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Abstract

Many tumors are hierarchically organized and driven by a
subpopulation of tumor-initiating cells (TIC), or cancer stem
cells. TICs are uniquely capable of recapitulating the tumor and
are thought to be highly resistant to radio- and chemotherapy.
Macroscopic patterns of tumor expansion before treatment and
tumor regression during treatment are tied to the dynamics of
TICs. Until now, the quantitative information about the fraction
of TICs frommacroscopic tumor burden trajectories could not be
inferred. In this study, we generated a quantitative method based
on a mathematical model that describes hierarchically organized
tumor dynamics and patient-derived tumor burden information.
The method identifies two characteristic equilibrium TIC regimes
during expansion and regression. We show that tumor expansion
and regression curves canbe leveraged to infer estimates of the TIC

fraction in individual patients at detection and after continued
therapy. Furthermore, our method is parameter-free; it solely
requires the knowledge of a patient's tumor burden over multiple
time points to reveal microscopic properties of the malignancy.
We demonstrate proof of concept in the case of chronic myeloid
leukemia (CML), wherein our model recapitulated the clinical
history of the disease in two independent patient cohorts. On the
basis of patient-specific treatment responses in CML, we predict
that after one year of targeted treatment, the fraction of TICs
increases 100-fold and continues to increase up to 1,000-fold after
5 years of treatment. Our novel framework may significantly
influence the implementation of personalized treatment strate-
gies and has the potential for rapid translation into the clinic.
Cancer Res; 76(7); 1705–13. �2016 AACR.

Introduction
Cancer comprises a group of diseases that involve abnormal

and uncontrolled proliferation of cells. These aberrant prop-
erties are induced by alterations in genes that control cell-
regulatory mechanisms, microenvironmental response, and
cell–cell signaling (1). Large-scale genomic studies have
revealed the spectrum of genomic profiles in many cancers
(2) but accumulating evidence shows that cancers are charac-
terized by extensive inter- and intratumor heterogeneity (3, 4).
Tumor heterogeneity is a consequence of tumor evolution (5),
bridges multiple scales (6, 7), and may imply complex inter-
actions (8–10).

Tumor cells are often found in distinct stages of differenti-
ation (11). This phenotypic diversity likely is a remnant of the
hierarchical organization of the tissue of origin. In most healthy
tissues, stem cells maintain tissue homeostasis. A certain num-
ber of differentiation compartments give rise to the production
of distinct mature cell types (12, 13). The finding that tissue
organization can be maintained in tumors has led to the
postulation of the existence of tumor-initiating cells (TIC;
cancer stem cells). Under this hypothesis, a fraction of tumor
cells are uniquely able to seed, maintain, and reseed tumors
(11). First identified in leukemia (12), TICs have since been
shown to drive a number of solid tumors, including colon
(14–16), brain (17), breast (18), head and neck (19), and lung
(20), among others.

The implicit self-renewing feature of TICs has led to the con-
clusion that the effective treatment of hierarchically organized
cancers can only be achieved if all TICs are eradicated (21–23).
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Major Findings
Under the cancer stem cell hypothesis, a tumor population is

driven by a fraction of cells with the capacity to self-renew.
Absolute and relative size of this population in human cancers
remains unknown at any stage of the disease. We develop a
parameter-free mathematical model that allows estimation of
cancer stem cell fractions from longitudinal measurements of
tumor burden, which are often available from imaging or
liquid biopsies. Our novel framework provides critical infor-
mation for personalized treatment strategies and only requires
routinely available clinical information.
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Quick Guide to Equations and Assumptions
The continuous proliferation and production of cells in a stem cell–driven tissue with multiple cell differentiation stages is well

describedby ahierarchical compartmentmodel (24–26). Each compartment represents a certain stage of cell differentiation. Tumor-
initiating cells (TIC), or cancer stem cells (CSC), are at the root of the hierarchy (Fig. 1). TICs divide at a rate S and either self-renew
(producing two initiating cells) with probability p or differentiate (producing two differentiated cells) with probability 1�p. We
neglect the possibility of asymmetric cell divisions, which would not contribute to the growth or shrinkage of the initiating cell
population and only influence the time scale of the dynamics but not the underlying growth patterns. In addition, initiating cells
might die at a rate d per cell division. Differentiated cells proliferate at a rate D, also die at a rate d per cell division and undergo a
maximum ofm cell doublings before they enter cell senescence, resembling a Hayflick limit (27, 28). Under these assumptions, the
system takes the form of a hierarchically ordered, coupled set of ordinary differential equations that count the influx and outflux of
cells of each compartment

dNi tð Þ
dt

¼
pSNi tð Þ � 1þ d� pð ÞSNi tð Þ i ¼ 0

2 1� pð ÞSNi�1 tð Þ � 1þ dð ÞDNi tð Þ i ¼ 1

2DNi�1 tð Þ � 1þ dð ÞDNi tð Þ 2 � i � m

8><
>: ðAÞ

Here, N0(t) counts the number of TICs at time t, N1(t) corresponds to the number of differentiated cells that still have m cell
replications left before they undergo senescence, andNm(t) is the number of differentiated cells that have exhausted their replication
capacity and are removed from the system (reached the Hayflick limit).

TIC fraction during tumor growth
The systemof differential equations (1) canbe solved recursively for general initial conditions. If we setNi(0) as the initial number

of cells at time t¼ 0 in compartment i, we findN0(t)¼N0(0)e
�at, where a¼ (1þ d – 2p)S is the net growth of the TIC population.

Higher compartments (i > 0) of differentiated cells evolve according to

Ni tð Þ ¼ N0 0ð Þ 2
i 1� pð ÞSDi�1

g i
e�at � e�bt

Xi�1

j¼0

g j

j!
tj

" #

þ e�bt
Xi�1

j¼0

Ni�j 0ð Þ
j!

2jDjtj
ðBÞ

The outflow of each differentiated compartment is b¼(1þd)D, where g¼b�a corresponds to the differential outflow of stem and
nonstem compartments.

The tumor population's transition froma fast into a slower growth regime is determinedby the signs ofa andb. AsD and d are strictly
positive, all terms in Eq. B that contain e�bt vanish in the long run. If r > (1 þ d)/2, a is positive and determines long-term tumor
growth. Therefore, if we start from a single TIC, Ni(0) ¼ 1 only, the total number of all differentiated cells grows by
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and follows an exponential growth curve with an offset ag that involves all microscopic parameters. The fraction r(t) of TICs is then
formally given by

r tð Þ ¼ N0ðtÞ
N0 tð Þ þPm

i¼1
Ni tð Þ

ðDÞ

but in the second growth phase described by Eq. C, this expression simplifies considerably:
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However, the fraction of TICs is unknown at diagnosis. Currently,
the only method that can infer this information for specific
patients is from direct biopsies before and after treatment. This
method has major limitations due to the poor reliability of stem
cell markers and important sampling biases. Ideally, we require a
continuous measure of the TIC fraction that can be obtained by
minimally invasive procedures.

Here we combinedmathematicalmodeling and clinical data to
make predictions about the fraction of TICs. We used a compart-
ment model approach that describes cell population dynamics in
hierarchically organized tumors (26, 29). It has been observed
that during treatment, hierarchical tumors tend to transition from
a fast into a relatively slow response phase, particularly in the
targeted treatment of leukemias (1, 27, 30). These transitions are
tied to differential dynamics between stem-like and differentiated
compartments. Our results allowed us to exploit a universal
property of hierarchical tumor organization. One can estimate
the fraction of tumor-driving TICs from purely macroscopic
observables, for example, tumor burden, routinely gleaned from
medical imaging or liquid biopsies.

Our estimates of the tumor initiating cell fraction in individual
patients are parameter-free; they do not depend on microscopic
parameters of cell-cycle dynamics and cellular interactions.
Knowledge of cell proliferation or death rates is not required.
Weusedour framework to infer patient-specific TIC fractions from

two independent chronicmyeloid leukemia (CML) datasets. Each
dataset recorded patient treatment responses over time during
continued treatment (24, 30). Our analysis allowed estimation of
the actual number of TICs before and after treatment. This
information can be invaluable to gauge treatment response and
inform future personalized treatment strategies.

Materials and Methods
We used a system of inhomogeneous linear ordinary differ-

ential equations to describe the dynamics of tumor cells. We
thereby described two distinct tumor cell populations. The first
cell population consists of stem-like TICs. These cells can
potentially divide infinitely many times. At each point in time,
a TIC can either self-renew into two TICs, differentiate into two
differentiated cells, or die. The second cell population consists
of differentiated cells that can only divide a finite number of
times, or die. If differentiated cells can divide m number of
times, the system consists of mþ1 ordinary differential equa-
tions. We solved this system by variation of parameters and
wrote down an exact mathematical expression for the fraction
of TICs. We observed that the exact analytic form of this
expression followed a simple mathematical form. This form
does not require knowledge of the proliferation and death rates
of stem-like and differentiated cells, but only the macroscopic

The fraction of TICs becomes time independent and stays constant during further tumor growth. This does not imply that
the number of TICs is constant. Both the total tumor mass and the TIC population continuously expand with time. However,
after a sufficiently long time, the growth characteristics of the total tumor population reaches a steady state governed by
self-renewal.

TIC fraction during treatment
During successful treatment, tumor reduction in equilibrium can be written as �NðtÞ ¼ at e�agt . In the reduction phase, the

TIC fraction contains an additional term due to a change in initial conditions. Instead of a single TIC, we have e�agT TICs at time
of diagnosis T. Consequently, the fraction of TICs is calculated as rðtÞ ¼ 1=ð1þ at e�agTÞ. By resubstituting the age of the tumor,
we find an expression for the fraction of TICs under treatment

r�t ¼ 1

1þ at ag
�N Tð Þ

ðFÞ

Again, the TIC fraction transitions into a dynamic equilibrium during continued treatment.

Figure 1.
Model schematic showing key parameters governing the mathematical model based on the assumption that there exists a population of cells that
have the capacity to self-renew (TICs or CSCs). The TIC population of size N0 is exclusively able to maintain the tumor due to occasional self
renewal. Transit-amplifying cells (N1,. . ., Nm) undergo m cell division before they enter cell senescence. TICs proliferate with a rate S, self-renew
with probability p, and die at a rate S d. Transit-amplifying cells proliferate with rate D and die at a rate D d. The TIC pool expands via symmetric stem
cell divisions and the hierarchy is filled with transit-amplifying cells via cell differentiation. Typically, the tumor is initiated with a single TIC in
compartment 0.
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behavior of tumor burden (Fig. 2). Hence, observing a patient's
tumor trajectory right before and after sufficiently long treat-
ment, we could leverage the result of our mathematical
approach to estimate the fraction of TICs. We used two previ-
ously published datasets by Michor and colleagues (1) and
Roeder and colleagues (30), which followed CML patients'
tumor burden over time during continued treatment. The
workflow of data analysis is given in of the Supplementary
Fig. S1 in Supplementary Information. Supplementary Figures
S2 and S3 present individual patient trajectories used for our
numerical estimates. From this analysis, we calculated distribu-
tions of the TIC fraction before and after treatment, which
differed significantly (Fig. 3); we usedWilcoxon signed rank test
as implemented in the software Wolfram Mathematica 10.

Results
We model hierarchical tumor organization using a compart-

ment approach (Fig. 1). Each compartment represents cells at a
certain differentiation or proliferation stage (2, 3). One can

observe that in such systems the tumor growth curve decomposes
into two regimes. In the first regime, differentiated compartments
are filled by TICs. In the second regime, a dynamic equilibrium is
reached: the drive from stem cells is balanced by loss of differ-
entiated cells due to senescence or other factors. In addition, one
can infer the TIC fraction during the second regime of tumor
expansion, or during the second regime of tumor reduction in
response to treatment.

Tumor growth
To model tumor growth, we initiated the system with a single

TIC. This is in line with the cancer stem cell hypothesis (31) and
does not necessarily imply that the cell of origin was a tissue-
specific stem cell. Stem-like properties can be acquired in transit
amplifying stages, which is, for example, common in different
acute leukemias (17, 28). The proliferation parameters of TICs
determine the long-term behavior of the tumor. A tumor grows
continuously (andpotentially becomes a detectable cancer), if the
self-renewal probability p fulfills p > (1þ d)/2. The probability of
TIC self-renewal needs to be sufficiently large to compensate loss

Figure 2.
Inferring the fraction of TICs from tumor growth curves and treatment response. A and B, the solid line shows one realization of the model for tumor
growth (from a single cell), followed by an example of treatment response. The dashed lines correspond to linear regression of the log-linear tumor
size over time. We specifically marked the offsets, which allow calculation of the TIC fraction without the need for detailed knowledge of the cell properties.
If the offsets hg and ht can be estimated from the regression during growth (g) and treatment (t), respectively, and the tumor size at the beginning

of treatment is �N, then one can infer the equilibrium fraction of TICs during tumor growth [phase (ii)] and treatment response [phase (iv)] from
purely macroscopic observables. C, four CML patients from Michor and colleagues (1) and a pooled group of 68 patients from Roeder and colleagues
(D; ref. 30), all treated with imatinib. In both cases, the treatment response transitions from a faster into a slower decline. This is an innate property of
hierarchically organized tumors.
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of TICs due to cell death. The tumor would vanish for insufficient
self-renewal rates. We assume that self-renewal is sufficiently
common to allow for a growing tumor.

In the scenario of a growing tumor, the TIC population
expands. In addition, TICs differentiate into transit-amplifying
cells, which form the bulk of the tumor. After sufficient time,
one observes a balance between loss of differentiated cells due
to cell death or cell senescence, and gain of differentiated cells
due to doublings of transit-amplifying cells. In this balanced
regime, tumor growth is limited by the expansion rate of TICs,
see Fig. 2.

TIC fraction
The fraction of TICs during tumor growth is rgðtÞ ¼ N0ðtÞ= �NðtÞ,

whereN0ðtÞ corresponds to the number of cells with self-renewal
potential and �NðtÞ is the total size of the tumor cell population.
The TIC fraction decreases monotonically in the first phase of
tumor growth. Then, it evolves towards an equilibrium state for
any possible combination of microscopic cell proliferation
parameters (Fig. 2). The numerical value of rg in dynamic
equilibrium depends on the sign of the differential flow between
the initiating and the noninitiating compartments. This flow
describes the difference between the net growth of the tumor-
initiating cell compartment and the net loss in any given
differentiated (noninitiating) compartment due to cell differen-
tiation or death.

If the differential flow is negative, more TICs are lost by
differentiation than gained by self-renewal. In this case, the
initiating cell fraction tends to zero. If the differential flow is
exactly zero, TICs furnish half of the tumor population. For
positive values of the differential flow, we have a surplus in the

production of differentiated tumor cells as compared with their
losses during further differentiation. In this third case, the time-
dependent components converge to a constant value and the
fraction of TICs takes a nontrivial constant value between 0 and
1. Thus, the relative composition of the growing tumor remains
constant in the second phase of tumor expansion and the frac-
tion of TICs is given by

r�g ¼ 1
1þ const

ðGÞ

We analytically calculated the value of the constant in the
denominator and showed that it involves all model parameters.
Thus, from the mathematical model's perspective, a detailed
microscopic knowledge of a tumor's properties seems to be a
prerequisite to estimate TIC fractions. For example, all prolifer-
ation parameters of the different cancer cell types should play a
role. Yet, this detailed knowledge is difficult or even impossible to
be obtained in a clinical setting. In the following, we propose an
alternative and parameter-free method that determines the con-
stant in the denominator of Eq. G. This approach therefore allows
the estimation of the fraction of TICs in hierarchically organized
tumors.

Estimating the TIC fraction during growth
In dynamic equilibrium, tumor growth is exponential, gov-

erned by microscopic parameters of the dynamics. We find that
the coefficient a of the exponential growth coincides with the
constant in the exact expression of the fraction of TICs. We can
thus write 1=ð1þ aÞ for the equilibrium TIC fraction, which
allows inference of TIC fractions from tumor growth curves
directly. Instead of calculating a analytically, one can fit an
exponential growth law to an equilibrium tumor growth curve.
Thisfit gives a slope s and anoffset hg, and requires nomicroscopic
knowledge about the tumor. Moreover, the offset hg of the
regression corresponds to a and leads to

r�g ¼ 1
1þ hg

ðHÞ

See Fig. 2A.

Estimating the TIC fraction under treatment
We can model treatment strategies by altering the death rates

(or other parameters) of cancer cells. A hierarchically organized
tumor shrinks continuously under treatment, if the death rate of
cancer cells exceeds the self-renewal capability of stem cells: d > 2p
� 1. Under continuous treatment, similar to unperturbed growth,
weobserve that tumorburden reduces fast initially and transitions
into slower response after a characteristic time. The initial reduc-
tion phase is dominated by the death events in differentiated cells.
In this phase, treatment selects for tumor-initiating cells (Fig. 2B).
The tumor then reaches a dynamic equilibrium characterized by a
balance between cell renewal and loss. The TIC fraction remains
constant, despite a continuous decrease in tumor size and the
initial treatment effect diminishes.

The active stem cell fraction during treatment response can be
estimated by linear regression to the tumor kinetics after trans-
formation, log �NðtÞ ¼ log ht þ st; but the initial condition (at
time of detection) is not a single seeding TIC. We have to take
into account the entire tumor cell population. The offsets ht

TIC fraction at end of treatment, median: 1.36 × 10–8
TIC fraction before treatment, median: 1.57 × 10–10

Figure 3.
Estimated TIC fraction of chronic myeloid leukemia at diagnosis and
treatment. Individual fractions of TICs right before treatment were
estimated for each patient of the Michor and colleagues dataset (ref. 1;
full disks). We followed the linear regression method described in the
main text (also see Quick Guide to Equations and Assumptions). The
median TIC fraction was 10�10 (gray line), but variation between
individuals was large. Treatment typically selects for TICs: TIC fractions
after treatment (circles) led to a median of 10�8 (P ¼ 0.02, Wilcoxon
signed-rank test between the two TIC fraction distributions).
Interestingly, the variation between individuals was reduced under
treatment, potentially due to selection against BCR-ABL cells.
Combined with the average decrease of tumor burden, this suggests a
slowly shrinking TIC population for continued treatment of several
years. Nine of the 46 individual cases show a decrease in TIC fraction.
This could be explained either by our conservative fitting procedure or
by the fact that the tumor under treatment has not yet reached its
equilibrium phase.
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(treatment) and hg (growth) and the total tumor size at treatment
initiation time T; �NðTÞ, suffice to accurately estimate the fraction
of TICs under treatment

r�t ¼ 1

1þ hght
�N Tð Þ

ðIÞ

This is exact and parameter-free but requires an estimate of the
age of the tumor.

The TIC fraction in chronic myeloid leukemia
We applied our framework to estimate TIC fractions of chronic

myeloid leukemia (CML) during tumor growth and treatment
response. CML is induced by translocations of chromosome 9 and
22 that result in the expression of the BCR-ABL fusion gene in
hematopoietic stem cells (32). CML patients often present with
abnormal accumulation of undifferentiated granulocyte progen-
itor cells in the bone marrow and blood. Targeted anticancer
treatment strategies were first introduced in CML. For about 15
years, patients have stayed in remission under continued admin-
istration of tyrosine kinase inhibitors, such as imatinib, nilotinib,
or bosutinib (33, 34).

We analyzed two independent and previously published
datasets (1, 30) of CML treatment response to Imatinib. Relative
tumor burden (BCR-ABL/ABL) was measured using reverse
transcriptase PCR at diagnosis and was followed at fixed time
intervals. The dataset of Michor and colleagues (1) contained
103 patients followed every 3 months for 2 years. In Fig. 2C we
show four representative patients, Supplementary Figs. S2 and
S3 show the selected patients with clear biphasic response.
Figure 2D shows the median treatment response of these pati-
ents over time. The median tumor burden shows a fast initial
decline followed by slower decline after approximately 6 to
12 months of continued therapy. The Michor and colleagues
data permitted individualized estimates of stem cell fractions
(Fig. 3). We disregarded individuals with incomplete follow-up,
as well as 7 individuals with relapse due to emergence of a
resistant subclone. This left us with 46 individual treatment
response curves that meet our criterion of biphasic tumor
burden reduction. The Roeder and colelagues median data were
used independently.

Our framework requires estimates of the offset of the tumor
growth curve during treatment, ht, and during initial growth, hg.
The former can be inferred from exponential fits on each patient-
specific dataset directly. The latter requires further calculations.
Typical datasets lack explicit information about the initial tumor
growth. However, we can use �NðtÞ ¼ hgexpfTs2g and substitute
for hg in Eq. I:

r�t ¼ 1
1þ htexp �s2Tð Þ ðJÞ

which corresponds to logistic growth. Here, T is the tumor age at
diagnosis and s2 is the growth rate of the tumor in equilibrium
before detection. For CML, it was estimated to take 5 to 7 years
from the initiating mutational hit to diagnosis (1), supported by
a peak in CML incidence approximately 6 years after of the
atomic bomb in Hiroshima (35). However, we account for the
uncertainty of tumor age and show that our results are robust for
a wide range of tumor ages (see Supplementary Fig. S5). Fur-
thermore, we needed to estimate the growth rates of the tumor
during untreated growth, s1 and s2. First, we directly measured

the initial fast reduction under treatment s1, and the rate of
tumor reduction in dynamic equilibrium, s2, from treatment
response curves. Second, the Michor and colleagues' data (1)
contained 7 cases of relapse due to a resistant subclone. We used
the slopes of these 7 relapses to estimate the initial fast growth s1
long before detection. Assuming similar effects of treatment on
all cancer cells, we consider s1/ s1, s2/ s2, and s2 � s1 s2=s1.
These approximations likely overestimate the initial slope s1 and
lead to a slight overestimate of TIC fractions. All individual
regressions are shown in Supplementary Figs. S2 and S3, where
s1, s2 correspond to the decline rates of tumor burden under
treatment, and s1 is the growth rate of relapse. The respective
distributions of these regression parameters are shown in Sup-
plementary Fig. S4.

In our entire patient cohort, we found a median fraction of
approximately 10�10 TICs at diagnosis. Tumor burden typically is
in the order of approximately 1012 cells (1). This suggests a
population of a few hundred to up to a few thousand TICs in
CMLat diagnosis. The sameorder ofmagnitudewas also foundby
extensive sorting of patient-derived blood samples for quiescent
(G0) BCR-ABL–positive cells, combined with in vitro and in vivo
cell culture expansions (36).

Note that our method itself is independent of microscopic
details of the hierarchy, for example, the proliferation parameters
of cancer cells at different stages of the hierarchy. However, our
estimate requires the tumor to be in a dynamic equilibrium. The
transition time to this dynamic equilibrium depends on the
microscopic properties of each individual cancer. It is therefore
possible that we overestimated the fraction of TICs if the
tumor trajectories used had not yet reached equilibrium at diag-
nosis. In addition, we idealized the tumor into two major com-
partments. A detailed description would require many more
compartments (27). However, during late tumor growth and
after sufficiently long continued therapy, the growth of hierar-
chically organized tumors is always dominated by the slowest,
stem-like compartment.

We found variation within the patient population (Fig. 3). The
treatment phase changed the composition of the tumor and we
found a median TIC fraction of approximately 10�8 in equilib-
rium phase of continued treatment. Thus, treatment of one year
increased the relative fraction of TICs by a factor of 100. This
finding is robust to a wide variation of fitting parameters (see
Supplementary Fig. S5). The tumor burden after one year of
treatment is between 1% and 0.1% of the burden at diagnosis,
suggesting a standing total number of a few hundred TICs. Slow
decline of TICs during treatment is likely a consequence of the
slow turnover rate inherited from hematopoietic stem cells
(37), as opposed to an insensitivity of TICs to imatinib. The
longer follow up of Roeder and colleagues showed a continued
decrease of tumor burden to a total tumor population of 109

cells after 6 years. There could have been 10 to 100 remaining
TICs in those patients, but the elimination of the last TICs is
highly stochastic. Therefore, the extinction time is expected to
have a wide distribution, causing significant differences between
patients (27).

Our results explain why targeted treatment strategies are suc-
cessful in CML and why patients stay in remission without
emerging resistant subclones. This may be in contrast to targeted
therapies of many solid tumors, such as in colon, lung, or breast,
where resistance evolution or preexisting resistance is more com-
mon (38, 39).
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The probability that no resistant mutant is present in a cell
population of size N is pres ¼ (1�m)N�1, where m is an effective
rate that accounts for the emergence of resistant mutations
(40). The cell population at risk (TICs) is small in CML. If we
use our estimate of N � 1,000 TICs, a point mutation rate of
10�9, 100 different mutations that can confer resistance, and a
ratio of one symmetric tumor-initiating self-renewal in a hun-
dred asymmetric stem cell divisions, we estimate that the
probability of no resistance is pres ¼ (1�10�5)1000�1 ¼ 0.99.
This suggests that only 1% of CML patients would have a
preexisting resistant subclone within the population of
tumor-initiating cells. Even if we assume 10,000 TICs at diag-
nosis, 90% of patients would not present with resistance in
TICs, which is supported by clinical observations (33). This is
opposed to solid tumors, where stem cell fractions might be in
the order of 10�6 to 10�4 and preexisting resistance is highly
likely, explaining the relapse of most CML patients after a long
time of discontinued therapy: a considerable number of
TICs survive therapy. However, most patients remain sensitive
to targeted treatment and remission can often be reintroduced,
because the TIC number is low overall.

Discussion
The cancer stem cell hypothesis has attracted much attention,

but also many critics and much skepticism since its formulation
(41). While the existence of TICs in some tumors is well estab-
lished, the situation in other cancers remains somewhat unclear
(18, 31). However, knowledge about the size of the population of
tumor initiating (or reinitiating) cells undoubtedly impacts can-
cer treatment approaches.

Numerous mathematical models have shed light on clinical
phenomena from a theoretical perspective, and helped to
explain patterns of treatment response and evolution of resis-
tance (1, 28, 38, 42). Unfortunately, many models require
involved parameterization, difficult to obtain in clinical set-
tings. In this work, we presented a simple but general method
to estimate the fraction of tumor-driving initiating cells with
stem-like features. This estimate can be made exclusively from
the shape of a tumor's growth or reduction curve. It only
consists of a single exponential fit (linear regression) in the
case of tumor growth, and two such regressions of longitudinal
tumor size data during treatment. It is important to note that
we do not provide a method to estimate model parameters by
linear regression. Rather, we point to a direct functional link
between two tumor properties, namely tumor expansion/
reduction and the fraction of TICs. It is also important to point
out that our method does not necessarily estimate fractions of
tissue-specific stem cells. Instead, it estimates the cancer-driving
reservoir of self-renewing cells, which can potentially be
induced by oncogenic transformation at any stage of the
hierarchy of the healthy tissue of origin (27, 28).

Our method of data analysis is parameter-free as it requires no
knowledge about microscopic properties of the tumor. It only
requires longitudinal measurements from techniques that are
already used routinely in clinical care. For example, one can use
high-resolution imaging or liquid biopsies. Thus, our method
could readily complement current treatment protocols and
inform clinicians about the relative size of the active pool of
TICs. Patients with only few remaining TICs might benefit from
treatment discontinuation, while patients with a remaining high

number of TICs would benefit from changing the treatment
strategy.

We found that the pool of self-renewing cells in CML is in the
order of a few hundred cells, and thus relatively small. Further-
more, targeted treatment for 1 year increases the fraction of self-
renewing cells by a factor of 100, although the total number of
TICs likely declines together with the tumor bulk. This effect
has also been observed in solid tumors experimentally, for exam-
ple, in mammary tumors in mice, where platinum treatment
increased the fraction of self-renewing cells 3-fold, compared
with treatment-na€�ve cases (43).

The chance of a preexisting treatment–resistant tumor-initiat-
ing cell or the emergence of such resistance during therapy
depends critically on the size of the TIC pool (39, 40) and thus
can be assessed by our method. Our estimate of a relatively low
number of a few hundred TICs in CML suggests a low probability
of preexisting-resistant subclones. This is in agreement with
clinical observations. Patients stay in remission on targeted treat-
ment for years, in contrast to many solid tumors, where resistant
subclones expand rapidly after treatment initiation. Possible late
resistance cannot entirely be excluded, but its risk continuously
decreases (44, 45).

Ourmodel neglects a spatial component of tumor growth (46).
This assumption leads to exponential growth in equilibrium, a
situation well met in most leukemias (28, 47, 48). In some cases,
the spatial componentmight be of importance and tumor growth
becomes polynomial, rather than exponential (49). Another
mechanism that can lead to subexponential growth of the tumor
are positive or negative feedback loops due to signals secreted
from differentiated cells that inhibit stem cell division and stem
cell self-renewal (28, 50, 51). In such cases, our method provides
only an approximation of the TIC fraction. Yet, the divergence
might be small compared with the unavoidable measurement
errors.

We provided a testable hypothesis concerning the fraction of
TICs in both liquid and solid tumors. The ability to infer indi-
vidual TIC fractions at diagnosis and during treatment can influ-
ence treatment strategies, as it informs about the tumor's self-
renewal capability. Aggressiveness and duration of treatment
might critically depend on the amount of TICs. Furthermore, the
composition of drug cocktails, as well as treatment timing and
scheduling, could be adjusted according to the knowledge gained
about the TIC population.
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Select patients with clear bi-phasic treatment 
portrait 

Select patients with 
clear relapse

Calculate tumor 
growth rate s1

Calculate treatment 
offset ηt

Calculate treatment 
decay rates σ2, σ1

Calculate s2 = s1σ2/σ1

estimate tumor-initiating cell fraction at diagnosis: rg* = 1/(1 + NTe-s2T)
estimate tumor-initiating cell fraction after treatment: rt* = 1/(1 + ηte

-s2T)

Figure S1

Figure S1. Flow chart for the linear regression to estimate the fraction of cancer stem cells, also called
tumor-initiating cells (TICs). From all patients that qualify with a prominent bi-phasic reduction of
tumor burden during continued treatment we calculated a distribution of the two slopes of tumor
decay. Additionally, we calculated the offset (at tumor detection) of the second phase. In the meantime,
we estimated the initial tumor growth rate at early tumor development (way before detection) using
patients with clear relapse. All four values together yield a distribution of cancer stem cell fractions
at the beginning and in the second phase of treatment (see main text for equations). We assumed a
constant tumor size at detection (NT = 1012 cells), and an expected tumor age at diagnosis of T = 6
years.
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Figure S2

Figure S2. Individual treatment response of chronic myeloid leukemia patients to Imatinib. Shown
are treatment responses (dots) for all patients that meet the criteria of a complete follow up and no
visible resistance. For each patient we estimate the slopes σ1 (dashed line) and and the slope σ2 (line)
from linear regression (lines). The second linear regressions also provides the offset ηt that allows us
to estimate cancer stem cell fractions for each patient.
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Figure S3

Figure S3. Relapse of chronic myeloid leukemia. Shown is the relapse of 7 patients under Imatinib
treatment due to an expanding resistant subclone. Linear regression (line) is used to infer the slope of
the growing clone and is used as estimate for the initial fast tumor growth s1.
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Figure S4

Figure S4. Parameter estimates from linear regression analysis. A the slope s1 inferred from the
linear regression of the relapse in the seven patients from Fig. SI3. B,C the slopes and the offsets
inferred from the linear regressions of patients with bi-phasic decline in disease burden from Fig. SI2.
D Estimates for the growth of the tumor s2 before treatment, inferred via the conservative relationship
s2 = σ2/σ1s1, see Methods for details.
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Figure S5. Variation of tumor-initiating cell (TIC) fraction estimates with tumor age. We can perform
a linear regression analysis on each patient (as described in the main text) under the consideration of
a range of tumor age at diagnosis. The typical time from the initiating mutational hit until diagnosis
in approximately 72 months in CML. A TIC fraction at diagnosis. B TIC fraction at end of treatment.

S5


	Werner2016cr
	Werner et al_SI


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice




