
Cancer is a genetic disease fuelled by somatic evolu-
tion1,2. During somatic evolution, genetic and epigenetic 
alterations can spread through a population of pre-
malignant or cancer cells3. As cell populations accumu-
late progressively more changes over time1,4, they acquire 
characteristics that enable them to persist within tissues5. 
These adaptations are characterized by, for example, 
increased evasion of the immune system6–8, the selection 
pressures exerted by therapeutic interventions9 and the 
formation of metastases10,11. Multiple factors contribute 
to carcinogenesis, such as stochastic DNA replication 
errors in cells, interactions between cells and the tissue 
microenvironment, and environmental exposures such 
as radiation and diet. Therefore, an understanding of 
cancer development and progression requires the elu-
cidation of collective properties of cells within a tissue3 
and their interaction with the microenvironment12,13.

Mathematical models have proved useful for deriving a 
detailed understanding of mechanisms and processes in 
cancer14,15, and have been used to propose new experi-
ments, suggest different treatment modalities and alter 
risk prognoses16–27. Quantitative descriptions of cancer-
driving mechanisms at multiple length and timescales 
lead to new questions that can be addressed with novel 
experiments and mathematical models that integrate 
empirical evidence. Such models then systematically 
evaluate assumptions, investigate alternative mechanisms 
and make predictions that can be experimentally vali-
dated. The power of mathematical modelling lies in its 
ability to reveal previously unknown or counterintuitive 
physical principles that might have been overlooked or 

missed by a qualitative approach to biology. As such, 
mathematical modelling can test theories on quantitative 
grounds. At its best, modelling provides indispensable 
contributions to cancer research, making investigations 
quantitative and predictive, and hypotheses falsifiable.

In this Review we examine recent topics of impor-
tance to basic and clinical cancer research, includ-
ing methodology to describe cancer at various scales. 
We begin with models that describe clonal evolution 
in tumour development and determine the temporal 
sequence of mutational events. We then discuss math-
ematical models that describe cancer across multi-
ple scales, such as hybrid models that combine cellular 
dynamics and microenvironmental factors, followed by 
modelling of metastasis dynamics and immunotherapy. 
We close with an outlook on open problems that require 
quantitative investigation.

Cancer initiation and tissue hierarchy
The dynamics of mutation accumulation. Since the 
inception of mathematical modelling of cancer, its 
approaches have sought to explain age-specific incidence 
curves28–30 and the dynamics of mutation acquisition31. 
Such approaches allow prediction of the risk of, for 
example, developing lung cancer, based on a patient’s age 
and smoking history32. In this context, a powerful math-
ematical tool for the study of the probabilistic growth 
of cell populations is the branching process33–36 (BOX 1). 
Branching processes are based on the assumption that 
cellular events (replication, mutation and death) do not 
influence each other37, that is, a cell acts in the same 
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Mathematical models
Models can describe a system 
by means of abstraction and 
mathematical formalism. They 
enable extrapolation beyond 
situations originally analysed, 
quantitative predictions, 
inferrence of mechanisms, 
falsification of underlying 
biological hypotheses and 
quantitative description of 
relationships between different 
components of a system.

The mathematics of cancer: 
integrating quantitative models
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Abstract | Mathematical modelling approaches have become increasingly abundant in 
cancer research. The complexity of cancer is well suited to quantitative approaches as it 
provides challenges and opportunities for new developments. In turn, mathematical 
modelling contributes to cancer research by helping to elucidate mechanisms and by 
providing quantitative predictions that can be validated. The recent expansion of 
quantitative models addresses many questions regarding tumour initiation, progression and 
metastases as well as intra-tumour heterogeneity, treatment responses and resistance. 
Mathematical models can complement experimental and clinical studies, but also challenge 
current paradigms, redefine our understanding of mechanisms driving tumorigenesis and 
shape future research in cancer biology.
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Hybrid models
A modelling approach that 
combines several modelling 
techniques in one. For 
example, a hybrid model that 
describes the tumour 
microenvironment in which 
stromal cells follow a 
continuous nonlinear 
description, whereas tumour 
cells obey a discrete stochastic 
process.

Branching process
A stochastic process model of 
cell division, mutation events 
and cell death that leads on 
average to an exponential 
increase or decrease in the total 
population size. The branching 
process is based on the 
assumption that each individual 
event occurs at the same rate, 
independently of, for example, 
the population size or 
composition, or the point in 
time. The branching process is a 
Markov process; that is, the 
probability of the next event 
happening depends only on the 
current state of the population, 
and not on its earlier history.

Passenger mutations
Genetic changes that have no 
obvious or direct effect on cell 
fitness or cancer development, 
and may occur and potentially 
vanish again during any stage 
of tissue development and 
homeostasis. According to 
some definitions, passengers 
might also be (slightly) 
deleterious.

Driver mutations
Genetic changes that are 
causally involved in cancer 
development, typically 
conferring a functional change 
and a somatic evolutionary 
advantage.

Epistatic interactions
Interactions that occur when 
the functional effect of one 
genetic alteration depends on 
the genetic background of the 
cell; that is, the state of one or 
more other genes.

Homeostasis
A property of a system in 
which variables are regulated 
so that internal conditions 
remain stable and relatively 
constant. An example is the 
constant tissue size of most 
organs in the absence of 
neoplasms.

way irrespective of whether it is alone or one of bil-
lions; this choice is made for mathematical simplicity 
and because of the difficulty of correctly parameterizing 
more detailed models. As such, at any time, each cell is 
fully described by cell-intrinsic proliferation, mutation 
and death rates.

Branching processes have been used to analyse the 
accumulation of passenger mutations and driver mutations 
during tumour growth. For instance, a recent contribu-
tion38 predicted the number of cells harbouring a specific 
driver mutation. The model starts with a single cell har-
bouring one oncogenic mutation; its clone then accumu-
lates further mutations during subsequent cell divisions. 
Each mutation reduces the death rate slightly, and thus a 
new clone with one additional mutation expands more 

quickly than previous clones. The intrinsic stochasticity 
of the branching process then generates variability in the 
times at which subsequent driver mutations arise. This 
model was later extended to include epistatic interactions 
between driver mutations, to explain why some lesions 
carry hallmark genetic changes but do not progress39.

Selectively neutral passenger mutations may also 
arise in healthy tissues. To address whether these altera-
tions affect tumorigenesis, a branching process model40 
was developed to study three phases of the somatic evo-
lution of cancer. The first phase describes healthy tissue 
expansion during development (FIG. 1). In the second 
phase, the tissue size is constrained by mechanisms of 
homeostasis. The third phase starts with a single onco-
genic driver mutation, but the cell population rapidly 

Box 1 | Branching and Moran processes

The branching process is commonly used for modelling cancer evolution36,38,40,202 (see the figure, left panel). It is a Markov 
process in which every individual cell at time t produces a random number of offspring at a later time t + Δt. In discrete time, 
a number of events are possible for each cell: cell division, cell division with mutation, or death. Each event is characterized 
by a given rate, which is independent of population size and composition. As mutations accumulate in the cell population, 
each new cell type that emerges may have a new set of rates. Suppose at time t there exist n
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The Moran process (see the figure, right panel) models stochastic dynamics in a population of constant size. There are n 
types of individual, i = 1, 2,…, n. The numbers of individuals of each type are N

1
, N

2
,…, N

n
, which sum to N; this number is 

constant over time. The types can have different fitness values f
1
, f

2
,…, f

n
. During each time step (see the figure; right panel, 

events 1 to 4), an individual of type i is chosen to reproduce with a probability proportional to f
i
, and subsequently, a 

random individual is chosen to die. This leads to the following probability that type i individuals increase and type j 
individuals decrease:

The Moran process can also include random mutations, nonrandom death proportional to ‘weakness’ (or inverse 
fitness)206 or time-dependent fitness207. 
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acquires more drivers and passengers as it expands. This 
model predicts that the number of somatic mutations 
in tumours is positively correlated with patient age at 
diagnosis40, because older tissues have had more time to 
accumulate alterations. Thus, half or more of the somatic 
mutations found in a tumour may arise before cancer 
initiation, and it might be possible to estimate the back-
ground mutation rate of a tissue from the number of 
mutations present in tumour samples of the same histol-
ogy. This approach leads to the possibility of quantita-
tive interpretation of the contributions of stochasticity 
and environmental factors to tumorigenesis41,42, and 
suggests that cancer aetiology is predominantly the 
result of error accumulation during stochastic stem cell 
divisions, which is termed ‘bad luck’ tumorigenesis. 
The role of random variation in cancer development,  

and its consequences for epidemiology and cancer pre-
vention, is a controversial topic43–46 and requires further 
investigation47.

To investigate the effects of slightly deleterious 
passenger mutations, a probabilistic individual-based 
model48,49 was developed in which these mutations 
accumulate frequently but at random in a tumour with 
population size at equilibrium48 (at ‘carrying capacity’), 
interrupted by occasional waves of driver mutations. The 
driver events are assumed to be rare, but significantly 
increase the carrying capacity. The model predicts a crit-
ical population size below which tumour populations are 
more likely to go extinct than thrive owing to a gradual 
decrease in fitness, suggesting potential pharmacological 
interventions that may speed up the process of tumour 
extinction48 by boosting passenger accumulation.

Figure 1 | Tumour initiation and progression.  a | After conception, 
repeated proliferation, differentiation and selective death lead to the 
generation of individual tissues. Once development is completed, all 
tissues are characterized by homeostasis (constant cell numbers over 
time). Homeostasis breaks down when genetic and other alterations arise 
that enable individual cell clones to increase in frequency through the 
process of somatic evolution. b | Many healthy tissues are characterized 
by a hierarchical organization (left panel) encompassing stem cells with 
self-renewal capacity and low activity, transit-amplifying (also known as 
progenitor) cells and differentiated cells. Cancer may arise in multiple 
ways, either through mutation accumulation in the stem cell 
compartment or within a more differentiated cell population. The first 
pathway may lead directly to cancer (α) while the second option (β)  
may include additional mutational changes that enable self-renewal 
capabilities in the resulting tumour cell populations. Many tumours, 
like normal tissues, are also organized hierarchically, and in some cases 

dedifferentiation from mature tumour cells to undifferentiated tumour 
cells is possible. c | Cross-sectional genomic characterization of patient 
samples after diagnosis of the disease allows for the acquisition of data for 
many samples, albeit at only one time point per sample. The temporal 
sequence in which alterations (purple, blue, green and red circles) arise 
after tumour initiation (pink circles) in individual patients cannot be 
identified unless modelling approaches are applied. The dashed line 
indicates the time of sequencing of the patients’ tumours and therefore 
one cannot observe potential future events (red circle). d | Such modelling 
approaches generally take frequencies of mutational events (M1–M3, left 
panel) and their co‑occurrences in a patient cohort84 into account  
(right panel; lighter colour indicates higher correlation). e | Several 
modelling approaches have been developed to derive likely temporal 
orders of events from such data, such as the linear model, the oncotree 
model, the directed acyclical graph (DAG) model and the evolutionary 
dynamics model. 
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Deterministic model
Given a specific initial 
condition, a deterministic 
process always yields the same 
output, and no randomness is 
involved. Deterministic 
processes can be chaotic in 
that a small deviation in the 
initial condition may yield a 
large deviation after some 
time. However, this effect is 
different from the effect of a 
stochastic process in which the 
same initial condition can lead 
to different results.

Hierarchical tissue 
structures
Structures according to which 
most tissues are organized, 
ranging from slowly 
proliferating stem and 
progenitor cells to more quickly 
proliferating precursors and 
terminally differentiated cells.

Phylogenetic tree
A branching, tree-structured 
graph that represents the 
evolutionary relationships 
among different (mutational) 
stages of a tumour cell 
population, quantified by some 
measure of distance between 
individual cells or patient 
samples.

Graphical models
Mathematical structures that 
describes pairwise relations 
(called edges) between objects 
(called nodes), possibly on 
several layers. An acyclic graph 
does not have any cycles. 
Undirected graphs imply that 
there is no direction in the 
relationships along any edge. A 
tree-like graph has the property 
that every node can be traced 
back to a central node, called 
the root node, while final nodes 
of a tree are called leaves.

Instead of considering a fixed fitness value conferred 
by each new mutation, another model50 incorporated a 
fitness distribution such that a specific mutational event 
is assigned a randomly drawn fitness effect. The dynam-
ics of mutation accumulation are then modelled using 
a fixed-size Moran process51 (BOX 1) until a threshold 
population fitness is reached that allows disruption of 
normal homeostasis and clonal expansion (FIG. 1). In the 
model, the rate of escape from homeostasis ‘competes’ 
with the natural ageing of the patient population, as 
cancer incidence is measured conditional on the patient 
still being alive at that time. Considerations of both can-
cer initiation driven by genetic or epigenetic events and 
human survival processes are useful in understanding 
the impact of life expectancy and fitness distributions on 
cancer incidence50. The model predicts that a small num-
ber of highly advantageous mutations drive cancers with 
low incidence rates. This approach was later coupled 
with a branching process phase after tumour initiation. 
In this model, a cell with sufficiently high fitness expands 
exponentially while continuing to accumulate mutations 
whose fitness values are again determined probabilisti-
cally52. This approach enables the identification of driver 
and passenger events.

Branching processes are often exactly solvable and are 
used for their ability to describe clonal evolution in grow-
ing tumours. They rarely serve to describe spatial inter-
actions between cells or include environmental factors. 
Recently, however, a sequence of branching processes53, 
characterized by their distance from blood vessels, was 
used to hypothesize that local tumour microenviron-
ments influence the selection pressure exerted on muta-
tions that cause drug resistance. Indeed, this approach 
demonstrated that tumour composition and recurrence 
times depend on tumour-microenvironmental factors, 
such as nutrient or oxygen gradients53. The dynamics of 
mutation accumulation can also be studied using other 
stochastic models such as the Wright–Fisher process54.

The cell of origin of human cancers. To understand the 
dynamics of mutation accumulation, it is important to 
describe not only the timing of alterations but the cell 
type in which they arise. A deterministic model can pro-
vide insight into how hierarchical tissue structures affect 
cancer risk and treatment effects55–59. Stochastic mod-
elling, in contrast, has proved useful for determining 
whether a stem cell, transit-amplifying cell (also known 
as a progenitor cell) or terminally differentiated cell is 
more likely to serve as the cell of origin of a particular 
tumour type. Using such approaches for haematopoi-
etic malignancies60, a progenitor cell was found to be 
more likely to initiate tumorigenesis than a stem cell, 
as the large number of progenitor cells can make up for  
the need to accumulate a larger number of mutations. The 
probability of cancer initiation was found to be high-
est when progenitor cells first acquire an oncogenic  
mutation and then gain self-renewal capabilities60.

Other mathematical models have addressed the cell 
of origin of brain cancers61,62. One model61 described 
the dynamics of three compartments — stem cells, 
progenitor cells and differentiated cells — finding that 

a stem cell mutation is more likely to initiate brain can-
cer than a similar mutation in the early progenitor pool. 
Conversely, another model62 found that progenitor cells 
are the likely cells of origin of glioblastoma if one of the 
cancer-initiating mutations imparts self-renewal. These 
approaches demonstrate that the differentiation hierar-
chy of a tissue is decisive for the dynamics of mutation 
accumulation and the kinetics of tumorigenesis (FIG. 1).

The temporal order of events
Our ability to interpret the importance of a specific 
mutation observed in cancer genomes31 is hampered 
by the lack of knowledge of the temporal sequence in 
which these alterations occur during human tumori-
genesis. This temporal order prioritizes the validation 
of potential drug targets, because early changes may 
cause a rewiring of the signalling circuitry or confer a 
state of addiction. A conserved temporal order of events 
in colorectal cancer was first proposed by Fearon and 
Vogelstein63, based on the sequencing of patient samples 
at different stages of disease progression. This approach 
assumed a linear genetic model of mutation accumula-
tion that postulates that there exists a single temporal 
sequence and that events are strictly sequential; simulta-
neous events are excluded. The order of events could be 
established through the identification of mutations that 
correlate with tumour size and stage63–65, which proved 
successful in elucidating the dynamics of colorectal 
cancer. However, other cancer types66–73 required the  
development of more complex models.

The oncotree model. The oncotree model is based on 
a probabilistic phylogenetic tree approach (FIG. 2). It 
relaxes the assumption of a strict sequential order of 
the linear genetic model and permits multiple paths to 
full transformation74–76. The temporal order of events 
is computed as a function of the distance of an event 
from the root node (that is, the time between initiation 
and the event). The relative position of each node on 
the oncotree is then constructed using co‑occurrence 
frequencies of mutations across tumours. The oncotree 
methodology still has restrictions, as it imposes one 
single oncotree structure per data set. Therefore, mix-
ture oncotree models were later introduced to com-
bine multiple independent tree structures77, and were 
applied to various cancer types, for example, naso-
pharyngeal carcinoma and oral cancer78,79. To over-
come the limitation of tree-structured models that do 
not allow shared ancestors for multiple leaves, directed 
acyclic graphical models were developed. These models 
determine the order of somatic alterations from cross-
sectional data sets80–82 at the cost of a larger computa-
tional burden owing to increased model complexity. A 
possible solution to this problem is to decrease mod-
elling resolution, and focus on pathway-level events 
instead of investigating individual mutations80,83.

Evolutionary dynamics models. Population genetics 
approaches coupled with optimization algorithms can 
explicitly address evolutionary dynamics of cell popula-
tions that accumulate cancer-causing changes54,84,85 (FIG. 2). 
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Repeated observations of the 
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over time.

Agent-based simulation
A computational approach that 
models complex systems 
consisting of interacting 
discretized items or ‘agents’. In 
cancer modelling, these agents 
often represent cells, which can 
mutate into other types, divide 
into two cells, die or move in 
space. These simulations can 
be implemented according to 
either probabilistic or 
deterministic laws.

Such approaches are based on the Moran process51,86 
(BOX 1), which can be used to calculate transitions between 
different mutational states. The model parameters are then 
identified by matching model predictions with empirical 
observations, using mutational co‑occurrence matrices. 
This methodology was applied to data from patients 
with glioblastoma, leukaemia or colorectal cancer84,85. 
The analyses found that most cancer types are character-
ized by multiple evolutionary trajectories that lead to the 
fully transformed state84, which suggests a large extent of  
heterogeneity in the temporal order of cancerous events.

The problem of identifying the order of events is 
more straightforward if longitudinal data are available. 
For instance, data on somatic copy number alterations 
(SCNAs) from longitudinal case–control cohort sam-
ples of patients with Barrett’s oesophagus can be used to 
determine the order of genetic alterations87. These inves-
tigations determined that SCNA enrichment is stable in 
the non-progressive stage, but more and more diverse 
SCNAs arise in late-stage cancers. Furthermore, an 

agent-based simulation model that considers individual 
cell death and birth events88 demonstrates that the tem-
poral order inferred from cross-sectional data might 
be inconsistent with the true mutational order in a cell 
line and that a phylogenetic tree obtained from a small 
number of cells within each tumour would better iden-
tify tumour genealogy. This inconsistency may be due 
to tumour heterogeneity and suggests that multiple 
intra-tumour samples should be used when inferring 
the order of events88. Such approaches have been used to 
analyse single-cell-based SCNAs89 and point mutations90. 
Furthermore, exome sequencing of matched normal and 
tumour samples from patients91 was used to determine 
the order of loss of heterozygosity and SCNAs, leading 
to several follow‑up methods92,93. Similar approaches can 
also be used to investigate the timing of the development 
of advanced tumour stages and metastasis21.

More recently, an analysis of approximately 350 
individual glands from 15 colorectal tumours led to 
the ‘big bang’ model of tumour evolution, in which a 

Figure 2 | Microenvironmental interactions and the emergence of metastases.  a | Mathematical modelling predicts the 
effect of vascular normalization by anti-angiogenic therapy177. The model is based on deterministic nonlinear dynamical 
systems and requires parameterization regarding tumour radius, vascular hydraulic permeability, tissue hydraulic 
conductivity and vessel density. This approach showed that anti-angiogenic therapy could decrease the interstitial fluid 
pressure in the tumour by decreasing the tumour size and vascular hydraulic permeability, and potentially also the vascular 
density. This modelling approach revealed parameter ranges in which interstitial convection within the tumour increases 
but fluid convection outside decreases, which potentially improves treatment and limits the convection of metastatic cells 
into lymphatic vessels. b | A stochastic model of metastasis formation considers three cell types: primary tumour cells, which 
have not yet evolved the ability to metastasize and reside in the primary tumour; metastasis-enabled cells, which have 
evolved the ability to metastasize but still reside in the primary tumour, where they proliferate, die and potentially 
disseminate to a new metastatic site; and metastasized cells (metastasis-enabled cells become these, once disseminated), 
which may proliferate and die at different rates130. This framework can be used to determine quantities such as the risk of 
metastatic disease at diagnosis. c | A probabilistic model of metastatic spread among organs describes organs as nodes in a 
graph171,172. In this hypothetical example of probabilistic spread between organs, some metastases spread disease back to 
the primary site. The central node represents the organ harbouring the primary tumour. Arrows represent the probabilistic 
rates of spread between organs, estimated from patient autopsy data. These do not correspond to actual physical flow,  
but to the flow of the probability of disease progression. Depending on whether organs are net sources or net sinks for 
metastatic cells, they are classified as ‘spreaders’ or ‘sponges’. This mathematical method revealed that metastasis 
formation is a stochastic multistep process. Part b is adapted with permission from REF. 169, Elsevier.
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predominant single expansion of tumour cells arises 
together with early subclonal mixing94. Whole-genome 
SCNA profiles of individual glands helped to identify two 
phenomena that support the ‘big bang’ in colorectal can-
cer: first, the majority of the tumours harboured altera-
tions that existed in all samples, suggesting a monoclonal 
origin. Second, a large fraction of the carcinomas con-
tained the same SCNA in glands from different locations 
of the tumour, suggesting that it arose early. These data 
further revealed similarly high tumour heterogeneity 
within glands and between glands, rendering selective 
sweeps unlikely. This study exemplifies how large-scale 
multi-region genomic data together with evolution-
ary modelling can lead to novel insights into tumour 
development.

Modelling the tumour microenvironment
So far, we have discussed approaches that investigate can-
cer development and somatic evolution, largely without 

considering the microenvironment. However, cancer 
progresses as a result of the collective dynamics that 
emerge from interactions between tumour cells and 
their microenvironment95–98. Mathematical modelling of 
microenvironmental interactions often requires complex 
model considerations. For instance, even when consid-
ering avascular tumour expansion as uniform spheri-
cal growth, temporal and spatial dimensions govern the 
dynamics, and models based on partial differential equa-
tions (BOX 2) are used. In addition to modelling tumour 
and normal cell populations and their genetic changes, 
such models require the incorporation of biophysical 
and environmental properties — namely diffusion of 
growth factors, hormones, nutrients and oxygen — that 
affect tumour proliferation and invasion patterns.

Modelling tumour dynamics in one and two dimen-
sions. An early approach99 improved upon the uni-
form spherical model by exploiting a non-uniform 

Box 2 | Ordinary and partial differential equations

Systems that are deterministic (exactly or approximately) can be described by ordinary differential equations (ODEs).  
Their main characteristic is that they have one independent variable. For dynamic systems, the independent variable is 
time. Dependent variables can be the volume of a tumour, the fraction of a genetic alteration in a population or the chance 
of finding a receptor in a certain state at a certain time. ODEs can describe systems of few and many dimensions, and allow 
chaotic and complex behaviour.

Consider the growth curve of a cell population with a time-dependent growth rate. Let the population size at time t be 
x(t) and the growth rate decay exponentially as a(t) = αe–bt. The ODE for x(t) can be written as: 

and the solution is:

if the initial size of the population is X
0
. This is a special form of sigmoidal growth.

For dynamic systems in which the quantities of interest — such as the concentration of oxygen — depend on more than 
one independent variable (for example, time and space), partial differential equations (PDEs) are used. This is beneficial 
especially when descriptions in higher dimensions are needed. For example, the concentration of oxygen in a tissue at time 
t in position x (for example, the distance to the centre of a blood vessel) can be denoted by c(x,t). Oxygen diffuses with a 
diffusion constant D, naturally decays with a constant a, is consumed by tumour cells of group size N(x,t) at position x at 
time t and at a rate g, and is produced by a macromolecule in the extracellular matrix at rate b. Here all rates are 
independent of time and position. The PDE is then given by:

Such reaction–diffusion 
equations are studied in many 
hybrid and multi-scale 
models12,105; their stationary 
distribution in 2D is 
exemplified in the figure (right 
panel). Typically the oxygen 
concentration is only one 
component of a system of 
PDEs, on which the behaviour 
of tumour cell density 
depends. Solutions to PDEs 
are continuous functions, and 
the figure shows the 
reasoning behind the 
approximation of a mass of 
tumour cells by a continuous 
density function.
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Stochastic process
This describes how a random 
variable (or set of random 
variables) changes over time 
and/or space. A stochastic 
process ascribes a probability 
to each event and allows for the 
prediction of the probability of 
a certain outcome. In contrast 
to a deterministic process, the 
initial condition yields an entire 
probability distribution over 
possible events at any later 
point in time.

Markov process
A memoryless stochastic 
process in which the conditional 
probability distribution over all 
future events depends only on 
the present state. A Markov 
chain explicitly addresses 
stochastic dynamics between 
discrete states in discrete time, 
thus allowing for a full 
characterization using a 
transition matrix in which the 
entries describe the probability 
of transitioning from one state 
to another.

Biased random walk
The movements of an object or 
changes in a variable that on 
average follow a specific 
pattern or trend.

diffusion of growth factors as a function of tissue 
permeability. Tumour growth was modelled in one-
dimensional space measured by the distance of a cell 
from the tumour centre100. These approaches were 
later extended to two dimensions, for example, by 
considering avascular tumour growth on a 2D lat-
tice coupled to a capillary vessel101. In this approach, 
nutrients diffuse deterministically, but cell dynamics 
obey a stochastic process. Simulation results of this pro-
cess were consistent with experimental observations 
of narrow cell layer dynamics and suggest that the 
competition for nutrients between tumour cells and 
normal cells is a leading mechanism for the generation 
of a commonly observed finger-like tumour surface 
morphology. Early 2D models were also used to study 
angiogenesis102, and recapitulated angiogenic features 
such as growth of capillary sprouts, vascular branching 
and loop formation103.

From cells to tumour morphology. Microenvironmental 
multiscale models usually distinguish between discrete 
(individual cell-based) and continuum (cell population-
based) models. Typically, a continuum deterministic 
model governs the dynamics of the nutrients, chemi-
cal factors and extracellular matrix (ECM). Discrete 
stochastic models describe cell growth, migration and 
interactions by defining the probabilistic reaction rates 
of the respective events in the form of a spatial Markov 
process (BOX 3). Hybrid approaches bridge several scales 
and complement fully continuous, highly complex 
descriptions of tumour dynamics104.

To address the dichotomy between discrete cellular 
dynamics and continuous external fields in the micro
environment, detailed mechanistic mathematical mod-
els have been developed105,106. An early hybrid-modelling 
approach107 used a continuum model for the interaction 
of an endothelial tumour cell population with the ECM. 
Vessel movement within the tumour was modelled as a 
biased random walk in space, determined by angiogenic fac-
tors and adhesive forces. Vessel networks resulting from 
angiogenesis were predicted to change owing to the effects 
of blood flow108, particularly wall shear stress, which was 
thus identified as a potential treatment target. A context-
adaptive strategy109 used a continuum model in regions 
of high cell density and a discrete approach elsewhere. 
A phenotypic mutation-driven approach110 then showed 
that different cell interactions are important at different 
stages of tumour progression: cell–cell interactions may 
dominate early while cell–ECM interactions become the 
dominant determinants of tumour morphology later on. 
Building on this approach, it was shown12 that a selectively 
‘mild’ microenvironment can lead to coexisting pheno-
types and tumours that are less likely to invade adjacent 
tissue, whereas a selectively harsh microenvironment 
can lead to strong selection for a smaller number of more 
invasive cell phenotypes. Hybrid modelling of such situa-
tions arising in bone-metastatic prostate cancer111 recently 
incorporated several differentiation levels of osteoblasts 
and prostate tumour cells as well as tumour-secreted fac-
tors. This approach led to the discovery that phasic activ-
ity and osteoblast behaviour help us to better understand 
the treatment response of bone metastases111.

Box 3 | Hybrid models in cancer

Hybrid models combine spatial reaction–diffusion (such as growth–consumption dynamics on a continuous scale) with 
discrete cellular dynamics (for example, on a lattice), which describe cell growth and motility (see the figure). For instance, 
in a continuous description of tumour cell density, the number of cells N (in space) is given by the PDE:

Extracellular matrix (ECM) cells (represented by E), matrix degrading enzymes (MDE, represented by M) and oxygen 
concentration (represented by C) obey the dynamics: 

The diffusion constants are denoted by D
N
, D

M
 and D

C
. ECM is degraded proportionally to MDE density, 

which itself is produced by tumour cells at rate λ and decays neutrally at rate μ. The oxygen decay 
rate is given by c, oxygen uptake by tumour cells occurs at rate n and oxygen is brought in at rate f, 
proportional to the ECM density12,110.

In a hybrid model, the tumour cell population is described as a discrete agent-based system 
that lives on a lattice or off-lattice103,208. On a 2D lattice, stochastic rules for each cell apply.

In the figure, P
u
 is the probability of moving up; P

d
 is the probability of moving down; P

r
 is the 

probability of moving right; P
l
 is the probability of moving left and P

0
 is the probability of not 

moving. These probabilities apply to each individual cell and may depend on the state of the 
environment. In a hybrid model, these movement probabilities (the values of P

x
) depend on the 

concentrations of the continuous variables C, E, M and N. In addition to movement rules, hybrid 
models also include rules for cell-specific processes such as proliferation, apoptosis and mutation that 
can be dependent on the environment. Figure reproduced with permission from REF. 12, Elsevier.
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Hybrid models are among the most sophisti-
cated approaches in mathematical cancer modelling. 
Nonetheless, they are still simplified caricatures of 
tumour growth in that they often do not consider the 
3D structure of tissues112 and other aspects. Recently, a 
series of investigations113–115 coupled 3D discrete mod-
els to continuum nonlinear tumour growth models, 
and revealed clonal evolution patterns in 3D116. These 
approaches point towards new methods of drug trans-
port to overcome irregular tumour morphologies and 
clonal distributions, and also reveal intricate connections 
between tumour type and cellular phenotypes. Another 
recent innovation in the study of cellular phenotypes 
and morphology has been the use of evolutionary 
game theory (BOX 4).

The glycolytic phenotype. An important aspect of 
tumour cell behaviour in relation to the microenviron-
ment is the emergence of different metabolic states. The 
Warburg effect117 refers to increased and sustained rates 
of glycolysis in the presence of oxygen in the micro-
environment. In the literature on modelling, this phe-
nomenon was first approached as a reaction–diffusion 
continuous model118, which yielded a description of 
interactions between the neoplasm and the surround-
ing normal stroma during acidic conditions induced 
by glycolytic tumour cells. In this model, the extent of 
acidity depends on the density of tumour cells and acid 
reabsorption rate, which predicts that increased  
acid levels result in more aggressive phenotypes and an 
acellular gap at the tumour–stromal interface, and this 
was experimentally and clinically validated. Later, a 2D 
hybrid model119 was used to study whether a few tumour 

cells can change the microenvironment by producing 
excess acid, which would facilitate their own growth 
and negatively affect normal cells. In this context, cell 
division and cell death are contingent on acidity and on 
the status of their neighbourhood on a 2D lattice, which 
demonstrates that even small numbers of cancer cells 
suffice to change the local microenvironment in favour 
of tumour development.

A subsequent hybrid model120 described individual 
cellular behaviour with a microenvironmental response 
network. The network determined the phenotype of the 
cell based on the local environment, which ensured that 
cells can behave differently depending on their context 
in the simulation. The model predicted that the glyco-
lytic phenotype tends to emerge from regions with low 
oxygen and high ECM density.

Modelling the brain tumour microenvironment. Brain 
tumours have been particularly well studied in terms of 
the interplay between the tumour and the microenvi-
ronment. Reaction–diffusion modelling121 — based on 
the BrainWeb122 database and patient-specific CT imag-
ing and/or MRI123— predicted that glioma growth can 
be modelled as a travelling wave with a diameter that 
increases linearly with time. This led to reliable tumour 
size prediction during the course of disease progression123 
and allowed the extrapolation of tumour dynamics under 
therapy121,124. This work led to a ‘therapeutic response 
index’, which is associated with prognosis. Hence, math-
ematical models can be used as an in silico control sam-
ple that allows causal reasoning. Another approach125 
further predicted dependencies between survival time, 
glioma proliferation rates and invasion dynamics, 

Box 4 | Evolutionary game theory in cancer biology

Evolutionary game theory (EGT) is a subfield in game theory that studies the long-term proliferation of the players in the 
context of a game. The game is typically formulated as a table that ascribes fitness values (pay-offs) to every pairwise 
interaction between cell phenotypes (strategies). Based on these interactions, EGT is able to mathematically describe the 
changes in the relative abundance of phenotypes (frequency-dependent selection), identify equilibria in which phenotypes 
may coexist and make statements about the stability of equilibria. EGT traditionally describes populations with a 
predefined set of phenotypes. Only recently has a flexible number of phenotypes209 or a population that changes in size210 
been considered.

Recent developments show that EGT is an exciting field for mathematical modelling of cancer131,132,211–214 (see the figure). 
An early model noted that the exchange of diffusible goods between cells can be captured by an evolutionary game in 
which cooperator cells provide a biochemical public good that protects aggressive tumour cells214. The idea of cooperation 
between groups of cells215 led to the realization that the evolutionary game in cancer resembles a public goods game with 
nonlinear returns (fitness increases quickly with low numbers of cooperators, but returns diminish for high numbers).  
A recent study216 introduced an evolutionary game in prostate cancer, describing tumour–stroma interactions, which  
could explain the three predominant tumour types: clinically indolent, rapidly growing–highly malignant, or environment- 
and stromal-support-dependent. The idea of ‘intratumoural symbiosis’ was adapted217 to confirm the existence of multiple 
stable states of coexistence between hypoxic and oxygenated cells driven by competition for glucose and lactate. 
Knowledge of the relative abundance of coexisting cells, and their effect on the behaviour of the tumour218, will hopefully 
serve as a stepping stone to a deeper connection between cellular diversity measures and clinical applications.
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Linear-quadratic model
A prominent heuristic to 
describe cell survival under 
radiation. The number of 
surviving cells after a certain 
dose of radiation has been 
administered takes the form of 
an exponential function with a 
linear and a quadratic term in 
its argument.

Predator–prey models
These models, also known as 
Lotka–Volterra dynamics, are 
used to describe the dynamics 
of ecological species, or types, 
as a nonlinear deterministic 
process. They were originally 
used to describe population 
dynamics of predators and 
prey, taking into account 
abundance, interactions,  
and population growth and 
diminution. They can also be 
used to describe mutualistic 
and competitive evolutionary 
dynamics; for example, 
between cellular types.

thus providing a potentially clinically useful tool for 
diagnosis and prognosis. A similar model126 used 
serial diffusion-weighted MRI to infer diffusion coef-
ficients and proliferation rates of treated and untreated 
murine brain tumours, which suggested a personalized 
approach based on parameters derived from individual  
MRI data127,128.

Clonal interactions, migration and invasion. Cancer cell 
populations can thrive on synergistic interactions129–131. 
However, it is largely unknown whether clonal diver-
sity is established probabilistically or deterministically. 
Furthermore, it is unclear how such interactions drive 
tumour complexity and subclonal coexistence based on 
biophysical principles132. To quantitatively address the 
potentially complex interactions between several sub-
clones, an experimental animal model of heterogeneous 
breast tumours was recently developed133. A patient-
derived cell line was engineered to express secreted 
factors, each in a separate subclone. These subclones 
were then competed against each other and against 
the parental line in vivo, and the resulting monoclonal 
and polyclonal tumours were analysed for tumour phe-
notype, size and clonal composition at multiple time 
points. Only a few clones led to significantly different 
tumour phenotypes, and only cells secreting interleu-
kin-11 (IL‑11) were found to promote growth of the 
entire tumour population133. Interestingly, IL‑11‑driven 
tumours did not display increased relative sizes of the 
IL‑11 subclones. An iterative, deterministic modelling 
approach confirmed that independent growth of dif-
ferent clones could not explain total tumour growth 
rates, but a linear interaction term proportional to 
IL‑11 frequency could. This finding demonstrated that  
non-cell-autonomous driving of tumour growth can 
maintain subclonal diversity.

A cell phenotype model106 devised an alternative to 
the hypothesis of mutation-driven tumour invasion. 
Using glioblastoma as an example, the model demon-
strated that mutation accumulation alone could not 
explain the time to recurrence after surgical removal of 
the tumour; rather, oxygen levels were found to deter-
mine the existence and proliferation of different sub-
clones in a complex way. Thus, oxygen gradients can 
influence cellular phenotype and the microenviron-
ment determines the rules of cell migration. The model 
predicted a maximal tumour size after a fixed time that 
depends on the nature of the invasive phenotype.

A cellular automaton model with hierarchical tissue 
structure134 related the discrete cellular states of prolif-
eration, death, migration, ageing and quiescence driven 
by response to the microenvironment to explain tumour 
invasiveness. The model predicted that under low migra-
tion rates (low rates of occupation of the neighbouring 
lattice in an agent-based simulation), a single cancer 
cell generates only a small tumour clone. High migra-
tion rates led to seeding of new clones at sites outside the 
expansion radius of older clones. In the context of this 
model, regions with low cell density owing to low prolif-
eration capacity or high death rate allow for more rapid 
expansion, which leads to accelerated tumour growth134.

Unstable tumour morphology and radiotherapy. 
Unstable tumour morphology in the form of physical 
abnormalities and instabilities can have important sur-
gical and therapeutic consequences. To investigate the 
dynamics of tumour response, taking microvasculature 
and fluid dynamics into consideration has become 
increasingly important for simulation models135. 
Detailed descriptions of fluid flow through a tumour 
with leaky vasculature136 are helpful for the develop-
ment of quantitative methods to assess drug delivery 
and pharmacodynamics137. Vascular formation and 
oxygen deficiency affect normal cells and cancerous 
cells differently; increased production of key proteins 
can render cancer cells less affected by hypoxia, and 
mathematical models are useful for identifying the best 
approaches for treatments based on these considera-
tions138. Similarly, spatial reaction–diffusion models are 
useful for investigating the efficacy of radiotherapy139 
and survival thereafter140. These models make assump-
tions: for example, that radiotherapy induces cell death 
following a linear-quadratic model141, which enables the 
characterization of growth and invasion under spa-
tial and temporal heterogeneity of the administered  
dose, and hence determination of the response to 
radiotherapy139. Mathematical models can then be 
used to predict patient-specific responses to treatment, 
if they are parameterized with patient data collected 
at diagnosis140. Furthermore, mathematical models of 
the extent and characteristics of intratumour hetero
geneity can be used to identify optimum radiation  
administration schedules22.

Interactions between the immune system and tumour 
cells. Modulating the interplay between immune sys-
tem components and cancer cells via immunotherapy 
is one of the most promising goals of modern can-
cer treatment approaches142–145. Using such therapies, 
immune system cells are enticed to specifically attack 
tumour cells without harming healthy tissue146,147. This 
field has relied largely on deterministic mathematical 
models, which exploited the analogy between tumour 
cell–effector immune cell interactions and ecological  
predator–prey models148. Mathematical modelling 
approaches to understanding the dynamics of immuno
therapy are based on understanding tumour–immune 
system interactions on multiple scales149. At the tissue 
level, a continuum approach can be used to describe 
cell densities with a focus on local frequencies of 
immune cells in the tumour vicinity. At the cellular 
level, simplified models consider tumour and immune 
cells in the microenvironment, where cytokines regulate 
their interactions and dormancy patterns149. Another 
study150 modelled the competition between tumour 
and immune system cells formulated as biochemical 
reactions among tumour cells, antibodies and effector 
T cells. Simulations showed that the effect of antibody 
treatment can be either beneficial or detrimental to 
tumours owing to deleterious effects of the tumour–
antibody complex on effector T cells, and recommended 
caution when artificially manipulating antibodies as 
cancer therapy150.
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Several recent deterministic modelling approaches151,152 
considered parameters estimated from mouse and 
human data. For instance, one approach152 suggested 
that evaluating patient-specific CD8+ T cell-mediated 
cytotoxicity could determine the likelihood of bene
ficial effects of immunotherapy. The dynamics of 
immunotherapy can also be modelled to identify 
potentially improved treatment strategies. Another 
investigation153,154 considered that immune cells kill 
tumour cells, the progression of which in turn sup-
presses the immune system. Various immunotherapy 
schedules were then studied (for example, constant 
and periodic schedules), with the goal of identifying 
better strategies. The model showed that the ability 
of periodic immunotherapies to remove the tumour 
depended on its aggressiveness. Another promising 
avenue of treatment is based on cytokine IL‑21 family 
inhibition, which has stimulatory effects on boosting 
both the innate and adaptive immune responses155. 
One approach156 used data from tumour-bearing mice 
treated with IL‑21 to derive a model that was param-
eterized using data on the effect of IL‑21 on natural 
killer (NK) cells, or CD8+ T cell-mediated tumour 
lysis. The effect of IL‑21 on NK cells was modelled 
using linear functions in a dose-dependent manner. 
The effect on CD8+ T cells was incorporated into 
the T cell memory dynamics in ordinary differential 
equation (ODE) form. The model showed that using 
IL‑21 in melanoma could result in beneficial out-
comes, but not in fibrosarcoma owing to its higher 
immunogenicity.

A more elaborate agent-based simulation was later 
developed for melanoma immunotherapy 157; this 
approach considered a larger number of cell types of 
the tumour–immune system. Although these in silico 
simulations led to predictions that were consistent with 
experimental data, questions remain of whether such 
modelling approaches can be parameterized adequately 
to capture the full extent of this complex biological 
system. This realization points to a common caveat to 
early mathematical modelling approaches to new sys-
tems; future research can only build on quantitative 
approaches if the findings are robust and the important 
aspects of biology are known, included and correctly 
parameterized.

Mathematical modelling of metastases
Metastases are the ultimate reason for cancer mor-
tality10,158 and are associated with a rapid decrease 
in treatment prospects159. The stochastic nature of 
metastasis evolution has long been recognized10. Early 
mathematical descriptions of the metastatic process 
were concerned with competition between cancer-
ous and healthy target tissue160 and metastatic recur-
rence161. More recent quantitative approaches have 
tried to shed light on the development and predic-
tors of metastases, such as by modelling dormancy or 
cell kinetics162. Quantitative insights into the mecha-
nisms of metastasis formation and ways to prevent 
it are relatively sparse, potentially owing to limited  
availability of data.

Diversity and metastatic efficiency. The diversity between 
individual cells within a metastasis and between metas-
tases and the primary tumour is important for under-
standing the mechanisms of the metastatic process, and 
sheds light on the likelihood of treatment success. To this 
end, a combined experimental and mathematical model-
ling approach163 compared genotypes and phenotypes of 
single cells from distant metastatic tumours, lymph node 
lesions and primary tumours derived from patients with 
breast cancer. These authors found that the difference 
in intralesion diversity was largest when comparing pri-
mary tumours and matched lymph node metastases, and 
not between two distant metastases, suggesting that the 
most important bottleneck in metastasis evolution occurs 
when cells leave the primary site and establish lymph  
node colonies.

The variety observed in metastatic disease is influ-
enced not only by physical factors but also by heteroge-
neity in circulating tumour cells (CTCs)164. Quantitative 
modelling of metastases has also incorporated mechani-
cal considerations and blood flow patterns, leading to a 
‘metastatic efficiency index’165 that relates lung cancer 
metastasis incidence in a target organ to blood flow pat-
terns between organs. This work was later extended166,167 
to explicitly describe relative venous and arterial flow 
between organ pairs, making the approach a more realis-
tic representation of the patient. The aim was to develop 
a model to test the relative likelihood of tumour self-
seeding by either primary site repopulation by CTCs, 
or secondary seeding when CTCs form metastases and 
then return to the primary site166. This model predicted 
that secondary seeding may be a common phenomenon, 
which is important for our understanding of the rapid 
evolution of resistance that emerges in a sanctuary168  
and migrates back to the tumour.

Markov models of metastasis dynamics. A stochastic 
branching process model169,170 (BOX 1) can be used to 
consider tumour cell growth and death, including muta-
tion accumulation and dissemination events (FIG. 1). This 
model predicts the probability of metastasis formation 
before tumour diagnosis, as well as the number and size 
distribution of metastases, depending on the size of the 
main lesion. In one study, the model was parameterized 
using data from patients with pancreatic cancer to iden-
tify better therapeutic interventions; it was found that 
early growth rate reduction may be more effective than 
tumour resection for maximum patient survival169.

The network of all organs can be described as a bidi-
rected graph in which nodes represent organs that may 
receive metastatic cells from any primary tumour or other 
metastses, and weighted edges describe the probability 
flow between nodes. Initially, the probability of cancer cells 
being present is one in the primary site and zero elsewhere. 
A stochastic Markov chain model can then estimate the 
transition rates between organs171, which was learned by 
iterative updating and by comparing the model predictions 
with metastatic distributions from large autopsy data sets 
of untreated deceased patients with primary tumours and 
metastases. This approach yielded a probability distribu-
tion across nodes, by which some nodes have a higher 
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probability of receiving metastases than others, allowing 
for the inference of the most likely primary sites, CTC 
dissemination and back-seeding patterns171; that is, the 
identification of ‘spreaders’ and ‘sponges’ of the metastatic 
process172. The location of the primary site and timing of 
the first metastatic dissemination can determine the course 
of the disease, guide clinical intervention173 and inform 
about lymphatic or haematogenous spread174.

Modelling biophysical properties. Several approaches 
to the modelling of metastases have also incorporated 
biophysical properties of the ECM. For instance, a 
recent approach175 related the cellular force generation 
in a tumour to the stiffness and geometry of the ECM. 
This mathematical approach was parameterized using 
an experimental model that allowed alteration of ECM 
stiffness. When contractile and protrusive forces are in 
balance with the amount of drag in the medium, the 
velocity of a cell can be calculated, and this enabled pre-
diction of when cells may leave a lesion and revealed an 
optimal velocity for tumour cells through the ECM at 
intermediate stiffness.

Physical and topological properties also have a role in 
both drug delivery and tumour staging176. The properties 
of lymphatic patterns led to the observation that changes 
induced by angiogenic factors affect the potential entry 
of cancer cells into the lymphatic system177. The physi-
cal effects of anti-angiogenic agents can be modelled by 
complex fluid mechanics, which showed that decreased 
convection of growth factors could limit the extent of 
angiogenesis in sentinel lymph nodes, and thus reduce 
lymphatic metastases. Clinical studies confirmed that 
the use of anti-angiogenic agents normalizes tumour 
vasculature and increases drug delivery and immune 
cell abundance at the tumour site178.

Treatment response and resistance
The 1970s and 1980s brought forth several seminal 
contributions towards mathematical modelling of 
cancer treatment responses179–182. Norton and Simon182 
studied the growth kinetics of tumours during chemo-
therapy, and found that the tumour follows a sigmoidal 
growth curve. They predicted that a dense dosing regime 
would be superior to the standard approaches of the time, 
a prediction that was later clinically validated183. Goldie 
and Coldman179,180 proposed using stochastic processes37, 
taking into account probabilistic cell dynamics, to study 
pre-existing or acquired resistance. Treatment effects 
were implemented as a reduction in the number of sensi-
tive tumour cells, and the probability of resistance dur-
ing a regimen of two drugs administered sequentially 
was shown to depend on the tumour size and mutation 
rate. Based on their model predictions, the authors sug-
gested that drugs should be given as early as possible 
and in alternating schedules184. These predictions were 
tested in a trial later on but failed to demonstrate better 
outcomes in the arm with alternating rather than sequen-
tial treatment185. These approaches have inspired several 
groups to investigate optimum administration schedules 
for various situations186. Some approaches187 were based 
on branching processes to model sensitive and resistant 
cancer cell dynamics under general treatment sched-
ules. Such models can be coupled with pharmacokinetic 
approaches to identify drug administration schedules that 
maximally delay the emergence of resistance188,189 (FIG. 3a). 
ODE-based investigations have also been successful at  
modelling tumour resistance to treatment190.

Other approaches have focused on the responses 
to radiotherapy using the linear-quadratic model. For 
instance, a recent approach22 used a mathematical model 

Figure 3 | Treatment response and dosing strategies.  a | Mathematical modelling 
can be used to identify optimum treatment strategies to delay the emergence of 
resistance to targeted agents188. The left panel displays alternative dosing strategies for 
the epidermal growth factor receptor (EGFR) inhibitor erlotinib in the treatment of 
EGFR-mutant non-small-cell lung cancer (concentration over time); the right panel 
shows the predicted number of resistant cells over time for each of those dosing 
schedules. b | Mathematical modelling of glioma growth and treatment response191 can 
be used to evaluate patient-specific responses to therapeutic interventions. Using this 
approach, 4D‑anatomical, 4D‑spherical and linear models can simulate glioblastoma 
growth with different levels of modelling complexity. The metric called ‘Days Gained’ is 
defined as time between the post-treatment (post‑Rx) measurement and the predicted 
time to having the same tumour radius if the patient had not been treated. The latter is 
inferred via modelling and simulation from pretreatment (pre‑Rx) measurement. Day 0 in 
the figure represents the day of the first pretreatment MRI scan. Day –25 represents the 
day when the tumour radius would be the same as that at the post-treatment MRI scan  
if the patient had not been treated. Part a is reproduced from Chmielecki, J. et al. 
Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary 
cancer modeling. Sci. Transl. Med 3, 90ra59 (2011). Reprinted with permission from AAAS 
(REF. 188). Part b is reproduced from REF. 191. 
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Sigmoidal growth curve
An S‑shaped growth pattern in 
which the population size starts 
from a low density with positive 
acceleration, then transitions 
to negative acceleration at  
high density. An equilibrium 
population size can be 
characterized, for instance, by 
a proliferation–self renewal–
death balance, or by a carrying 
capacity. Examples are 
Gompertzian growth and 
logistic growth.

Power-law growth model
A functional relationship 
between two quantities (for 
example, time and tumour 
size), where one quantity varies 
with the power (that is, 
exponent) of the other. The 
exponent can typically be 
inferred from linear regression 
analysis of a doubly 
logarithmic transformation of 
the data.

Luria–Delbrück model
The Luria-Delbrück experiment 
investigated whether mutations 
occur independently from, or 
owing to, selection. Data from 
growth experiments in which 
Escherichia coli were 
challenged with a virus were 
compared to a stochastic 
process model used to 
calculate the probability  
of having a certain number of 
resistant mutants. The findings 
suggested that mutations 
occurred randomly over time 
and were not a response to 
selection.

for glioblastoma treatment response that considered 
both differentiation from resistant stem-like glioblas-
toma cells to sensitive differentiated cells and dedif-
ferentiation in the opposite direction. The identified 
strategy suggests that enrichment in the resistant stem 
cell population could prolong survival by increasing 
the time to recurrence. This strategy was also validated 
with a randomized mouse trial, which showed a signifi-
cantly improved survival distribution in the optimized  
schedule group22.

Direct mathematical modelling of the prognostic 
effects of radiotherapy in patients has also been devel-
oped recently191 (FIG. 3b). This approach led to a novel 
metric called ‘Days Gained’, which is defined as the dif-
ference in time between the post-treatment MRI scan 
and the predicted time at which the same tumour radius  
would be reached had the patient not been treated. The 
latter is estimated based on the pretreatment MRI scan 
and subsequent computer simulations. The Days Gained 
score was found to be significantly associated with 
patient survival. Similarly, a patient-specific optimized 
radiation strategy192 was developed, which connected 
computer simulations with patient-specific parameters.

The idea of estimating patient-specific parameters 
was also used in modelling androgen ablation therapy 
for prostate cancer193, using an ODE-based model that 
incorporated the dynamics of normal epithelial cells, 
androgen-dependent cancer cells and cells that are 
resistant to first-line anti-testosterone therapy. The key 
parameter in the model was the competitive advantage 
of androgen-dependent cells; an increase in this advan-
tage predicted benefits of intermittent scheduling of 
anti-androgen therapy, as compared with continuous 
scheduling.

A different approach194 established the idea of ‘adap-
tive therapy’, and suggested the maintenance of a stable 
tumour burden in which treatment-resistant cells are 
suppressed by treatment-sensitive cells. A key assump-
tion is that the density of cancer cells without treatment 
follows a power-law growth model, and that after treat-
ment, time-dependent growth constraints govern the 
density of resistant cells195. The adaptive therapy strategy 
is then given by the optimum between the maximally 
tolerated dose and the dose administered in the previous 
period, multiplied by the ratio of tumour size change 
between these two periods, with the dose increasing as 
the tumour expands.

The risk of pre-existing resistance. To derive the prob-
ability of accumulating resistant cells in exponentially 
expanding populations, the Luria–Delbrück model196,197 is 
widely used. This approach assumes that both sensitive 
and resistant cells grow exponentially, and that sensi-
tive cells can generate resistant cells during cell divi-
sion. A two-type birth–death process196 (BOX 1) can be 
used to calculate the probability of pre-existing resist-
ance and the expected number of resistant cells before 
diagnosis. The latter was found to be independent of 
the mutation rate if mutations are rare, but to increase 
with the tumour size at detection. The probability of 
pre-existing resistance increases in proportion to both 

detection size and mutation rate. This approach has 
been generalized to two198 and to many mutations199. 
An extension of this model200 allowed for the calcula-
tion of the probability of acquiring resistance during 
therapy. This model considered that, before treatment, 
drug-sensitive cells are the fittest, whereas during treat-
ment, resistant cells become the most fit. It allows for 
the calculation of probabilities of ‘successful interven-
tion’ (that is, tumour extinction) and generalization to 
n mutations necessary to cause resistance. Treatment 
success thus depends on the number of cancer cells, 
the fitness landscape (a map from genotype to repro-
ductive ability) and mutation rates200. Similar model-
ling approaches were developed to explicitly consider 
cell cycle dynamics201, and were used to show that, 
when two or more drugs are used, the probability of 
pre-existing resistance increases with the rate of quies-
cence. Finally, several approaches also aimed to deter-
mine the number of resistant clones202,203, and suggested 
that different mutations might be present at subclonal  
frequency at the time of treatment initiation.

Mutations that confer resistance to multiple treat-
ments were recently explicitly considered24,204 in the 
context of probabilistic resistance evolution under com-
bination therapies. In the simplest setting, one muta-
tion can only lead to resistance to one drug. A model 
predicted that, for combinations of two or more drugs, 
resistance is most likely to arise before treatment, and 
that the effect of additional drugs is diminished as the 
mutation rate increases24. Such models can also be used 
to study ibrutinib resistance dynamics in chronic lym-
phocytic leukaemia (CLL)205. Using clinical and pre-
clinical data enabled the tuning of a birth–death process 
(BOX 1), and this also suggested that resistant clones are 
probably present before treatment albeit at low num-
bers. This approach inferred a slight fitness advantage 
of resistant cells over sensitive CLL cells even in the 
absence of treatment. Another recent contribution20 
similarly determined the probability of resistance before 
inhibition of epidermal growth factor receptor (EGFR) 
with panitumumab, and showed that cancer cells prob-
ably harbour resistance mutations before detection and 
treatment. Hence, combination therapy targeting at least 
two different pathways would be advised. A model18 in 
which one mutation confers resistance to multiple drugs 
(cross-resistance) in turn allowed for the calculation of 
the probability of resistance before combination therapy. 
Parameters were estimated using 20 patients with mela-
noma who were receiving the BRAF inhibitor vemu-
rafenib. Modelling approaches have also been designed 
to investigate the dynamics of treatment response to 
combination therapies such as in the case of EGFR 
inhibitors combined with chemotherapy203.

Conclusions
Although remarkable progress has been made towards 
the quantitative description of cancer progression, 
treatment dynamics and resistance, several impor-
tant questions remain. For example, quantitative 
approaches that help to explain the treatment response 
to immunotherapies, and help to identify patients who 
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