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SUMMARY
Every decision we make is accompanied by a sense of confidence about its likely outcome. This sense in-
forms subsequent behavior, such as investing more—whether time, effort, or money—when reward is
more certain. A neural representation of confidence should originate from a statistical computation and pre-
dict confidence-guided behavior. An additional requirement for confidence representations to support meta-
cognition is abstraction: they should emerge irrespective of the source of information and inform multiple
confidence-guided behaviors. It is unknown whether neural confidence signals meet these criteria. Here,
we show that single orbitofrontal cortex neurons in rats encode statistical decision confidence irrespective
of the sensory modality, olfactory or auditory, used to make a choice. The activity of these neurons also pre-
dicts two confidence-guided behaviors: trial-by-trial time investment and cross-trial choice strategy updat-
ing. Orbitofrontal cortex thus represents decision confidence consistent with ametacognitive process that is
useful for mediating confidence-guided economic decisions.
INTRODUCTION

In the faceof uncertainty, any organism that canperformstatistical

computations gains an adaptive advantage. An elementary statis-

tical computation is confidence, estimating the probability that a

chosen option is correct. An accurate estimate of confidence

canconferbenefits for a broad rangeof behaviors, from theessen-

tial to the mundane to the sophisticated: deciding between fight

andflight, choosingwhichdrink toorder,ormanagingastockport-

folio. As humans, we assess our confidence in our percepts,

memories, and decisions all the time, as part of a self-monitoring,

reflective process termedmetacognition,which isdeeplypersonal

andsubjective (DunloskyandMetcalfe, 2009).Consequently, con-

fidence judgments have been studied as a central aspect ofmeta-

cognition, and thought to require neural architectures unique to

higher primates (Dehaene et al., 2017; Metcalfe and Son, 2013).

Even thoughmanyorganisms leverageprobabilistic computations

to guide behavior (Fetsch et al., 2013; Knill and Pouget, 2004;

Körding and Wolpert, 2004; Pouget et al., 2003; Wystrach et al.,

2015), it remainsunknownwhatneural architectures support these

(Meyniel et al., 2015a; Ott et al., 2018; Pouget et al., 2016).

What are the required properties for a neural representation of

confidence? First, neural activity should reflect a confidence
112 Cell 182, 112–126, July 9, 2020 ª 2020 Elsevier Inc.
computation; i.e., reflect the statistical likelihood that a proposi-

tion is correct, P(choice = correct | subjective evidence, choice)

(‘‘statistical decision confidence,’’ the type of confidence studied

here, henceforth ‘‘confidence’’) (Kepecs et al., 2008; Pouget

et al., 2016). Second, neural activity should be correlated with

decisions based on confidence; i.e., predict confidence-guided

behavior. These two criteria follow from computational consider-

ations, but psychological theories of metacognition provide

additional desiderata. A prerequisite for metacognition is an ab-

stract and centralized confidence representation: Abstract con-

fidence representations should generalize both across the

source of information used for probability computations and

across different types of confidence-guided behaviors.

Previous studies in human and non-human animals have iden-

tified representations of confidence that fulfill a subset of these

criteria (Fleming and Dolan, 2012; Hanks and Summerfield,

2017; Ott et al., 2018; Shadlen and Kiani, 2013). In animals asked

to report their degree of confidence by opting out of a difficult

task or placing a bet on their decision, neurons in frontal (Kepecs

et al., 2008; Middlebrooks and Sommer, 2012) and parietal cor-

tex (Kiani and Shadlen, 2009), as well as the pulvinar (Komura

et al., 2013) and superior colliculus (Basso and Wurtz, 1997; Gri-

maldi et al., 2018), signal the uncertainty in perceptual decisions.
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Figure 1. A Post-decision Time Investment Task to Measure Decision Confidence about Olfactory and Auditory Decisions

(A) Behavioral confidence reporting task design. Rats discriminated either an olfactory or an auditory stimulus in each trial (difficulty and sensory modality

randomly selected) and indicated their choice by entering one of two side choice ports (left or right). Reward delivery was randomly delayed, and no feedbackwas

(legend continued on next page)
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In humans, single neurons in the parietal and temporal lobes

represent the accuracy of memory recalls (Rutishauser et al.,

2015, 2018). Although these reports demonstrate that single

neurons encode probability estimates about choice correctness,

they probed confidence estimates with a single source of uncer-

tain evidence (i.e., one sensory modality or one type of memory

recall) and a single confidence-guided behavior (e.g., saccade-

based opt-out). Therefore, these studies do not establish

whether these neural representations have the properties of ab-

stract confidence.

Here, we set out to test whether single neurons in orbitofrontal

cortex (OFC) represent abstract decision confidence by

addressing the four key properties for abstract confidence repre-

sentations: (1) statistical computation of probability of being cor-

rect, (2) prediction of confidence-guided choices, (3) indepen-

dence of the source of information, and (4) generalization

across multiple confidence-guided behaviors. We developed a

behavioral task in which we could measure choice and confi-

dence reports for decisions based in two sensory modalities

and evaluate the neural encoding of single neurons in OFC, a

key area for value-based decisions (Hirokawa et al., 2019; Ke-

pecs et al., 2008; Padoa-Schioppa and Conen, 2017; Stalnaker

et al., 2015; Wallis, 2007). We trained rats to make perceptual

choices based on either an ambiguous smell or sound and

invited them to invest variable time for a potential reward after

each decision. Post-decision time investment predicted choice

accuracy and served as a behavioral report of confidence. We

found that time investments reflected a statistically appropriate

use of decision confidence. We show that single neurons in

OFC encode confidence, predict rats’ time investment across

both modalities, and predict choice strategy updating across tri-

als. Taken together, our results show that OFC neurons repre-

sent decision confidence generalized across sensory modality

and behavior, consistent with the notion of metacognitive confi-

dence as described in psychology (Dehaene et al., 2017;

Dunlosky and Metcalfe, 2009).
RESULTS

A Behavioral Task to Study Decision Confidence across
Sensory Modalities
We trained rats to perform auditory and olfactory perceptual de-

cisions and incentivized them to invest their time in proportion to

their decision confidence. Rats initiated a trial by entering the

center port where they received a stimulus (Figure 1A). An olfac-

tory or an auditory stimulus was presented in each trial, and trial

modality and trial difficulty were randomly interleaved. In olfac-
given in error trials and in 10% of correct trials (probe trials). We thus obtained the

error trial.

(B and C) Psychometric curves. Performance for individual rats (light curves) and p

olfactory (B) and auditory (C) trials.

(D) Reward delay distribution (light blue curve) and time investment distribution f

(E and F) Calibration curves for time investment. (E: olfactory trials; F: auditory tr

(G and H) Vevaiometric curves for time investment. (G: olfactory trials; H: auditor

(I and J) Conditioned psychometric curves for time investment. (I: olfactory trials

Error bars represent ± SEM across trials (D–J, trials pooled across rats).

See also Figure S1.
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tory trials, rats had to determine which of two stereoisomers

was most prevalent in an odor mixture delivered in one of seven

possible ratios (Uchida and Mainen, 2003). In auditory trials, rats

had to determine which of two auditory click trains delivered

binaurally had the greater number of clicks (Brunton et al.,

2013; Sanders and Kepecs, 2012; see STAR Methods). For

both modalities, rats performed close to perfect performance

on the easiest trials (Figure 1B and 1C) and their accuracy varied

with the strength of sensory evidence (average accuracy per

session: Accolf = 0.75 ± 0.05 and Accaud = 0.81 ± 0.04).

Rats provided post-decision confidence reports by investing

their time to earn an uncertain, delayed reward after making

perceptual decisions (Lak et al., 2014). Water reward after cor-

rect choices was randomly delayed so that rats had to make

an additional decision about how long to wait for potential

reward at a choice port. This waiting time in anticipation of a

reward is a time investment into their perceptual decision, which

can reflect their subjective confidence. On each trial, the timing

of the reward delivery was sampled from an exponential distribu-

tionwith a time constant t = 1.5 s, offset by 600ms and truncated

at 8 s (Figure 1D, light blue line, mean delay = 2.1 s). On a subset

of trials (10% probe trials) we withheld the reward to assess how

much time rats would be willing to invest for correct choices. On

these probe trials, rats waited on average 5.3 s after olfactory

choices and 5.5 s for auditory choices (Figure 1D). This task

design allowed us to simultaneously obtain a binary decision

and a continuous measure of post-decision time investment in

single trials.
Rats Report Decision Confidence about Two Sensory
Modalities
We first show that rats’ time investment in decisions based on

both sensory modalities qualitatively reflects an appropriate

use of statistical decision confidence. To operationalize the sub-

jective notion of confidence, we used a statistical definition of

decision confidence (‘‘statistical decision confidence’’), the

probability of choice correctness, P(choice = correct | subjective

evidence, choice) (Hangya et al., 2016; Meyniel et al., 2015a;

Pouget et al., 2016). We tested whether time investment

behavior followed three key signatures predicted by the statisti-

cal decision confidence model that describe the relationship be-

tween confidence, sensory evidence, and choice (Hangya

et al., 2016).

The first signature, the calibration curve, describes how re-

ported confidence predicts accuracy (Figures 1E and 1H): the

measure of confidence, time investment in catch trials, should

predict accuracy. The second signature is the vevaiometric
rat’s decision and amount of time invested in their decision for each probe and

ooled across animals (n = 6, thick curves) as a function of evidence strength for

or both sensory modalities pooled across all animals (probe trials only).

ials; probe trials only; see STAR Methods).

y trials; probe and error trials).

; J: auditory trials; probe trials only; see STAR Methods)
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curve (from the Greek bεbaio2, vevaios, meaning certain), which

describes the average confidence report as a function of the

strength of evidence and choice (Figures 1F and 1I): the measure

of confidence should increase with evidence strength for correct

trials (measured in correct probe trials) and decrease with evi-

dence strength for error trials (measured in all error trials). The

third signature, the conditioned psychometric curve, describes

choice accuracy as a function of the strength of evidence for

different confidence levels (Figures 1G and 1J, measured in

catch trials): for a given stimulus discriminability, higher confi-

dence trials are more accurate on average. Rats’ time invest-

ment behavior followed all three signatures in both sensory

modalities.

Isolating the Contribution of Statistical Decision
Confidence to Time Investment Behavior
We show that rats’ time investment quantitatively matches sta-

tistically appropriate use of confidence. How would an ideal

observer make confidence-guided time investments in percep-

tual decisions? In sensory decisions, the strength of evidence

is controlled by the discriminability of the stimulus (xolf or xaud,

Figure 2A, upper left). However, a decision maker only perceives

a ‘‘percept’’ bx, a noisy, subjective version of the provided evi-

dence x (Figure 2A, lower left). We assumed that the decision

maker decides based on its internal percept without additional

noise (f(bx), Figure 2A, lower center left). Errors therefore arise

when, due to noise, percepts fall into the incorrect category

with respect to the provided sensory evidence (i.e., when x

and bx are on different sides of the decision boundary). Although

choices do not reveal perceptual noise to the observer on a trial-

to-trial basis, average choice accuracy provides an estimate of

the total perceptual noise (s, inverse slopes of the psychometric

functions, Figure 2A, upper middle). On the other hand, a deci-

sion maker has access to its perceived strength of evidence on

each trial, which can be used to predict the average accuracy

(i.e., probability of being correct) for this given percept. This re-

quires learning a calibration function that maps percepts to

average accuracy (Figure 2A, lower center right). Until this point,

the computation of the estimated probability of correct, i.e., de-

cision confidence, is specific to the type of sensory evidence.

Once computed, the sensory-specific probability estimates

might be combined into a single variable and represented in a

modality-general manner. The decision-maker would then use

its degree of confidence and map it to a time investment amount

through amapping function (m(c), Figure 2A, lower right) to invest

time appropriately (Figure 2A, upper right).

To estimate the perceptual noise s, we fitted the psychometric

function with a cumulative Gaussian distribution (Figure 2B, left;

see STAR Methods). The standard deviation of this distribution

provides an estimate of the perceptual noise (Figure 2B, center).

Under the assumption of Gaussian perceptual noise, we inferred

the distribution of confidence for a given strength of evidence

and choice using the normative statistical model of confidence

(Hangya et al., 2016). In other words, we generated percepts

based on the observed perceptual noise (s, Figure 2B, center)

and calculated the degree of confidence, P(correct|bx,choice),
associated with each percept. Next, we converted each confi-

dence estimate to a time investment prediction by remapping
confidence c monotonically into a time investment TI using a

mapping function TI = m(c) by using the empirical cumulative

time investment distribution (Figure 2B, right; see STAR

Methods). This approach allowed us to isolate the contribution

of a confidence computation that informs single-trial time invest-

ment behavior.

For all rats and both modalities, model-predicted optimal time

investment matched the rats’ behavior well (Figures 2C–2E and

S1, solid lines for model predictions mostly fall within error

bars of observed time investment behavior). Shuffling single-trial

time investment data while retaining the samemodel parameters

(perceptual noise s and mapping function m(c), i.e., single trials

are not informed by decision confidence) produced uninforma-

tive relationships between time investments and task variables

that were qualitatively distinct from observed time investment

data (Figure S1, dashed lines). These results show that the

rats’ time investment reflected an appropriate use of decision

confidence in two sensory modalities.

OFC Single Neurons Are Tuned to Decision Confidence
for Both Sensory Modalities
How can we determine if a neuron’s activity is informed by a

statistical decision confidence computation? We searched for

neural signatures of statistical decision confidence, shown in

Figures 1E–1J and 2C–2E, which can be viewed as ‘‘confidence

tuning curves’’ that constrain the possible underlying computa-

tional process (Fleming and Daw, 2017; Hangya et al., 2016).

We recorded 1,593 well-isolated single neurons from six rats in

OFC using custom-built 32- or 64-channel tetrode micro-drives

(Figure S2; see STAR Methods) and analyzed a subset of 1,211

neurons with an average firing rate above 1 s�1. We focused

our initial analysis on the beginning 2 s of the waiting time period,

after rats had entered the choice port and started to invest time

into their decision (‘‘anticipation period’’). Figures 3A, S3A, and

S3B show three example neurons that are tuned to statistical de-

cision confidence across both sensory modalities.

Figure 3Ai shows a neuron whose activity increased after the

entry into the choice port and was graded according to olfactory

evidence supporting the choice. Activity was highest for easy cor-

rect choices, the trials with the highest average confidence,

whereas activity was lowest for easy error choices, the trials

with the lowest average confidence (cf. Figure 2C). We computed

confidence tuning curves using the average firing rate in the antic-

ipation period (see STAR Methods). Choice accuracy systemati-

cally increased with firing rate in olfactory trials (calibration curve,

Figure 3Aii, left panel, cf. Figure 2C). Firing rate increased with ev-

idence for correct trials and decreased with evidence for error tri-

als (vevaiometric curve, Figure 3Aii, right panel, cf. Figure 2D). The

same neuron also encoded decision confidence for auditory trials

(Figures 3Aiii and 3Aiv). In two other neurons, we observed confi-

dence encoding across sensory modalities, albeit with inverted

tuning and different time courses; i.e., they were negatively tuned

to confidence and therefore increased their firing rates with

decreasing confidence (Figures S3A and S3Bi–iv).

To identify OFC neurons that encode decision confidence dur-

ing the anticipation period, we computed an outcome prediction

index (OPI, a normalizedareaunder the receiver operating charac-

teristic [auROC], seeSTARMethods) asaproxymetric for decision
Cell 182, 112–126, July 9, 2020 115
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Figure 2. A Statistical Model Predicts the Optimal Time Investment Strategy
(A) A model for reporting choice and confidence (see text and STAR Methods). x, evidence (olf, olfactory; aud, auditory); b, decision boundary; bx, percept; s,
perceptual noise; f(bx), decision rule; c, confidence; m(c), confidence mapping function.

(B) Estimating perceptual noise s and confidence mapping function m(c) (left, points, data; line, model fit) (right, histogram, time investment distributions; line,

estimated mapping function m(c)).

(C–E) Rat’s time investment behavior reflects appropriate use of decision confidence (single rat example, auditory trials) as shown by the calibration curve (C),

vevaiometric curve (D), and conditioned psychometric curve (E) (cf. Figures 2E–2J). Dots, data; lines, model. Note that optimal model predictions fell within error

bars of the rat’s time investment behavior.

Error bars represent ± SEM across trials.

See also Figure S1.
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confidence.We identified outcome-predictive neuronswith signif-

icant positive or negative OPI (nselective = 459, p < 0.025 in either

sensory modality using shuffling test). We split the population of

outcome-predictive neurons into neurons with positive OPI (confi-

dence(+), i.e., higher firing rate for correct trials, n =205, signofOPI

measured using trials of both modalities) and negative OPI (con-

fidence(�), i.e., higher firing rate for error trials, n = 254). For both

sensory modalities, confidence(�) and confidence(+) neuronal

populations showed a graded increase of activity at the beginning

of the anticipation period according to choice and difficulty (Fig-

ures 3B, 3E, S4A, and S4B) and the confidence tuning curves in

the anticipation period followed the signatures of decision confi-

dence (Figures 3C, 3D, 3F–3I, and S4C–S4H).

To assess whether single neurons generalize outcome predic-

tion across sensory modalities, we show that OPIs were strongly

correlated across sensory modalities; i.e., outcome-predictive

neurons for one modality tended to be also outcome-predictive

in the other while preserving tuning direction (Figure 3J, r = 0.56,

p < 0.0001, t test). Visual examination (Figures S3C and S3D)

and quantitative tests of self-consistency suggest that the remain-

ing variability of OPIs across sensory modalities could be con-

strainedbyour ability toestimate it (seeSTARMethods). Together,

these results reveal that single neurons in OFC encode decision

confidence generalized across both sensory modalities tested.

Neural Activity in OFC Predicts Confidence-Guided
Time Investments across Modalities
We next show that OFC neurons predict time investment, our

behavioral report of confidence, in single trials. Figures 4Ai and

4Aiii show that, for the same neuron shown in Figure 3A, the in-

crease in activity after choice port entry in both modalities was

proportional to the rat’s eventual time investment. Its firing rate

in the anticipation period predicted trial-by-trial time investment

in both modalities (Figures 4Aii and 4Aiv, Pearson correlation

rolf(59) = 0.42, p = 0.0008, raud(38) = 0.39, p = 0.012). The firing

rate in the anticipation period of the two neurons negatively tuned

to decision confidence was negatively correlated with the time in-

vestment (FigureS3A andS3Bv–S3Bviii).Weobserved similar sig-

natures for both the confidence(�) and confidence(+) populations

(Figures 4B–4E and S5A–S5D, respectively).
Figure 3. Orbitofrontal Neuronal Responses during Outcome Anticip

Decisions

(A) Positively tuned confidence-encoding single neuron. (i) Average firing rate al

supporting the choice. Green, correct trials; red, error trials; brightness, evidence

firing rate in the anticipation period (first 2 s after choice port entry) in olfactory tria

Error bars represent ± SEM across trials.

(B) Average population activity of confidence(�) neurons aligned to choice port en

neurons.

(C) Population calibration curve for olfactory trials. Firing rates predict accuracy

(D) Population vevaiometric curve for olfactory trials (cf. Figure 1F). Green trace,

(E–G) Same conventions as in (B–D) for auditory trials.

(H) Population conditioned psychometric curve for olfactory trials (cf. Figure 1G).

42, 47, 53, and 58, p < 1e-7, two-tailed t test).

(I) Population conditioned psychometric curve for auditory trials. Difference betwe

in the bins 0.75–0.5, 0.5–0.25 p < 0.001, two-tailed t test).

(J) Correlation between OPIs in olfactory trials and auditory trials (each point corre

in (A) and Figures S4A–S4D. Blue dots: outcome-predictive neurons; gray labels

Error bars represent ± SEM across neurons (or across trials in A).

See also Figures S2, S3 and S4.
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We tested whether time investment predictions of single neu-

rons were similar across sensory modalities. We computed the

correlation between firing rates in the anticipation period and

time investments independently for each neuron and modality.

The predictionmetrics were strongly correlated across both sen-

sory modalities (Figure 4F, r = 0.76, p < 0.0001, t test). Thus, a

neuron predicting time investment in one modality tended to

also predict time investment in the other modality the same way.

We developed a measure for firing rate behavior co-variations

to determine the contribution of single neurons to time invest-

ment beyond what can be predicted based on their tuning,

conceptually similar to choice probability analysis (Britten

et al., 1996). We first calculated each neuron’s firing rate not

explained by the strength of evidence for a choice by taking

the residuals of a linear model expressing firing rate as a function

of evidence strength and choice. We then calculated the corre-

lation between residual firing rates and residual time investments

across trials separately for each sensory modality (see STAR

Methods). For olfactory trials, there was a strong correlation be-

tween the time investment metric computed using the residuals

and the time investmentmetric computed using neutral evidence

trials only (Figure 4G, r = 0.64, p < 0.0001 and r =�0.04, p = 0.47

for shuffled trials, t test). The time investment metrics based on

residuals were strongly correlated across both modalities (Fig-

ure 4H, r = 0.75, p < 0.0001 and r = �0.05, p = 0.34 for shuffled

trials, t test). Thus, firing rates of single neurons predict time in-

vestment on a trial-by-trial basis beyond the information pro-

vided by stimulus difficulty and choice.

We further investigated the similarity in neuronal time invest-

ment representations across sensory modalities using a cross-

modal decoding approach. Using simultaneously recorded

neurons, decoders trained to predict time investment in one sen-

sory modality predicted time investments equally well for trials in

the other, untrained, sensorymodality. To assess decoding qual-

ity, we computed the correlation between predicted and

observed time investments (10-fold cross-validation, see STAR

Methods). Irrespective of the modality used to train the decoder,

single-session decoding quality was similar for both sensory

modalities (p > 0.05, Kolmogorov-Smirnov test, Bonferroni

corrected), while they were statistically better than decoders
ation Reflect Statistical Confidence in both Olfactory and Auditory

igned to the time of choice port entry for olfactory trials grouped by evidence

strength. (ii) Calibration curve (left) and vevaiometric curve (right) for average

ls. (cf. Figures 1E and 1F). (iii–iv) Same conventions as in (i–ii) for auditory trials.

tries for olfactory trials. Same conventions as in (A); shaded area, ± SEM across

(cf. Figure 1E).

correct trials; red trace, error trials.

Difference between low firing rate trials and high firing rate trials for %Odor A =

en low firing rate trials and high firing rate for absolute value of binaural contrast

sponds to one neuron). Neurons labeled 1–5 correspond to the neurons shown

: non-significant neurons; p < 0.025 using bootstrap.
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Figure 4. Orbitofrontal Neuronal Activity during Outcome Anticipa-

tion Predicts Time Investment across Both Sensory Modalities

(A) Same positively tuned confidence-encoding neuron as in Figure 3A. (i)

Average firing rate aligned to choice port entry for olfactory trials grouped by

the rat’s eventual amount of time invested in the decision. Blue gradient,

amount of time investment (see STAR Methods). (ii) The neuron’s average

activity in the anticipation period predicts the rat’s waiting time in olfactory

trials. Pearson correlation rolf(59) = 0.42, p = 0.0008. (iii and iv) Same con-

ventions as in (i and ii) for auditory trials. Pearson correlation raud(38) = 0.39, p =

0.012 (t test). Error lines represent 95% confidence intervals for linear model

across trials.

(B) Average activity of confidence(�) population sorted by the rats’ time in-

vestment in olfactory trials aligned to choice port entries. Blue gradient, time

investment. Shaded area, SEM across neurons.

(C) Population activity predicts time investment in olfactory trials. Error bars,

SEM across neurons.

(D) Average activity for negatively tuned outcome-predictive neurons in audi-

tory trials (same convention as in B).

(E) Population activity predicts time investment in auditory trials (same layout

as in C).

(F) Correlation between firing rate and time investment correlations in olfactory

and auditory trials for outcome-predictive neurons (each point corresponds to
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predicting shuffled trials (Figure 5A). Furthermore, single-session

decoding quality was strongly correlated across sensory modal-

ities (Figures 5B and 5C) and improved with the number of cells

used (Figures S5E andS5F). Together, these analyses reveal that

the firing pattern of OFC neurons is predictive of trial-by-trial time

investment across both sensory modalities.

Neural Activity in OFC Predicts Confidence-Guided
Choice Updating
So far, we have considered a specific behavioral report of confi-

dence: time investment, which was incentivized by our task

design. We also noticed that rats showed small systematic

changes in perceptual decision strategy after rewarded trials.

Reinforcement learning models that incorporate perceptual am-

biguity predict similar choice strategy updating driven by confi-

dence-scaled reward prediction errors (Drugowitsch et al.,

2019; Lak et al., 2017, Lak et al., 2020b). These models predict

that when decision confidence is low, but the choice is re-

warded—a surprising outcome—there is a prediction error that

produces a bias in the subsequent trial’s choice (Figures 6A–

6C and S6A–S6C; see STAR Methods).

We found that rats’ choices were systematically modulated

depending on the previous outcome and trial difficulty. If the pre-

vious trial was rewarded, rats tended to repeat the same choice

again; i.e., they tended to choose the same side (left or right)

again, which produced a shift in the psychometric function de-

pending on the previous choice (Figures 6D, 6E, 6G, and 6H).

Choice updating scaled with the evidence strength of the previ-

ous trial both within and across sensory modalities—albeit this

effect was less pronounced across sensory modalities—and

was therefore consistent with confidence-scaled updating of

choice values (Figures 6F, 6I, S6D, and S6G for within modality

choices, and Figures S6E, S6F, S6H, and S6I for choices across

modalities; p < 10�6 for evidence for choice effect on predicting

choice updating; logistic regression, see STAR Methods). We

ruled out that choice updating was due to slow drifts in choice

bias: there was no systematic relationship between choice up-

dating and the choice in the subsequent trial in either modality

(Figure S6J).

This behavioral phenomenon enabled us to examine whether

OFC neurons encoding decision confidence and predicting

time investments also predict cross-trial choice strategy updat-

ing. We split trials according to the firing rate of the confidence(+)

neurons by their median firing rate in each session and

compared choice updating, i.e., the tendency to repeat the

same choice, in the subsequent trial. When the activity of
one neuron). Neurons labeled 1–5 correspond to the neurons shown in A and

Figures S3A–S3D. Blue dots: outcome-predictive neurons; gray labels: non-

significant neurons; p < 0.025 using bootstrap.

(G) Correlation between neutral evidence time investment correlates and firing

rate and time investment correlates in olfactory trials. Each point corresponds

to one neuron. Dark green, data r = 0.64, p < 0.0001; pink, shuffled control r =

�0.04, p = 0.47, Pearson correlation, t test.

(H) Correlation between firing rate and time investment correlates between

olfactory and auditory trials. Each point corresponds to one neuron. Blue, data

r = 0.75, p < 0.0001 and; pink, shuffled control r = �0.05, p = 0.34, Pearson

correlation, t test.

See also Figures S2, S3 and S5.
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Figure 5. Sensory-Modality-General Decoding of Time Investment

by OFC Neural Populations

(A) Decoding quality (measured as the correlation between predicted and

observed time investment from ensemble of simultaneous recorded neurons).

Each dot corresponds to one recording session. Empty circles, decoder

trained on permuted data. Ten-fold cross validations, n.s., p > 0.1, *p < 1e-10

(two-sample Kolmogorov-Smirnov test, Bonferroni corrected p values).

(B) For olfactory trials, decoding quality between the two decoders is strongly

correlated across sessions (Spearman’s, r(57) = 0.83, p < 1e-10, t test). Error

lines represent 95% confidence intervals for linear model fit.

(C) Same as (B) for auditory trials (Spearman’s r(57) = 0.78, p < 1e-10, t test).

See also Figures S2 and S5.
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confidence(+) neurons was high, we observed almost no choice

updating in the subsequent trials, whereas when the activity of

confidence(+) neurons was low, we observed strong choice up-

dating in the subsequent trial (Figures 6J–6M). We observed this

effect both within (Figures 6J and 6K, p < 0.003 and p < 0.03 for

olfactory and auditory trials respectively, logistic regression) and

across (Figures 6L and 6M, p < 0.008 auditory to olfactory and

olfactory to auditory respectively, logistic regression) sensory

modalities. Since the activity of confidence(+) neurons is modu-

lated by the sensory evidence, we repeated this analysis by

using a model that considered sensory evidence in addition to

confidence-neuron firing rates in the previous trial, which

revealed a significant additional contribution of firing rates to

the prediction of choice updating (DAIC = �813 [�805] when

omitting firing rate for predicting choice updating in olfactory

[auditory] trials, p < 0.001, bootstrapping, see STAR Methods).

Curiously, the confidence(�) neuronal population did not predict

choice updating on average, suggesting that a specialized OFC

subpopulation might be specifically involved in choice updating

(Figure S6K).
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OFC Neurons Share Activity Dynamics and Encoding
across Sensory Modalities
Lastly, we assessed the time course and tuning similarities

across sensory modalities throughout each trial. Firing rate dy-

namics during a trial were similar across sensory modalities

both during the anticipation and the outcome periods, as as-

sessed by peak averaged firing rate (Figures 7A–7D; see STAR

Methods) and by the distribution of spike density correlations

across modalities (Figure S7A, p < 2e-16 for choice period,

and Figure S7B, p < 1.41e-17 for outcome period, Kolmo-

gorov-Smirnoff test). Similarly, the temporal dynamics of confi-

dence tuning (Figures 7E and 7F) and time investment prediction

(Figures 7G and 7H) were correlated across modalities (Figures

S7C–S7E; see STAR Methods).

To further separate the dynamics of confidence encoding from

the overall activity dynamics in OFC, we trained a generalized

linear model (GLM) to predict the firing rate of single neurons

across time based on several task variables such as chosenside

and evidenceforchoice (see STAR Methods). For both olfactory

and auditory trials, confidence encoding (captured by the coeffi-

cient bEvidenceForChoice) arose at the beginning of the choice

period and remained sustained during the anticipation period,

unlike the coefficient for chosen side or trial outcome (Figures

7I and 7J). Coding similarity across modalities emerged late in

the movement period and plateaued within the first 2 s of the

time investment period (Figure 7K). Activity at the time of the

outcome (reward or leaving) was best captured by the binary

outcome variable rather than the graded evidence for choice

(Figure 7L).

Taken together, these results show that both the overall activ-

ity dynamics, as well as confidence encoding and time invest-

ment predictions that emerge after the rats’ choice, are shared

across sensory modalities.

DISCUSSION

Here, we showed that neuronal representations of decision con-

fidence in rat OFC satisfy characteristics expected for an ab-

stract confidence signal that could mediate metacognition. First,

neural activity reflected a statistical confidence computation and

predicted behavioral reports of confidence. Further, these confi-

dence signals generalized across the sensory modalities and

predicted distinct confidence-guided behaviors: time invest-

ment and cross-trial choice updating.

Limitations and Challenges in Linking Confidence to
Neural Activity
Our claim about confidence representations relies on several

lines of evidence that allow us to distinguish abstract confidence

representations from other signals. First, we showed that OFC

firing rates during the time investment period reflect critical sig-

natures of a statistical confidence computation (Hangya et al.,

2016; Sanders et al., 2016). While statistical confidence compu-

tations normatively predict the observed signatures (Hangya

et al., 2016), theremay be other confidence-unrelated processes

(e.g., attention, motivation) that could lead to similar patterns,

although modeling studies suggest that they are unlikely to pro-

duce all three signatures of decision confidence (Sanders, 2014).
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Figure 6. Orbitofrontal Neurons Predict Confidence-Guided Choice Updating

(A) Belief-state reinforcement learning model (for details, see STAR Methods). Subjective sensory evidence (stimulus contrast with perceptual noise) results in a

belief about the probability that the left or right choice is rewarded (pL or pR). Action valuesQ are computed bymultiplying this probability with cached values V for

right and left choices. A greedy policy selects the action (left or right) with higher action valueQ. Choice valuesQchoice follow signatures of confidence (inset). Upon

reward r, a prediction error d is used to update cached value of the chosen option.

(B) Themodel produces stochastic choice behavior resulting in a psychometric function. Conditioning the psychometric on the previous trial’s choice (left or right)

reveals trial-by-trial choice updating, a bias to repeat the same choice.

(C) The model agent’s bias in choice behavior, i.e., trial-by-trial updating, as a function of current evidence (circles, high; squares, low) and previous evidence.

(D) Analysis for olfactory trials preceded by a rewarded olfactory trial (E and F).

(E) Psychometric functions in olfactory trials conditioned on the previous trial’s correct choice (left or right).

(F) Trial-by-trial updating as a function of current evidence (circles, high; squares, low) and previous evidence in consecutive olfactory trials. Updating was highest

when previous and current evidence was weak; i.e., uncertainty high.

(G) Analysis for auditory trials preceded by a rewarded auditory trial (H and I).

(H and I) Same conventions as in (E and F) for auditory choices.

(J) The probability of repeating an olfactory choice split by the firing rate of confidence(+) neurons in the anticipation period of the previous olfactory trial. Low firing

rate predicted strong choice updating.

(K) Same convention as in (J) for auditory choices preceded by an auditory choice.

(L) Same convention as in (J) for olfactory choices preceded by an auditory choice (cross-modality updating).

(legend continued on next page)
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Second, OFC firing rates predict time investment on a trial-to-

trial basis, beyond what is expected from confidence tuning

alone. This suggests that OFC activity drives confidence-guided

time investments, consistent with previous observations that

OFC inactivation specifically impairs rats’ ability to invest time

in their decisions according to their confidence level (Lak et al.,

2014), and reminiscent to findings that frontal cortical regions

determine action timing in rats (Murakami et al., 2014, 2017).

Third, we used two sensory modalities to test the generality of

confidence representations, a first step toward showing meta-

cognitive representations of confidence. Nevertheless, confi-

dence about other decisions, such as a value-guided (De Mar-

tino et al., 2013) or memory-based choices (Miyamoto et al.,

2017, 2018) and novel experiences may require different brain

regions. OFC has a well-established role in value-guided deci-

sions (Padoa-Schioppa and Conen, 2017; Stalnaker et al.,

2015; Wallis, 2007; Xie and Padoa-Schioppa, 2016; van Duuren

et al., 2009), and therefore, we consider it likely that our results

will generalize beyond sensory-based decisions.

Finally, we showed that OFC neurons predict confidence-

guided choice strategy updating. Appropriately estimating con-

fidence is essential for learning in probabilistic environments

(Drugowitsch et al., 2019; Lak et al., 2020a, Lak et al., 2020b;

Meyniel et al., 2015b), and dopamine neurons have been shown

to represent confidence-scaled prediction errors that are used

for choice updating (Lak et al., 2017, Lak et al., 2020b). These re-

sults raise the intriguing possibility that confidence computa-

tions in OFC relay this information to neuromodulatory systems

to enable confidence-guided learning, consistent with recent ev-

idence that frontal cortex relays information about expected

reward to ventral tegmental area (Starkweather et al., 2018; Ta-

kahashi et al., 2011). How the dynamic activity patterns across

sensory modalities enable linking abstract confidence represen-

tations to subsequent behaviors for both learning and time in-

vestment remains an open question.
Relevance to Orbitofrontal and Prefrontal Function
Our observation that rat OFC neurons signal decision confidence

across modalities supports OFC’s conceptualization in outcome

prediction and valuation. OFC is known to represent reward ex-

pectancies and value of choice options (Hirokawa et al., 2019;

Padoa-Schioppa and Assad, 2006; Rudebeck and Murray,

2014; Stalnaker et al., 2015; Wallis, 2007; van Duuren et al.,

2009; Constantinople et al., 2019; Roitman and Roitman, 2010;

Sul et al., 2010). OFC lesions have been shown to affect a num-

ber of goal-directed behaviors in which values have to be in-

ferred (Jones et al., 2012; Rudebeck and Murray, 2014; Stal-

naker et al., 2015; Gremel and Costa, 2013). OFC has also

been shown to support economic decisions where the value of

each option is estimated either based on past experience or sub-

jective preference between options (Padoa-Schioppa and

Conen, 2017; Steiner and Redish, 2014). OFC activity has been

studied less under perceptual ambiguity, when the cues that pre-

dict reward are uncertain. In these situations, the value of a
(M) Same convention as in (J) for auditory choices preceded by an olfactory cho

Error bars represent SEMs across pooled trials. *p < 0.05 **p < 0.01 (logistic reg

See also Figure S6.
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choice should reflect the probability of making a correct percep-

tual decision; i.e., decision confidence. Thus, a confidence

computation transforms a proposition about ambiguous evi-

dence into a proposition about outcome likelihood, indispens-

able for any valuation process and hence consistent with a hid-

den state representation of task space in OFC (Gershman, 2018;

Wilson et al., 2014). Abstract confidence signals could thus serve

as a basis to make economic decisions and guide actions based

on values inferred from perceptual uncertainty.

A sensory-modality-general representation of decision confi-

dence might have been promoted by our task space, which is

indifferent to the sensory modality after making a choice. It re-

mains an open question whether situations in which sensory mo-

dality information is required for learning would promote a sen-

sory-modality-specific representation of decision confidence.

On the other hand, we observed stronger within-modality than

cross-modality choice updating, suggesting that rats considered

stimulus identity and statistics across trials for within-modality

learning (‘‘model based’’) in addition to learning about choice

values irrespective of sensory stimuli (‘‘model free’’). Our task

design included trials that were never rewarded (probe trials),

which could incentivize model-based learning. These observa-

tions suggest that state space representations reflect a mixture

of model-based and model-free learning processes, as has

been reported in complex behavioral tasks (Kim et al., 2019;

Kool et al., 2016). However, we did not observe a difference in

neuronal predictions of choice updating within or across sensory

modalities (Figures 6J–6M), supporting the notion that confi-

dence-encoding neurons in OFC generalize across sensory

modalities, consistent with a model-free state-space

representation.

In humans, representations of confidence have been reported

in agranular posterior medial cingulate cortex (Bang and

Fleming, 2018; Fleming et al., 2018; Rushworth and Behrens,

2008). Indeed, a precise homology between rodent and primate

OFC remains to be established due to differences in criteria as

well as methodological discrepancies across studies (Uylings

et al., 2003; Wallis, 2011; Ongür and Price, 2000). Moreover,

increased parcellation of frontal cortex in primates could lead

to a separation of functions that are intermingled within rodent

OFC (Carlén, 2017). Nevertheless, a number of studies have

found similar functional properties across species in OFC,

such as reward value and risk (Kuwabara et al., 2020; Li et al.,

2016; O’Neill and Schultz, 2010; Padoa-Schioppa and Assad,

2006; Wallis, 2011; Constantinople et al., 2019; van Duuren et

al., 2009; Rudebeck and Murray, 2014).
A Metacognitive Representation in Orbitofrontal
Cortex?
Our core observations that OFC neurons represent decision

confidence and predict confidence reports fit into a statistical

framework of decision confidence (Hangya et al., 2016; Ott et

al., 2018). Beyond the study of neural mechanisms, this frame-

work has been used to argue that pre-verbal infants use
ice (cross-modality updating).

ression with post hoc t test).
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Figure 7. Orbitofrontal Neurons Show Similar Activity Dynamics and Encoding across Sensory Modalities

(A) Trial-averaged activity of each neuron in the anticipation period sorted by time point of peak firing rate for olfactory trials.

(B) Same as (A) for auditory trials and using the same alignment as for olfactory trial.

(C) Trial-averaged activity in the outcome period sorted by temporal location of peak firing rate for olfactory trials.

(D) Same as (C) for auditory trials and using the same alignment as for olfactory trial.

(E) Time course of outcome prediction for olfactory trials. Neurons are sorted using the average outcome prediction in the anticipation period in olfactory tri-

als only.

(F) Time course of outcome prediction for auditory trials (same conventions as in A). Note that neurons are sorted based on outcome prediction in olfactory

trials only.

(G) Time course of correlations between firing rate and time investment for olfactory trials. Neurons are sorted based on their average correlation between firing

rate and time investment in the anticipation period in olfactory trials only.

(H) Time course of correlations between firing rate and time investment for auditory trials. Note that neurons are sorted based on their average correlation between

firing rate and time investment in olfactory trials only.

(I) Average GLM coefficients (normalized for sign, see STAR Methods) of outcome-predictive neurons (n = 495) across time aligned to choice port entry for

olfactory trials.

(J) Similar time course as in (I) but for auditory trials.

(K) Cross-temporal correlation across sensory modalities (horizontal axis, olfactory; vertical axis, auditory) of normalized coefficient bEvidenceForChoice aligned to

choice port entry. Black line, area denoting correlation coefficients with p < 0.05, t test, Bonferroni-corrected for multiple comparisons.

(L) Average normalized GLM coefficients (normalized for sign, see STAR Methods) of outcome-predictive neurons (n = 495) across time aligned to outcome for

both modalities.

See also Figure S7.
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metacognitive evaluation to adapt their behavior (Goupil and

Kouider, 2016; Goupil et al., 2016). However, such statistical

framework does not constrain the neural architecture that real-

izes confidence computations and therefore is not sufficient to

account for our observation that confidence representations

are centralized (i.e., within one brain area) and abstract (i.e.,

generalized across sensory modalities and behavioral outputs).

These observations are consistent with key predictions from

metacognitive notions of confidence in psychology that conjec-

ture a ‘‘metacognitive bottleneck’’ for computing abstract confi-

dence (Ais et al., 2016; Dehaene et al., 2017; Dunlosky and Met-

calfe, 2009). Our results provide evidence that, in rodents, OFC

supports metacognitive abilities with a centralized, abstract rep-

resentation of decision confidence.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Fluriso (Isoflurane) VetOne Fluriso

Lidocaine Henry Schien LidoJect

Ketoprofen Zoetis Ketofen

DiI fluorescent labeling Invitrogen D3911

+2-octanol Sigma-Aldrich SKU 147982

�2-octanol Sigma-Aldrich SKU 147990

Experimental Models: Organisms/Strains

Long Evans Rat Taconic LONGEV-M (discontinued)

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html

MountainSort Chung et al., 2017 https://github.com/flatironinstitute/

mountainsort_examples

Cheetah Neuralynx N/A

Other

Bpod State Machine r1 Sanworks https://www.sanworks.io/

PulsePal Sanworks https://www.sanworks.io/

64 port olfactometer Island Motion P/N 109-024

Tetrode wire (RO800, 1/4 hard PAC) Sandvik N/A

Digital Lynx system Neuralynx N/A
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Adam

Kepecs (akepecs@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The data and custom code that support the findings from this study are available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Rats
Weused 6 adultsmale Long Evans rats (Taconic). Rats were housed in pairs during training and then single-housed after implantation

of the microdrive and maintained on a reverse 12 h light/dark cycle. The rats had ad libitum access to food and were under a liquid

restriction schedule with daily monitoring of water intake to maintain a body weight of at least 85% of free-drinking weight. Rats

obtained water during daily training sessions and received ad libitum water on weekends and as needed. All procedures involving

animals were carried out in accordance with National Institute of Health standards and were approved by the Cold Spring Harbor

Laboratory Institutional Animal Care and Use Committee.
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METHOD DETAILS

Behavioral task
Behavioral procedures were conducted similarly as previously described (Kepecs et al., 2008; Lak et al., 2014). A rectangular behav-

ioral box contained three ports aligned on one wall equipped with LEDs, infrared photodiodes, and phototransistors. Interruption of

the infrared photo beamwas used to determine port entries and port exits. The two side ports (choice ports) were additionally equip-

ped with valve-controlled water spouts for reward delivery. The center port (stimulus port) was used to deliver olfactory stimuli

through a custom-built olfactometer. During olfactory stimulus presentation, odor solutions (+/� 2-octanol, Sigma Aldrich) were

placed daily on fresh filters to mix 1:10 with pure air and delivered at the stimulus port at an overall flow rate of 1 l/min. Air delivery

without odors wasmaintained during the trial. For auditory stimuli, two speakers were placed symmetrically outside of the behavioral

box at the left and right panel, aligned to the animal’s head. The olfactometer, speakers, water valves, LEDs and phototransistors

were controlled by the behavioral measurement systemBpod and Pulse Pal (Sanworks, NY) (Sanders and Kepecs, 2014) and custom

software (MATLAB).

Six naive rats were trained on a post-decision temporal wager task to assess the rats’ level of confidence in their decision. The first

part of the trial was constructed as a two-alternative forced choice task. Rats self-initiated each trial by entering the central stimulus

port. After a random delay of 0.2–0.4 s, either an olfactory or auditory stimulus was presented (randomly interleaved). For olfactory

stimuli, rats had to determine the dominant odor of a mix of pure odorants +2-octanol and –2-octanol. Odor stimuli were delivered for

at least 0.35 s or until the rat left the center port (max. 3 s). Odor mixtures were fixed at 7 concentration ratios, which we adjusted to

match the performance levels for each mixture ratio across animals. We always included a ratio of 5/95 (easiest discrimination, left

side rewarded), 50/50 (randomly rewarded) and 5/95 (easy discrimination, right side rewarded). Intermediate discrimination difficulty

were typically around 42/58 (intermediate discrimination, left rewarded, presented ratio were 44/56 42/58, 40/60, 35/65 or 30/70 de-

pending on the animal) and 58/42 (intermediate discrimination, right rewarded, presented ratio was 56/44, 58/42, 60/40, 65/35 or 70/

30 depending on the animal) as well as 47/53 (difficult discrimination, left rewarded, presented ratio was 48/52, 47/53, 46/54, 45/55 or

44/56 depending on the animal) and 53/47 (difficult discrimination, right rewarded, presented ratio was 52/48, 53/47, 54/46, 55/45 or

56/44 depending on the animal). After a variable odor sampling time, rats exited the stimulus port, which terminated odor delivery,

and indicated their choice by entering one of two choice ports (left or right) with a maximum response time of 3 s after leaving the

stimulus port. Choices were rewarded according to the dominant odor component in the mixture: Left port entries were rewarded

for mixture ratio < 50; right port entries were rewarded for mixture ratios > 50. 50/50 ratios were randomly rewarded. For auditory

stimuli, rats had to determine the side with the higher number of clicks in binaural streams of clicks. Auditory stimuli were random

Poisson-distributed click trains played binaurally at the two speakers placed outside of the behavioral box for a fixed time of 0.25

s. For each rat, we chose a maximum click rate clickmax according to the performance of the animal, typically 50 clicks/s (full range

40–100 clicks/s). This maximum click rate was fixed for each animal. For each trial, we randomly chose a delta click rate between left

and right from a uniform distribution between 0 and clickmax. The sumof the left and right click rate was kept constant at clickmax. Rats

indicated their choice by exiting the stimulus port and entering one of two choice ports (left or right) with amaximum response time of

3 s after leaving the stimulus port. Choices were rewarded according the higher number of clicks presented between the left and right

click train (equal number of licks were randomly rewarded). Exiting the stimulus port during the pre-stimulus delay or during the stim-

ulus time (first 0.25 s) were followed by a white noise and a time out of 3–7 s.

To assess the rats’ degree of confidence, we asked the rats to place a temporal wager on their decision by investing a self-deter-

mined amount of time after committing to a choice. For correct choices, we withheld reward delivery for a random time between 0.6–

8 s drawn from an exponential distribution with time constant 1.5 s, shifted by 0.6 s and truncated at 8 s. We chose the exponential

distribution to maintain a relatively constant reward expectation, i.e., a flat hazard rate. Rats had to keep poking the choice ports

during the entire time period. On a subset of trials (10% probe trials), we withheld reward entirely by setting the reward timing to

20 s. In addition, there was no feedback on error trials. Consequently, rats decided to leave the choice ports after a variable amount

of time to initiate the next trial. To avoid false detections of leaving decisions rats had a grace period of 0.2-0.4 s in which reentry into

the choice ports was not considered as a leaving decision. After a leaving decision was complete, a short auditory tone indicated to

the rat that the trial was over. This provided us with a continuous time investment as well as a binary choice on each non-rewarded

trial (probe trials and error trials). Time investment served as an index of the rats’ confidence estimate in their decision (see Statistical

Confidence Model and Figures 1 and 2).

Training
We initially trained naive rats to enter the central stimulus port and subsequently collect a water reward at either of the two choice

ports (left or right). Rats learned to enter the stimulus port for at least 0.5 s. Subsequently we introduced one sensory modality

only, starting with stimuli of high discriminability. After performance levels reached above �90% we introduced stimuli with

decreasing discriminability, i.e., increasing difficulty, to sample the full range of the rats’ choice behavior. During this early training

stage, all correct choices were rewarded and for incorrect choices we provided a feedback of white noise and a time out (3–7 s). After

stable performance levels (lapse rates < 5%–10%) we removed feedback for error trials and introduced randomly delayed rewards

gradually, starting from a maximum of 2 s to a maximum of 8 s over the course of several sessions. We never reinforced leaving

behavior at the choice port. Note that during training with one sensory modality we sampled �5% of trials from the other sensory
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modality. Subsequently, we repeated training procedure for the second modality. Finally, we randomly interleaved trials of both mo-

dalities. Shortly before recording sessions started, we introduced probe trials. We switched the order of modalities in the training

procedure between animals. Overall training took typically between 40–60 training sessions over the course of 8–12 weeks. Each

session lasted about 2-3 h, in which the rats typically performed 700–1000 trials. The first 50 trials of each session were sampled

from easier stimuli, no probe trials were provided and the reward delay distribution was shortened. This ensured stable choice

and time investments across both modalities.

Analysis of Behavioral Data
We collected 89,406 trials from six rats across 119 behavioral sessions (rats performed between 15 and 28 sessions each, number of

trials within a session varied from 375 to 1172, mean = 751). We did not analyze the first 75 trials of each session (50 trials with easy

contingencies – see Training – and an additional 25 trials to ensure the rats had reach plateau behavior) and trials with a time invest-

ment shorter than 0.6 s (< 3% of trials). For olfactory trials, we ranked stimuli according to their mixture ratio yielding a common ev-

idence strength measure across rats. For auditory trials, we computed the binaural contrast xA = (NLeft-NRight)/ (NLeft+NRight) using the

number of clicks presented in each trial. Psychometric curves for auditory trials (Figures 1C, 2B, and S1) were fitted using the model

presented in Figure 2A, left lower panel. We fitted the center (bias b) and standard deviation of a cumulative truncated Gaussian dis-

tribution as binaural contrast was constrained by definition between �1 and 1:

P choice= 1jx;b;sð Þ=F x;b; sð Þ �F �1;b; sð Þ
F 1;b;sð Þ � F �1;b;sð Þ
WhereF(x, m;s) is the cumulative density function of the normal d
istribution of mean m and standard deviation s evaluated at point x:

F x;m;sð Þ= 1

s
ffiffiffiffiffiffi
2p

p
Zx

�N

e� t�mð Þ2
2s dt

We used the fit function in MATLAB to find the parameters m and s that minimized the mean squared error. Error bars represent

SEM across trials unless otherwise noted.

For the calibration and conditioned psychometric curves (Figures 1E, 1G, 1H, and 1J), we restricted our analysis to probe trials to

keep the average accuracy equivalent to the rest of the trials. For the vevaiometric curve (Figures 1F and 1I), we included correct

probe trials or all error trials with time investment longer than two seconds. Data analysis was performed using custom software

(MATLAB).

Statistical Confidence Model
We developed a model-based approach to isolate the contribution of statistical decision confidence to time investment behavior,

without requiring the fitting of several free parameters related to subjective valuations that were not explicitly measured, such as op-

portunity cost (Lak et al., 2014). To isolate the confidence computation, we first estimate the perceptual noise and the mapping func-

tion between time investment and confidence and then predict the statistically appropriate time investment in each trial.

We used a statistical model of confidence to evaluate if the rats’ time investment behavior reflects an appropriate use of decision

confidence (Hangya et al., 2016; Sanders et al., 2016). In our model approach (for details see below), sensory evidence is first trans-

formed into an internal percept, i.e., a noisy representation of the evidence. The percept determines a choice (left or right) and a prob-

ability of being correct using a statistical definition of confidence. Confidence is then mapped onto a time investment in a calibration

step. To isolate the confidence computation, we estimate the amount of perceptual noise using the animal’s choices andwe estimate

the calibration function thatmaps confidence to time investment using the animal’s empirical time investment distribution. This allows

us to predict an optimal time investment for each trial that we can compare against the data and models with noise-corrupted con-

fidence values to assess the optimality of time investment behavior.

We defined a generative model for our perceptual decision task by assuming that the percept bx is a noisy representation of the

evidence strength x (Gaussian noise, i.e., bx � N x;sð Þ), and that the choice d is based on the percept alone, by comparing the percept

to a decision boundary b (i.e., d = 1 (left choice) for bx > b, d = –1 (right choice) otherwise) (cf. Figure 2). Confidence cwas defined as the

probability of being correct given the subjective level of evidence (percept bx) and choice d, i.e., c=P Correctjbx;dð Þ. We can then

generate a percept bx, choice d, and confidence c for each evidence strength x, for which the confidence c is given by

c= 0:5 � 1+ erf jbx � bj=ð s
ffiffiffi
2

p Þ (Lak et al., 2014; Hangya et al., 2016). To arrive at a non-parametric mapping function between confi-

dence c and time investment TI, wematched the rats’ empirical time investment distribution hTI and themodel confidence distribution

hc. Specifically, we define a mapping function TI = m(c) given bym(c) = HTI
-1 (Hc(c)) with HTI and Hc the cumulative distribution func-

tions of empirical time investment andmodel confidence distributions, respectively. This calibration of confidence to time investment

values captures the rats’ subjective cost of time and utility function, which we did not independently measure, without making as-

sumptions about the shape of this mapping function. Importantly, this mapping function recovers any monotonic function between

confidence and time investment. This calibration step is entirely agnostic to the appropriate use of confidence in a given trial (i.e.,

independent of a given x, d). Thus, model time investment predictions reflect an optimal use of statistical confidence in our generative
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decisionmodel given a specific amount of perceptual noises and given an empirical time investment distribution hTI, i.e., optimal time

investment is given by TIopt = m(c). Note that optimality in this context refers to an optimal use of statistical confidence to maximize

reward rate. Since we did not independently determine the cost of time and reward utility, we cannot make any claims about maxi-

mization of subjective reward value. Therefore, our claim about optimality refers to the statistically correct use of evidence, which is

required for a reward maximization strategy. Model predictions can then be evaluated for three key signatures of confidence (cali-

bration curve, vevaiometric curve, and conditioned psychometric curve, cf. Figure 2) against the rats’ time investment behavior.

For each rat, we defined the difficulty level x for auditory trials as the binaural contrast xA = (NLeft-NRight)/ (NLeft+NRight). For olfactory

trials, we transformed odor mixture ratios (ranging from 5% to 95%) onto a common, continuous axis as the inverse cumulative den-

sity function of the standard normal distribution at the percentage of left choices (d = 1) for each odor mixture ratio, i.e.,

xO =F�1 P leftjodor ratioð Þð Þ m= 0; s= 1ð Þ: We then fitted each rat’s psychometric function using a Gaussian cumulative distribution

with parameters s (perceptual noise) and b (bias) using the same procedure described above (without truncation). Next, we gener-

ated 100,000model samples using the same evidence strength x as used in behavioral sessions. We then generatedmodel perceptsbx (bx � N x; sð Þ ), choices d (choice function f: fðbxÞ= 1 if bx > 0 and fðbxÞ= � 1 if bx < 0), and confidence values c

c= 0:5 � 1+ erfðjbxj=ð s
ffiffiffi
2

p Þ (note that we simplified equations using b = 0 since bias in all subjects was close to zero). Model confi-

dence and empirical time investment (in probe trials) distributions were estimated using kernel density estimators with standard

normal kernels (ksdensity function in MATLAB) evaluated at 30 points. Cumulative distribution functions were estimated by the cu-

mulative sum of densities and inverse functions were estimated usingMATLAB’s quantile function to arrive at amapping function TI =

m(c). This procedure yielded model time investment prediction TI for each trial, together with a percept bx and choice d for a given

difficulty level x.

Note that the ‘optimal’ duration of time investment will vary with numerous internal factors, such as the cost of time and reward

utility, which we treated as stable in our model. Lacking an independent assessment of these factors it is not possible to conclude

whether the specific durations of time investment are overall optimal from the organism’s perspective (Bach and Dolan, 2012; Con-

stantinople et al., 2019; Dasgupta andMaskin, 2005; Kable and Glimcher, 2009; Richards et al., 1997). Nevertheless, we kept reward

and time contingencies constant, so that we could evaluate whether variations in time investment reflected an optimal use of sensory

evidence, i.e., statistical decision confidence.

Surgery and electrophysiology
After animals were fully trained, we implanted micro-drives for tetrode recordings under general anesthesia (2%–3% isoflurane, Ve-

tOne) in 6 rats. We stereotactically implanted custom-built micro-drives with 32 or 64 channels in the left OFC (target

coordinates: +3.7 mm AP; 3.2 mm ML; –2.8 mm DV). Individual tetrodes were custom-made from four twisted polyimide-coated

nichrome wires with 12 mm diameter (Sandvik AB). Wires were gold plated to a final impedance of 200–300 kOhm and organized

in 2–4 independently movable bundles of 4 tetrodes each. After post-surgery recovery and analgesics (5mg/kg ketoprofen) of at least

7 days, we started behavioral sessions and extracellular recordings by attaching a weight-balanced tether cable to the microdrive’s

electrical interface board while the rat was in the behavioral chamber. Voltage signals were first amplified using a unity-gain op-amp

preamplifier fitted to the microdrive and subsequently digitized at 32,556 Hz (DigiLynx, Neuralynx) using Cheetah software (Neura-

lynx). Behavioral event pulses were generated by the behavioral control system (Bpod, Sanworks, NY) and recorded by Cheetah.

After each recording session, we advanced tetrode bundles by at least 40 mm.

Single units were clustered using the automated clustering platform MountainSort (Simons Foundation, NY) (Chung et al., 2017;

Magland and Barnett, 2015). Continuously sampled data for each tetrode was bandpass-filtered (300 Hz–6,000 Hz) and normalized

removing correlations between individual leads of one tetrode. Subsequently, events with negative voltage deflections were detected

by thresholding normalized voltage signals at three standard deviations. Extracted events (event width of 1.67 ms) were clustered

using a non-parametric, density-based clustering algorithm (ISO-SPLIT), which clusters individual events based on their represen-

tation in a low-dimensional feature space (Magland and Barnett, 2015). Subsequently, we manually evaluated each sorted cluster

based on several cluster quality metrics. We used MountainSort’s isolation metric (Chung et al., 2017), which quantifies how well

each cluster is isolated from neighboring clusters using a non-parametric nearest-neighbor approach. Next, we usedMountainSort’s

noise overlap metric (Chung et al., 2017), which quantifies the similarity between each cluster and with randomly chosen events

(noise events). Both metrics roughly correspond to the fraction of events overlapping with another cluster (isolation) or noise cluster

(noise overlap). In general, we only included clusters with an isolation larger than 0.96 and a noise overlap of less than 0.05. In addi-

tion, we carefully inspected the auto-correlogram for each cluster, excluding clusters without a clear dip in their respective auto-cor-

relograms (more than 0.1% events within an inter-spike interval of 1.5 ms). In some instances, we manually merged two clusters

which showed a clear dip in their respective cross-correlogram as well as a pairwise low isolation metric (indicating a high cluster

overlap) after evaluation of waveform shape and spread. Overall, this procedure ensured that we only analyzed well-isolated clusters

considered to be single units.

Histology
After finishing recordings, rats were euthanizedwith pentobarbital and transcardially perfusedwith saline and 4%paraformaldehyde.

Brains were removed and post-fixed in paraformaldehyde for several days. Coronal brain sections with 100-150 mm thickness were
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prepared using a vibratome. Recording tracks and sites were localized by coating tetrode bundles with fluorescent dye (DiI, Invitro-

gen) before implantation and/or by targeted electrolytic lesions before perfusion applying 20 mA for 5 s at 1–4 leads.

Analysis of Neuronal Data
We recorded from 1593 well-isolated single units in the OFC of six rats. 1211 neurons with an average firing rate above 1 s–1 entered

subsequent analyses. Data analysis was performed using custom software (MATLAB).

We only used sessions in which average choice accuracy was above 60% for both modalities. We obtained average activity time

courses for single neurons, its spike density function, by computing the mean firing rate across trials within a condition for each time

point using time bins of size dt = 10ms. The resulting time courses were smoothed using a s = 50msGaussian window. For olfactory

trials, difficult trials included neutral trials and the hardest odor ratio. For auditory trials, difficult trials were defined as an absolute

value of the binaural contrast smaller than 0.2. The time investment duration bins used to compare time courses in single neuron

examples and population averages were 2.5 s < TI < 4 s, 4 s < TI < .5.5 s, 5.5 s < TI < 6.5 s and 6.5 s < TI (We only used trials in which

the time investment was above 2 s). To compute population time courses, we z-scored the values of the single neuron time courses

and averaged the activity across the population.

Confidence tuning curves
For confidence and time investment tuning, we used the average firing rate in the first two seconds of the reward anticipation period

(‘anticipation period’). We did not include trials where rats waited less than 2 s, since we observed that very short waiting times were

indicative of low task engagement. Note that rats usually waited substantially longer than 2 s (up to 12 s, mean time investments were

5.3 s after olfactory choices and 5.5 s for auditory choices, see Figures 1D and 2B). For the calibration curve, we used probe trials and

error trials and resampled the trials to match the behavioral session’s average accuracy. For the firing rate time investment correla-

tion, we fitted a linear model and plotted the model prediction and computed the correlation coefficient (Figures 4Aii, 4Aiv, S3A–S3C,

S3Dvi and S3Dviii).

The outcome prediction indices (OPI) provides a simple scalar measure that captures a critical aspect of confidence, yet outcome

prediction could also arise from alternative computational mechanisms such as error detection or recall of past experiences based on

the strength of evidence (Kepecs et al., 2008; Teichert et al., 2014; Yeung and Summerfield, 2012). To compute OPI we computed the

area under the receiver operating characteristic (auROC) between the average firing rate in the anticipation period for correct and

error trials re-scaled from �1 to 1, i.e., OPI = 0 corresponds to zero outcome prediction. Statistical significance was assessed using

bootstrap (n = 200), resampling trials with replacement trials each category and defining outcome predictive neurons with OPI

different from zero with p < 0.025 in either category. To obtain time investment predictions, we computed the Spearman correlation

between the spike density function and time investments across probe and error trials.

The correlation of the OPIs across modalities was strong, albeit not perfect, with some neurons appearing to predict outcome

differently for olfactory and auditory decisions. Therefore, we examined whether the correlation was limited by the noise due to

low firing rates and trial numbers (trials with time investments longer than 2 s, olfactory trials: n = 169+/�44 and auditory trials:

n = 124+/�35). For each neuron, we divided the trials for each modality in half and re-computed outcome prediction indices for

each subset of trials. We then computed the correlation within modality across the two subsets of trials. For outcome predictive neu-

rons, the average Pearson correlation for olfactory decisions was rolf = 0.76 ± 0.02 and the average Pearson correlation for auditory

decisions was raud = 0.67 ± 0.02 (average correlation over 200 random partitions, p < 1e-10). This reveals that the variability in the

outcome prediction index acrossmodalities is in part constrained by our ability to estimate it. Furthermore, visual examination of neu-

rons that were apparently incoherent in their OPI across modalities are consistent with this interpretation (Figures S3C and S3D).

For population tuning curves (Figures 3B–3I, 4C, and 4E), we first z-scored the firing rates of outcome-predictive neurons,

computed their tuning curves, and averaged these across neurons.

Confidence-encoding neurons, by definition, are expected to predict confidence-guided time investments, because confidence is

determined by the amount of evidence supporting a choice. Therefore, to determine whether confidence-encoding neurons

contribute to confidence-guided time investments, we developed measures of firing rate and behavior co-variation that take into ac-

count their correlation with the strength of sensory evidence supporting a choice. This is conceptually similar to choice probability

analysis (which estimates the probability of predicting the choice from a single neuron’s activity) for determining the contribution

of single neurons to binary decisions (Britten et al., 1996). Using a two-step linear model, we first calculated each neuron’s firing

rate not explained by the strength of evidence by taking the residuals of a linear model expressing firing rate as a function of evidence

strength.

To quantify the contribution of the firing rates to time investment behavior we considered how well firing rates predicted time in-

vestment duration after taking the information provided by the strength of evidence into account. Because time investments provide

a continuous measure of decision confidence we used a linear model to analyze the contribution of each neuron’s firing rate to the

rats’ time investments after accounting for evidence strength (signed value of the evidence supporting the choice: +1 indicates an

easy correct trial while �1 indicates an easy error trial). For olfactory trials we acquired a sufficient number of trials with neutral ev-

idence (50% odor mixture trials) to determine the contribution of neural activity to time investments with uninformative sensory ev-

idence. For these trials the choice is driven by internal noise as there is no sensory evidence to support one choice over the other, and

we thus computed the correlation between firing rate and time investment directly. For trials in which there was evidence to support
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the choice, we built two linear models to remove the contribution of the strength of evidence to both the firing rates and the time

investments. One expressed firing rate as a function of evidence strength, and the other expressed time investment as a function

of evidence strength. The residuals of these models provided the portion of neuronal firing rate and time investment not explained

by evidence strength.

For each trial we remove the linear contribution of the strength of evidence supporting the choice to the firing rate and the time

investment. For olfactory trial, we used the ranked difficulty of the trials and uniformly distributed it between �0.95 to 0.95. An

easy error trial will have a strength of evidence of �0.95 while an easy correct trial will have an evidence for the choice of 0.95.

For auditory trials we used the value of the binaural contrast supporting the choice: Evidence = (Nfor-Nagainst)/(Nfor+Nagainst). We

used the evidence value to build linear models to estimate both the firing rate and the time investments independently for each mo-

dality using the following models:

FiringRate= b0;ev + b1;ev$Evidence
TimeInvestment = b0;ti + b1;ti$Evidence

We denote FRevidence and TIevidence the estimated firing rate and time investment respectively. We then compute the residual met-

rics (firing rate or time investment) by subtracting the estimated value of themetric according to the linear model from the true value of

the metric:

ResidualFR =FiringRate� FRevidence
ResidualTI =TimeInvestment � TIevidence

We then used the residual metrics to estimate the contribution of the firing rates to the time investment behavior.

ResidualTI = b0;res + b1;res$ResidualFR

In Figures 7E and 7F, we analyze the spearman correlation between the values of b1;res across modalities.

Time investment decoding analysis
For the time investment decoding analysis (Figure 5) we constructed a linear predictor of the time investment for each session by

using the neurons simultaneously recorded in a given session. For stability reasons, we only used sessions (nsessions = 94 out of

119) with more than 50 auditory and 50 olfactory trials with a time investment superior to 2 s leading to a decision to leave (excluding

rewarded trials). For each neuron, we used the firing rate in the anticipation period (2 s after entry in choice port) and we excluded

neurons with an average firing rate below 1 s–1 over the whole session. We used the MATLAB function stepwiselm to construct an

estimate of the time investment on each trial given simultaneously recorded neurons (nneurons = 7.7 ± 6.1). To avoid overfitting and

lack of generalization, the linear model only used a neuron as predictor if adding the neuron would decrease the Akaike information

criterion (AIC). We used a ten-fold cross-validation procedure (Cohen et al., 2011) to compute estimates of time investment for each

trial. For each session we computed the Spearman correlation between predicted time investment and observed time investment as

ameasure of the quality of the decoding. For each session and for each of the ten partitions, we inferred two decoders: One trained on

90% of the olfactory trials and one trained on 90% of the auditory trials. We then tested the decoders on the remaining 10% of the

trials. The comparison was performed on sessions in which the decoders used at least one neuron on average (nsessions = 59). To

assess the significance of the decoding quality between two conditions across sessions we computed a two-sample Kolmo-

gorov-Smirnov test one the distribution of session-wise correlations and corrected for multiple comparisons (Bonferroni correction).

Time course analyses
For time course analyses (Figure 7), we normalized variable time periods of the trials (pre-stimulus delay, stimulus sampling period

andmovement period). The number of time bins used for these period in the spike density functionwasmatched to themean duration

of those epochs across all trials (see Figure 10 in (Kobak et al., 2016)). We used a time bin of 10ms and the lengths of the time normal-

ized epochs were as follows: pre-stimulus delay: 30 time bins; stimulus sampling period: 35 time bins; movement period: 30 time

bins. To assess the neurons’ overall time course (Figures 7A–7D), we normalized each neuron to its peak activity. We then sorted

neurons according to the time point of the peak activity for olfactory trials. We used the same sorting order for auditory trials. For

the early stage plot (Figures 7A and 7B) we used the time from choice port entry to the first 2 s of time investment (unnormalized).

For the late stage (Figures 7C and 7D), we did not use time normalization and used the last 3 s of the time investment and

750 ms after outcome reveal (reward or decision to leave).

For OPI and time investment prediction time courses, we computed OPI and the correlation between firing rates and time invest-

ment in each time bin separately. We sorted neurons according to their average outcome prediction index in the anticipation period

based on olfactory trials only (Figure 7E). Although sorted based on their olfactory selectivity, OPIs for auditory trials were similar to
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olfactory trials (Figure 7F). Next, we quantified each neuron’s ability to predict time investment separately for each sensory modality

and time point (Figures 7G and 7H). We sorted neurons according to the strength of the correlation between the anticipation period

firing rates and time investments based on olfactory trials only (Figure 7G). Although sorted based on their correlation during olfactory

trials, correlations between firing rate and time investments for auditory trials were similar to olfactory trials (Figure 7H).

To assess the difference in the time course of the correlation across modalities of the outcome prediction indices and the time in-

vestment correlations we performed a bootstrap analysis (Figure S7E). We perform 200 runs by subsampling the neuronal population

by 50% and computed the cross-correlation between outcome prediction indices and time investment correlations across the sub-

population (diagonal of Figures S7C and S7D). We smoothed the resulting correlations using a moving average (5 time bins) and to

assess how time courses differed, we computed an area under the ROC measure the ability to discriminate at a given time point

whether a given time course was from the outcome prediction index or time investment correlation. The green bar indicate in Fig-

ure S7E indicates an area under the ROC above 0.975.

GLM analysis
In order to analyze the simultaneous coding of different task variables, we implemented a GLM using the spike density function pre-

sented above (See section Analysis of neuronal data). For each neuron and at each time point, the model attempts to fit the following

equation to the spike density. The fit is done using theMATLAB function fitglm and is performed independently for olfactory and audi-

tory trials:

SpikeDensity tð Þ= bBaseline tð Þ+ bChosenSide tð Þ$ChosenSide+ bEvidenceForChoice tð Þ$EvidenceForChoice
+ bOutcome tð Þ$Outcome + bEvidence tð Þ$Evidence

The factor bBaseline(t) captures the variation in the firing rate that is not captured by the other task-relevant variables, for example, a

neuron could increase its activity when entering a port but there could be no information in this activity about the sensory evidence or

the identity of the port. The factor bChosenSide(t) captures the contribution of the side (left or right) that the animal chooses to the firing

rate. The factor bEvidenceForChoice(t) captures the contribution of the strength of the evidence for the chosen side to the firing rate. An

easy correct trial would correspond to a strength of evidence for the chosen side of 1 while an easy error trial would correspond to a

strength of evidence for the chosen side of �1. The factor bOutcome(t) captures the contribution of the accuracy of the choice to the

firing rate. The factor bEvidence(t) captures the contribution of the sensory evidence to the firing rate.

For the choice period analysis (Figures 7I–7K), the normalized coefficients were obtained as follow: for bEvidenceForChoice and

boutcome, we used +b for neurons belonging to the confidence(+) population and - b for neurons belonging to the confidence(–) pop-

ulation. For bChosenSide, we used +bChosenSide for neurons that were right selective in the anticipation period and – bChosenSide for neu-

rons that were left selective in the anticipation period. For Figure 7K we smoothed the spike density functions with a moving window

average with a window of 20 time steps (200ms) before computing cross-temporal correlations.

For the outcome period analysis (Figure 7L), we used the sign of the Reward Index (RI) to normalize the coefficient. A positive

reward index indicated higher firing in rewarded trials and negative index indicated higher firing in unrewarded trials. We normalized

the parameters for bEvidenceForChoice and boutcome using +b for positive RI and –b for neurons with negative RI. For bChosenSide, we used

side selectivity on the outcome period.

Choice updating analysis
Perceptual choices can be biased by past experience through reward-based learning mechanisms. We quantified the degree to

which rats biased their choices based by splitting trials according to whether the previous correct choice was ‘left’ or ‘right’ sepa-

rately for olfactory and auditory trials (Figures 6B and 6F) pooling all trials from all recording sessions (same sessions as above). We

quantified choice updating by calculating the probability of repeating the same choice (previous correct trial) considering all four

possible sensory-modality transitions (olfactory-to-olfactory, olfactory-to-auditory, auditory-to-auditory, auditory-to-olfactory) (Fig-

ures 6C and 6G). We assessed different predictors on repeating a choice, namely evidence for choice (b1) in the current trial k, pre-

vious trial’s evidence (b2), and a constant term (b0) using a logistic regression model (f is the logistic function):

Repeatk = f b0 + b1$Evidencek + b2$Evidencek�1ð Þ
We assessed whether confidence encoding neurons predicted choice updating using the same logistic regression model adding a

firing rate term (b3) (average firing rate of confidence encoding neurons in each trial) and an interaction term (not shown):

Repeatk = f b0 + b1$Evidencek + b2$Evidencek�1 + b3$Firingk�1ð Þ
We assessed whether firing rate added explanatory power to this model by calculating the change in Akaike information criterion

(AIC), a measure to compare model quality that considers the different number of free parameters. We compared AIC of this model

with a model omitting firing rates and used bootstrap to calculate statistical significance.

Trial-history dependent choice updating can be explained by reinforcement learning models. In perceptual decisions there is no

overt learning after subjects are proficient in the task. Nevertheless, choice biases based on past trial’s outcome are still prevalent

even in perceptual decision tasks. To explain this phenomenon, we used a reinforcement learningmodel that used a perceptual belief
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state to learn about action values (‘left’ or ‘right’). This model produced confidence-scaled prediction errors that are used to update

state values, therefore resulting in confidence-dependent choice biases in the next trial.

We used a temporal difference reinforcement learning model as previously described (Lak et al., 2017, 2020). In brief, subjects

made a left (L) or right (R) choice by a greedy policy selecting the action (L or R) which maximizes action values Q (i.e., QL or QR).

In each trial, Q was given by stored action values V weighed by the subjective probability of receiving a reward at the left or right

port p:QL = pL$VL andQR = pR$VR. Similar to our perceptual decision model (see above), pR represents the probability of the stimulus

x being on the right side of the decision boundary b based on the subjective percept bx, the noisy representation of the sensory ev-

idence, i.e., pR =P x >bjbxð and analogous for pL). The outcome of a trial is thus choice d (L or R), decision confidence c = pd and pre-

dicted value Qd.

After a reward r, the prediction error is given by d = r – Qd. Choice values V are updated according to a learning rule: Vd ) Vd + ad,

where a is the learning rate. For simplicity, this model does not include temporal discounting. We ran this model for 3,000,000 trials

with a = 0.5, r = 1 for correct trials, initial action values QL = QR = 0.5, and producing a percept in each trial according to bx � N ðx;sÞ
with s = 0.2 (perceptual noise) and used the last 100,000 trials for plots.

Potential slow drifts in choice bias could lead to similar behavioral patterns in choice updating as observed here (Lak et al., 2020).

Slow drifts in choice bias will be observed in a sequence of trials both before and after a rewarded trial and can therefore be isolated

by calculating the choice bias conditioned on the subsequent trial’s choice. In a control analysis quantifying the influence of a slow

drift in choice bias across trials we did not observe strong or systematic slow drifts in choice bias in either modality transition

(Figure S6J).

Additional interpretation of results
OFC has also been implicated in the control of impulsivity, compulsivity and addictive behaviors (Feil et al., 2010; Fineberg et al.,

2010; Gillan and Robbins, 2014; Pascoli et al., 2018; Schoenbaum et al., 2006). It has been suggested that the role of OFC in reversal

learning or delay discounting couldmediate these effects (Chamberlain et al., 2008;Mar et al., 2011) and single unit recordings in both

rodents and monkeys have shown that valuation due to reward size and time discounting are encoded in OFC (Roesch and Olson,

2005; Roesch et al., 2006). In our work, the activity in the later stages of the investment period (see Figures 7C, 7D, and S7E) supports

a contribution of OFC to appropriately sustain confidence or value information from decision to outcome. Perturbation of this process

could lead to inability to act on delayed rewards depending on the appropriate value or confidence. The observation that OFC inac-

tivation impairs the ability of rats to invest time according to their confidence, while keeping the mean time investment unchanged

(Lak et al., 2014), supports this view.

QUANTIFICATION AND STATISTICAL ANALYSIS

Error bars indicate mean ± SEM unless otherwise noted. Statistical tests and associated p value are reported in the Results or asso-

ciated Methods sections for data presented in the main Figures and in Supplemental Figure legends or associated Methods section

for data presented in Supplemental Figures. All statistical tests were two-sided.
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Figure S1. Time Investment Reflects Signatures of Statistical Decision Confidence and Matches Statistical Predictions for All Rats and

Modalities, Related to Figures 1 and 2

For each rat and sensory modality (rows), the 1st column shows the psychometric curve (points) and cumulative Gaussian model fit to estimate perceptual noise

(line). The second column shows the estimated mapping functionm(c) from confidence to time investment (black line; based on cumulative distribution functions

of empirical time investment and model-derived confidence; see STAR Methods). Gray histograms indicate the observed time investment distribution. The

mapping function was based on the each rat’s time investment distribution (gray bars) (see Methods). The third to fifth columns show key signatures of statistical

confidence for data (points) and model prediction (thick lines). Dashed lines show model predictions with shuffled confidence values. The calibration curve (3rd

column) shows that time investment predicted accuracy for all rats and modalities. The vevaiometric curve (4th columns) shows that time investment was

positively correlated with evidence in correct trials, and negatively correlated with evidence in error trials. The conditioned psychometric curve (5th column) shows

stimulus discriminability was high in long time investment trials compared to short time investment trials. Error bars represent SEMs across trials pooled from

recording sessions.
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Figure S2. Tetrode Recordings in OFC, Location and Numbers of Neurons across Animals, Related to Figures 3, 4, 5, 6, and 7

(A) Average location of the tetrode bundle for each animal estimated using electrolytic lesions and/or fluorescentmarker. Left panel represents the coronal section

positioned at 3.7 mm anterior to Bregma. Right panel represents the coronal section at 4.7 mm anterior to Bregma (Paxinos and Watson, 2007).

(B) Proportion of outcome-predictive neurons per animal. Number on top of each bar corresponds to the number of neurons analyzed for the corresponding

animal and the number in parentheses correspond to the total number of neurons (including neurons with firing rates below 1 s-1).
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Figure S3. Example Single OFC Neuron Responses Reflect Statistical Decision Confidence and Predict Time Investments, Related to Fig-

ures 3 and 4

(A) Negatively tuned confidence-encoding single neuron (i)-(viii). Same conventions as in (Figure 3Ai-iv and Figure 4Ai-iv) for different single neuron negatively

tuned to decision confidence. Note that the neuron’s activity follows a different time course and tuning curve patterns are inversed as compared to the neuron in

Figure 3A. (vi) rolf(85) = �0.60, p1.2e-9; (viii) raud(41) = �0.68, p = 5e-7, Pearson correlation, t test.

(B) Negatively tuned confidence-encoding single neuron (i)-(viii). Same conventions as in (Ai-viii) for different single neuron negatively tuned to decision confi-

dence. Note that the neuron’s activity follows a different time course and all tuning curve patterns are inversed as compared to the neuron in Figure 3A. (vi) rolf(89) =

�0.71, p = 2.4e-15; (viii) raud(88) = �0.74, p = 6.6e-17, Pearson correlation, t test.

(C) Single neuron incoherently tuned to decision confidence (negative in olfactory trials; positive in auditory trials). Figure conventions as in Figure 3A. (vi) rolf(91) =

0.1, p = 0.33; (viii) raud(54) = �0.15, p = 0.29, Pearson correlation, t test.

(D) Single neuron incoherently tuned to decision confidence (positive in olfactory trials; negative in auditory trials). Figure conventions as in Figure 3A. (vi) rolf(87) =

�0.002, p = 0.99; (viii) raud(57) = �0.14, p = 0.30, Pearson correlation.

Error bar represent SEM across trials. Error lines represent 95% confidence intervals for fitted linear model.
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Figure S4. Positively Tuned Neuronal Responses during Outcome Anticipation Reflect Statistical Decision Confidence (Confidence(+)

Neurons), Related to Figure 3

(A) Average activity of positive outcome-predictive – confidence(+) – population (n = 205) aligned to choice port entries for olfactory trials. Green traces, correct

trials; red traces, error trials; brightness, evidence strength; shaded area, SEM across neurons.

(B) Same conventions as in (A) for auditory trials.

(C) Population calibration curve for olfactory trials. Firing rates predict accuracy (cf. Figure 1E).

(D) Calibration curve for auditory trials (same layout as in (C)).

(E) Population vevaiometric curve for olfactory trials reflecting the pattern expected by statistical decision confidence (cf. Figure 1F). Green trace, correct trials;

red trace, error trials.

(F) Population vevaiometric curve for auditory trials (same conventions as in (E)).

(G) Population conditioned psychometric curve for olfactory trials. Psychometric curve is steeper for high firing rate trials (dark blue) as compared to low firing rate

trials (light blue). For a fixed difficulty level, average accuracy is higher in high-firing rate trials as predicted by statistical decision confidence (cf. Figure 1G).

Difference between low firing rate trials and high firing rate trials for %Odor A = 42,47,53,58, p < 0.008 and for absolute value of binaural contrast in the bins 0.75-

0.5, 0.5-0.25 p < 0.01 (two tailed t test).

(H) Population conditioned psychometric curve for auditory trials (same conventions as in (G)).

Error bars represent SEM across neurons.

ll
Article



Figure S5. Positively Tuned Neuronal Responses during Outcome Anticipation Predict Time Investment Decisions (Confidence(+) Neurons),

Related to Figures 4 and 5

(A) Average activity of positive outcome-predictive – confidence(+) – population (n = 205) sorted by the rats’ time investment in olfactory trials aligned to choice

port entries. After the rats made a choice, population activity increased proportionally to the amount of time rats invested in a decision. Blue gradient, time

investment. Shaded area, SEM across neurons.

(B) Average activity for positively tuned outcome-predictive neurons in auditory trials (same conventions as in (A)).

(C) Population activity predicts time investment in olfactory trials. Error bars represent SEM across neurons.

(D) Population activity predicts time investment in auditory trials (same conventions as in (C)).

(E) Decoding quality tends to increasewith themean number of cells used in the decoding in a given session for olfactory trials (Spearman’s r(57) = 0.25, p = 0.06, t

test, error lines represent 95% confidence intervals for fitted linear model).

(F) Same layout as in panel E for auditory trials (Spearman’s r(57) = 0.46, p = 2.1e-4, t test, error lines represent 95% confidence intervals for fitted linear model).
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Figure S6. Belief-State Reinforcement Learning Model for Choice Strategy Updating, Related to Figure 6

(A) Belief state reinforcement learning model (cf. Figure 6A) produces confidence-scaled action values Qchoice.

(B) Prediction errors, d = r - Qchoice, show flipped confidence signatures leading to confidence-scaled updating of VL and VR.

(C) The model agent’s magnitude of choice updating (shift in the psychometric function) after a correct trial for both current evidence (vertical axis) and previous

evidence (horizontal axis) shows that choice updating is highest after difficult trials if current evidence is weak (center area).

(D) Choice updating (shift in psychometric function) as a function of current and previous evidence for two consecutive olfactory trials (within-modality updating).

(legend continued on next page)
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(E) Same conventions as in D for olfactory decisions followed by auditory decisions (cross-modality updating).

(F) Choice updating as a function of previous evidence for olfactory decisions followed by auditory decisions (cross-modality updating).

(G) Same conventions as in D for two consecutive auditory decisions (within-modality updating).

(H) Same conventions as in D for auditory decisions followed by olfactory decisions (cross-modality updating).

(I) Choice updating as a function of previous evidence for auditory decisions followed by olfactory decisions (cross-modality updating).

(J) Control analysis quantifying the influence of a slow drift in choice bias across trials. Slow drift will be observed in a sequence of trials both before and after a

rewarded trial and can therefore be isolated by calculating the choice bias conditioned on the subsequent trial’s choice. We did not observe strong or systematic

slow drifts in choice bias in either modality transition (sub panels).

(K) Cumulative distribution of the change in choice updating predicted by confidence neurons firing rates in the previous trials (choice bias for high versus low

firing rate trials). At the population level, only confidence(+) neurons predict choice updating: Higher firing rate predicts less choice updating (p < 0.001, rank sum

test). Confidence(-) neurons do not predict choice updating (p = 0.2, rank sum test).

***p < 0.001, n.s. p > 0.05 (rank sum test).
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Figure S7. OFC Activity and Encoding Dynamics Are Shared across Sensory Modalities, Related to Figure 7

(A) Distribution of Pearson correlation between the spike density function for olfactory and auditory trials for the choice period (see Figures 7A and 7B). Blue:

distribution for correlations within neurons; orange: shuffle control, distribution for correlations across neurons.

(B) Same conventions as in (B) for the correlations in the outcome period (see Figures 7C and 7D).

(C) Time course of OPI correlation across sensory modalities. For each time point in (Figures 7E and 7F), we computed the correlation coefficient of OPIs across

modalities. The diagonal line can be understood as the correlation between OPIs acrossmodalities in the respective time bin. Off-diagonal entries quantify cross-

temporal correlation of OPIs. Black line, area denoting correlation coefficients with p < 0.05, t test Bonferroni corrected for multiple comparisons.

(D) Time course of cross-modality correlation of firing rate/time investment correlations. For each time point in Figures 7G and 7H, we computed the correlation

coefficient of firing rate/time investment correlations across sensory modalities. Heatmap conventions as in (C).

(E) Time courses of the correlation across modalities of OPIs (see Figure S7C) and time investment correlations (see Figure S7D). Strength and time course of

observed correlations was similar for both OPIs and time investment correlations in the first two seconds of the time investment period and remained higher for

the time investment correlations into the later stages of the investment period. Green bar represents times points with normalized auROC > 0.975 between the

distributions of the correlations for subsampled neuronal populations. Shaded areas represent ± SEM across neurons (boostrap, see Methods).
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