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Abstract  18 

To thrive in complex environments, animals and artificial agents must learn to act adaptively to 19 

maximize fitness and rewards. Such adaptive behavior can be learned through reinforcement learning1, a 20 

class of algorithms that has been successful at training artificial agents2–6 and at characterizing the firing 21 

of dopamine neurons in the midbrain7–9. In classical reinforcement learning, agents discount future 22 

rewards exponentially according to a single time scale, controlled by the discount factor. Here, we 23 

explore the presence of multiple timescales in biological reinforcement learning. We first show that 24 

reinforcement agents learning at a multitude of timescales possess distinct computational benefits. Next, 25 

we report that dopamine neurons in mice performing two behavioral tasks encode reward prediction 26 

error with a diversity of discount time constants. Our model explains the heterogeneity of temporal 27 

discounting in both cue-evoked transient responses and slower timescale fluctuations known as 28 

dopamine ramps. Crucially, the measured discount factor of individual neurons is correlated across the 29 

two tasks suggesting that it is a cell-specific property. Together, our results provide a new paradigm to 30 

understand functional heterogeneity in dopamine neurons, a mechanistic basis for the empirical 31 

observation that humans and animals use non-exponential discounts in many situations 10–14, and open 32 

new avenues for the design of more efficient reinforcement learning algorithms. 33 
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Main  35 

The ability to anticipate forthcoming events is crucial in choosing the right course of action. Predictive 36 

models have been a primary contender for the function of the cortex 15,16 and are at the core of recent 37 

proposals to design intelligent artificial systems 17,18. Many of these proposals rely on temporal 38 

difference (TD) reinforcement learning (RL) in which the TD learning rule is used to learn predictive 39 

information 1,19. By updating current estimates based on future expected estimates – TD methods have 40 

been remarkably successful in solving tasks that require predicting future rewards and planning actions 41 

to obtain them 2,20–23. In parallel, the TD learning rule has been used to explain the activity patterns of 42 

dopamine neurons in the midbrain, one of the classic examples where a normative computation has been 43 

successfully assigned to a genetically defined neuron type 7–9. However, there is mounting evidence 44 

suggesting that the representations encoded in dopamine neurons are far richer and more complex than a 45 

simple scalar reward prediction error 24–32, prompting reconsideration of the computational framework. 46 

The standard formulation of TD learning assumes a fixed discount factor (that is, a single learning 47 

timescale) which, after convergence, results in exponential discounting: the value of a future reward is 48 

reduced by a fixed fraction per unit time (or time step). Although this formulation is important for 49 

simplicity and self-consistency of the learning rule, it is well known that humans and other animals do 50 

not exhibit exponential discounting when faced with inter-temporal choices. Instead, they tend to show 51 

hyperbolic discounting: there is a fast drop in value followed by a slower rate for further delays10,12,33. 52 

Far from being irrational, non-exponential discounting can be optimal depending on the uncertainty in 53 

the environment as has been documented in the behavioral economics and foraging literature 13,14,34,35. 54 

Humans and animals can modulate their discounting function to adapt to the temporal statistics of the 55 

environment and maladaptive behavior can be a signature of mental state or disease 36–39. 56 

The TD rule can potentially be extended to learn more complex predictive representations than the mean 57 

discounted future reward of the traditional value function, both in artificial 40–44 and biological neural 58 

systems 25,45,46. A growing body of evidence points to the rich nature of temporal representations in 59 

biological systems 47–49 and particularly in the basal ganglia 50–53. Understanding how these rich 60 

temporal representations are learned remains a key question in neuroscience and psychology. An 61 

important component across most temporal-learning proposals is the presence of multiple timescales 62 
46,54–59 which enables capturing temporal dependencies across a diverse range of durations: shorter 63 

timescales typically handle rapid changes and immediate dependencies, while longer timescales capture 64 

slow-changing features or long-term dependencies 57. Furthermore, work in AI suggests that the 65 

performance of deep RL algorithms can be improved by incorporating learning at multiple timescales 66 
60,61. We therefore ask whether reinforcement learning in the brain exhibits such multi-timescale 67 

properties. 68 

We first investigate the computational implications of multi-timescale RL. We then show that dopamine 69 

neurons encode predictions at diverse timescales, providing a potential neural substrate for multi-70 

timescale reinforcement learning in the brain.  71 

 72 

 73 
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Computational advantages of multi-timescale learning. 74 

We first examine the computational advantages of RL agents employing multiple timescales over those 75 

utilizing a single timescale. We start with a simple example environment where a cue predicts a future 76 

reward at a specific time (Fig. 1, see Methods). In standard RL algorithms, the agent learns to predict 77 

future rewards, compressed into a single scalar value, i.e. the sum of discounted future rewards expected 78 

from the current state 1,19: 𝑉(𝑠) = 𝐸[∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 ], where 𝑉(𝑠) is the value of the state 𝑠,  𝑟𝑡 is reward at 79 

time 𝑡, and 𝛾 is the discount factor (0 < 𝛾 < 1, see Methods). 𝐸 denotes the expectation over 80 

stochasticity in the environment and actions. Let 𝑉𝑖 be the value learned using a discount 𝛾𝑖. Moving the 81 

discount factor 𝛾 out of the expectation, this equation can be rewritten (truncating at 𝑡 = 𝑇) as  82 

𝑉𝑖 = [1 𝛾𝑖
Δ𝑡 𝛾𝑖

2Δ𝑡 … 𝛾𝑖
T]

[
 
 
 
 

𝐸(𝑟|𝑡 = 0)

𝐸(𝑟|𝑡 = Δ𝑡)

𝐸(𝑟|𝑡 = 2Δ𝑡)
⋮

𝐸(𝑟|𝑇) ]
 
 
 
 

(1) 83 

Where we assume that timesteps transitions are discrete and of size Δ𝑡  (see Methods). Thus, single-84 

timescale learning projects all the timestep-specific expected rewards (𝐸(𝑟|𝑡)) onto a single scalar (𝑉𝑖) 85 

through exponential discounting (Fig. 1a) and therefore entangles reward timing and reward size. When 86 

learning with multiple timescales, instead of collapsing all future rewards onto a single scalar, there is 87 

vector of value predictions, each computing value with its own discount factor γi 45:  88 

[
𝑉1

⋮
𝑉𝑛

] =  

[
 
 
 
1 𝛾1

Δ𝑡 𝛾1
2Δ𝑡 … 𝛾1

T

1 𝛾2
Δ𝑡 𝛾2

2Δ𝑡 ⋯ 𝛾2
T

1 ⋮ ⋮ ⋱ ⋮
1 𝛾𝑛

Δ𝑡 𝛾𝑛
2Δ𝑡 ⋯ 𝛾𝑛

T]
 
 
 

[
 
 
 
 

𝐸(𝑟|𝑡 = 0)

𝐸(𝑟|𝑡 = Δ𝑡)

𝐸(𝑟|𝑡 = 2Δ𝑡)
⋮

𝐸(𝑟|𝑇) ]
 
 
 
 

 

=  𝐋 𝐸(𝑟|𝑡) (2)

 89 

 The last equality shows that the array of values learned with multiple discounts (Value space in Fig. 1b) 90 

corresponds to the Z-transform (i.e., the discrete Laplace transform) of the array that indicates the expected 91 

reward at all future timesteps (Temporal space in Fig. 1b). Since the Z-transform is invertible, the agent 92 

employing TD learning with multiple timescales can decode the expected temporal evolution of rewards 93 

from the representation of values that it learned, by applying a fixed, regularized decoder 𝐿−1  to the 94 

learned values 45,62 (Fig. 1b, fourth panel illustrates a situation with one reward per trajectory but this 95 

approach also work for multiple reward, see Methods and ref [45]). Intuitively, when learning with multiple 96 

timescales, the relative amplitude of the learned cue values as a function of discount factor (Value space 97 

in Fig. 1b) depends only on reward timing, and thus the agent can decode reward timing independently of 98 

reward magnitude. 99 

 100 
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 101 

Figure 1 | Single timescale and multi-timescale reinforcement learning.  a, In single-timescale value learning, 102 
the value of a cue (at t = 0) predicting future rewards (first panel) is evaluated by discounting these rewards with 103 
a single exponential discounting function (second panel). The expected reward size and timing are encoded, but 104 
confounded, in the value of the cue (third panel). b, In multi-timescale value learning, the same reward delays are 105 
evaluated with multiple discounting functions (second panel). The relative value of a cue as a function of the 106 
discount depends on the reward delay (third panel). A simple linear decoder based on the Laplace transform can 107 
thus reconstruct both the expected timing and magnitude of rewards (fourth panel).  108 

 109 

To illustrate the computational advantages of Laplace-transform multi-timescale agents, we consider  110 

several simple example tasks. The agent navigates through a linear track (a sequence of 15 states), where 111 

it encounters a reward of a certain magnitude (𝑅) at a specific time point (𝑡𝑅 , see Fig. 2a). The value of R 112 

and 𝑡𝑅  changes across episodes and remains constant within episodes. Each episode is initiated by a cue 113 

presented at the initial state (s). Within each episode, the agent first learns the expected future rewards 114 

(i.e. the value, 𝑉𝛾(𝑠)) predicted by the cue using a simple RL algorithm (N backups of tabular TD learning) 115 

employing one or multiple discount factors. Using the learned values associated with the cue, the agent 116 

then performs various tasks, using a deep neural network (DNN) trained across episodes with a policy 117 

gradient [PG] method; Fig. 2b and see Methods for details). Therefore, in our model, multi-timescale 118 

values are not used directly to produce behavior. Instead, they act as an enriched state representation from 119 

which task-specific behavior can be subsequently decoded (similarly to actor-critic and representation 120 

learning architectures like distributional RL 41). Our goal is to evaluate the advantages of the multi-121 

timescale value representation over the single-timescale one. 122 

Task 1: disentangling reward timing and reward magnitude. We first asked whether an agent can correctly 123 

discern the magnitude (𝑅) and the timing (𝑡𝑅) of reward separately (Fig. 2c). We vary 𝑅 and 𝑡𝑅  across 124 

episodes. In each episode, the agent learns the values of states using 1, 2 or 3 discount factors. We then 125 

train the DNN across episodes to decode the timing of the reward (𝑡𝑅) with the vector of values associated 126 

with the cue {𝑉𝛾(𝑠)} as its input. With a single timescale, perfect performance is unattainable: a high value 127 

at the cue could signify a small reward in the near future or a large reward in the distant future. In contrast, 128 

the pattern of values across discount factors (third panel in Fig. 1b) is invariant to reward magnitude. As 129 

a result, multi-timescale agents can disentangle the timing (𝑡𝑅) and the magnitude (𝑅) of reward (Fig. 2c, 130 

right, Extended Data Fig. 1a-c). Generally, the precision at which the timing and magnitude can be 131 

recovered depends on the number of discount factors being used (Extended Data Fig. 1a-c,j-l). 132 

 133 
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 134 

 135 

Fig. 2 | Computational advantages of multi-timescale reinforcement learning. a, Experiment to compare single- 136 
vs. multi-timescale learning. b, Architecture to evaluate multi-timescale advantages. In each episode (defined by a 137 

specific 𝑅 , 𝑡𝑅and 𝑁 ) the value function is learned via tabular updates. The policy gradient network is trained 138 

across episodes to maximize the accuracy of the report. c, The timing 𝑡𝑅  and reward size R is varied across 139 
episodes, the task of the policy gradient (PG) network is to report 𝑡𝑅 . d, The timing 𝑡𝑅  and reward size R is varied 140 

across episodes, the task is to report the inferred value of s using a hyperbolic discount. e, The timing  tR and number 141 

of sampled trajectories N is varied across episodes, the task of the policy gradient (PG) network is to report 𝑡𝑅 . In 142 
c-e, Performance is reported after 1,000 training episodes. Error bars are the standard deviations (s.d.) across 100 143 
test episodes and 3 trained policy gradient (PG) networks. f, Myopic learning bias. Top: Task structure to evaluate 144 
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the learning bias induced by the discount factor, the three dots collapse 5 transitions between black states. Bottom: 145 
Performance at selecting the branch with the large deterministic reward under incomplete learning conditions. At 146 
state s (orange), agents with larger discount factors (far-sighted) are more accurate. At state s’ (blue), agents with 147 

a small discount factor (myopic) are more accurate. Error bars are half s.d. across 10,000 episodes, maximums 148 
are highlighted with stars. g, Top: Architecture that learns about multiple timescales as auxiliary tasks. Bottom: 149 
Accuracy of the Q-values in the Lunar Lander environment as a function of their discount factor, estimated as the 150 
fraction of concordant state pairs between the empirical value function and the discount specific Q-value estimated 151 
by the network, when the agent is close to the goal (blue) or far from the goal (orange), see Methods for details. 152 
Error bars are s.e.m across 10 trained networks, maximums are highlighted with stars. 153 

 154 

Task 2: learning values with non-exponential temporal discounts. While several tasks can be optimally 155 

solved by knowing the exponentially discounted state-values (i.e., where the value of a reward at time t 156 

decreases as 𝛾𝑡), the optimal temporal discount in a specific task depends on its temporal contingencies 157 

like its hazard rate, the cost of time and the uncertainty over time 14,60. Indeed, human and animal 158 

judgements are generally more consistent with a hyperbolic discount (i.e., decreasing as 1/(1+𝛾𝑡 )) than 159 

an exponential one 10,12,33. However, the bootstrapping process of traditional TD value learning naturally 160 

converges to exponentially discounted values, so to perform optimally across tasks with arbitrary temporal 161 

contingencies, TD-learning agents need to adapt their exponentially discounted values to arbitrary, 162 

possibly non-exponential discounts. Crucially, multi-timescale systems encode the expected reward 163 

magnitudes at all future times (𝐸[𝑟|𝑡 = 0], 𝐸[𝑟|𝑡 = Δ𝑡], 𝐸[𝑟|𝑡 =  2Δ𝑡],…) in the inverse temporal Laplace 164 

space (i.e., after transforming the multi-timescale value estimates with 𝐿−1, see Fig. 1b). Consequently, 165 

they could weight the time-specific expected rewards with any chosen discount weights 166 

(e.g.𝑤0𝐸[𝑟|𝑡 = 0] + 𝑤1𝐸[𝑟|𝑡 = Δ𝑡] + ⋯ ) to retrieve the specific discount necessitated by the task. We 167 

demonstrate this in a task where the agent goal is to report the value of the initial state (s) using a 168 

hyperbolic discount (i.e. the value of a reward 𝑅 at time 𝑡𝑅is 𝑅 / (1+0.9𝑡𝑅)). With a single timescale, the 169 

learned exponentially discounted value cannot be accurately adapted into a hyperbolic one, but multi-170 

timescale systems can reliably report the hyperbolic value of the cue given a diversity of exponential ones 171 

(Fig. 2d, Extended Data Fig. 1d-f, see Methods).  172 

Task 3: inferring temporal information before convergence. In the above example (Fig. 2c), we showed 173 

that multi-timescale agents can disentangle the timing and the magnitude of rewards, which are typically 174 

intertwined in agents that rely on a single discount factor. This occurs because the shape of value 175 

function across discount factors encodes the proximity to rewards (Fig. 1b, third panel). We further 176 

hypothesized that, multi-timescale agents can leverage this advantage of extracting timing information 177 

even before value learning has fully converged. Consider an agent that has encountered a reward only a 178 

limited number of times (N). For single-timescale systems, a high value of the cue could be due to a 179 

short delay (𝑡𝑅) or simply because the value estimate has undergone more positive updates from an 180 

initial value of 0. In contrast, the shape of values encoded across discount factors is invariant to the 181 

number of reward encounters (N), to the extent that all value estimates depart from similar baselines and 182 

share similar learning parameters. As a result, multi-timescale agents can decode the time of reward (𝑡𝑅) 183 

even in situations where learning is incomplete (Fig. 2e, Extended Data Figs. 1g-i and 2, see Methods). 184 

Task 4: state-dependent discount factor. Moreover, multi-timescale systems can preferentially adjust 185 

between myopic and farsighted perspectives based on the present circumstances. Consider a slightly 186 
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more intricate maze with two branching points (Fig. 2f). In this maze, each state is associated with a 187 

random reward drawn uniformly between –0.5 and 0.5, except for two states (s and s’, orange circles) 188 

which result in a deterministic reward of 1. The optimal strategy in this scenario is to move upwards at 189 

both states s and s’, we define performance as the fraction of optimal choices across episodes. When 190 

learning from a limited number of experiences, the smaller stochastic rewards can overpower the larger 191 

deterministic rewards, making it challenging to achieve optimal performance. At state s, only far-sighted 192 

agents can discern the significance of the large deterministic rewards, thereby causing myopic agents to 193 

perform near chance at s. At state s', the situation is reversed. Far-sighted agents not only integrate the 194 

close-by large reward but also all the stochastic rewards farther in the future. Myopic agents, in contrast, 195 

assign greater weight to the reward of 1 compared to the future stochastic rewards, thus enabling optimal 196 

performance at s’. Therefore, only agents that could dynamically adapt between being far-sighted at s 197 

and myopic at s' can attain optimal performance when learning from limited experiences. Indeed, the 198 

multi-timescale of Fig. 2b achieves in this task a maximum performance of 83±1% with a single 199 

discount and a performance of 94±1% with two discounts. The superior performance is due to its 200 

demonstrated ability to discern the temporal distance to the relevant events in the environment (here, the 201 

large deterministic rewards), and subsequently focus on the myopic or far-sighted values depending on 202 

the estimated distance. We also observe the benefits of the myopic learning bias in more realistic 203 

navigation scenarios (Extended Data Figs. 1m-o and 3) as well as in more complex Deep RL settings 204 

where additional timescales act as auxiliary tasks (Fig. 2g, see Methods). 205 

To summarize, in multi-timescale value systems the vectorized learning signal robustly contains 206 

temporal information independently of the information about reward magnitude. This property 207 

empowers agents to selectively focus on either myopic or far-sighted estimates depending on the current 208 

situation. 209 

The diversity of discount factors across dopamine neurons conveys distributional information 210 

about the timing of future rewards. 211 

In the previous section, we demonstrated the computational advantages of learning with multiple 212 

discount factors for an RL agent. Building upon these findings, we next investigated whether the brain 213 

employs such multi-timescale RL. Toward this goal, we examined the activity of dopamine neurons, 214 

which are believed to encode the TD error term in RL algorithms. 215 

To characterize the discounting properties of individual dopaminergic neurons, mice were trained in a 216 

cued delay task 50,63 in which on a given trial, one out of four distinct odor cues indicated its associated 217 

timing of a water reward (Fig. 3a). These odor cues were preceded by a trial start cue (green computer 218 

screen) by 1.25s. The trial start cue reduced the timing uncertainty of the odor cue and ensured that the 219 

responses of dopaminergic neurons to the odor cues were mostly driven by a valuation signal rather than 220 

a saliency signal 64,65. Mice showed anticipatory licking prior to reward delivery. Importantly, the onset 221 

of the anticipatory licking was delayed for trials with cues predicting longer reward delays, indicating 222 

that the mice learned the delay contingencies (Fig. 3b). We recorded optogenetically identified single 223 

dopamine neurons in the ventral tegmental area (VTA) (n = 78, see Methods). We focused our analysis 224 

on neurons (n = 50) who passed the selection criteria (including mean cue response firing rate above 2 225 

spikes/s, positive goodness of fit on test data, see Methods). As expected from RL theory and the 226 

prediction error framework, the average responses to the reward cue decreased as the predicted reward 227 
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timing increased 50,63(Fig. 3c, Extended Data Fig. 4a-b). However, cue responses of individual neurons 228 

showed a great diversity of discounting across the reward delays ranging from neurons responding 229 

strongly only to the cue indicating the shortest delay to neurons with a gradual decay of their response 230 

with cued reward delay (Fig. 3d-e). 231 

 232 
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Figure 3 | Dopamine neurons exhibit a diversity of discount factors that enables decoding of reward delays. 233 
a, Outline of the task structure. b, The mice exhibit anticipatory licking prior to reward delivery for all 4 reward 234 
delays indicating that they have learned task contingencies (mean across behavior for all recorded neurons, 235 

shaded error bar indicates 95% confidence interval using bootstrap). c, Average PSTH across the task for the 4 236 
trial types. Inset shows the firing rate in the 0.5s following the cue predicting reward delay. The firing rate in the 237 
shaded grey box (0.1s < t < 0.4s) was used as the cue response in subsequent analysis. d, Example of fits of the 238 
responses to the cue predicting reward delay of two single neurons with high (top panel) and low (bottom panel) 239 
discount factors. e, Normalized response to the cues predicting reward delays across the population. For each 240 
neuron, the response was normalized to the highest response across the 4 possible delays. Inset on right, 241 
corresponding inferred discount factor for each neuron. f. The exponential model is a better fit to the data than 242 
the hyperbolic one as quantified by distance of mean R2 to the unit line. Mean = 0.0147, P = 2.2 x 10-5, two-tailed 243 
t-test. Shading indicated significance for single neurons across bootstraps (dark blue: P < 0.05). g, Distribution 244 
of inferred discount factors across neurons. For each neuron, the discount factor was taken as the mean discount 245 
factor across bootstraps. h. Shape of the relative population response as a function of reward delay. Normalized 246 
to the strongest cue response for each neuron. Thick lines, smoothed fit, dotted lines, theory, dots, responses of 247 

individual neurons. i, Discount matrix. For each neuron we plot the relative value of future events given its 248 
inferred discount factor. Neurons are sorted as in panel d by increasing inferred value of the discount factor. 249 
Vertical bars on top of panel are color coded to indicate timing of the rewards in the task. j, Outline of the 250 

decoding procedure. We compute the singular value decomposition (SVD) of the discount matrix L. Then, we use 251 

the SVD to compute a regularized pseudo-inverse L-1. Finally, we normalize the resulting prediction into a 252 

probability distribution. k, The subjective expected timing of future reward 𝐸(𝑟|𝑡) can be decoded from the 253 
population responses to the cue predicting reward delay. Decoding based on mean cue responses for test data 254 
(top row, see Methods). The ability to decode the timing of expected future reward is not due to a general 255 
property of the discounting matrix and collapses if we randomize the identity of the cue responses (bottom row, 256 
see Extended Data Fig. 5e and Methods).  257 

 258 

To characterize the discount properties of individual neurons, we fit them individually using both an 259 

exponential discount model and a hyperbolic discount model. The exponential model provided a better 260 

fit to the neurons’ responses than the hyperbolic model (P = 2.2 x 10-5, two-tailed t-test; Fig. 3f and 261 

Extended Data Fig. 4c-e, see Methods) contrary to a previous observation in non-human primates 63. 262 

Organism level hyperbolic-like discounting can, therefore, arise from the diversity of exponential 263 

discounting in single neurons, as discussed above with artificial agents (Fig. 2d, see also refs [14,55,60]). 264 

This view is consistent with the wide distribution of inferred discount factors obtained across the 265 

population (0.56 ± 0.21 s-1, mean ± s.d., Fig. 3g). Fits to simulated data suggest that our estimate of 266 

inferred parameters is robust and primarily constrained by the number of trials (Extended Data Fig. 4f-h, 267 

see Methods).  268 

As we have shown above, artificial agents equipped with diverse discount factors exhibit various 269 

advantages. One key aspect contributing to these advantages is their unique ability to independently 270 

extract reward timing information, which is lacking in single timescale agents. We next asked whether 271 

dopamine neurons provide a population code in which the structured heterogeneity across the population 272 

enables decoding of reward timing or the expected reward across time, 𝐸(𝑟|𝑡). Mathematically, this 273 

transformation can be achieved by the inverse Laplace transform (or its discrete equivalent the Z-274 

transform, Fig. 3j) 45,57,62. In our data set, the dopaminergic cue responses for each reward delay 275 
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exhibited unique shapes as a function of discount factors, suggesting that reward timing information is 276 

embedded in the dopaminergic population responses (Fig. 3h, compare with Fig. 1b, third panel). The 277 

temporal horizon across the population, which underlies these cue responses, can be visualized through 278 

the discount matrix which indicates for each neuron the relative value of a future reward depending on 279 

the inferred discount factor (Fig. 3i).  280 

If the dopaminergic population code is consistent with the Laplace code explored above (Fig. 1-2), 281 

reward timing should be recoverable from the dopamine neurons’ cue responses with a regularized 282 

discrete inverse Laplace transform of the neural activity (which does not require training a decoder). In 283 

our task, we can use the TD-error driven cue responses (instead of the value in equation 2) as they are 284 

driven by the discounted future value (𝛿𝑡𝑐𝑢𝑒
= 𝛾Δ𝑡𝑉𝑡𝑐𝑢𝑒+∆𝑡 + 𝐶, see Methods). This implies that the 285 

right-hand side of equation 2 can be approximated by the population dopamine responses. We used a 286 

pseudo-inverse of the discount matrix (computed using half of all trials) based on regularized singular 287 

value decomposition to approximate the inverse Laplace transform  (Fig. 3j, Extended Data Fig. 5a-d, 288 

see Methods and ref[45]) and applied it to dopamine neuron cue responses (computed on the held out 289 

half of the trials). Remarkably, the decoder was able to predict reward timing, closely matching the true 290 

reward delay (Fig. 3k, top row). This prediction was lost if we shuffled the neuron identities indicating 291 

that it is not a generic property of the discount matrix (Fig. 3k, bottom row). We quantified this 292 

decoding by computing a distance metric (using 1-Wasserstein distance) between the true and predicted 293 

reward delay across conditions (P = 1.2 x 10-4 for 0.6 s reward delay, P < 1.0 x 10-20 for the other delays, 294 

one-tailed Wilcoxon signed rank test; Extended Data Fig. 5e, see Methods). Predictions from the model 295 

were more accurate than an alternative model with a single discount factor (Pt = 0.6s = 1, Pt = 1.5s < 1.0 x 296 

10-31, Pt = 3.75s = 0.0135, Pt = 9.375s < 1.0 x 10-14, one-tailed Wilcoxon signed rank test; Extended Data Fig. 297 

5f-g and see Methods). Consistent with the above observation that cue responses were fit better with 298 

exponential over hyperbolic discounting models, the accuracy of reward timing decoding was typically 299 

higher when using the discount matrix from the exponential model than the one from the hyperbolic 300 

model (Pt = 0.6s = 1, Pt = 1.5s < 1.0 x 10-31, Pt = 3.75s < 1.0 x 10-33, Pt = 9.375s < 1.0 x 10-3, one-tailed Wilcoxon 301 

signed rank test; Extended Data Fig. 6a-e). Furthermore, the decoding performance was comparable to 302 

simulated data with matched trial numbers, indicating that the remaining uncertainty in decoded reward 303 

timing is primarily driven by limited sample size in the data (e.g., the number of neurons and the number 304 

of trials per condition, Extended Data Fig. 6f-g and see Methods).  305 

Together these results establish that dopamine neurons compute prediction errors with a heterogeneity of 306 

discount factors and show that the structure in this heterogeneity can be exploited by downstream 307 

circuits to decode reward timing.  308 

 309 

Heterogeneity of discount factors explains diverse ramping activity across dopamine neurons 310 

In the task above (Fig. 3), prediction errors in dopamine neurons were measured through discrete 311 

transitions in the value functions at the time of cue. In more naturalistic environments, value might 312 

change more smoothly, for example when an animal approaches a goal 66. In these tasks, ramps in 313 

dopaminergic signaling have been initially interpreted as quantifying value functions 32,66 but were 314 

recently shown to conform to the predictions of the TD learning model. Specifically, these ramps can be 315 
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understood as moment-by-moment changes in values or as TD error along an increasingly convex value 316 

function in which the derivative is also increasing 67–69. Here we show that some of this heterogeneity 317 

can be understood as evidence for multi-timescale RL across dopamine neurons. 318 

 319 
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Figure 4 | The diversity of discount factors across dopamine neurons explains qualitatively different 320 
ramping activity. a, Experimental setup. Left panel, View of the virtual reality corridor at movement initiation. 321 
Middle and right, Schematics of the experimental setup. b, Average activity of single dopaminergic neurons (n = 322 

90) exhibit an upward ramp in the last few seconds of the track prior to reward delivery. c, The slope of the 323 
activity ramp (computed between the two black horizontal ticks in panel b) is positive on average but varies 324 
across neurons (population: mean slope = 0.097, P = 0.0175. Single neurons: positive and P < 0.05: n = 53; 325 
negative and P < 0.05: n = 32; P > 0.05: n = 5, two-tailed t-test). d, Example single neurons showing diverse 326 
ramping activity in the final approach to reward including, monotonic upwards (dark red), non-monotonic (red) 327 
and monotonic downwards (light red) ramps. e, Individual neurons across the population exhibit a spectrum of 328 
diversity in their ramping activity. Neurons are sorted according to inferred discount factor from the common 329 
value function model (panel k). f, Diversity of ramping with an exponential value function. There is no TD error 330 
for an agent with the same discount factor as the parameter of the value function (red line). The TD error ramps 331 
upwards (downwards) if the discount factor is larger (smaller), dark red and light red lines respectively. g, 332 
Diversity of ramping as a function of discount factor for an exponential value function. h, Diversity of ramping 333 
with cubic value function. Agents with large (small) discount factor experience a monotonic positive (negative) 334 

ramp in their TD error (dark red and light red lines respectively). Agents with intermediate discount factors 335 
experience non-monotonic ramps (red line). i, Diversity of ramping as a function of discount factor for an 336 
exponential value function. Unlike in the exponential value function case, no agent matches its discount to the 337 
value function at all the time steps. j, The inferred value function is convex. Thin grey lines represent the inferred 338 
value function for each bootstrap. Thick blue line represents mean over bootstraps. k, Histogram of inferred 339 

discount factors. 0.42 ± 0.23 (mean ± s.d.). l, Example model fits for the single neurons shown in panel d. m, The 340 
model captures the diversity of ramping activity across the population. Neurons are ordered by inferred discount 341 
factor as in panel e.  342 

 343 

We analyzed the activity of optogenetically identified dopamine neurons (n = 90, see Methods and ref 344 

[68]) while mice traversed along a linear track in virtual reality (VR). Although mice were free to 345 

locomote, their movements did not affect the dynamics of the scene (see Methods and ref [68] for 346 

details). At trial onset, a linear track appeared, the scene moved at continuous speed and reward was 347 

delivered around 7.35 seconds after motion onset (Fig. 4a). The slope of ramping across neurons was on 348 

average positive (Fig. 4b-c) but single neurons exhibited a diversity of ramping activity (Fig. 4c-e) 349 

ranging from monotonic upward and downward ramps to non-monotonic ramps.  350 

We hypothesized that this seemingly puzzling heterogeneity can be understood as a signature of multi 351 

timescale reinforcement learning. Considering that the value function is set by the limits on the precision 352 

of internal timing mechanisms and the reduction in uncertainty due to visual feedback 69,70, we first 353 

assume that heterogeneous dopamine neurons contribute to learning a common model of the 354 

environment and therefore share a common value function (see Methods). Depending on the shape of 355 

this value function, governed by the statistics of the environment being learned, the TD error from 356 

neurons with different discount factors will exhibit different type of activity ramps. At a given time, the 357 

sign of the TD error will depend on the relative scale of the upcoming increase in value and the 358 

reduction of this future value due to discounting. Given an increase in value 1/γo (with γo < 1) a neuron 359 

with a discount factor smaller, equal or larger than γo will experience a negative, zero or positive TD 360 

error respectively (see Extended Data Fig. 7a and Methods). For an exponential value function (Fig. 4g, 361 

left panel), where the value increases by a fixed factor 
1

𝛾𝑜
 at every timestep, a neuron with discount factor 362 
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γo will have no TD error during the entire visual scene (red line, Fig. 4f,g). A neuron with a higher (or 363 

lower) discount factor than γo will experience an upward (or downward) monotonic ramp in its activity 364 

(darker and lighter red line in Fig. 4f-g respectively). However, if the value function is non-exponential 365 

(for example cubic as a function of distance to reward, Fig. 4h, left panel), there will not be a neuron 366 

whose discount factor is able to match the increases in value function at all timesteps. Neurons with high 367 

or low discount factors will still ramp upwards or downwards (darker and lighter red line in Fig. 4h-i 368 

respectively), but neurons with intermediate discount factors will exhibit non-monotonic ramping (red 369 

line, Fig. 4h-i) as observed in the neural data. 370 

To fit this model to the dopaminergic neurons, we used a bootstrapped constrained optimization 371 

procedure on a continuous formulation of the TD error 69,71 (see Methods) by fitting a non-parametric 372 

common value function and neuron-specific gains, baselines and discount factors. Although the gain and 373 

baseline activity scale the range of activity, only the interaction between the value function and the 374 

discount factor affects the shape of the TD error across time (see Methods). The heterogeneity of 375 

ramping activity across single neurons is explained (Fig. 4l-m) by a common convex value function 376 

(Fig. 4j) and a diversity of discount factors across single neurons (Fig. 4k). We did not observe a 377 

significant correlation between inferred parameters and the medio-lateral position of the implanted 378 

electrodes (Extended Data Fig. 7b-d). So far, we proposed a descriptive model with a common value 379 

function across neurons suggesting that single neurons predictions errors are pooled to create a single 380 

value function and world model. Recent models for distributed prediction errors across dopamine 381 

neurons have instead used parallel loops where individual neurons contribute to estimating sperate value 382 

functions 25,45,72–75. Instead of a common value function, the dopamine neurons can be part of 383 

independent loops and share a common expectation of reward timing. We obtained similar results in this 384 

common reward expectation model (see Methods and Extended Data Fig. 8).  385 

Together these results show that diversity in slow changes in activity across single neuron (known as 386 

dopamine ramps) in environments with gradual changes in value can be explained by a diversity of 387 

discount factors and is a signature of multi-timescale reinforcement learning.  388 

 389 

Inferred discount factors for single neurons are correlated across the two behavioral tasks. 390 

Distributional RL and other distributed RL formulations provide agents with greater flexibility as they 391 

allow agents to adapt risk sensitivity and discounting to the statistics of the environment 41,45,60,73. 392 

However, they leave open the question of the biological implementation of this adaptivity. Specifically, 393 

the tuning of single dopamine neurons, controlled by the sensitivity to reward size or the discount factor, 394 

could be either a circuit property and therefore task and context specific or it could be a cell-specific 395 

property, with the contribution of different neurons recruited according to task demands. However, 396 

measurements of tuning diversity at the single neuron level are usually done in a single behavioral task 397 
25,28,76, leaving open the question of this implementation across contexts.  398 

Here, we characterized discount factors across two behavioral tasks and a subset (n = 43) of the single 399 

neurons analyzed above (Figures 3 and 4) were recorded on the same day in both behavioral tasks. 400 

Using this data set, we found that the discount factors inferred independently across the two behavioral 401 

tasks are correlated (Fig. 5a-b). Furthermore, in the cued delay task, we were able to decode subjective 402 
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reward timing from population cue responses using the discount matrix built from the discount factors 403 

inferred in the virtual reality task (Pt = 0.6s = 1, Pt = 1.5s < 1.1 x 10-20, Pt = 3.75s < 3.8 x 10-20, Pt = 9.375s < 2.9 x 404 

10-5, compared to shuffled data, Extended Data Fig. 9 and see Methods). These results suggest that the 405 

discount factor (or its ranking) is a cell-specific property and strongly constrains the biological 406 

implementation of multi-timescale reinforcement learning in the brain.  407 

 408 

Figure 5 | Discount factors of single dopaminergic neurons are correlated across behavioral contexts. a, 409 
Correlation between the discount factors inferred in the VR task and the discount factors inferred in the cued 410 
delay task (r = 0.45, P = 0.0013). b, Distribution of correlations between the discount factors across the two tasks 411 

for randomly sampled pairs of bootstrap estimates (0.34 ± 0.104, mean ± s.d., P < 1.0 x 10-30, two-tailed t-test).  412 

 413 

Discussion 414 

In this work, we have analyzed the unique computational benefits of multi-timescale reinforcement 415 

learning agents and shown that we can explain multiple aspects of the activity of dopaminergic neurons 416 

through that lens.  417 

The understanding of dopaminergic neurons as computing a reward prediction error from TD 418 

reinforcement learning algorithms has transformed our understanding of their function. However, recent 419 

experimental work expanding the anatomical locations of recordings and the task designs has shown 420 

heterogeneity in dopamine responses that is not readily explained within the canonical TD framework 421 
26,28,32,66,77,78. However, a number of these seemingly anomalous findings can be reconciled and 422 

integrated within extensions of the RL framework, further reinforcing the power and versatility of the 423 

TD theory in capturing the intricacies of brain learning mechanisms 24,25,29,45,69,72,74,75,79. In this work, we 424 

reveal an additional source of dopaminergic heterogeneity: they encode prediction errors across multiple 425 

timescales. Together, these results indicate that at least some of the heterogeneity observed in dopamine 426 

responses reflects variations in key parameters within the RL framework. Thus, these results indicate 427 

that the dopamine system employs "parameterized vector prediction errors", including a discrete Laplace 428 

transform of the future temporal evolution of the reward function, allowing for the learning and 429 

representation of richer information than what can be achieved with scalar prediction errors in the 430 

traditional RL framework. 431 

The constraint on the anatomical implementation of multi-timescale RL suggested by the alignment of 432 

discount factors between the two tasks could also inform algorithm design. Adapting the discount factor 433 
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has been used to improve performance in several algorithms, with proposed methods ranging from meta-434 

learning an optimal discount factor 80, learning state dependent discount factors 81,82, or combining 435 

parallel exponentially discounting agents 55,60,61. Our results provide evidence supporting the third model 436 

but the recruitment mechanisms of the neurons to adapt the global discounting function with task or 437 

context and the link between anatomical location and discounting53 remain open questions. Similarly, 438 

the contribution of this vectorized error signal on the downstream temporal representations49,51 remains 439 

to be explored.  440 

Understanding how this recruitment occurs will be a key step towards a mechanistic understanding of 441 

the contribution of this timescale diversity to calibration and miscalibration in intertemporal choices. 442 

There has been a conundrum that RL theories use exponential discounting while humans and animals 443 

often exhibit hyperbolic discounting. A previous study, that examined discounting in dopamine neurons, 444 

argued that single dopamine neurons exhibit hyperbolic discounting 63. However, they used uncued 445 

reward responses for zero reward delay, likely biasing the estimate toward hyperbolic (as responses to 446 

unpredicted rewards are typically large and potentially contaminated by salience signals). In contrast, 447 

our data are consistent with exponential discounting at the level of single neurons, suggesting that RL 448 

machinery defined by each dopamine neuron conforms to the rules of a simple RL algorithm.  449 

Hyperbolic-like discounting can occur when these diverse exponential discounting are combined at the 450 

organism level 14,36,55. More generally, the relative contribution of multiple timescales to the global 451 

computation governs the discount function at the organism level and should be calibrated to the 452 

uncertainty in the hazard rate of the environment 14.   453 

Appropriately recruiting the heterogeneity of discount factors is therefore important to adapt to the 454 

temporal uncertainty of the environment. This view draws parallels with the distributional RL 455 

hypothesis that naturally fits with current work on anhedonia as a miscalibration of optimism and 456 

pessimism can lead to biases in the learned value 25. Miscalibration of the discounting spectrum can lead 457 

to excessive patience or impulsivity. A bias in this distribution due to genetical, developmental or 458 

transcriptional factors could bias the learning at the level of the organism towards short- or long-term 459 

goals. Behaviorally such bias would manifest itself as an apparent impulsivity or lack of motivation, 460 

leading to a potential mechanistic interpretation of these maladaptive behaviors. Similarly, this view 461 

could guide the design of algorithms that recruit and leverage these adaptive temporal predictions.  462 

Our study establishes a new paradigm to understand the functional role of prediction error computation 463 

in dopaminergic neurons and opens new avenues to develop mechanistic explanations for deficits in 464 

intertemporal choice in disease and inspire the design of new algorithms.  465 

 466 

 467 

 468 

  469 
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Methods 651 

Animal care and surgical procedures 652 

The mouse behavioral and electrophysiological data presented here was collected as part of a previous 653 

study where all experimental procedures are described in details 68. As described in this study, all 654 

procedures were performed in accordance with the National Institutes of Health Guide for the Care and 655 

Use of Laboratory Animals and approved by the Harvard Animal Care and Use Committee.  656 

We used a total of 13 adult C57/BL6J DAT-Cre male mice. Mice were backcrossed for over 5 657 

generations with C57/BL6J mice, Animals were singly housed after surgery on a reverse 12 hr dark/12 658 

hr light cycle (dark from 7am to 7pm). Single dopaminergic neurons were optogenetically identified 659 

using custom built micro drives with 8 tetrodes and an optical fiber as described in our previous study 68. 660 

Significance was assessed using the stimulus associated spike latency test (SALT) 83.  661 

All mice (n = 13) were used in the virtual reality task and 8 of those were also used in the cued delay 662 

task. The targeted medio-lateral (ML) location varied from 320µm to 1048µm for neurons recorded in 663 

the virtuality task and for neurons recorded in the cued delay task. Neurons recorded at ML position > 664 

900µm were excluded from the analysis as they were considered to be in the substantia nigra pars 665 

compacta (SNc).  666 

 667 

Reinforcement learning at multiple timescales. 668 

In standard reinforcement learning, the value of a state 𝑠 under a given policy 𝜋 is defined as the 669 

expected sum of discounted future rewards: 670 

𝑉(𝑠) = 𝐸[∑ 𝛾𝑡∞
𝑡=0 𝑟𝑡  |𝑠, 𝜋] (3) 671 

The discount factor γ (whose value is between 0 and 1) is a fixed factor at each time step devaluating 672 

future rewards. This exponentially functional form for the temporal discount is not arbitrary. This 673 

temporal discount is naturally produced by the TD learning rule, a bootstrapping mechanism that 674 

updates the value estimates using the experienced transition from 𝑠  to 𝑠′ with reward 𝑟 :  675 

𝑉(𝑠) ← 𝑉(𝑠) + 𝛼[𝑟  +  𝛾𝑉(𝑠′) − 𝑉(𝑠)] (4) 676 

where 𝛼 is the learning rate. This update process converges to the values defined above under very 677 

general conditions 19 and has been experimentally proven to be an extremely robust and efficient 678 

learning rule for Deep RL systems 22,84.  679 

After convergence, the value 𝑉(𝑠) can be rewritten by taking the sum and the discount factor outside of 680 

the expectation: 681 

𝑉𝛾(𝑠) = ∑𝛾𝑡

∞

𝑡=0

𝐸[𝑟𝑡|𝑠] (5) 682 

Where we have added a 𝛾 subscript to the value to indicate that the value is computed for that particular 683 

discount, and we have omitted the dependence of the expectation on 𝜋 for simplicity. This last 684 
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expression reveals a very useful property: 𝑉𝛾(𝑠) , as a function of the discount 𝛾 ∈ (0,1), is the unilateral 685 

Z-transform of 𝐸[𝑟𝑡|𝑠] as a function of future time 𝑡 ∈ (0,∞) , with real-valued parameter 𝛾−1 (i.e., the 686 

discrete-time equivalent of the Laplace transform85 ). Since the Z-transform is invertible, in the limit of 687 

computing values with an infinite amount of 𝛾‘s, the agent can recover the expected rewards at all future 688 

times {𝐸[𝑟𝑡|𝑠]}𝑡=0
∞  from the set of learned values {𝑉𝛾(𝑠)}𝛾∈(0,1)

: 689 

𝑍−1{𝑉𝛾(𝑠)}𝛾∈(0,1)
=  {𝐸[𝑟𝑡|𝑠]}𝑡=0

∞ (6) 690 

Thus, if the agent performs TD learning with an infinite amount of discounts, the converging points of 691 

the TD backups would encode not only the expected sum of discounted rewards, as in traditional RL, 692 

but also the expected reward at all future timesteps, though the latter lies in a different space, analogous 693 

to the frequency and temporal spaces of the Fourier transform. 694 

 695 

Decoding Tasks 696 

The three tasks in Fig. 2c-e were designed with a similar structure. In the three tasks, the policy gradient 697 

(PG) network is composed of 2 Fully Connected layers of 32 units each, separated by ReLU 698 

nonlinearities. The PG network receives in its input the values learned by TD-learning and reports in its 699 

output the corresponding estimate for each task. Values were learned using tabular TD-learning as 700 

indicated in the previous section. In Fig. 2c-e and Extended Data Fig. 1, the PG network was trained 701 

across 1,000 episodes. The precise structure of each episode depends on the task (see details below). In 702 

general, in each episode the agent learns values from scratch using TD-learning for a specific 703 

experimental condition (i.e. a Markov decision process, or MDP), and the PG network maximizes its 704 

reporting performance across episodes. Thus, for each episode 𝑖 , the policy (𝜋𝜃) is a map from the 705 

learned multi-timescale values (𝑉𝛾
𝑖) to actions (𝑎𝑖). The parameters (𝜃) of the PG network are optimized 706 

to maximize reporting accuracy across episodes (the specific measure to report depends on the 707 

experimental condition).  The parameters were learned by optimizing the traditional policy gradient loss, 708 

using an Adam optimizer with a learning rate of 0.001 to maximize the task-specific expected return 709 

J(πθ) of the policy πθ:  710 

∇𝜃𝐽(𝜋𝜃) = 𝐸𝐵∼𝜋𝜃
[∑∇𝜃 log 𝜋𝜃 (𝑎𝑖|𝑉𝛾

𝑖)𝐶𝑖

𝑁

𝑖=1

] 711 

where 𝐵  is a batch of N=100 episodes and Ci is a reinforcement learning binary signal indicating 712 

whether the report (𝑎𝑖, the output of the network) was correct or incorrect for episode 𝑖 , given the 713 

learned multi-timescale values 𝑉𝛾
𝑖 . To tackle the exploration-exploitation problem we extend the policy 714 

using 𝜖-greedy, with 𝜖 = 0.3 (performance is reported with 𝜖 = 0 ). 715 

In Task 1 (Fig. 2c, Extended Data Fig. 1a-c), in each episode a discrete reward time 𝑡𝑅  is sampled 716 

between 1 and 15 and a discrete reward magnitude R sampled between 1 and 15. This defines a Markov 717 

Decision Process (MDP) shown in Extended Data Fig. 1a. For this MDP, TD-learning was used to learn 718 

the value of the first state of the MDP s, which we will refer to as the “cue”. In all tasks, the value of the 719 

cue was learned using one, two or three discount factors (γ) from the set {0.6,0.9,0.99}, depending on 720 
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the experimental condition. The results indicated as ‘Three γ’ corresponds to the discount factors 721 

[0.6,0.9,0.99]. Since there is noise in the simulation (see below), the results indicated as ‘One γ’ 722 

corresponds to the top performer over three identical discount factors ([0.6,0.6,0.6], [0.9,0.9,0.9], 723 

[0.99,0.99,0.99]) and analogously for the results indicated as ‘Two γ’. After performing TD-learning, the 724 

values are fed as input into the PG network whose output is the guessed reward time (the network has 15 725 

discrete actions, corresponding to reporting reward times from 1 to 15). Performance was evaluated as 726 

the fraction of correct responses across test episodes (1 for estimating the correct reward time, 0 727 

otherwise). We show the performance of the PG network as it is trained in Extended Data Fig. 1c. In 728 

Extended Data Fig. 1j-l we show a similar experiment but using two reward times and reward 729 

magnitudes in the MDP. 730 

In Task 2 (Fig. 2d, Extended Data Fig. 1d-f), the structure of each episode was as in Task 1 but with a 731 

discrete reward time 𝑡𝑅 sampled between 1 and 8 and a discrete reward magnitude 𝑅 sampled between 1 732 

and 4. The learned values were input into a PG network with 32 possible discrete outputs, representing 733 

the 32 possible hyperbolic values obtained in all the possible experiment (4 possible reward magnitudes 734 

× 8 possible reward times): 735 

𝑉(𝑠) =
𝑅

1 + 0.9𝑡𝑅
(8) 736 

Performance was evaluated as the fraction of correct responses across episodes. 737 

In Task 3 (Fig. 2e, Extended Data Fig. 1g-i) we use the MDP shown in Extended Data Fig. 1g while 738 

keeping R fixed at 1 but varying 𝑡𝑅  and the number of times (𝑁) that the full MDP has been experienced 739 

by the agents. Since TD-backups are performed online after every transition, 𝑁 is proportional to the 740 

total number of TD-backups. The (possibly incomplete) learned values at 𝑠 from these 𝑁 experiences 741 

were fed into the PG network (Extended Data Fig. 1h) which was trained across episodes to optimize the 742 

reporting performance of 𝑡𝑅 .  743 

We also evaluate learning in incomplete-information situations using the MDP shown in Extended Data 744 

Fig. 1m-o. In each episode, the length of the two branches is uniformly sampled from 5 to 15 (if they are 745 

the same, they are re-sampled until being different). Thus, in each episode, there is a shorter branch and 746 

a longer branch. Each branch is experienced a random number of times (N) sampled from a uniform 747 

distribution with the range of 1 and 99 [denoted by Uniform(1,99)]. Thus, the number of TD backups 748 

performed for the two branches could be highly asymmetric. The learned values (with one or multiple 749 

discounts) were fed as input into the PG network with a binary output indicating which path was the 750 

shortest one, performance was evaluated as the fraction of correct responses (Extended Data Fig. 1o). 751 

Single-timescale agents can incorrectly believe that one branch is shorter than the other one if it has 752 

been experienced more often, but multi-timescale agents can determine the distance to the reward 753 

independently of the asymmetric experience. 754 

In all tasks, the TD-learning process was corrupted by noise. In each episode, the learning rate was 755 

sampled from a normal distribution with mean of 0.1 and variance of 0.001 [denoted by 𝒩(0.1,0.001)] 756 

and the number of TD backups was sampled from Uniform(59,99) (except in the tasks with incomplete 757 

learning, e.g. Fig. 2e). This variability was included to make sure that the decoder learns robust 758 

decoding strategies instead of just memorizing the exact values of each experimental condition. For 759 
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example, as we argued in the main text, with one discount, the value of a temporally close small reward 760 

is similar to the value of a temporally far high reward, so reward time cannot be disentangled from 761 

reward magnitude. However, although these two values are similar, they are not identical, so a decoder 762 

with enough precision could learn to memorize them in order to report reward time. Introducing a small 763 

amount of random noise in the learning process assures robustness in the evaluation of the reporting 764 

performance. 765 

 766 

Recovering temporal information before TD learning converges 767 

In Extended Data Fig. 2 we illustrate intuitively why the temporal information is available before TD 768 

learning converges for multi-timescale agents (experiment in Fig. 1e). Consider the two experiments in 769 

Extended Data Fig. 2a, one with a short wait between the cue and reward (pink) and one with a longer 770 

wait (cyan). For a single timescale agent (Extended Data Fig. 2b), the value of the cue depends not only 771 

on the experiment length but also on the number of times that each experiment has been experienced (N, 772 

the number of TD-backups). Thus, for a given set of learning parameters (learning rate, discount factor, 773 

timestep length and reward magnitude), the single-timescale agent can incorrectly believe that the cyan 774 

cue indicates the shorter trajectory, if it has been experienced more often (left part of the plot). However, 775 

as we show theoretically in this section, since temporal information is encoded across discount factors 776 

for a multi-timescale agent, multi-timescale agents can determine reward timing independently of N. In 777 

Extended Data Fig. 2c, the patterns of three dots highlighted with rectangles are indicative of the reward 778 

time and are only affected by the learning parameters by a multiplicative factor. Indeed, when we plot 779 

the multi-timescale values as a function of the number of times that the experiments are experienced (N, 780 

Extended Data Fig. 2d-e), we see that the pattern across discounts is maintained, enabling a downstream 781 

system to robustly decode reward timing. 782 

The following is a theoretical proof of this advantage. Consider a multi-timescale agent performing TD 783 

learning on the trajectory 𝑠 → ⋯ → 𝑠𝑇 in which there is no variability in outcome timing (i.e., non-zero 784 

outcomes always happen at the same states, but their magnitude can be stochastic) and all rewards are 785 

positive. Under these assumptions, the agent is able to decode reward timing if it has access to 786 

{𝛿(𝑟𝜏,0)}𝜏=0

𝑇
, the future times at which outcomes 𝑟𝜏 are non-zero given the current state, where 𝛿(𝑟𝜏,0) is a 787 

Kronecker delta function that is equal to 1 if 𝑟𝜏 is zero and equal to 0 otherwise. At any time during TD 788 

learning, the value estimate for 𝑠 computed with TD learning can be written with the following general 789 

expression (note the absence of the expectation): 790 

𝑉𝛾(𝑠) = ∑𝛾𝜏

𝑇

𝜏=0

𝑓𝜏(𝛼,𝑁, 𝑅0:𝜏) (1 − 𝛿(𝑟𝜏,0))     (9) 791 

where 𝑓𝜏(𝛼,𝑁, 𝑅0:𝜏)  is a non-zero scalar that depends on 𝜏, on the learning rate 𝛼, on the number of 792 

times the trajectory has been experienced 𝑁 and on the history of outcome magnitudes experienced in 793 

the past 𝑅0:𝜏. This decoupling shares similarity with the successor representation 62,86,87. Crucially, 794 

𝑓𝜏(𝛼, 𝑁, 𝑅0:𝜏) does not depend on 𝛾, so, at all times during learning, it holds that: 795 

𝑍−1 {𝑉𝛾(𝑠)}𝛾∈(0,1)
=  {𝑓𝜏(𝛼, 𝑁, 𝑅0:𝜏) (1 − 𝛿(𝑟𝜏,0))}𝜏=0

𝑇
      (10) 796 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2023. ; https://doi.org/10.1101/2023.11.12.566754doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.12.566754
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

Page 25 of 50 
 

Since 𝑓𝜏(𝛼,𝑁, 𝑅0:𝜏) is non-zero for all 𝜏‘s and {1 − 𝛿(𝑟𝜏,0)}𝜏=0

𝑇
 is only non-zero at 𝜏‘s in which a reward 797 

happens, the non-zero values of the right-hand side expression indicates the future reward timings. In 798 

other words, applying the inverse transform at any time during learning to the multi-timescale estimate 799 

{𝑉𝛾(𝑠)}𝛾∈(0,1)
 gives an expression whose non-zero values are the future outcome timings. In summary, in 800 

the absence of timing stochasticity the multi-timescale agent can recover future outcome timing before 801 

TD converges, a capability that is not present in single-timescale agents. 802 

 803 

Myopic learning bias: branching task 804 

In Fig. 2f, we present a simple MDP to highlight the myopic learning bias during training. In each 805 

episode, the agent learns from 3 trajectories: one that moves up at s, another that moves down at s but up 806 

at state s’, and one that moves up at s and s'. Since rewards are stochastic, the information that the agent 807 

gets on each episode is incomplete. To evaluate how well the agent acts given limited information, we 808 

average performance over the following procedure: (1) sample rewards along the three trajectories 809 

mentioned before, (2) learn the Q-values (until convergence) for s and s’ using the rewards from the 810 

sampled trajectories and (3) choose the actions that maximize the Q-values. Performance is then 811 

measured as the proportions of right decisions across 10,000 iterations of this procedure. In Fig. 2f we 812 

evaluate performance as the fraction of episodes in which the Q-value of the branch with the 813 

deterministic reward is higher than the Q-value of the branch without the deterministic rewards. 814 

To evaluate the multi-timescale agent of Fig. 2b on this task, we followed a similar procedure. In each 815 

episode, we randomize the identity of the top and bottom branches after the bifurcation, which defines 816 

an episode-specific MDP. For each episode-specific MDP, the agent performs Q-learning until near 817 

convergence using the 3 trajectories mentioned in the previous paragraph. The Q-values at the current 818 

state (s or s’) are fed into the policy learning architecture of Fig. 2b, which outputs the decision to move 819 

up or down in the episode-specific MDP. The policy-learning network is trained across episodes to 820 

produce actions that maximize overall task performance. For the single-discount agent, we report the 821 

maximum performance over the agents with discounts [0.6,0.6] and [0.99,0.99], which achieve a 822 

performance of 77±2% and 83±1% respectively. For the multi-discount agent, we use the discounts 823 

[0.6,0.99], which achieves a performance of 94±1%. The error bars correspond to the s.e.m. across 500 824 

episodes in a validation set. 825 

 826 

Myopic learning bias: navigation task 827 

Previous theoretical work showed that a myopic discount in RL can serve as a regularizer when 828 

approximating the value function from a limited number of trajectories 88. In Extended Data Fig. 3 we 829 

highlight the fact that the benefit of the myopic discount is contingent upon the distance between the 830 

current state and significant environmental events. Consider the simple navigation scenario depicted in 831 

Extended Data Fig. 3a. The agent's motion is random and isotropic, garnering a minor random reward 832 

from a normal distribution with mean 0 and s.d. 0.01 in each step and three more substantial rewards 833 

upon reaching the areas denoted by fire (r = –4) and water (r = 2) symbols. We evaluate how well the 834 

agent can determine the true value function (under a discount factor γ = 0.99) under the aforementioned 835 
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stochastic policy. Crucially, the agent must perform this task after experiencing only a limited number of 836 

trajectories. The grey arrows show an example trajectory, with the actual and estimated values for these 837 

trajectories shown in Extended Data Fig. 3b.  838 

We evaluate accuracy using the Kendall rank correlation coefficient between the true value function in 839 

the entire maze and the value estimates. The Kendall coefficient measures the fraction of concordant 840 

pairs between the two value functions (across all pairs of states in the maze). For every pair of states, it 841 

computes whether the two value functions agree on which element of the pair is the larger one. Note that 842 

this measure of accuracy is behaviorally more relevant than alternative accuracy measures that compare 843 

the absolute magnitude of values across states. In other words, for an agent navigating the maze, it is 844 

more important to be accurate on the relative values of alternative goal states than on their absolute 845 

values. Consider the trajectory shown in Extended Data Fig. 3b. For this trajectory, the myopic estimate 846 

(using a discount factor γ = 0.6, green) clearly provides a better estimate of the true value function (grey) 847 

than using the true discount factor γ = 0.99 (brown). We can quantify that the myopic estimate is a better 848 

approximation of the true value function by evaluating the agreement between pairs of states along the 849 

estimated and true curves (i.e. by computing the Kendall coefficient). 850 

In Extended Data Fig. 3c-d the agent learns from N randomly sampled trajectories starting either in the 851 

lower half (blue) or upper half (red) of the maze. The values for the states in the N sampled trajectories 852 

are learned until convergence using the rewards and transitions in the sampled trajectories. After 853 

convergence, we compute the Kendall rank correlation between the estimates and the true value 854 

function, and report performance as the average correlation across 10,000 sets of N sampled trajectories.  855 

Extended Data Fig. 3c shows that when learning from two randomly sampled trajectories, the estimates 856 

of the value function using a myopic discount factor are more accurate than far-sighted discounts when 857 

crucial events are in the near future (i.e the trajectories start in the lower half of the maze, blue curve in 858 

Extended Data Fig. 3c). This result agrees with the intuition built in Extended Data Fig. 3c when 859 

learning from a single trajectory. However, if the agent is distant from important events (i.e. trajectories 860 

starting in the upper half of the maze, red curve), the myopic estimates approach the noise level, while 861 

estimates with larger discount factors are more accurate. As expected, with the accumulation of more 862 

data from the environment, that is, more trajectories, the far-sighted estimate progressively aligns with 863 

the true value compute with γ = 0.99 in the entire maze (Extended Data Fig. 3d) 864 

 865 

Myopic learning bias: networks with discount factors as auxiliary tasks 866 

An alternative way to leverage multi-timescale learning benefits, in contrast to the architecture presented 867 

in Fig. 2b, is to employ them as auxiliary tasks (Fig. 2g, top). These networks only act according to the 868 

value of a single behavioral timescale, but concurrently learn about multiple other timescales as 869 

auxiliary tasks to enhance the representation in the hidden layers, which allows them to obtain superior 870 

performance in complex RL environments 60,89. This approach is similar to Distributional RL networks 871 

that learn the quantiles of the value distribution but act according to the expectation of that distribution 872 
41. Notably, we show that the auxiliary learning timescales display the myopic learning bias highlighted 873 

so far. In the Lunar-Lander task (Fig. 2g, bottom) where the agent must land a spacecraft, Q-values 874 

computed using a myopic discount provide a more accurate representation of the future when the agent 875 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2023. ; https://doi.org/10.1101/2023.11.12.566754doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.12.566754
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

Page 27 of 50 
 

is close to the landing site (blue), whereas the opposite holds when the agent is far from the landing site 876 

(red). 877 

In the Lunar Lander environment in Fig. 2g, the state space consists of eight elements, including the 878 

position and velocity of the lander, its angular position and angular velocity, as well as an additional 879 

input related to the contact with the ground. The action space is composed of four actions: doing nothing 880 

and activating one of three different engines. The agent is a Deep-Q-network 3 (DQN) with two hidden 881 

layers of 512 units each, separated by ReLU activation functions. In addition to the Q-values that control 882 

the agent, the network has Q-values for 25 additional discounts factors equally spaced between 0.6 and 883 

0.99. Thus, if there are |a| actions in the environment, for each discount the network has |a| additional 884 

output units. All sets of |a| units (one for each discount) use the Huber (i.e. Smooth L1, β=1) Q-learning 885 

loss function with its corresponding discount. All the auxiliary Q-learning losses update the action that 886 

was actually chosen in the environment by the behavioral units, and thus all of them learn the 887 

consequences of the behavioral policy, but using different discount factors. The total loss function uset 888 

to train the network averages the Q-learning losses of all the discount factors. To train the DQN, we use 889 

a learning buffer of 20,000 samples, a learning rate of 10-3 and a batch size of 32. As in traditional 890 

DQNs, we use a target network to compute the TD target, which is updated every 1,000 samples with 891 

the weights from the policy network to stabilize the learning process. For exploration, the agent uses a 892 

linearly decreasing ε-greedy policy that goes from ε = 1.0 at the first sample to a minimum value of ε = 893 

0.01 after 40,000 samples. 894 

Our goal is to compute the degree to which Q-values computed with alternative discounts can capture 895 

the true Q-value of the behavioral policy. The multi-timescale DQN uses a behavioral discount 𝛾𝑏𝑒ℎ =896 

0.99 , and its policy is produced by choosing actions that maximize the Q-values with that discount 897 

factor. As in the navigation scenario presented in the previous section, our hypothesis is that, when 898 

important events lie in the proximal future (here, close to the landing site), the Q-values learned using 899 

myopic discounts capture the true behavioral Q-value more accurately, while far-sighted discounts are 900 

more accurate when important events lie in the distant future (far from the landing site). 901 

Under the policy of the DQN (𝜋𝐷𝑄𝑁), the true value of state s is: 902 

𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒 (𝑠) = 𝐸𝜋𝐷𝑄𝑁

[∑𝛾𝑏𝑒ℎ
𝑡

𝑇

𝑡=0

𝑟𝑡] 903 

If the DQN has perfectly learned the Q-value of state s, then the estimate 𝑄𝛾(𝑠, 𝑎𝑏𝑒ℎ) of the DQN should 904 

be equal to 𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒 (𝑠), where 𝑎𝑏𝑒ℎis the action produced by the DQN at s. We evaluate accuracy as the 905 

degree to which the estimated 𝑄𝛾(𝑠, 𝑎𝑏𝑒ℎ) captures the true 𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒 (𝑠), and compare accuracy across the 906 

auxiliary discount factors. 907 

After training the network for 50,000 samples (and achieving close-to-optimal performance), we 908 

compute 𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒 (𝑠) empirically across states by recording the actual discounted sum of rewards obtained 909 

by the agent when departing from state s. We calculate 𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒  (𝑠) empirically for 25,000 states. Then, we 910 

compare, across states, the empirically calculated 𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒 (𝑠) with the Q-values produced by the DQN at 911 

those states.  912 
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To measure Accuracy, we use the Kendall rank correlation as in the previous section. The Kendall 913 

correlation measures the fraction of concordant pairs between samples from 𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒  and from the 914 

estimated 𝑄𝛾, across pairs of states. As in the navigation scenario presented in the previous section, for 915 

an agent deciding which state to navigate to, it is more important to be accurate on the relative values 916 

between pairs of states than on the absolute value of individual states. Therefore, the Kendall correlation 917 

is behaviorally more relevant than other accuracy metrics that compare the absolute magnitude of 918 

𝑉𝛾𝑏𝑒ℎ
𝑡𝑟𝑢𝑒 and 𝑄𝛾 (e.g. |𝑉𝛾𝑏𝑒ℎ

𝑡𝑟𝑢𝑒 (𝑠) − 𝑄𝛾(𝑠, 𝑎𝑏𝑒ℎ)|).  919 

Given that the environment and the training process are stochastic, we report the accuracy by averaging 920 

over 10 randomly initialized networks. 921 

 922 

Cued delay task 923 

All the data in the experiments with mice were collected in the previous study 68. The experimental 924 

details including the surgical procedures, behavioral setup, and the behavioral tasks have been described 925 

there 68. We will here focus on the task description as our analysis includes task conditions that were not 926 

analyzed in the previous study.  927 

Mice were head-fixed on a wheel in front of three computer monitors and an odor port. At trial onset, 928 

the screens flashed green to indicate the beginning of the trial. After t = 1.25s, an odor cue was 929 

delivered. This reward delay cue was one of four possible odors, and each cue was associated with a 930 

unique reward delay chosen from 0.6, 1.5, 3.75 or 9.375 seconds. The association between odor and 931 

reward delay was randomized across mice. The inter-trial interval was adjusted depending on the reward 932 

delays such that the trial start cues were spaced by 17-20s. Mice performed 81.4 ± 12.5 trials (mean  933 

s.d.) per session across the 36 sessions in which neurons were recorded in the task.   934 

 935 

Approach-to-target virtual reality (VR) task 936 

We refer the reader to the prior study for details on the experimental procedures 68. Mice were also 937 

trained in additional conditions, which we do not analyze in the present study, including teleport and 938 

speed modulation in the virtual reality scene.  939 

Here, we analyzed single neuron recordings in the sessions with no teleport or speed manipulation and 940 

in the open-loop condition. Mice were free to locomote, but their motion did not affect the dynamics of 941 

the visual scene. After scene motion onset, the visual scene progressed at constant speed until the reward 942 

was delivered after 7.35s.  943 

Mice performed 58.8 ± 21.7 trials (mean  s.d.) per session across the 60 sessions in which neurons 944 

were recorded in the task. Spiking activity was convolved with a box filter of length 10 ms. When 945 

plotting neural activity, we further convolved the responses by a causal exponential filter (e-0.05dt). 946 

Spiking rate traces across neurons were normalized using a modified z-score. The mean was taken as the 947 

average firing activity cross the first 1.5s and the standard deviation across the entire 4.35s.  948 

 949 
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Fitting neural activity in the cued delay task 950 

For the cued delay task, we fit the responses of single neurons to the delay cue (calculated as the firing 951 

rate in the time interval 0.1𝑠 < 𝑡 < 0.4𝑠 after the cue onset, see shaded area in Fig. 3c) using two 952 

discounting models as in ref[63], the classic exponential model and a hyperbolic model. For the 953 

exponential model, we fit the responses to a cue predicting a reward in τ seconds by: 954 

𝐹𝑅𝑒𝑥𝑝 = 𝑏 +  𝛼𝛾𝜏 =  𝑏 +  𝛼𝑒−𝜆𝜏 (12) 955 

The discount factor γ can also be expressed as a discount rate λ and vice versa:  𝜆 =  − ln 𝛾  or 𝛾 =  𝑒−𝜆. 956 

The discount factors fitted to data are always expressed in units of seconds, that is the discount factor is 957 

the devaluation one second into the future.  958 

For the hyperbolic model we used a standard model for hyperbolic discounting in which the parameter 𝑘 959 

controls discounting:   960 

𝐹𝑅ℎ𝑦𝑝 = 𝑏 +  𝛼
1

1 + 𝑘𝜏
 (13) 961 

We fitted both models by minimizing mean squared error (the fit function in MATLAB). For both 962 

models we constrained the baseline and gain parameters such that 0 < 𝑏 < 40  and 0 < 𝛼 < 40. For 963 

the exponential model, the discount rate was constrained such that 0.0001 < 𝜆 < 20 and for the 964 

hyperbolic model, the discount parameter was constrained such that 0 < 𝑘 < 20. Note that all the 965 

parameters are fitted independently for each single neuron.  966 

To characterize the robustness and significance of our estimated parameters we used a bootstrap 967 

procedure. For each run, we split the trials in half and fit the models independently on each half. We 968 

computed for each split the explained variance using the other half of the data (Extended Data Fig. 4c-d) 969 

and correlated the inferred parameter values for each neuron across both splits (Extended Data Fig. 4f-970 

g).  971 

We restricted our subsequent analysis to neurons that had a positive explained variance on the test set 972 

(n=17 neurons excluded), an average firing rate in the cue period over the 4 delays above 2 spikes/s 973 

(n=11 neurons excluded) and with medio-lateral distance above 900µm (n=4 neurons excluded). Non-974 

selected neurons are shown in Extended Data Fig. 4b. Poorly fit neurons often were non-canonical 975 

dopamine neurons who also did not exhibit a strong reward response.  976 

 977 

Decoding expected reward timing from population responses 978 

The vectorized prediction error allows us to directly decode the expected timing of reward given the cue 979 

responses45. The value at time t is given by: 980 

𝑉𝑡 = 𝐸 [∑𝛾𝑡

𝑇

𝑡

𝑟𝑡] = 𝛾Δ𝑡𝐸(𝑟|Δ𝑡) + 𝛾2Δ𝑡𝐸(𝑟|2Δ𝑡) + ⋯+ 𝛾𝑇𝐸(𝑟|𝑇) (14) 981 
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In the cued delay task, at the time of the cue indicating reward delay, the response of dopaminergic 982 

neurons is driven by the discounted future reward. The reward prediction error 𝛿𝑡 = 𝑟𝑡 + 𝛾Δ𝑡𝑉𝑡+1 − 𝑉𝑡 983 

becomes simply 𝛿𝑡 = 𝛾Δ𝑡𝑉𝑡+1 + 𝑐𝑠𝑡 as there is no reward delivered at the time of the cue (𝑟𝑡𝑐𝑢𝑒
= 0)  984 

and the reward expectation before the reward cue delivery is identical across conditions (𝑉𝑡𝑐𝑢𝑒
= 𝐶; 985 

where 𝐶 is a constant). Thus, the TD error at the time of reward delay cue (𝛿𝑡𝑐𝑢𝑒
= 𝑟𝑡𝑐𝑢𝑒

+ 𝛾Δ𝑡𝑉𝑡𝑐𝑢𝑒+∆𝑡 −986 

𝑉𝑡𝑐𝑢𝑒
) becomes 𝛿𝑡𝑐𝑢𝑒

= 𝛾Δ𝑡𝑉𝑡𝑐𝑢𝑒+∆𝑡 + 𝐶 and if we assume the constant is 0 or the TD-error is baseline 987 

subtracted, at convergence the prediction error is given by: 988 

𝛿𝑖 = [𝛾𝑖
Δ𝑡 𝛾𝑖

2Δ𝑡 … 𝛾𝑖
T] [

𝐸(𝑟|Δ𝑡)

𝐸(𝑟|2Δ𝑡)
⋮

𝐸(𝑟|𝑇)

] (15) 989 

In single timescale RL, the temporal information is collapsed, and it is not possible for the system 990 

receiving the learning signal (the striatum in this case) to untangle the signal. However, in a distributed 991 

system learning at multiple timescales the reward expectation 𝐸(𝑟|𝑡) is encoded with multiple discount 992 

factors 𝛾𝑖 :  993 

[
𝛿1

⋮
𝛿𝑛

] =  

[
 
 
 
𝛾1

Δ𝑡 𝛾1
2Δ𝑡 … 𝛾1

T

𝛾2
Δ𝑡 𝛾2

2Δ𝑡 ⋯ 𝛾2
T

⋮ ⋮ ⋱ ⋮
𝛾𝑛

Δ𝑡 𝛾𝑛
2Δ𝑡 ⋯ 𝛾𝑛

T]
 
 
 

[

𝐸(𝑟|Δ𝑡)

𝐸(𝑟|2Δ𝑡)
⋮

𝐸(𝑟|𝑇)

] (16) 994 

=  𝐋 𝑝(𝑟|𝑡) 995 

The temporal information about reward timing is now distributed across neurons and if the tuning of 996 

individual neurons is sufficiently diverse, we can write: 997 

[

𝐸(𝑟|Δ𝑡)

𝐸(𝑟|2Δ𝑡)
⋮

𝐸(𝑟|𝑇)

] ≈  𝐋−1 [
𝛿1

⋮
𝛿𝑛

] (17) 998 

Where 𝐋−1 is the approximate pseudo-inverse of 𝐋 such that   𝐋−1𝐋 ≈ 𝐼. In practice, the matrix 𝐋 is not 999 

very well conditioned as the rows of the matrix are exponentially decaying functions, so the right side 1000 

(further in the future) is sparsely populated (see Fig. 3i and Extended Data Fig. 5a-c).  We therefore will 1001 

need to use a regularized pseudoinverse.  1002 

 To invert the discount matrix 𝐋, we use the regularized Singular value decomposition (SVD) approach 1003 

similar to the one proposed in ref[45]. We then normalize the resulting prediction in order to constrain it 1004 

to be a probability distribution (𝑝(𝑟|𝑡) > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 and ∑ 𝑝(𝑟|𝑡) = 1)𝑡 . More specifically, the 1005 

regularized SVD approach corresponds to optimizing:  1006 

‖𝐋𝑝(𝑟|𝑡) − Δ𝑑‖2 + 𝛼2‖𝐸(𝑟|𝑡)‖2 (18) 1007 

The standard SVD of the discount matrix can be written as:  1008 
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𝐋 = ∑ 𝜎𝑠𝑢𝑠𝑣𝑠
𝑇

𝐿

𝑠=1

= 𝑈𝑆𝑉𝑇 (19) 1009 

𝐸(𝑟|𝑡) ≈ ∑(
𝜎𝑠

2

𝛼2 + 𝜎𝑠
2
)

𝑢𝑠
𝑇Δ𝑑𝑣𝑠

𝜎𝑠

𝐿

𝑠=1

≡ 𝐋−1Δ𝑑 (20) 1010 

 1011 

where Δ𝑑 = [𝛿1 …𝛿𝑁]𝑇. The smooth regularization introduced by the Tikhonov regularization through 1012 

the parameter α (which we can choose by inspection of the distribution of singular values σs, see below) 1013 

is more robust than a strict truncated SVD in which we only take a number of factors and set the 1014 

remaining ones to zero. An alternative approximation to this inverse problem is Post’s approximation 1015 
57,62. It relies on evaluating higher order derivatives and lacks robustness if the Laplace space is not 1016 

sampled with enough precision (i.e. not enough neurons tiling the γ space).  1017 

The procedure in the previous section allows us to estimate the discount factor independently for each 1018 

neuron. We then choose a discretization step Δ𝑡 = 100𝑚𝑠 and a temporal horizon 𝑇 = 12𝑠 over which 1019 

to make the prediction. This allows us to construct the discount matrix 𝐋 shown in Fig. 3h for the 1020 

exponential model and Extended Data Fig. 6c for the hyperbolic model. In order to choose a suitable 1021 

value for the regularization parameter 𝛼 we perform the regular SVD on the discount matrix 𝐋 and 1022 

assess the values at which the singular values become negligible. We choose a value of 𝛼 that 1023 

corresponds to the transition between large singular values and negligible ones (see Extended Data Fig. 1024 

5b). Using this approach, we used 𝛼 = 2 in our decoding analysis.   1025 

For each delay, we construct a pseudo-population response Δ𝑑 across the recorded neurons. For each 1026 

bootstrap, we take the mean activity for each cue, subtract the inferred baseline parameter b, and 1027 

normalize the maximum response to 1. To assess the robustness of the predictions, we use the mean 1028 

responses and baseline from half the trials to construct Δ𝑑 and use the estimated discount factors from 1029 

the other half of the trials to estimate 𝐋−1 and we repeat this approach for each bootstrap (𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =1030 

200). In the figures (Fig. 3k and Extended Data Fig. 6d,f and 9c), the thin lines correspond to the 1031 

predictions from individual bootstraps and the thicker line to the average of these predictions. For 1032 

shuffle control, we randomize the identity of the neurons in the pseudo-population response Δ𝑑. This 1033 

means that in the shuffle control a given neuron is not decoded with its corresponding weights but by a 1034 

random row of the decoding matrix 𝐋−1. 1035 

In order to ensure that the prediction corresponds to a probability distribution, we normalize the 1036 

resulting prediction of reward timing. We first set the probability of obtaining a reward to zero for all 1037 

times in which the prediction was negative, then we normalize the distribution to be a valid probability 1038 

distribution (such that the probability mass over 𝑡 ∈ [0,12] sums to 1).  1039 

For the time decoding using a single average discount factor, we use a different approach. The inversion 1040 

procedure would not work as the discount matrix would be of rank 1. Instead, if we assume a fixed 1041 

known reward size and a single discount factor, the response of individual neurons would correspond to 1042 

different estimates of the reward timing. For each bootstrap we can estimate the expected reward timing 1043 
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for each neuron. For a given firing rate FR for the held out data, we can estimate the reward timing using 1044 

the parameter estimates from the trained data. The baseline 𝑏𝑖 and gain 𝛼𝑖 parameters are specific to 1045 

each neuron while the discount factor 𝛾 is the average discount factor across all the neurons. The 1046 

expected reward timing for neuron 𝑖 is given by the following equation: 1047 

𝐸𝑖(𝑡) =
logmax (

𝐹𝑅𝑖 − 𝑏𝑖
𝛼𝑖

, 0.0001)

log 𝛾
(21) 1048 

Together, the neurons provide a distribution of expected reward timing with each neuron predicting a 1049 

sample of the distribution of expected reward times. The average distribution is obtained by averaging 1050 

the distributions across all the bootstraps, excluding predicted reward times beyond 12 seconds and 1051 

normalizing the distribution to be a probability distribution. Similarly to the SVD-based decoding, in 1052 

Extended Data Fig. 5f the thin lines correspond to the predictions from individual bootstraps and the 1053 

thicker line to the average of these predictions. 1054 

 1055 

Quantifying reward timing decoding accuracy 1056 

In order to quantify the reward timing decoding accuracy, we used the 1-Wasserstein distance (or earth 1057 

mover’s distance) between distributions as our metric. We used the 1-Wasserstein distance as the 1058 

difference in support between the predicted reward timing distribution (probability mass as most 1059 

locations) and the single true reward timing (probability mass at a single location) is not conducive to 1060 

using the KL-divergence.  1061 

For each bootstrap, we generated n = 100,000 samples from the predicted reward timing distributions 1062 

and computed the 1-Wassertsein distance between the predicted reward timing and the true 1063 

corresponding reward delay (using the MATLAB function ws_distance from 1064 

https://github.com/nklb/wasserstein-distance). For each condition (exponential fit, hyperbolic fit, average 1065 

discount factor, simulation fit and their associated shuffled predictions) we obtained a distribution of 1-1066 

Wasserstein distances across the bootstraps (n = 200). To assess the significance of the differences in 1067 

reward timing predictions across conditions, we used the one-tailed Wilcoxon’s signed rank test (using 1068 

the MATLAB function signrank). 1069 

 1070 

Fitting neural activity in the VR task 1071 

To quantify the heterogeneity of discount factors in the VR task, we fit the neural activity in the last 4.30 1072 

seconds (t = 3.05 seconds after scene motion onset) of the approach to reward period in which the 1073 

ramping activity was most pronounced. In order to assess the robustness of the fit, we used a bootstrap 1074 

procedure in which for each bootstrap (𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 100), we partition the trials in two halves and 1075 

compute the two average PSTHs using dt = 0.1 second as our discretization step. We then compute the 1076 

mean value of the parameters across all bootstraps. We limit our analysis to neurons whose firing rate 1077 

over the analysis period is larger than 2 spikes/s. We fit the two models (common value function and 1078 

common reward timing expectation) to this data.  1079 
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In the VR task, the expectations vary smoothly as a function of time and distance and we therefore use 1080 

the discretized formulation of the TD error for continuous time in our fits 69,71: 1081 

𝛿𝑖(𝑡) = 𝑏𝑖 + 𝛼𝑖 (𝛾𝑖
d𝑡

d𝑉(𝑡)

d𝑡
− 𝛾𝑖

d𝑡 ln(𝛾𝑖) 𝑉(𝑡)) (22) 1082 

Although this formulation is also discretized as the standard formulation of the TD error, the presence of 1083 

the derivative 
Δ𝑉𝑖(𝑡)

Δ𝑡
 (which is computed numerically) improves the stability of the fitting procedure. The 1084 

two models differ in whether value function is estimated directly (and shared across neurons) or 1085 

indirectly (and distinct across neurons). The discount factor is also in units of seconds, allowing for a 1086 

comparison with the values estimated in the cued delay task.  1087 

 1088 

Common value function model:  1089 

In the common value function model, V(t) is common across neurons and is directly fitted by the 1090 

optimization procedure which minimizes:  1091 

𝑚𝑖𝑛𝛼,𝑏,𝛾,𝑉‖𝐹𝑅 − Δ‖2 (23) 1092 

With,  1093 

Δ = [
𝛿1(𝑡0) ⋯ 𝛿1(𝑇)

⋮ ⋱ ⋮
𝛿𝑛(𝑡0) ⋯ 𝛿𝑁(𝑇)

] (24) 1094 

We fit the gains, baseline, and discount factors of individual neurons (𝛼𝑖, 𝑏𝑖 and 𝛾𝑖  respectively) and the 1095 

join value function 𝑉 using a constrained optimization procedure (fmincon in MATLAB, 𝛼𝑖 ∈ [0.05,50] 1096 

, 𝑏𝑖 ∈ [0.05,12] , 𝛾𝑖 ∈ [0.05,0.999999], and 𝑉 ∈ [0.05,5]).  1097 

 1098 

Common Reward Expectation model:  1099 

In the common reward expectation model, the reduction in uncertainty in reward timing due to sensory 1100 

feedback as the mice approach the reward leads to an upwards ramp in the average TD error signal 1101 

across dopaminergic neurons 68–70. In a task like the cued delay task shown in Fig. 3, once the cue has 1102 

been presented, the time estimation until the reward is based on the internal clock of the mice that 1103 

suffers from scalar timing (i.e., the standard deviation of the noise in the estimation grows linearly with 1104 

the estimation time 49. In the VR task, there is visual feedback and as the mice approach the reward, the 1105 

uncertainty is instead reduced (Extended Data Fig. 8a). We also show that this alternative model also 1106 

provides a similar explanation of ramping diversity as originating from a heterogeneity of discount 1107 

factors (Extended Data Fig. 8).  1108 

We use a joint fitting procedure in which we simultaneously fit the discount factors across neurons and 1109 

the expected timing of reward as a function of position in the virtual track. Similarly to 69, we interpret 1110 

the ramping in single neurons as originating from the reduction in uncertainty due to the visual feedback 1111 
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as the mice approach the reward. Although each neuron has a distinct discount factor and its own value 1112 

function, the world model which parametrizes the changes in reward expectation with visual feedback is 1113 

shared across dopaminergic neurons. This arises as this shared model is the product of the integration of 1114 

the diverse dopamine signals as well as other neural computations controlling reward expectations 29.  1115 

Individual neurons therefore act as independent agents estimating value given a shared expectation of 1116 

reward timing. Each neuron has a distinct discount factor γi with which it computes value given the 1117 

expected reward timing. We assume that inference has converged and therefore we have the value 𝑉𝑖 1118 

associated with neuron i:  1119 

𝑉𝑖 = ∑𝛾𝑖
𝜏−𝑡𝐸(𝑟|𝜏, 𝑡, 𝑇)

𝑇

𝜏=𝑡

(25) 1120 

Here, we assume that 𝐸(𝑟|𝜏, 𝑡, 𝑇) takes the form a folded normal distribution with parameters 𝜇 = 𝑇 − 𝑡 1121 

and (fitted) standard deviation σ. The folded normal distribution reflects the weight of the negative 1122 

component of a normal distribution back onto positive values 90. The folded normal distribution 1123 

formulation leads to the following distribution for the expected reward timing for τ > 0 :  1124 

𝐸(𝑟|𝜏, 𝑡, 𝑇) = √
2

𝜋𝜎2
𝑒

−
(𝜏2+(𝑇−𝑡)2)

2𝜎2 cosh(
(𝑇 − 𝑡)𝜏

𝜎2
) (26) 1125 

In our analysis, the mean, 𝜇 = 𝑇 − 𝑡, is given by the current position in the VR track and the only fitted 1126 

parameter is the standard deviation σ. At each time step we fit a different value of the standard deviation. 1127 

As observed through the fitting procedure, the standard deviation is initially high and reduces as the 1128 

mice approach the reward location. This is an indication that similarly than proposed in 69 the ramping in 1129 

the dopaminergic neuron’s activity arises from the reduction in uncertainty due to the visual feedback as 1130 

the mice approach the reward. We use a slightly different formulation than in ref [69] as we require 1131 

additional flexibility to fit data and specifically need to go beyond the assumptions of Gaussian state 1132 

uncertainty. Note also that we assume here that the uncertainty is in the timing of the reward rather than 1133 

in the state. 1134 

In order to normalize the contributions of the different neurons, we used a normalized firing rate and 1135 

therefore only fit the discount factor γ and standard deviation σ of the reward expectation.  1136 

𝑚𝑖𝑛𝛾,𝜎‖𝐹𝑅 − Δ‖2 (27) 1137 

With,  1138 

Δ = [
𝛿1(𝑡0) ⋯ 𝛿1(𝑇)

⋮ ⋱ ⋮
𝛿𝑛(𝑡0) ⋯ 𝛿𝑁(𝑇)

] (28) 1139 

We performed the constrained optimization with the MATLAB function fmincon and constrain the 1140 

parameters such that 𝛾 ∈ [0.001 , 0.99] and 𝜎 ∈ [0.1 , 12].  1141 

 1142 
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Comparing parameters across tasks 1143 

We used two methods to assess the relationship between the inferred discount factors in the approach-to-1144 

reward VR task and the cued delay task. First, we used the mean parameters across bootstraps and 1145 

computed the Spearman correlation. Next, we computed, for n = 10,000 randomly selected (with 1146 

replacement) pairs of bootstraps, the Spearman correlation between the parameters across the two tasks 1147 

and plotted the distribution of these correlation.  1148 

For the decoding of reward timing using parameters inferred in the VR task, we also used a bootstrap 1149 

approach. We computed the discount matrix and the decoding matrix for each bootstrap estimate of the 1150 

discount factors in the VR task.  1151 

 1152 

Simulations to assess limits on parameter estimation 1153 

To assess the contribution of the limits imposed by the number of trials and the stochasticity in firing 1154 

rates to the accuracy of the reward timing prediction and the similarity of inferred parameters across 1155 

tasks, we ran a series of simulations with parameters chosen to match those inferred from the data. For 1156 

the simulation parameters, we use the mean inferred value for the parameters across all the bootstraps 1157 

for the respective task.  1158 

For the cued delay task, we generated for each neuron n = 80 trials (n = 20 per delay), comparable to 1159 

behavioral sessions in the task, simulated cue responses by taking samples from a Poisson distribution 1160 

with a rate parameter corresponding to the value predicted by the exponential discount model for the 1161 

corresponding reward delay.  We used the same procedure as for analyzing the recorded data by 1162 

performing n = 100 bootstrap and fitting the simulated data on random partitions of the data. 1163 

For the VR task, we generated for each neuron n = 80 trials, comparable to behavioral sessions in the 1164 

task, by taking samples from a Poisson distribution with a rate parameter corresponding to the predicted 1165 

activity given equation 22. We then performed the fitting procedures similarly than for the experimental 1166 

data.  1167 

 1168 
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Extended data figures and tables 1196 

 1197 

 1198 

Extended Data Fig. 1 | Decoding simulations for multi-timescale vs. single-timescale agents. (a-c). 1199 

Experiment corresponding to Fig. 2c. (decoding reward timing). a, MDP with reward R at time 𝑡𝑅 . b, 1200 

Diagram of the decoding experiment. In each episode, the reward magnitude and time are randomly 1201 

sampled from discrete uniform distributions, which defines the MDP in a. Values are learned until near 1202 

convergence using TD-learning. Values with different discount factors are learned independently. The 1203 

learned values for the cue (s) are fed into a non-linear decoder which learns, across MDPs, to report the 1204 

reward time. c, Decoding performance as the decoder is trained. Different colors indicate the discount 1205 

factors used in TD-learning. (d-f). Experiment corresponding to Fig. 2d. (Decoding value with 1206 

hyperbolic discount). d, MDP with reward R at time 𝑡𝑅 . e, Diagram of the decoding experiment. In each 1207 

episode, the reward magnitude and time are randomly sampled from discrete uniform distributions, 1208 

which defines the MDP in d. Values are learned until near convergence using TD-learning. Values with 1209 
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different discount factors are learned independently. The learned values for the cue (s) are fed into a 1210 

non-linear decoder which learns, across MDPs, to report the hyperbolic value of the cue. f, Decoding 1211 

performance as the decoder is trained. Different colors indicate the discount factors used in TD-learning. 1212 

(g-i). Experiment corresponding to Fig. 2e. (decoding reward timing before convergence). g, MDP with 1213 

reward equal to 1 at time 𝑡𝑅 . h, Diagram of the decoding experiment. In each episode, the reward time 1214 

and the number of TD iterations (N) are sampled from discrete uniform distributions. Values are learned 1215 

by performing N TD-learning backups on the MDP. Values with different discount factors are learned 1216 

independently. The learned values for the cue (s) are fed into a non-linear decoder which learns, across 1217 

MDPs, to report the reward time. i, Decoding performance as the decoder is trained. Different colors 1218 

indicate the discount factors used in TD-learning. (j-l). Decoding reward timing in a more complex task. 1219 

j, MDP with two rewards of magnitude 𝑅1 and 𝑅2 at times 𝑡𝑅1 and  𝑡𝑅2. k, Diagram of the decoding 1220 

experiment. In each episode, both reward magnitudes and times are sampled from discrete uniform 1221 

distributions. The learned values for the cue (𝑠) are fed into a non-linear decoder which learns, across 1222 

MDPs, to report both reward times. l, Decoding performance as the decoder is trained. Different colors 1223 

indicate the discount factors used in TD-learning. (m-o). Decoding length of branches in an MDP during 1224 

training. m, MDP with two possible trajectories. In this example, the upwards trajectory is longer than 1225 

the downwards trajectory. n, Diagram of the decoding experiment. In each episode, the length of the two 1226 

branches D and the number of times that TD-backups are performed for each branch are randomly 1227 

sampled from uniform discrete distributions. Then, TD-backups are performed for the two branches the 1228 

corresponding number of times. After this, they are fed into a decoder which is trained, across episodes, 1229 

to report the shorter branch. o, Decoding performance as the decoder is trained. Different colors indicate 1230 

the discount factors used in TD-learning. In panels c, f, i, k and o, the shaded area corresponds to the 1231 

standard deviation of the estimate over 2 repeats and smoothed of 100 episodes.    1232 

  1233 
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 1234 

 1235 

Extended Data Fig. 2 | Temporal estimates are available before convergence for multi-timescale agents. a, 1236 
Two experiments, one with a short wait between the cue and reward (pink), and one with a longer wait (cyan). b, 1237 

The identity of the cue with the higher value for a single-timescale agent (here 𝛾=0.9) depends on the number of 1238 
times that the experiments have been experienced. When the longer trajectory has been experienced significantly 1239 
more often than the short one, the single-timescale agent can incorrectly believe that it has a larger value. c, For a 1240 

multi-timescale agent, the pattern of values learned across discount factors is only affected by a multiplicative 1241 
factor that depends on the learning rate, the prior values and the asymmetric learning experience. The pattern 1242 
therefore contains unique information about outcome time. d,e, When plotted as a function of the number of times 1243 
that trajectories are experienced, the pattern of values across discount factors is only affected by a multiplicative 1244 
factor. In other words, for the pink cue, the larger discount factors are closer together than they are to the smaller 1245 

discount factor, and the opposite for the cyan cue. This pattern is maintained at every point along the x-axis, and 1246 
therefore is independent of the asymmetric experience, and it enables a downstream system to decode reward 1247 
timing.  1248 

  1249 
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 1250 

 1251 

 1252 

Extended Data Fig. 3 | Myopic learning bias. a, Maze to highlight the myopic learning bias. Rewards are 1253 
indicated with water and fire. An example trajectory is shown with transparent arrows. The red and blue bars to 1254 

the right denote the states in the Lower and Upper half. b, True (grey) and estimated (green and brown) values for 1255 
the example trajectory on top and shown in panel a. In the x-axis we highlight the starting timestep with s, the 1256 
timestep when the fire is reached and the timestep when the water is reached. c, Accuracy (y-axis) is measured as 1257 

the Kendall tau coefficient between the estimate with a specific gamma (x-axis) and the true value function V = 1258 
0.99. Error bars are deviations across 300 sets of sampled trajectories. The red (blue) curve shows average 1259 
accuracy for the states on the upper (lower) half of the maze, indicated with color lines on panel a. d, As the 1260 
sampled number of trajectories increases, the myopic learning bias disappears. 1261 
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 1262 

 1263 

Extended Data Fig. 4 | Single neuron responses and robustness of fit in the cued delay task. a, 1264 

PSTHs of single selected neurons (n = 50) responses to the cues predicting a reward delay of 0.6s, 1.5s, 1265 

3.75s, and 9.375s (from top to bottom). Neurons are sorted by the inferred value of the discount factor γ. 1266 

Neural responses are normalized by z-scoring each neuron across its activity to all 4 conditions. b, 1267 

PSTHs of single non-selected neurons (n = 23) responses to the cues predicting a reward delay of (from 1268 

top to bottom). Neurons are sorted by the inferred value of the discount factor γ. Neural responses are 1269 

normalized by z-scoring each neuron across its activity to all 4 conditions.  c, Variance explained for 1270 

training vs testing data for the exponential model. For each bootstrap, the variance explained was 1271 

computed on both the half of the trials used for fitting (train) and the other half of the trials (test). 1272 

Neurons (n = 13) with a negative variance explained on the test data are excluded from the decoding 1273 

analysis (grey dots).  d, Same as panel c but for the fits for the hyperbolic model. e, Goodness of fit on 1274 
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held-out data for each selected neuron for the exponential and hyperbolic models. The data lies above 1275 

the diagonal line suggesting a better fit from the exponential model as shown in Fig. 3f. Error bars 1276 

indicate 95% confidence interval using bootstrap. f, The values of the inferred parameters in the 1277 

exponential model are robust across bootstraps. top row, Inferred value of the parameters across two 1278 

halves of the trials (single bootstrap) for the gain α, baseline b and discount factor γ respectively. 1279 

Bottom row, Distribution across n = 100 bootstraps of the Pearson correlations between the inferred 1280 

parameter values in the two halves of the trials for the gain α (mean = 0.84, P < 1 x 10-20), baseline b (v, 1281 

mean = 0.9, P < 1.0 x 10-32) and discount factor γ (vi, mean = 0.93, P < 1.0 x 10-46).  g, Same as panel e 1282 

but for the hyperbolic model with distribution of correlations for the gain α (mean=0.86, p<1e-26), 1283 

baseline b (v, mean = 0.88, P < 1.0 x 10-28) and shape parameter k (vi, mean = 0.76, P < 1.0 x 10-11). h, 1284 

Same as panel e and g but for the exponential model simulated responses with distribution of 1285 

correlations for the gain α (mean = 0.86, P < 1.0 x 10-10), baseline b (v, mean = 0.88, P < 1.0 x 10-24) 1286 

and discount factor γ (vi, mean = 0.76, P < 1.0 x 10-26). Note that the distributions of inferred parameters 1287 

are in a similar range than the fits to the data suggesting that trial numbers constrain the accuracy of 1288 

parameter estimation. Significance is the highest p-value for all the bootstraps for a given parameters 1289 

assessed via t-test. 1290 

 1291 
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 1292 

Extended Data Fig. 5 | Decoding reward timing using the regularized pseudo-inverse of the 1293 

discount matrix. (a-c), Singular value decomposition (SVD) of the discount matrix. a, left singular 1294 

vectors (in the neuron space). b, Singular values. The black line at 2 indicates the values of the 1295 

regularization term α. c, right singular vectors (in the time space). d, Decoding matrix based on the 1296 

regularized pseudo-inverse. e, Distribution of 1-Wassertein distances between the reward timing and the 1297 

predicted reward timing from the decoding on the test data exponential fits (shown in Fig. 3k, top row) 1298 

and on the shuffled data (shown if Fig. 3k, bottom row). The prediction from the test data are better 1299 

predictions (smaller 1-Wasserstein distance) than shuffled data (P = 1.2 x 10-4 for 0.6 s reward delay, P 1300 

< 1.0 x 10-20 for the other delays, one-tailed Wilcoxon signed rank test, see Methods). f, Decoded 1301 

subjective expected timing of future reward 𝐸(𝑟|𝑡) using a model with a single discount factor (the 1302 

mean discount factor across the population, see Methods). g, Distribution of 1-wassertein distances 1303 

between the reward timing and the predicted reward timing from the decoding on the test data from 1304 
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exponential fits (shown in Fig. 3k, top row) and on the average exponential model (shown in f). 1305 

Decoding is better for the exponential model from Fig. 3 than the average exponential model except for 1306 

the shortest delay (P(t = 0.6s) = 1, P(t = 1.5s) < 1.0 x 10-31, P(t = 3.75) = 0.0135, P(t = 9.375s) < 1.0 x 1307 

10-14), one-tailed Wilcoxon signed rank test, see Methods). 1308 

  1309 
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 1310 

 1311 

Extended Data Fig. 6 | Decoding reward timing from the first to the hyperbolic model and 1312 

exponential model simulations. a, Distribution of the inferred discount parameter k across the neurons. 1313 

b, Correlation between the discount factor inferred in the exponential model of the discount parameter k 1314 

from the hyperbolic model (r = -0.9, P < 1.0 x 10-30, t-test). Note the in the hyperbolic model a larger 1315 

value of k implies faster discounting hence the negative correlation. c, Discount matrix for the 1316 

hyperbolic model. For each neuron we plot the relative value of future events given its inferred discount 1317 

parameter. Neurons are sorted by decreasing estimated value of the discount parameter. d, Decoded 1318 

subjective expected timing of future reward 𝐸(𝑟|𝑡) using the discount matrix from the hyperbolic model 1319 

(see Methods). e, Distribution of 1-Wassertein distances between the reward timing and the predicted 1320 
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reward timing from the decoding on the test data with the exponential model (shown in Fig. 3k, top row) 1321 

and on the test data with the hyperbolic model (shown in d). Decoding is better for the exponential 1322 

model from Fig. 3 than the hyperbolic model except for the shortest delay (P(t = 0.6s) = 1, P(t = 1.5s) < 1323 

1.0 x 10-31, P(t = 3.75) < 1.0 x 10-33, P(t = 9.375s) < 1.0 x 10-3), one-tailed Wilcoxon signed rank test, 1324 

see Methods). f, Decoded subjective expected timing of future reward 𝐸(𝑟|𝑡) using simulated data based 1325 

on the parameters of the exponential model (see Methods). g, Distribution of 1-Wassertein distances 1326 

between the reward timing and the predicted reward timing from the decoding on the test data from 1327 

exponential fits (shown in Fig. 3k, top row) and on the simulated data from the parameters of the 1328 

exponential fits (shown in f). Decoding is marginally better for the data predictions (P(t = 0.6s) = 0.002, 1329 

P(t = 1.5s) = 0.999, P(t = 3.75) <1 x 10-12, P(t = 9.375s) = 0.027), one-tailed Wilcoxon signed rank test, 1330 

see Methods), suggesting that decoding accuracy is limited by the number of trials. 1331 

 1332 

  1333 
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 1334 

Extended Data Fig. 7 | Ramping, discounting and anatomy. a, Ramping in the prediction error signal 1335 

is controlled by the relative contribution of value increases and discounting. If the value increase 1336 

(middle) exactly matches the discounting, there is no prediction error (middle equation, right). If the 1337 

discounting is smaller than the value increase (large discount factor) then there is a positive TD error 1338 

(top equation, right). If the discounting is larger (small discount factor) than the value increase then there 1339 

a negative TD error (bottom equation, right). A single timescale agent with no state uncertainty will 1340 

learn an exponential value function but if there is state uncertainty (see ref[69]) or the global value 1341 

function arises from combining the contribution of single-timescale agents then the value function is 1342 

likely t be non-exponential. b, The discount factor inferred in the VR task is not correlated with the 1343 

medio-lateral (ML) position of the implant (Pearson’s r = 0.015, P = 0.89). c, The baseline parameter 1344 

inferred in the VR task is not correlated with the medio-lateral (ML) position of the implant (Pearson’s r 1345 

= -0.011, P = 0.92). d, The inferred gain in the VR task reduces with increasing medio-lateral (ML) 1346 

position but the effect does not reach significance (Pearson’s r = -0.19, P = 0.069).   1347 
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 1348 

Extended Data Fig. 8 | Discounting heterogeneity explains ramping diversity in a common reward 1349 

expectation model. a, Uncertainty in reward timing reduces as mice approach the reward zone. Not 1350 

only does the mean expected reward time reduces but the standard deviation of the estimate also 1351 

reduces. Distribution in the bottom row from fitted data (see panels c-i). b, Simulations showing how 1352 

reduction in uncertainty in reward timing (shared across neurons) and diverse discount factors lead to 1353 

heterogeneous ramping activity in dopamine neurons. First panel. In this model, the uncertainty in the 1354 
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subjective estimate of reward timing (measured by the standard deviation) reduces as the mice approach 1355 

the reward. Second panel. Distribution of subjective expected time to reward as a function of the true 1356 

time to reward. The distribution is sampled from a folded normal distribution. The standard deviation 1357 

reduces as reward approaches as shown in the first panel. Third panel. Given the subjective expected 1358 

time to reward, common to all neurons due to a single world mode, we can compute a value function for 1359 

each neuron given its discount factor. Fourth panel. This leads to a heterogeneity of TD errors across 1360 

neurons, including monotonic upward and downwards ramps as well as non-monotonic ramps. c, The 1361 

inferred standard deviation of the reward expectation model reduces as a function of time to reward. 1362 

Line indicates the mean inferred standard deviation and the shading indicates the standard error of the 1363 

mean over 100 bootstraps. d, Subjective expected timing of the reward as a function of true time to 1364 

reward. As the mice approach the reward not only does the mean expected time to reward reduces but 1365 

the uncertainty of the reward timing captured by the standard deviation shown in c also reduces. This 1366 

effect leads to increasingly convex value functions that lead to the observed ramps in dopamine neuron 1367 

activity. e, Value function for each individual neuron. f, Distribution of inferred discount factors under 1368 

the common reward expectation model. g, Although the range of discount factor between the fits from 1369 

the common value (x-axis) and common reward expectation (y-axis) models differs, the inferred 1370 

discount factors are strongly correlated for single neurons (Spearman’s ρ = 0.93, P <  1.0 x 10-20). h, 1371 

Predicted ramping activity from the model fits under the common reward expectation model. i, Diversity 1372 

of ramping activity across single neurons as mice approach reward (aligned by inferred discount factor 1373 

in the common reward expectation model).  1374 
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 1375 

Extended Data Fig. 9 | Decoding reward timing in the cud delayed reward task using parameters 1376 

inferred in the VR task. a, Discount matrix computed using the parameters inferred in the VR tasks for 1377 

neurons recorded across both tasks and used in the cross-task decoding. b, Dopamine neurons cue 1378 

responses in the cued delay task. Neurons are aligned as in a according to increasing discount factor 1379 

inferred in the VR task. c, Top row: Decoded reward timing using discount factors inferred in the VR 1380 

task. Bottom row: The ability to decode reward timing is lost when shuffling the identities of the cue 1381 

responses. d, Except for the shortest delay, decoded reward timing is more accurate than shuffle as 1382 

measured by the 1-Wassertsein distance (Pt = 0.6s = 1, Pt = 1.5s < 1.1 x 10-20, Pt = 3.75s < 3.8 x 10-20, Pt = 9.375s 1383 

< 2.9 x 10-5).   1384 
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