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Definition

Categorical decision-making is the process of

committing to a particular option from

a discrete set of alternatives.

Detailed Description

Introduction

Studies of categorical decision-making attempt

to understand behavior by probing how

different features of complex and changing

environments guide the selection of choices.

While the parameters underlying these features

often span a continuous range, the potential set

of possible behavioral options is discrete. The

neuroscientific study of decision-making

draws heavily on the fields of psychology, eco-

nomics, statistics, and ecology. Neuroscientific

approaches to decision-making aim to

reveal computational principles that can be

mapped onto their neurobiological

implementation.

There are two dominant traditions in neuro-

science and psychology to study categorical

decisions: perceptual and value-based decision-

making. Perceptual decision-making focuses on

how accurate decisions are reached by resolving

perceptual uncertainty. In value-based decision-

making, the stimuli themselves are not ambigu-

ous, rather the value or utility of different

options needs to be estimated based on prior

experience. In both cases, the goal is to system-

atically manipulate different features of the

environment in order to understand how they

guide behavior.

Behavioral Tasks for Studying Categorical

Decisions

Both traditions of decision-making have exten-

sively used two-alternative forced choice (2AFC)

task designs. 2AFC is the simplest task in which

the process of a decision between alternatives can

be studied. In a 2AFC task, the subject is forced to

make a choice between two alternatives based on

the stimulus she has experienced.

An example of a widely used perceptual

decision-making task is the visual random dot

task (Newsome et al. 1989; Gold and Shadlen

2007). In this task an ambiguous perceptual stim-

ulus is instantiated by a cloud of moving dots.

Subjects are asked to report whether the apparent

motion is to a given direction or its opposite.

A random process controls the moment-to-

moment movement of individual dots. The

strength of apparent motion and hence stimulus

discriminability are controlled by the fraction of

coherently moving dots. To perform correctly on

the task, subjects need to view the stimulus over

some period of time to extract the direction of

coherent motion.

An example of a value-based decision-making

task is the matching paradigm in which subjects

have to choose between two options that differ in

the probability and size of rewards (Platt and

Glimcher 1999; Sugrue et al. 2004). Both reward

probability and size are set by the experimenter

and change across trial blocks. Here a subject has

to integrate across trials (and not across time

within a trial) to infer the value of the stimuli

and make the correct choice (Fig. 1).

Models of Decision-Making

Computational studies of decision-making in

neuroscience often focus on algorithmic descrip-

tions of the decision process and attempt to

describe both behavior and its neural correlates.

Models of perceptual decision-making

describe how ambiguous perceptual information

is processed and leads to the selection of a choice.

At every instant, a subject extracts some features

from the stimulus that will form the evidence that

guides the decision-making process. One popular

class of models that have been proposed to

describe how the evidence is used is based on
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sequential sampling (Bogacz et al. 2006). They

have been chiefly motivated by sequential prob-

ability ratio test, in which the ratio of the proba-

bility of possible alternatives is computed as

evidence is accumulated. These models can be

solved as a first passage time problem; a

commitment to a decision occurs once the prob-

ability ratio reaches a set value. As shown in

Eq. 1, the decision variable V(t) is updated by

integrating the momentary evidence e(t). Once

the decision variable reaches a set bound B,

the corresponding alternative is chosen and the

response is initiated (Eq. 2). More complex

models have been developed taking into account

physiological characteristics such as adaptation

and the role of time in the decision process

(Drugowitsch et al. 2012; Brunton et al. 2013).

Accumulation:

dV

dt
¼ e tð Þ þ noise (1)

Decision rule:

V tð Þ � B (2)

These models have been popular, as they can

account for the dependence on the stimulus of

both the choice and the reaction time (tchoice
where V(tchoice) = B). They also explain the

widely observed trade-off between the speed

and accuracy of decisions. A lower threshold

B implies that less accumulation of evidence

is necessary to commit to a decision, which

leads to faster reaction times at the expense of

reduced accuracy. Neural recordings have

revealed evidence for the existence of such

accumulators in neural circuits implicated in per-

ceptual decision-making (Gold and Shadlen

2007).

In value-based decision-making, models have

used ideas from reinforcement learning. In

a matching task, even if a full model of the task

structure is not available to the subject, a

reinforcement-learning algorithm can estimate

the values of the stimulus features. The value of

a stimulus is the subjective utility of its outcome,

which needs to be estimated based on experience.

There is a large class of reinforcement-learning

model, but the simplest and most often used

one is temporal difference learning (TDRL).
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Categorical Decisions, Fig. 1 (a) Schematic of the

random dot task. Foreperiod: a fixation point appears at

the center of the screen. Delay: once the subject fixates the

point, the two saccade targets appear on either side of the

fixation point. The trial is ready to start. Motion: the cloud

of randomly moving dots appears. A subset of these dots

moves coherently in the direction of one of the saccade

targets. Choice: the subject makes a saccade to one of the

two targets. In this paradigm, the integration of evidence

occurs during the stimulus presentation. (b) Schematic of

matching task. Foreperiod and delay: same as in (a).
Choice: the subject makes a saccade to one of the two

targets. In this paradigm, the integration of evidence

occurs by integration over the previous outcome history
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As shown in Eq. 3, the update rule for the value

V(T) of each alternative after trial T has two

terms. The first is an update term that depends

only on the previous outcome history. It is

a temporal discount, proportional (with

a constant g) to the value of the previous trial

V(T � 1). The second term is the prediction

error d, which is proportional (with a constant

a) to the difference between the outcome r(T) and

the expected outcome computed from the out-

come history V(T � 1). Once the value of each

option is computed, the choice is made using

a decision rule that optimizes the behavior

according to the task contingencies. The decision

rule often represents a trade-off between

exploiting the currently available evidence that

leads to larger reward (e.g., selecting the option

with the highest value, choice = argmax(Vi))

and balancing exploitation with exploration

using a probabilistic decision rule (e.g., selecting

an option with a probability given by a softmax

rule where PChoose R = eVR/b/(eVR/b + eVL/b),

and b controls the trade-off between exploration

and exploitation, or by a relative value rule where

Pchoice= R = (VR/(VR + VL))) (Lee et al. 2012).

TD learning:

V Tð Þ ¼ gVðT � 1
�þ adðT� (3)

d Tð Þ ¼ rðT�� VðT � 1
�

(4)

Decision rule:

PChoice¼R ¼ max VR,VLð Þ or
e
VR=b

e
VR=b þ e

VL=b
or

VR

VR þ VL

Despite its simplicity, this model is able to

predict trial-to-trial variation in behavior in

value-based decision-making tasks. For instance,

an implementation of TDRL with the relative

value decision rule (PChoose R = (VR/(VR +

VL))) can account for the observation that the

ratio of responses matches the ratio of inferred

stimulus values (Sugrue et al. 2004). Importantly,

fitting these models to behavior has enabled

researchers to extract decision variables that can

be mapped onto neural activity (Lee et al. 2012).

For example, activity in the dopaminergic system

correlates with the prediction error signal

(Schultz et al. 1997), and activity in the lateral

intraparietal cortex correlates with stimulus value

in a matching task (Platt and Glimcher 1999;

Sugrue et al. 2004).

These models describe the computations

performed during the decision-making process

but not their implementation at the neuronal level.

Attractor networks, neural networks composed of

spiking neurons connected through synapses, have

been proposed as a biologically plausible imple-

mentation of these computations (Wang 2012).

These neural networks implement dynamical

systems on which sensory stimuli act as perturba-

tions. Depending on their strength, these perturba-

tions can push the network toward different

attractor states leading to a categorical decision

(Fig. 2).

Open Questions and Future Directions

Decisions are, given the available evidence, not

always perfect. Understanding the sources of

error, the sources of noise, and uncertainty in

the behavior will be essential to understanding

how decisions are computed in the brain. In the

two frameworks presented above, noise has dis-

tinct origins. In perceptual decision-making, the

sensory perception itself can be noisy. In value-

based decision-making, the external world envi-

ronment can be stochastic, or the internal model

of the task contingencies may be incorrect (Beck

et al. 2012), leading to suboptimal behavior.

Stochastic behavior, however, can also be advan-

tageous in competitive environments so that com-

petitors are not able to predict choice behavior.

Understanding the contribution of different
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sources of noise to decisions is an exciting direc-

tion in the field.

Although reaction time is often used as a crit-

ical constraint for models of decision-making,

there are multiple processes contributing to it,

including non-decision time, such as the time

required for movement planning. Clever behav-

ioral manipulations can be used to separate dif-

ferent components of reaction time and reveal

that simple discriminations can unfold in as little

as 30 ms (Stanford et al. 2010).

The goal of models is to provide trial-by-trial

accounts for behavioral outputs rather than just

fitting averages and observed distributions of

decision variables. Models, however, may be

underconstrained when only using categorical

choices as behavioral readouts of graded deci-

sion variables. Additional variables, such as

reaction time (Gold and Shadlen 2007), confi-

dence report (Kepecs and Mainen 2012), or

changes of mind (Resulaj et al. 2009), can be

used to further constrain models. Using these

variables can improve trial-by-trial fits, identify

different sources of noise, and help us under-

stand the computational processes supporting

decision-making.
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Categorical Decisions, Fig. 2 (a) Stimulus: the stimu-

lus is being sampled. Evidence: the relevant parameters

from the stimulus are extracted to obtain the momentary

evidence at a given time. Integration: the evidence is

integrated over time to obtain the decision variable. Race

to bound: once the decision variable reaches

a predetermined bound the corresponding action is

selected. (b) Outcome history: the subject has an internal

representation of the outcome history. Integration: the

outcome history is integrated over past trials to obtain

a decision variable. Value computation: the value of

each alternative is computed using the integrated outcome

history. Decision rule: the probability of making a given

choice is a function of the computed values that depends

on the decision rule used
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Cav1.1–4 “Long-Lasting” Type
(L Type)

▶High-Voltage-Activated Calcium Channels

Cav2.1 “Purkinje” Type (P/Q Type)

▶High-Voltage-Activated Calcium Channels

Cav2.2 “Non-L Type” (N Type)

▶High-Voltage-Activated Calcium Channels

Cav2.3 “Residual” Type (R Type)

▶High-Voltage-Activated Calcium Channels

Cav3

▶Low-Voltage-Activated Calcium Channels

CCDB

▶Cell Centered Database

Cell Centered Database

Maryann E. Martone

Department of Neuroscience, University of

California, San Diego, La Jolla, CA, USA

Synonyms

CCDB

Definition

The Cell Centered Database (CCDB; http://ccdb.

ucsd.edu) project was launched in 2002 to pro-

vide online repository of high-resolution 3D light

and electron microscopic reconstructions of cells

and subcellular structures (Martone et al. 2002,

2003, 2008). The CCDB was designed to com-

plement the structural databases of gene, protein,

and tissue structure by hosting data in the dimen-

sional range known as the “mesoscale,” roughly

encompassing the structures that sit between

gross morphology and molecular structure, e.g.,

cellular networks, cellular and subcellular

microdomains along with their macromolecular

constituents. The study of mesoscale structures

continues to present a challenge to experimental-

ists, because to build a comprehensive under-

standing of complex tissues in this dimensional

range requires the ability to aggregate data

obtained by multiple researchers across tech-

niques and spatial scales.

Detailed Description

The types of imaging data stored in the CCDB are

quite heterogeneous, ranging from large-scale

maps of protein distributions taken by

confocal (Orloff et al. 2012) microscopy to 3D

reconstruction of individual cells, subcellular

structures, and organelles reconstructed using

electron tomography, time series of subcellular

dynamics, and a growing collection of serial

block face electron microscopic datasets
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