Consider the boundaries of the system. In one population the
frequency of the transgenic type is fixed to zero or one, and in
the other it can have any value between zero and one. Due to the
symmetry in homozygote fitnesses and migration rate, we only
have to consider those parts of the boundaries where for instance
p2¼0, as in this case p2¼1 follows directly from that.

In the neighborhood of the boundaries, we expect the com-
ponents of the (two-dimensional) flow parallel to the boundaries to
be similar to the (one-dimensional) flow along the boundaries.
Wherever the flow along the boundaries vanishes there are points
of vanishing flow of the quasi-one-dimensional system. They can be
stable or unstable, depending on the slope of the one-dimensional
flow at these points, @pDp1ðp,0Þ, or @pDp2ð0,pÞ. Their position will
give an estimate of where the basin of attraction meets the
boundaries, assuming low migration. Consequently, we need the
solutions of the one-dimensional system, Dp1ðr,0Þ ¼Dp2ð0,rÞ ¼ 0,
which are given by

r7 ¼
3�mð1�oÞ�3w7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�oÞð1þm2ð1�oÞ�2mð3þoÞ�oÞ

p
4ð1�mÞð1�oÞ :

ð10Þ

If both equilibria exist r�rrþ . Additionally, ðr�,0Þ is unstable,
since @pDp1ðp,0Þjp ¼ r�40 and hence ðr�,0Þ is a naı̈ve minimum of
a possible initial condition at the boundary that leads to the
stable equilibrium (x2,1�x2), compare Eq. (7) and Fig. 4. Thus,
possible estimates for the regions where the dynamics leads to one
of the stable equilibria given by the coordinates (xi,1�xi),
Eq. (7), for 0rmom2ðoÞ, are rectangles, for example the one
limited by the four points ðr�,0Þ,ð1,0Þ,ð1,1�r�Þ and ðr�,1�r�Þ, cf.
Fig. 4. At high migration rates this increasingly underestimates the
basin. In addition, we can give another estimate, which is the deltoid
(kite) limited by the four points ð12 ,1

2Þ,ð1,1�r�Þ,ð1,0Þ, and ðr�,0Þ. For
low migration this in an overestimate of the basin of attraction,
which itself is obtained by numerical simulations, see Fig. 4.

Fig. 2. (a) Projection of the bifurcation diagram showing the allele frequency p1,2

in one of the two populations as a function of the control parameter m. The

positions of the critical points m1ðoÞ ¼ 0:05 and m2ðoÞ � 0:0341 are indicated

by arrows. (b) Projection of the bifurcation diagram to the state space, i.e. the

positions of equilibria for any migration rate. Dashed lines and curves describe

unstable, dashed-dotted curves describe saddle, and full curves and lines

describe stable fixed points in both figures. In both, (a) and (b), the fitness of

the heterozygote’s is fixed to o¼ 0:8. Note the difference to Karlin and McGregor

(1972a), where a figure of this bifurcation wrongly suggests a different pattern.

(c) The two critical points of the fully symmetric system, m1 (black), and m2

(shaded), and the approximation of the latter stemming from the linearized

system, ~m2 (dotted), as a function of the fitness of the heterozygotes ðþTÞ, o.

While m1 is a linear function in o, m2 and ~m2 exhibit square root behavior

(compare inset and Eqs. (8), (9), and (33) in the main text). ~m2 approaches m2 for o
sufficiently large; The difference vanishes for o-1.

P.M. Altrock et al., / Journal of Theoretical Biology 267 (2010) 62–75 65
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3. Average fitness

Do the patterns of reduced average fitness affect the strategy
for achieving transformation? For the symmetric model, the mean
population fitness at the central unstable equilibrium can be
found by substituting p̂i ¼

1
2 into Eq. (4). This results in

wi ¼ ð1þoÞ=2. Near this point is the optimal strategy for
transforming a target population with a minimum release of
individuals (see Section 5). However, this is also the point where
mean population fitness is at its lowest. At the approximate
threshold for transformation with a single population release,

ðp1,p2Þ ¼ ðr�,0Þ, ð11Þ

the average fitness in each population is

wi ðr�,0Þ ¼ 1
4ð1�mÞð3�mþoð1þmÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�oÞðð1�oÞð1þm2Þ�2mð3þoÞÞ

q
Þ, ð12Þ

which only results in a small increase in mean fitness except at
very high migration rates, see Fig. 5, where the approximation is
less accurate and stability of the system is almost lost. Thus, the
strategy to minimize release numbers probably has more
advantages than maximizing average population fitness during
the transformation.

Interestingly, the mean population fitness at the stable non-
trivial fixed point, where the system is in migration-selection
equilibrium, appears to be independent of the heterozygote
fitness, o. This point is given by p̂1,2 ¼ x1,2, Eq. (7). The point is
stable for 0omom2, Eq. (9). Substituting this into Eq. (4) yields
wi ¼ 1�2m, which is only a function of the migration rate.
Intuitively, if heterozygotes are less fit then the rarer allele will
have a lower frequency, at equilibrium, in the population,
producing fewer heterozygotes each generation. Conversely, if
heterozygotes are more fit the rarer allele will attain a higher
frequency producing more heterozygotes each generation. The
number of heterozygotes produced and their fitness cancel out in

Fig. 3. For the bifurcation pattern with fixed heterozygotes fitness o¼ 0:5 and critical points m1 ¼ 0:125 and m2 � 0:0886, four slices (1–4) with different migration rates m

are shown. In each of them the state space of the system, ð½0,1� � ½0,1�Þ, is depicted with a phase portrait (arrows) and the absolute rate of change
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDp1Þ

2
þðDp2Þ

2
q

(shading). The darker the shading the slower the dynamics, the brighter the faster. The equilibrium points are given by disks. Empty disks are unstable (or saddles), disks

with a dot are the stable equilibria. (1) For m¼0.13 there exist only the two trivially stable equilibria at (0,0) and (1,1) as well as the saddle fixed point at the center

(0.5,0.5). (2) If migration rate decreases below m1, for m¼0.1, we observe two new saddles along the axis (p1,1�p1), cf. Eq. (7), and the center becomes fully unstable. (3)

For migration below m2, m¼0.07, the former saddles at (x1,2,1�x1,2), Eq. (7), become stable and four new equilibria (also saddles) emerge, cf. Figure 1 of Barton and Rouhani

(1991). Although they also obey the mirror symmetry, for the four new unstable points an analytical description of their positions is cumbersome; we only locate them via

numerical root finding algorithms. (4) For vanishing migration rate the case of two distinct populations with underdominance is recovered.
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terms of the average effect in the population. This is similar to the
effects of deleterious mutations at mutation-selection equili-
brium, in which case the average fitness of a population is only a
function of the mutation rate (Haldane, 1937).

4. Unequal homozygote fitnesses and non-symmetric
migration

So far all results are based on the symmetry of the system of two
coupled populations with an underdominant locus. In this section, we
show how the phase portrait changes for non-symmetric migration
between the two populations and if restriction of the model to equal
homozygote fitnesses is relaxed, see Fig. 1(c). We allow migrants in
one population, coming from the other, to have an abundance mi,
with m1am2 in general, see Fig. 1(d). For example, migration bias
can arise between upstream (or upwind) and downstream (down-
wind) populations, in the direction of an invasive front with a
demographic expansion, or when migration occurs between popula-
tions of unequal size. Typically, the genetically modified type suffers
from a fitness reduction compared to the wildtype with a fitness of
one (Boussy, 1988). This reduction results in a lower fitness wTT ¼ n,

with 0ooonr1. Discarding the simplifying assumptions that lead
to a high degree of symmetry disrupts the symmetrical arrangement
of the phase portrait. As a result, the critical values in parameter space
and thus the stable equilibria can no longer be calculated analytically.

With wþT ¼o, wTT ¼ n, and w++¼1, the respective average
allelic fitnesses in population i are

fþ ðpiÞ ¼ 1�piþopi, ð13Þ

fT ðpiÞ ¼ npiþoð1�piÞ ð14Þ

for wildtype + and modified type T. Note that both fitness
functions are linear in p, but in general f ðmpÞamf ðpÞ. Never-
theless, observe that f ðð1�mÞpiþmpjÞ ¼ ð1�mÞf ðpiÞþmf ðpjÞ holds
for all values of o and n. More importantly, fT(p) equal to f+(1�p)
no longer holds either, which is due to loss of symmetry in
homozygote fitness. Similar to Eq. (4) the average fitness in
population i thus reads

wi ðpi,pjÞ ¼ ð1�miÞ
2
½pifT ðpiÞþð1�piÞfþ ðpiÞ�

þmið1�miÞ½pifT ðpjÞþð1�piÞfþ ðpjÞ�

þð1�miÞmi½pjfT ðpiÞþð1�pjÞfþ ðpiÞ�

þm2
i ½pjfT ðpjÞþð1�pjÞfþ ðpjÞ�, ð15Þ

where ja i. As we consider infinitely large populations with
random mating taking place after migrants are exchanged, mj

neither gives a contribution to wi nor does it directly influence the
frequency of allele T in the next generation, pu

i:

pu

1ðp1,p2Þ

¼
ð1�m1Þ

2p1fT ðp1Þþð1�m1Þm1ðp1fT ðp2Þþp2fT ðp1ÞÞþm2
1p2fT ðp2Þ

w1 ðp1,p2Þ
,

ð16Þ

pu

2ðp1,p2Þ

¼
ð1�m2Þ

2p2fT ðp2Þþð1�m2Þm2ðp1fT ðp2Þþp2fT ðp1ÞÞþm2
2p1fT ðp1Þ

w2 ðp2,p1Þ
:

ð17Þ

From the shift in fixed points and rate of allele frequency
change, when considering a phase portrait (Fig. 6) we can see that
unequal migration rates result in a loss of bilateral symmetry.
Unequal homozygote fitnesses result in a loss of rotational

Fig. 4. We show the basin of attraction for heterozygotes fitness of o¼ 0:5

ðm2ð0:5Þ � 0:0886Þ in the lower right quarter of the state space. The migration rates

are m¼0.05 (top) and m¼0.07 (bottom). The basin in darker shading results from

simulations of the dynamic system in discrete time, Eqs. (5) and (6). The thick lines

are estimates from the reduction to the one-dimensional flow along the

boundaries, cf. Eq. (10): The square in full lines is a conservative underestimate,

whereas the quadrilateral limited by the dashed lines and the boundaries serve as

an overestimate when p2 is not too small and p1 is not too high (in natural

populations, the migration rate ensures these properties). Although migration is

low, it becomes clear that with m increasing both estimates become conservative

in a neighborhood of the r� boundaries.

0.500

0.625

0.750

0.875

0.00 0.05 0.10 0.15

Fig. 5. Total mean population fitness of the central unstable equilibrium,

w ¼ ð1þoÞ=2 (full lines), and of the one-dimensional edge approximation for

single population release, Eq. (12) (dotted curves), are shown with four different

values of heterozygote fitness o (values given in the figure) Z=1. The two

estimates are essentially equal except at relatively high migration rates.
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symmetry. With both of these effects, all forms of symmetry are
lost as illustrated in Fig. 6 (IV). Furthermore, from this asymmetry
it becomes apparent that situations exist where a stable, local
transformation of a less fit allele is possible in only one of the two
coupled populations. The stability properties under symmetry
distortion can be represented in a ‘‘phase diagram’’ Fig. 7. From
this example it can also be seen that both unequal migration rates
and unequal homozygote fitnesses are required to result in non-
trivial stability in only one of the two populations. In this doubly
asymmetric case, higher migration rates and lower homozygote
fitnesses can result in single population stability outside the range
of parameter values necessary for symmetric stability in two
populations: e.g., the lower right tip of zone B in Fig. 7 has a lower
homozygote fitness and a higher migration rate than is found for
any area of zone A. In this regime, lower homozygote fitnesses are
counterbalanced to some degree by higher emmigration and
lower immigration rates.

As homozygote fitnesses become more asymmetrical, the non-
trivial stable fixed points move closer to the boundaries of the
system. Solving (16) for the edge of the system, p2¼0, as done in
Section 2 for the fully symmetrical model, and assuming
stationarity, Dp1 ¼ 0, gives the non-trivial solutions

r7 ¼
2þnð1�mÞ�oð3�mÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�oÞ2ð1þmÞ�2mð2nð1�oÞþn2�o2Þ

q

2ð1�mÞð2o�n�1Þ
,

ð18Þ

where rþ is stable and r� is the unstable internal fixed point in
the one-dimensional system. Setting r� ¼ rþ , the point, where
stability is lost according to the flow along the edge (when the
argument in the square root is zero), gives

m3ðo,nÞ ¼ nð2�2oþnÞ�o2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1þn�2oÞðn�o2Þ

p

ðn�oÞ2
: ð19Þ

Fig. 6. Symmetry breaking. We show four different scenarios with different degrees of symmetry. o denotes the fitness of the heterozygotes, n is the fitness of the transgenic

homozygous type, which is equal or less than the fitness of the wildtype, with fitness of one. In population i¼1,2, the frequency of immigrants which contribute to the next

generation is mi. The exact values of fitnesses and migration rates are given in the boxes above each plot. Disks indicate equilibrium points; empty disks are unstable (or saddle

points), disks with a dot are stable equilibria. (I) Maximal symmetry is maintained when the fitness of both homozygotes is equal to one and migration is symmetric, m1¼m2. In this

example there is a point symmetry and one finds two symmetry axes. The important symmetry here is p1-1�p1. (II) When migration is asymmetric both symmetry axes are lost,

but there is still a point symmetry in the center (0.5,0.5). (III) For symmetric migration but lower fitness of the transgenic homozygotes, oono1, the point symmetry and the

important symmetry axis are lost. The unstable equilibrium in the central area is shifted along the axis (p1,p1). (IV) For unequal migration rates and unequal homozygotes fitness all

symmetry is lost, but the central unstable equilibrium remains at the axis (p1,p1). In this case, only one non-trivial fixed point is stable.

P.M. Altrock et al., / Journal of Theoretical Biology 267 (2010) 62–7568



Author's personal copy

This is an approximation of the critical migration rate allowing
stability in the case of unequal homozygote fitnesses. As can be
seen in Fig. 8 this edge-approximation works very well when
no ðoþ1Þ=2 or when the transgenic homozygote fitness is less
than the average of the heterozygote and wildtype fitnesses.
Above this area there is an increasing deviation as the symmetric
critical migration rate m2 is approached. An ad hoc non-linear
weighted average between m2 and m3 of

mwðo,nÞ ¼ m3ðo,nÞð1�nÞþ m2ðoÞðn�oÞ
2

ð1�oÞ2
ð20Þ

gives a good fit across the entire range.

It can also be casually observed in Fig. 6 that the central
unstable equilibrium always falls along the p1¼p2 axis despite
various forms of parameter asymmetry. Solving Eqs. (16) and (17)
for an unstable fixed point along this axis (similar to Appendix A)
yields

p̂1 ¼ p̂2 ¼
1�o

1�2oþn : ð21Þ

Thus, the central unstable equilibrium is independent of migra-
tion and identical to the unstable equilibrium in the single
population case, Eq. (2). This makes intuitive sense if one
considers that this is also the stable equilibrium point in the case
of overdominance (i.e. heterozygote advantage) and that at this
equilibrium all populations should arrive at the same allele
frequency. At this point the migrants between populations have
no effect on changing allele frequencies.

5. Discussion

At high and very low migration rates the dynamics of the two
population system approaches that of a single population system,
either as two independent populations or as a single combined
population. Here we have explored the interesting cases between
these two extremes where the dynamics are more complex.
A two-population single-locus system can have up to nine
equilibrium points, two of which can be non-trivially stable. We
have focused on the conditions of this non-trivial stability and
how the system can arrive at these points. First, however, it is
important to be clear about the assumptions and limitation of the
necessarily simplified model.

The system described here assumes selection acting on a single
locus, which is appropriate for certain kinds of chromosomal
rearrangements, such as paracentric inversions and fusions,
discussed by Lande (1979), and single gene effects, similar to Rh
factor, e.g., Wiener (1942). Yet, in general the biological examples
provided for underdominance are reciprocal chromosomal trans-
locations, which of course involves two (or more) loci. In plants,
fungi and protists that undergo alternation of generations where
diploid stages are separated by multicellular haploid
gametophytes, unbalanced translocations can be lethal at the
gametophyte stage (Ray et al., 1997). In this simple case of
complete lethality, the system behaves as a single locus with
o¼ 1

2 (Wright, 1941). In typical animals, gametes that have an
unbalanced set of chromosomes can function normally and
produce a zygote (Snell, 1946). Thus, there is a small chance that
two unbalanced gametes could complement each other upon
fertilization, so unbalanced zygotic lethality in animals can
behave as a single locus with o slightly greater than 1

2 (Wright,
1941). Of course, even with full unbalanced lethality, other factors
in various species such as competition among offspring, parental
care, some fraction of vegetative reproduction, and/or alternate
chromosome segregation patterns can result in an effective o
substantially greater than one-half (Lande, 1979). However, if an
organism with an unbalanced translocation can survive to
reproduce, as is perhaps the case with some human diseases
and translocations that involve smaller chromosomal regions, e.g.,
Koochek et al. (2006), then the system can no longer be expected
to behave according to the single-locus model presented here.

Another important limitation is the simplifying assumption of
an infinitely large population size, where only migration and
selection are the sole determinants of allele frequency change.
A finite population will ultimately reach the absorbing states at
p1¼p2¼0 or p1¼p2¼1. However, the time until these points are
reached may be very large, in particular when the corresponding
deterministic system has stable interior fixed points and selection

Fig. 7. Phase diagram of a system of two populations with an underdominant allele

coupled by two migration rates. We show the difference of migration rates, m1�m2,

on the ordinate and the difference in homozygote fitnesses, wþ þ�wTT ¼ 1�n, on the

abscissa. For each pair of these differences, we evaluate whether the system reaches

an internal (non-trivial) stable fixed point, given it has been initiated inside the basin

of attraction (compare Fig. 4). The system has been simulated using Eqs. (16) and

(17). We can identify three different phases: (A) The system has two internal stable

fixed points (darkest shading). (B) The system has only one internal stable fixed point

(intermediate shading). (C) The system does not have any internal stable fixed point

(light shading). We also link back to Fig. 6 and locate the plots in this phase diagram:

(I) Full symmetry is maintained, cf. Fig. 3. (II) The system is moved along the axis of

equal homozygote fitness, 1�n¼ 0. (III) The system is moved along the axis of equal

rates of migration, m1�m2¼0. (IV) No symmetry is maintained and we find only one

internal stable fixed point.

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

Fig. 8. Critical migration rates with unequal homozygote fitnesses for a range of

illustrative heterozygote fitness values, o. The right edge of the plot, n¼ 1,

corresponds to m2 in the fully symmetric model (n¼ 1, arrows). As the TT

homozygote fitness declines relative to the wildtype, ++, the critical migration rate

also declines as the system is destabilized. This has been determined numerically

(dots) and the simulated result approaches the approximation analytically,

derived from the edge of the system for smaller n (black). A simple non-linear

weighted average approximates critical values of m across the range of n and o
(shaded), compare Eq. (20).
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is relatively strong. An interesting question in this case is how
long until a local transformation is lost and, in the case of
asymmetry, what are the relative likelihoods of ultimate fixation
for the wildtype versus transgenic alleles. This is briefly presented
in Appendix D.

If a stable transformation of a population is possible, from an
applied point of view, r� from Eq. (10) gives the approximate
minimum frequency that must be surpassed to result in a stable
transformation, by releasing the transgenic construct into a single
target population. In order to attain a target frequency p*, releases
must be made of size P¼p*/(1�p*) relative to the wild population
(i.e. after the release of P individuals homozygous for a modified
allele into a wildtype population of relative size 1, the allele
frequency becomes p*¼P/(1+P). This function increases steeply
towards positive infinity as p�-1, thus small differences in p* can
have large effects and, for practical reasons, larger p*’s should be
avoided. Because of this, stable transformations might be more
efficiently achieved with smaller, asymmetrical releases into both
populations (i.e. closer to the central unstable equilibrium point,
which is at the tip of all basins of attraction, Fig. 4). For example,
starting at p1¼p2¼0, a total of a twofold equivalent of a single
wildtype population is required for equal releases into two
populations to result in the central unstable point, p�1 ¼ p�2 ¼

1
2

(with equal homozygote fitness). While a larger minimum of a
fourfold equivalent is required to enter the basin of attraction by a
single population release, if for example the threshold, Eq. (10), is
at p*¼0.8. Specifically, the proposed minimal-number strategy is
a p* close to, but less than, p̂, Eq. (2), in non-target, neighboring
populations, and a p* close to, but greater than, p̂ in the target
population. Estimating the central equilibrium point has the
advantage of less uncertainty due to its independence from rates
of migration, see Section 4. However, the basin near the central
equilibrium is a smaller target area and entering near there raises
the risk of accidentally transforming both populations or only the
non-target population. If this is an undesirable outcome, it must
also be considered. These calculations naı̈vely assume released
individuals are equivalent to wildtype in terms of mating success
and that both sexes will be released. In reality it is likely that
released individuals are less fit and may even be discriminated
against by wild female mate choice (Lance et al., 1998; McInnis
et al., 1996), and that (in many disease vectoring insect species)
releases of only males would be made necessitating more than
one generation of release to achieve p�41

2. However, the basic
strategy of more efficient transformations closer to the central
equilibrium remains unchanged.

Sterile insect technique (SIT) is a widely used and in
some cases very successful genetic pest management (GPM)
approach where the goal is suppression and elimination of the
wild population, rather than transforming the population, and
incidentally often requires larger release sizes than those
predicted here for underdominant transformation (Asman et al.,
1981; Krafsur, 1998). However, SIT can be less effective in species
that have high density-dependant population size regulation such
as mosquitoes, i.e. a high reproductive potential allowing a
rapid rebound from a small number of individuals (Prout, 1978;
Dye, 1984). In contrast, underdominant mediated population
transformation may have advantages in species with high
density-dependant regulation. Part of the original interest in
underdominance was due to its potential population suppression
effects, similar to SIT, rather than population replacement,
e.g., Vanderplank (1944) and Laven (1969). This population
suppression is greatest near unstable equilibriums where the
mean population fitness is minimized (Serebrovskii, 1940).
One potential problem in a species with low density dependence
is that during an underdominant transformation the wild
population size may start to decline as the populations transits

through low average fitnesses near unstable equilibria (see
Section 3). This population size effect is dependent on additional
fecundity parameters not modeled here, but it is easy to imagine
that the target population may become more susceptible to
immigration from other wild populations during this phase
(similar to a ‘‘migrational meltdown,’’ Ronce and Kirkpatrick,
2001; Tufto, 2001). Hence, it may be difficult to locally transform
certain species in such a case. However, in species with high
reproductive potential, where only a few individuals can quickly
produce enough descendants to return to carrying capacity, this
should not be as large of an issue because the population is
continuously maintained near carrying capacity. This is precisely
the situation where SIT can be very ineffective. Thus, under-
dominant mediated population transformation is an excellent
alternative to SIT in GPM strategies because the two approaches
are likely most effective at opposite ends of the density-
dependent spectrum. Note also that at mid-spectrum the two
methods might be usefully combined to first reduce the wild
population by SIT, followed by population replacement by
underdominance.

6. Summary

In summary, Section 1 introduces the problem and gives the
criteria permissible to a stable transformation in a single target
population, which is a function of the migration rate, Eq. (9). This
is based on a stability analysis (Appendix A). Appendix B extends
this approach to a simplified linear treatment of the dynamics,
which can be useful in more complicated and realistic population
models beyond the simple two-deme system analyzed here. In
Appendix C we illustrate underdominant dynamics for more than
two alleles, which in some cases is similar to the expectations of a
two-allele system.

In Section 2 we identify the full basin of attraction numerically
and approximate it analytically. For a stable local transformation,
this is important when considering release strategies.

In Section 3 we determine the effect of a local population
transformation on the average fitness of the population. Counter-
intuitively we find that average fitness is independent of the
genotypic fitness parameters and only a function of the migration
rate.

In Section 4 we analyze cases of asymmetric fitness and/or
asymmetric migration rates, which generally act to destabilize the
system. Initially surprising results are that there are cases where
stable-local transformations are only possible in one of the popula-
tions and the central unstable equilibrium is independent of
migration. We also derive an approximation for critical migration
rates permissive to stability with asymmetric fitness, Eq. (19).

The expected sensitivity to fecundity of underdominance
complements alternative population management techniques.
This, and other consequences of the model for practical use are
discussed in Section 5: In general there is very little difference in
fitness for alternative strategies to enter the basin of attraction. In
future studies of finite populations the fecundity of the organism
can be included in the model to directly quantify this effect.

Finally, in Appendix D we give numerical results from
simulations of stable transformations in finite populations. We
find that if effective population sizes are large (� 100 diploid
individuals) and the system is not near critical boundaries
(migration rates and heterozygote fitnesses are relatively low) a
local transformation can remain stable for a very long time (for
more than 104 generations). If homozygotes for the modified
allele are only slightly less fit than the wildtype allele, the finite
system is likely to ultimately result in loss of the modified allele
from both populations, rather than fixation in both.
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Appendix A. Linear stability analysis

A system similar to Eqs. (4)–(6) can be found in Karlin and
McGregor (1972a) (see also Karlin and McGregor, 1972b), where a
linear stability analysis has also been performed. Here we briefly
repeat this procedure. Additionally, this formalism can also be
applied to the linearized system (Appendix B), and used to solve
for the central unstable equilibrium along the (xi,xj) axis in the
asymmetric model (Section 4).

Linear stability analysis reveals whether a fixed point of a
dynamical system is attracting or repelling (Hofbauer and
Sigmund, 1998; Strogatz, 2000; Murray, 2007). The idea is the
following: Given an equilibrium point, if we perturb the system,
will it move away from that point or return to it? This property is
expressed by the eigenvalues of the Jacobian matrix at the
equilibrium point ðp̂1,p̂2Þ, Jjðp̂1 ,p̂2Þ

. The Jacobian matrix is the
matrix of all partial derivatives,

Jðx,yÞ ¼

@Dp1

p1

����
ðx,yÞ

@Dp1

p2

����
ðx,yÞ

@Dp2

p1

����
ðx,yÞ

@Dp2

p2

����
ðx,yÞ

0
BBBB@

1
CCCCA

, ð22Þ

where Dpi ¼ pu

i�pi, see Eqs. (5) and (6). Assuming that
the perturbation is small and that the Jacobian does not vanish,
we obtain a linear equation that governs the temporal evolution of
that perturbation. Its solutions can be written as a superposition of
eigenmodes, pelkt , where lk is the kth eigenvalue of the Jacobian.
Thus, a perturbation will become smaller over time if all
eigenvalues are negative. As soon as a single eigenvalue is positive,
the perturbation increases and the corresponding equilibrium
point is not stable. The eigenvalues govern the behavior of the
system in a vicinity of an equilibrium point (Strogatz, 2000). The
explicit form of our Jacobian at (xi,1�xi), Eq. (7), is

Jðx1,1�x1Þ ¼

o�1�mðw�6Þ�6m2

ð1�2mÞ2
mð2mþoÞ
ð1�2mÞ2

mð2mþoÞ
ð1�2mÞ2

o�1�mðw�6Þ�6m2

ð1�2mÞ2

0
BBBB@

1
CCCCA

,

ð23Þ

which is the same for i¼1 or 2, due to the symmetry of the system.
The eigenvalues are the solutions of the characteristic polynomial
detðJ�lIÞ ¼ 0. They are given by

l1 ¼�
1�o�4m

1�2m
, ð24Þ

l2 ¼�
1�oþ2mð2m�3Þ

ð1�2mÞ2
: ð25Þ

Both roots are always real valued. A local bifurcation occurs when a
parameter change causes the stability of an equilibrium to change,
such that new equilibria can arise. Stability changes when the lk

change signs. Thus, we can compute the critical points from l1 ¼ 0,
and from l2 ¼ 0. In the former case, we obtain m1ðoÞ ¼ ð1�oÞ=4.
The latter case yields the critical point of the second bifurcation,

m2ðoÞ ¼ 1
4ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ4o

p
Þ, ð26Þ

where we can neglect the second branch of the root due to
consistency.

Appendix B. Linearized dynamics

The original symmetric system, Eqs. (5) and (6), is of the shorthand
form pu

iðp1,p2Þ ¼jiðp1,p2Þ=wi ðp1,p2Þ. A fixed point of the dynamics
occurs if Dpiðp1,p2Þ ¼ pu

iðp1,p2Þ�pi ¼ 0. The position of fixed points
and the stability properties do not change if we examine
dpiðp1,p2Þ ¼Dpiðp1,p2Þwi ðp1,p2Þ ¼jiðp1,p2Þ�wi ðp1,p2Þpiðp1,p2Þ. This
condition is quadratic in the control parameter m and can be
rearranged as ðia jÞ

dpiðp1,p2Þ ¼ ð1�oÞpið3pi�2p2
i �1Þ

�ð4ð1�piÞpi�oð1�2piÞ
2
Þðpi�pjÞm

þð1�oÞð1�2piÞðpi�pjÞ
2m2: ð27Þ

Note that only the relative coordinate, (pi�pj), scales with m. The
above set of equations has exactly the same fixed points as the system
(5) and (6). However, the Jacobian matrix and its eigenvalues are of
different form. Namely, the latter now read

l̂1 ¼�1þoþ4m, ð28Þ

l̂2 ¼�
1�oþ2mð2m�3Þ

1�2m
, ð29Þ

i.e. l̂i ¼ ð1�2mÞli, compare Eqs. (24) and (25). With l̂1,2 ¼ 0 solved
for m, this leads again to the critical points from Appendix A, see also
Eqs. (8) and (9).

Up to linear order in m we have approximately dpi � dLpiðp1,p2Þ

¼ ð1�oÞpið3pi�2p2
i �1Þ�ð4ð1�piÞpi�oð1�2piÞ

2
Þðpi�pjÞm, such

that dLpiðp1,p2Þ ¼ 0, solved along the diagonal (p1,1�p1) leads to
the pair of internal equilibria ðp̂1,p̂2Þ ¼ ðyi,1�yiÞ given by

y1,2 ¼
1

2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�4mÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�oÞð1�o�4mÞ

p
2ð1�oÞð1�2mÞ

, ð30Þ

which only differ from Eq. (7) by the factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m
p

in the
second term. The eigenvalues of the Jacobian Jðyi,1�yiÞ, computed
similar to Appendix A, read

~l1 ¼ l̂1 ¼�1þoþ4m, ð31Þ

~l1 ¼
1þ16m2�2mð4�oÞ�o

1�4m
: ð32Þ

The condition ~l1 ¼ 0 yields (once more) ~m1ðoÞ ¼ m1ðoÞ ¼ ð1�oÞ=4
for the first critical point. Moreover, ~l2 ¼ 0 gives

~m2ðoÞ ¼ 1
16ð4�o�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oð8þoÞ

p
Þ, ð33Þ

such that if migration rate is lower than ~m2ðoÞ, we observe stable
internal fixed points of the dynamics described by Eq. (27) up to
linear order. In Fig. 2(c) we compare the second critical point of
the original system with its equivalent from the approximation
linear in m. Note that for oo1, we have m2ðoÞo ~m2ðoÞ, whereas
~m2ðoÞ�m2ðoÞ-0 for o-1. If o is above 0.012, the relative error
j ~m2�m2j=ð ~m2þm2Þ is smaller than 10%, i.e. the prediction of stable
internal equilibria is relatively robust to cutting away information
on higher order migration effects.

Appendix C. Three alleles

Here we introduce a third allele, R, to the system at frequency
q. Thus, the frequency of the original wildtype allele now becomes
1�p�q. In the most general case the RR homozygote has a unique
homozygote fitness of nRR and we now write the TT homozygote
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fitness as nTT relative to a wildtype homozygote fitness of one. The
corresponding heterozygote fitnesses are oþT , oþR, and oRT .

The average fitnesses of the three alleles can be written as

fT ¼ nTT pþoRT qþoþT ð1�p�qÞ, ð34Þ

fþ ¼ ð1�p�qÞþoþT pþoþRq, ð35Þ

fR ¼ nRRrþoRT pþoRþ ð1�p�qÞ: ð36Þ

In general, the expected frequency of the ith allele in the next
generation, pu

i, is the product of the alleles frequency pi and fitness
fi normalized by the sum of this product over all alleles,

pu

i ¼
fiP
jpjfj

pi: ð37Þ

With three alleles, the fixed points along the edges of the simplex,
where the frequency of one allele is zero, are equivalent to the
corresponding two-allele case presented above. The remaining
internal fixed point can be found by setting the three averages
fitnesses equal to each other and solving the set of simultaneous
linear equations. This gives the coordinates of the central unstable
(assuming underdominance) equilibrium as

p̂ ¼
1

a nRðoTþ�1ÞþoRþ ðoRþ�oTþ�oRT ÞþoRT ð38Þ

and

q̂ ¼
1

ao
2
Tþ þnT ðoRþ�1ÞþoRT�oTþ ðoRþ þoRT Þ, ð39Þ

where

a¼o2
Tþ�nR�nT ð1þnR�2oRþ Þþ2oTþ ðnR�oRþ�oRT Þ

þðoRþ�oRT Þ
2
þ2oRT ð40Þ

which exists if both p̂40, q̂40 and p̂þ q̂o1.
If there is three-way underdominance between all alleles, the

minimum transformation threshold for the modified allele can be
lower than if a pair of alleles are considered individually, Fig. 9A.
In terms of transformation strategies, if a linked effector gene
results in a substantial fitness cost, a population transformation
might be more achievable by a two step process, first transform-
ing the population with a sightly less fit modified allele; then
transforming the modified population with a combined under-
dominant-effector construct. Similarly, if there are multiple
wildtype alleles that together have a heterozygous fitness
advantage, the transformation threshold is higher than if it is
inferred with respect to a single wildtype allele, Fig. 9B. Regard-
less of how many alleles are in underdominance with respect to
each other, in this system, fixation of the modified allele p¼1 is
stable if its homozygous fitness is greater than both of its
heterozygote fitnesses, nT 4oTþ and nT 4oRT , and bi-stability
with wildtype can be maintained even if there is no under-
dominance with respect to the third allele. This is illustrated in
Fig. 9C and D.

Three alleles predict a maximum of seven fixed points in a
single population. This predicts a maximum of 72 fixed points,

Fig. 9. Dynamics of a three-allele model in a single population. The shading indicates rate of change in joint allele frequencies on a scale from dark (slow) to light (fast).

Arrows indicate direction of change. Unstable equilibria as well as saddles are indicated with an empty disk, stable fixed points are black dotted disks. At the vertexes of the

simplex the population is fixed for one of the three alleles, and the corresponding allele is lost from the population at points along the opposing edge. In all four panels the

representation is wildtype + in the lower right corner, type R in the lower left corner, and type T in the top corner. The genotypic fitness values are given in each panel: near

the vertices the homozygote fitnesses ðnþ þ ¼ 1,nRR ,nTT Þ, along the edges the heterozygote fitnesses ðoþR ,oRT ,oþT Þ. (A) Full three-way underdominance.

oþR ¼oRT ¼oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:85,nTT ¼ 0:75. With fitness asymmetry among the homogenous genotypes, the central unstable point moves towards higher

frequencies of the less fit genotypes. (B) Overdominance between two wildtype alleles. oþR ¼ 1:1,oRT ¼oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:9,nTT ¼ 0:85. Overdominance

between the remaining alleles raises the transformation threshold of the modified allele. (C) oþR ¼ 0:9,oRT ¼ 0:825,oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:85,nTT ¼ 0:8. If

directional selection with R exists with fitness increasing away from a less fit TT homozygote, fixation of T is unstable despite heterozygote disadvantage (underdominance)

with wildtype. This may provide insight into how some types of underdominant changes can evolve between species, by transiting via intermediate alleles. (D)

oþR ¼ 0:9,oRT ¼ 0:85,oþT ¼ 0:5, and nþ þ ¼ 1,nRR ¼ 0:8,nTT ¼ 0:9. If directional selection exists and RR is less fit than the other homozygotes, underdominance can remain

bi-stable between TT and wildtype ++.
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when migration rates are low, in a coupled two-deme system.
Nine of these points can be stable equilibria (three are trivial
fixations), one central point is unstable and all others are saddle
points, if they exist for a given migration rate. Since a two-
dimensional simplex exists for each population ðS2

Þ the joint state
space for the coupled populations is four-dimensional ðS2

� S2
Þ;

however, the state space is not simply a pentachoron simplex (S4,
a four-dimensional triangle) but exists over a broader area. This is
because the allele frequencies, when considered jointly for both
populations, can be at any position within their respective S2’s
(also, allele frequencies do not sum to one when considered
jointly for both populations). This is analogous to the simpler case
in Fig. 3 where an S1

� S1, for two alleles in two populations,
exists on a two-dimensional square rather than an S2 triangle. If a
dimension is assigned to each allele frequency in each population,
we can say the S1

� S1 coupled system is in a plane across R4

rather than the S2 plane in R3, but both are two-dimensional.
Similarly S2

� S2 is distributed across R6 rather than as S4 in R5,
but both S2

� S2 and S4 are four-dimensional.
Even with three-way pairwise underdominance, at a stable

migration-selection equilibrium there cannot be more alleles
present than the number of populations (a detailed argument is
given in Karlin and McGregor, 1972a), so even if migration rates in
the two-deme model are permissive to stable maintenance of
polymorphism, one of the three alleles is expected to be lost. Thus,
starting from the point of view of a fully underdominant system in
stable equilibrium, the critical migration rates derived for the
two-allele case are applicable even if additional underdominant
alleles are possible. To illustrate three alleles in two populations

we modify p and q in Eqs. (34)–(36) to read, after migration, as p1

¼(1�m)p1+ mp2 and q1¼(1�m)q1+ mq2 for the first population
and the corresponding terms are also written for allele frequen-
cies in second population, where, for example, p1 is the frequency
of p in population 1, and m is the fraction of migrants each
generation as given previously for the two-allele case. The stable
maintenance of two alleles (in underdominance) in two coupled
populations for this three-allele system is illustrated in Fig. 10.

Appendix D. Fluctuations

Ultimately, in populations of finite size, the concept of stability
is not applicable any more. The only two absorbing states are
complete fixation or complete loss of one of the alleles. However,
with underdominance, the loss of polymorphism in coupled
populations may take a very long time if population sizes are large
and selection is very strong relative to migration. For a given set of
parameter values, if a polymorphism is stable in infinite
populations, we can ask the question of how long until
polymorphism is lost in finite populations. To answer this we
have provided illustrative examples from simulations using
Kimura’s pseudosampling method (Kimura, 1980): Pseudosam-
pling rescales a uniform random variate to have the same variance
of that expected under genetic drift as an approximation to the
diffusion of alleles in a finite population. The change in an allele’s
frequency due to deterministic forces, here selection and migra-
tion, is then adjusted in each generation. The adjustment is
according to the appropriately scaled random variate. This
method is a computationally efficient and gives reasonably
accurate approximation of genetic drift (Kimura, 1980). Some
illustrative results for various configurations in parameter space
are given in Fig. 11. Simulations have been performed with alleles
starting at the non-trivial stable equilibrium point (in a determi-
nistic sense) and were jointly iterated each generation until the
difference in allele frequencies between the populations collapsed
to less than 1% and the minor allele frequency in each population
was less than 1%. We set a maximum upper time bound of 105

generations in the simulations, and for plotting purposes have a
maximum of 104 generations. Because of this bound, an expecta-
tion cannot be accurately calculated. Instead we show a range of
more informative lower percentiles for the time until loss. As
modeled here, if the population size is large (4100 diploid
individuals) and parameter configurations are far from critical
boundaries, a difference in allele frequencies can be maintained
for 104 generations with a probability greater than 99%. As
population sizes decrease, or critical boundaries are approached
(with increasing migration, and/or heterozygote fitness, and/or
decreasing asymmetric homozygote fitness) the time until loss
monotonically decreases.

Note that the evolution of modifying factors such as mate
choice discrimination or genetic suppression can be quite rapid in
circumstances where there is strong selection (e.g., Soans et al.,
1974; McInnis et al., 1996; Charlat et al., 2007). Because of this we
are hesitant to make predictions beyond 104 generations.

If the two-deme system is fully symmetrical, n¼ 1, fixation or
loss of the T allele in both populations is equally likely. However,
it is found that with even small asymmetries in homozygote
fitnesses, no1, the probability of fixation of the allele corre-
sponding to the less fit homozygote is dramatically reduced. The
proportion of fixation out of the total number that were fixed or
lost within the time period considered was 9�10�3 for n¼ 0:98,
8�10�4 for n¼ 0:97. No fixations were observed out of 104

replicates for nr0:96. It is likely that genetically modified
organisms resulting in underdominance will have reduced fitness
relative to wildtypes. This provides a degree of fail-safe into the

Fig. 10. A schematic illustrating the fixed points and their stability in slices of the

four-dimensional state space of three alleles in two populations. (A) A useful

visualization in this context is a two-dimensional simplex for population 1 ðS2
1Þ,

and at each point within this simplex an additional two-dimensional simplex also

exists for population 2 (S2
2, four total dimensions). Consider the large outlined

triangle to be S2
1, within this illustrative S2

2’s are arranged according to their

relative positions within S2
1. In this example, all homozygotes have equal fitnesses,

all heterozygotes have half the fitness of the homozygotes (cf. Fig. 9A), and the

migration rate is m¼0.06. The approximate positions of fixed points are indicated

with open circles, which may not exist in precisely these illustrative slices, but are

expected to be nearby in the four-dimensional space. The central unstable

equilibrium is outlined in white, saddle points in gray, and stable equilibria in

black. Note that some points that appear to be stable equilibria in two dimensions

are actually saddle points in four dimensions. At this migration rate six of the 49

possible fixed points have merged and disappeared, so a total of 43 fixed points are

indicated. Of interest are the non-trivial stable fixed points on the outside edges of

the ‘‘corner’’ S2
2’s, where the allele is at a high frequency in one population and at

low frequency in the alternate population. (B) The actual positions of the internal

simplexes in panel A are indicated as points within the first population simplex.

Except for the central point, these are closer to the edges than can be shown in A.
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reversibility of the system; when a local population transforma-
tion is disrupted, it is much more likely that the genetic
modification will be lost from the wild rather than achieving full
fixation.
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