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Complexity and stability in growing cancer
cell populations
Evolutionary game theory (EGT) describes
dynamics in populations in which individual
fitness can change because of the interactions
with others, called frequency-dependent se-
lection (1). Interactions are driven by differ-
ences in phenotype. EGT has been proposed
as a framework for evolutionary dynamics of
tumors (2). An underlying assumption is that
different cancer cell types within a tumor en-
gage in different heritable behavior; thus, fre-
quency-dependent selection acts. Until now
there has been little direct empirical evidence
for this.
The study by Archetti et al. (3) demon-

strates frequency-dependent growth rates of
two phenotypically distinct cancer subclones.
One clone produced the insulin-like growth
factor (IGF)-II, the other did not. In a mix of
producers and nonproducers, the growth
rates of both clones varied with the fre-
quency of producers. Because a similar effect
was shown when varying the concentration
of serum, the production of IGF-II could be
viewed as a public goods game.
We welcome these experimental results

but have serious concerns about the theoret-
ical framework used for explaining them.
Archetti et al. (3) use an existing model: in
cell groups of size n, the growth factor (public
good) was provided by producers who pay a
cost and receive benefit. Nonproducers in the
group simply received a benefit. The size of
the group was assumed to vary between 10
and 30 individual cells and was said to relate
to the diffusivity of IGF-II. Nowhere in the
article is group size justified empirically.
Based on an approximation of the diffusion

coefficient of IGFs (10−6 cm2/s) and an esti-
mate of system size (well radius ∼ 0.7 cm),
diffusion time across the entire domain is
about 1.5–3 d. This finding means that the
IGF-II concentration equilibrates on roughly
the same time scale as cell division occurs on,
if not faster. The group among which the
public good is shared should not be on the
order of 10–100 cells, but rather the entire
population; this would invalidate the model,
because the model requires small n to result
in coexistence. Contrastingly, producing is
selected against in large populations (4). If
IGF-II acts as a public good on the scale of
the entire population we would expect pro-
ducer cells to disappear in the heuristic
EGT model.
Our second concern relates to the use of

the replicator equation and the birth-death
process. Both assume constant population
size. Although never explicitly stated in the
article, the population increases more than
10-fold (figure 1A in ref. 3) during the exper-
iments. Dynamic population size can have
profound effects on the population dynamics
(5). The proposed model might behave dif-
ferently if the population size is allowed to
increase, which definitely needs to be resolved
in the future and is crucial to its applica-
tion to tumor growth. In Fig. 1 we outline a
model in which the public good is shared
among all cells of a growing population. This
model recapitulates the coexistence of pro-
ducers/nonproducers observed in ref. 3. We
welcome experiments that try to disentangle
the complex interactions between different
cancer cells. EGT has certain advantages when

it comes to understanding complex interac-
tions, but further evidence is needed for
its application to growing tumors.
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Fig. 1. An illustration of the effect of differential growth rates between cancer cell phenotypes in the presence of a shared good that enhances growth. Type 1 produces and
consumes a share good. Type 2 only consumes the shared good. (A) Growth rates of producers (dashed) and nonproducers (solid) when production of the shared good is only
marginally higher than its rate of uptake, γ = 1.5. (B) Growth rates of producers and nonproducers when production of the shared good is five times higher than its rate of uptake,
γ = 5.0. In both A and B, at the top, we show the direction of selection, with stable equilibria as full circles. (C ) Mathematical model of two growing populations consuming a
shared good, definitions, and equations. In this example we assume that the growth factor equilibrates fast. We do not need to assume any complex interaction patterns
sometimes required by a nonlinear public goods game with population assortment. The critical parameter is the ratio of growth rate production rate over growth rate consumption
rate, γ = ρ/δ. Its value determines whether the system has one unstable internal equilibrium, or two internal equilibria (one stable and one unstable).
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