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Abstract Learning from successes and failures often improves the quality of subsequent

decisions. Past outcomes, however, should not influence purely perceptual decisions after task

acquisition is complete since these are designed so that only sensory evidence determines the

correct choice. Yet, numerous studies report that outcomes can bias perceptual decisions, causing

spurious changes in choice behavior without improving accuracy. Here we show that the effects of

reward on perceptual decisions are principled: past rewards bias future choices specifically when

previous choice was difficult and hence decision confidence was low. We identified this

phenomenon in six datasets from four laboratories, across mice, rats, and humans, and sensory

modalities from olfaction and audition to vision. We show that this choice-updating strategy can be

explained by reinforcement learning models incorporating statistical decision confidence into their

teaching signals. Thus, reinforcement learning mechanisms are continually engaged to produce

systematic adjustments of choices even in well-learned perceptual decisions in order to optimize

behavior in an uncertain world.

Introduction
Learning from the outcomes of decisions can improve subsequent decisions and yield greater suc-

cess. For instance, to find the best meal on a busy street where restaurants often change menus,
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one needs to frequently sample food and learn. Humans and other animals efficiently learn from

past rewards and choose actions that have recently lead to the best rewards (Daw et al., 2006;

Lee et al., 2012; Samejima et al., 2005; Tai et al., 2012). In addition to evaluating past rewards,

decision making often require consideration of present perceptual signals; the restaurants’ signs

along the busy street might be too far and faded to be trusted. Therefore, good decisions ought to

take into account both current sensory evidence as well as the prior history of successes and failures.

Decisions guided by the history of rewards can be studied in a reinforcement learning framework

(Sutton and Barto, 1998). Perceptual decisions, on the other hand, have been classically conceptu-

alized within a statistical, psychometric framework (Green and Swets, 1966). Although statistical

decision theory and reinforcement learning provide two largely distinct frameworks for studying

decisions, we are often challenged by both limits in our perception as well as limits in learning from

past rewards. For sensory decisions, classical psychometric analysis estimates three fundamental vari-

ables that determine the quality of choices: the bias, lapse rate and sensitivity (Green and Swets,

1966; Wichmann and Hill, 2001). When bias and lapse rates are negligible and sensitivity has

reached its maximum over time, then fluctuations in decisions are solely attributed to the noise in

the perceptual processing. Under these assumptions, incorrect decisions are caused by perceptual

noise creating imperfect percepts. Here, we show a systematic deviation from the assumption of no

learning during well-trained perceptual decisions: past rewards bias perceptual choices specifically

when the previous stimulus was difficult to judge, and the confidence in obtaining the reward was

low.

In laboratory perceptual decision-making paradigms, there is typically no overt learning after the

task acquisition is complete. Nevertheless, several studies have shown that past rewards, actions,

and stimuli can appreciably influence subsequent perceptual choices (Abrahamyan et al., 2016;

Akaishi et al., 2014; Akrami et al., 2018; Braun et al., 2018; Busse et al., 2011; Cho et al., 2002;

Fan et al., 2018; Fischer and Whitney, 2014; Fritsche et al., 2017; Fründ et al., 2014; Gold et al.,

2008; Hwang et al., 2017; Lueckmann et al., 2018; Luu and Stocker, 2018; Marcos et al., 2013;

Tsunada et al., 2019; Urai et al., 2017). Some of these observations support the view that simple

forms of reward-based learning are at work during asymptotic perceptual performance. For instance,

subjects might repeat the previously rewarded choice or avoid it after an unsuccessful trial

(Abrahamyan et al., 2016; Busse et al., 2011; Tsunada et al., 2019; Urai et al., 2017). However,

these types of choices biases seem to be suboptimal and might reflect simple heuristics. Thus, the

extent to which choice biases in perceptual decisions can be expected from normative considera-

tions in reinforcement learning has been unclear. Perhaps, the most prominent prediction of rein-

forcement learning under perceptual uncertainty is that the strength of sensory evidence (i.e.

confidence in the accuracy of a decision) should modulate how much to learn from the outcome of a

decision (Lak et al., 2017; Lak et al., 2019). Outcomes of easy decisions are highly predictable, and

thus there is little to be learned from such decisions. In contrast, outcomes of difficult, low confi-

dence decisions, provide the most prominent opportunity to learn and adjust subsequent decisions

(Lak et al., 2017; Lak et al., 2019). These considerations lead to the hypothesis that decision confi-

dence regulates trial-by-trial biases in perceptual choices.

Here, we demonstrate that well-trained perceptual decisions can be systematically biased based

on previous outcomes in addition to current sensory evidence. We show that these outcome-depen-

dent biases depend on the strength of past sensory evidence, suggesting that they are consequen-

ces of confidence-guided updating of choice strategy. We demonstrate that this form of choice

updating is a widespread behavioral phenomenon that can be observed across various perceptual

decision-making paradigms in mice, rats and humans. This trial-to-trial choice bias was also present

in different sensory modalities and transferred across modalities in an interleaved auditory/olfactory

choice task. To explain these observations, we present a class of reinforcement learning models and

Bayesian classifiers that adjust learning based on the statistical confidence in the accuracy of previ-

ous decisions.
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Results

Perceptual decisions are systematically updated by past rewards and
past sensory stimuli
To investigate how the history of rewards and stimuli influences subsequent perceptual decisions,

we began with an olfactory decision task (Figure 1a). Rats were trained on a two-alternative choice

olfactory decision task (Uchida and Mainen, 2003). Two primary odors were associated with rewards

at left and right choice ports and mixtures (morphs) of these odors were rewarded according to a

categorical boundary (50:50 mixture; Figure 1a). To manipulate perceptual uncertainty, we varied

the odor mixtures, that is the ratio of odor A and B in a trial-by-trial manner, testing mixtures 100:0,

80:20, 65:35, 55:45, 45:55, 35:65, 20:80 and 0:100. Rats showed near-perfect performance for easy

mixtures and made errors more frequently for difficult mixtures (Figure 1a, bottom panel).

After task learning, rats showed stable behavior across testing sessions (Figure 1b). To quantify

behavioral performance and stability across sessions, we fitted choice behavior with psychometric
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Figure 1. Rats update their trial-by-trial perceptual choice strategy in a stimulus-dependent manner. (a) Top: Schematic of a 2AFC olfactory decision-

making task for rats. Bottom) Average performance of an example rat. (b) Following learning, the psychometric curves showed minimal fluctuations

across test sessions. Bias, sensitivity and lapse were measured for each test session. (c) After successful completion of a trial, rats tended to shift their

choice toward the previously rewarded side. Left and right panels illustrate example animal and population average. (d) Schematic of analysis

procedure for computing conditional psychometric curves and updating plots. Left: Black curve shows the overall psychometric curve and the green

curve shows the curve only after trials with 48% odor A (i.e. conditional on the stimulus (48% A) in the previous trial). Middle: Each point in the heatmap

indicates the vertical difference between data points of the conditional psychometric curve and the overall psychometric curve. Red and purple boxes

indicate data points which are averaged to compute data points shown in the rightmost plot. Right: Updating averaged across current easy trials (in this

case the easiest two stimulus levels) and current difficult trials. (e) Performance of the example rat (left) and population (right) computed separately

based on the quality of olfactory stimulus (shown as colors mixtures from blue to green) in the previously rewarded trial. After successful completion of

a trial, rats tended to shift their choices towards the previously rewarded side but only when the previous trial was difficult. (f) Choice updating, that is

the size of shift of psychometric curve relative to the average psychometric curve, as a function of sensory evidence in the previously rewarded trial, and

current trial. Positive numbers refer to a bias towards choice A and negative numbers refer to a bias toward the alternative choice. The left and right

plots refer to the example rat and population, respectively. (g) Choice updating as a function of previous stimulus separated for current easy (square)

and difficult (circle) trials. These plots are representing averages across graphs presented in f.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Left: Performance of population of rats (n=16) computed from trials in which the previous stimulus was difficult (45% odor A, 55%

odor B), separated based on whether the previous choice was rewarded (correct) or unrewarded (error).
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functions that included parameters for sensitivity (reflecting perceptual noise), bias (the tendency to

take one specific action) and lapse rate (stimulus-independent occasional errors possibly reflecting

attentional or learning deficits) (Figure 1a, b). We found that in well-trained rats, the bias was near

zero (2±4.6 %Odor A (mean± S.D), p = 0.08, signed rank test). Likewise, lapse rates were low

(3±4%), indicating that for easy stimuli rats’ performance was near perfect and not substantially

degraded by attention or incomplete learning. Lapse rate, sensitivity and bias remained stable over

sessions, indicating that rats reached asymptotic performance (Figure 1b, 14/16 rats, p > 0.1, linear

regression).

Despite the stable, asymptotic performance for easy decisions, previous trials had substantial

effects on subsequent choices (Figure 1c). In order to assess the effects of reinforcement on percep-

tual decisions, we calculated conditional psychometric functions. We first considered the effect of

previous choice (Figure 1c). Psychometric functions were systematically biased by previously

rewarded choices: after correct leftward choices rats tended to make a left choice. Conversely, fol-

lowing correct rightward choices, animals made rightward choices more often (F = 29.8, p=0.001, 2-

way ANOVA).

The effects of the previous decision on subsequent choices also depended on the difficulty of the

previous choices (Figure 1d-g). We computed psychometric functions after correct (and hence

rewarded) trials separately for different stimuli of the previous trial (Figure 1d). The resulting psycho-

metric functions were systematically biased towards the recently rewarded side for difficult decisions

(Figure 1e). Rats tended to repeat their previous choices particularly when they succeeded to cor-

rectly categorize a challenging odor mixture and earn reward (Figure 1e). We quantified the magni-

tude of this choice bias for each pair of current and previous stimuli (Figure 1d, see

Materials and methods). To do so, we subtracted the average psychometric curve (computed from

all trials) from each psychometric curve computed conditional on the specific previous correct stimu-

lus, and plotted the size and sign of this difference (positive: bias to choose A; negative: bias to

choose B) (Figure 1d,f). To summarize choice biases, we then averaged these differences across tri-

als in which the current choice was easy or difficult (Figure 1d,g). The magnitude of this choice bias

was proportional to the difficulty of the previous decision, in addition to the difficulty of the current

decision (Figure 1f). Updating was minimal when the current stimulus was easy, regardless of the dif-

ficulty of the previous decision (Figure 1g, squares). This is because the data points are overlapping

when the current stimulus is easy, and hence the distance between them is close to zero (Figure 1d,

e). When the current stimulus was difficult, updating was also minimal after correct easy choices,

whereas it was strong following correct difficult choices (Figure 1g, circles, p=0.0002, rank sum

test). Thus, when the current sensory evidence was strong, it determined the choice, without detect-

able effects of the previous trial (Figure 1g, squares). However, when the sensory evidence in the

current trial was weak, the previous reward influenced choices only if the reward was earned in a dif-

ficult trial (Figure 1g, circles). The difficulty of previous decision did not influence the slope (sensitiv-

ity) nor the lapse of psychometric curves in the next trial (p>0.1 rank sum test). Additionally, plotting

the psychometric curves conditional on the specific stimulus in the previous trial but separated

according to the outcome of the previous trial (correct vs error) further illustrated that past outcome

influence subsequent choice in particular when the previous choice was difficult (Figure 1—figure

supplement 1). Together, these observations indicate that the effects of past rewards on perceptual

choices depend on the difficulty of the previous perceptual judgments.

Choice updating is not due to slow drifts in choice side bias
The results so far demonstrate that previous rewards influence subsequent perceptual decisions

especially when the previous decision was difficult. One possibility is that these behavioral effects

arise as a byproduct of slow fluctuations of side bias causing correlations across consecutive trials

and hence systematic shifts in choices. This scenario can be illustrated within a signal detection the-

ory (SDT) framework. In SDT, the perceived stimulus is compared to a decision boundary and produ-

ces a correct choice when the stimulus falls on the appropriate side of the boundary (Figure 2a).

When the decision boundary is fixed, there is no apparent updating, as expected (Figure 2—figure

supplement 1a, b). However, simulating a slowly drifting decision boundary reveals systematic

effects of previous trials on next choices, because the drifting boundary induces correlations across

trials, producing apparent choice updating based on the previous trials (Figure 2b; Figure 2—figure

supplement 1c, d). For instance, if the decision boundary slowly drifts to the left side then rightward
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choices will be more frequent and occur in succession, producing a shift in the psychometric curve

(Figure 2b). Importantly, this effect is independent of decision outcomes and is observed in a

sequence of trials, both before and after a rewarded trial (Figure 2b). An alternative, more intrigu-

ing, scenario for explaining our results is an active learning process that produces trial-by-trial adjust-

ment of the decision boundary. If the decision boundary is adjusted in a trial-by-trial manner

according to the outcome of the previous trial, psychometric shifts will be observed in the next trial

contingent on the past reward, but absent in the preceding trial (Figure 2c). It is thus critical to

remove slow fluctuations of side bias, before concluding that psychometric shifts are signatures of

an active learning process.
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Figure 2. Choice updating is not due to slow and nonspecific drift in response bias. (a) Signal detection theory-inspired schematic of task performance.

The psychometric curve illustrates the average choice behavior. (b) Slow non-specific drift in choice bias, visualized here as drift in the decision

boundary, could lead to shift in psychometric curves which persisted for several trials and was not specific to stimulus and outcome of the previous trial.

This global bias effect is cancelled when subtracting the psychometric curve of trialt-1 (orange) from trialt+1 (brown). (c) Trial-by-trial updating of decision

boundary shifts psychometric curves depending on the outcome and perceptual difficulty of the preceding trial. Subtracting psychometric curves does

not cancel this effect. (d) Choice bias of the example rat following a rewarded trial. (e) Similar to d but for population. (f) Choice bias of the example rat

in one trial prior to current trial, reflecting global nonspecific bias visualized in b. (g) Similar to f but for population. (h) Subtracting choice bias in trialt-1
from trialt+1 reveals the trial-by-trial choice updating in the example rat. (i) Similar to h but for the population. See Figure 2—figure supplement 1 for

details of the normalization procedure.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Isolation and correction of slowly drifting non-specific choice bias.

Lak et al. eLife 2020;9:e49834. DOI: https://doi.org/10.7554/eLife.49834 5 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.49834


We next asked to what extent the trial history effects we observed reflect correlations across con-

secutive trials due to slowly fluctuating bias over trials. To do so, we devised a model-independent

analysis to identify and remove slow fluctuations of side bias (Figure 2—figure supplement 1).

While it is possible to formulate model-based analyses to correct for slow biases, there are numerous

possibilities that could produce similar fluctuations. Therefore, we sought a model-independent

technique, reasoning that slow fluctuations are, by definition, slower than one trial, and hence should

have largely similar impact across adjacent trials. Specifically, slow fluctuations will produce similar

biases one trial before and after a given decision outcome. This assumption leads to a simple strat-

egy to correct for possible slow drifts and isolate psychometric curve shifts due to active processes:

subtracting the psychometric shifts between trial t and t-1 from that of trial t+1 and t removes the

effect of slow response bias, that is slow boundary drift. Importantly, applying this normalization to

the STD model with a drifting decision boundary removes the apparent but artefactual dependence

of decisions on previous trials (Figure 2—figure supplement 1d). This subtraction technique thus

provides an estimate of how the current trial influences choices in the next trial. Another intuition for

this analysis is that future rewards cannot influence past choices, and therefore any systematic

dependence of psychometric curves on next trials cannot reflect causal mechanisms and need to be

adjusted for. We thus define ‘choice updating’ as a trial-by-trial bias beyond slowly fluctuating and

non-specific side biases.

We found that the difficulty of previous choices had a strong effect on subsequent choices in rat

olfactory discriminations even after correcting for slow fluctuations in the choice bias (Figure 2d–i).

We computed the psychometric curves conditional on stimuli and outcomes, for both the next trial

(Figure 2d,e) and also the previous trial (Figure 2f,g). Choice biases tended to be larger when con-

sidering the next trial compared to the previous trial. The difference between these provides an esti-

mate of choice updating that is due to the most recent reward and without slow and non-outcome

specific fluctuations in side bias (Figure 2h,i). The choice updating effect remained statistically signif-

icant even after this correction (p=0.003, rank sum test). These results rule out the possibility that

psychometric shifts are only due to slow drift in side bias and indicate that reward received in the

past trial influences subsequent perceptual decisions specifically if the sensory evidence in the previ-

ous trial was uncertain and difficult to judge.

Belief-based reinforcement learning models account for choice
updating
We next considered what types of reinforcement learning processes could account for the observed

choice updating effects. Reinforcement learning models have been long used to study how choices

are influenced by past decisions and rewards (Daw and Doya, 2006; Sutton and Barto, 1998). A

key distinction between RL model variants is whether and how they treat ambiguous signals for state

inference and prediction error computation.

We show that a reinforcement learning model with a belief-state representing ambiguous percep-

tual stimuli accounts for choice updating (Figure 3a,b). A reinforcement model for our behavioral

task has to consider the inherent perceptual ambiguity in sensory decisions in addition to tracking

reward outcomes. The normative way to cope with such ambiguity about state representations is to

introduce a partially observable Markov decision process (POMDP) framework for the temporal dif-

ference RL (TDRL) algorithm (Dayan and Daw, 2008; Lak et al., 2017; Lak et al., 2019; Rao, 2010).

POMDPs capture the intuitive notion that when perception is ambiguous, the model needs to esti-

mate current perceptual experience as a ‘belief state’, which expresses state uncertainty as a proba-

bility distribution over states.

Previously, we showed that such a model is analogous to a TDRL model that uses statistical deci-

sion confidence, the conditional probability of getting reward given the choice, to scale prediction

errors (Lak et al., 2017). We reasoned that this model could also account for how uncertainty of

past perceptual decisions influences learning and updating of subsequent perceptual choice. In the

model, the rewards received after difficult, low confidence, choices lead to large reward prediction

errors and hence the strong updating of decision values in the next trial (Figure 3a, b). The belief

state in the model reflects the subject’s internal representations of a stimulus, which in the case of

our 2AFC task is the probability that the stimulus belongs to the left or right category (pL and pR). To

estimate these probabilities, the model assumes that the internal estimate of the stimulus, ŝ, is nor-

mally distributed with constant variance around the true stimulus contrast: p ŝjsð Þ ¼ N ŝ; s;s2ð Þ, where
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Figure 3. Belief-based reinforcement learning model accounts for choice updating. (a) Left: schematics of the temporal difference reinforcement

learning (TDRL) model that includes belief state reflecting perceptual decision confidence. Right: predicted values and reward prediction errors of the

model. After receiving a reward, reward prediction errors depend on the difficulty of the choice and are largest after a hard decision. Reward prediction

errors of this model are sufficient to replicate our observed choice updating effect. (b) Choice updating of the model shown in a. This effect can be

observed even after correcting for non-specific drifts in the choice bias (right panel). The model in all panels had s2=0.2 and a=0.5. (c) A TDRL model

which follows a Markov decision process (MDP) and that does not include decision confidence into prediction error computation produces choice

updating that is largely independent of the difficulty of the previous decision. (d) A MDP TDRL model that includes slow non-specific drift in choice bias

fails to produce true choice updating. The normalization removes the effect of drift in the choice bias, but leaves the difficulty-independent effect of

past reward (e) A MDP TDRL model that includes win-stay-lose-switch strategy fails to produce true choice updating. For this simulation, win-stay-lose-

switch strategy is applied to 10% of randomly-selected trials. See Figure 3—figure supplement 1 and the Materials and methods for further details of

the models.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Further characteristics of the confidence-dependent TDRL model and the MDP TDRL model.
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ŝ parameterizes a belief distribution over all possible values of s that are consistent with the sensory

evidence, given by Bayes rule:

p sĵsð Þ ¼
p ŝjsð Þ:p sð Þ

p ŝð Þ

Assuming that the prior belief about s is uniform, then the optimal belief will also be Gaussian,

with the same variance as the sensory noise distribution, and mean given by ŝ: p sĵsð Þ ¼N s; ŝ;s2ð Þ.

From this, the agent computes a belief, that is the probability that the stimulus was on the right

side of the monitor, pR ¼ p s>0ð ĵs), according to:

pR ŝð Þ ¼

Z

¥

0

p sĵsð Þds

where pR represents the trial-by-trial probability of the stimulus being on the right side and

pL ¼ 1� pR similarly represents the probability of it being on the left. Multiplying these probabilities

with the learned action values of left and right, VL and VR, provides the expected values of left and

right choices: QL ¼ pLVL and QR ¼ pRVR. The higher of these two determines the choice C (either L or

R), its associated confidence pC, and its predicted value Qc ¼ pCVC. Note that although the choice

computation is deterministic, the same stimulus can produce left or right choices caused by fluctua-

tions in the percept due to randomized trial-to-trial variation around the stimulus identity (Figure 3—

figure supplement 1a). Following the choice outcome, the model learns by updating the value of

the chosen action by VC VC þad, where a is a learning rate, and d¼ r�QC is the reward prediction

error. Thus, in this model, prediction error computation has access to the belief state used for com-

puting the choice, and hence reward prediction error is scaled by the confidence in obtaining the

reward (Lak et al., 2017; Lak et al., 2019). The largest positive prediction error occurs when receiv-

ing a reward after a difficult, low confidence, choice while receiving a reward after an easy choice

results in a small prediction error (Figure 3a, right). After training, the choices produced by this

model exhibit confidence-guided updating (Figure 3b, left), similar to those we observed in choices

of rats. Similar to the data, the choice updating in this model persisted after accounting for possible

slow fluctuations in the choice bias (Figure 3b, right). Note that RL models can produce correlations

in choices across trials due to the correlation of stored values across trials, and hence it is important

to evaluate the size of the updating effect after the normalization. An additional prediction of our

model is that updating effect should be slightly stronger when considering trials preceded by two

(rather than one) rewarded difficult choices in the same direction (Figure 3—figure supplement 1b),

which we also observed in rats’ choices (Figure 3—figure supplement 1b).

We next considered whether classical TDRL models that follow a Markov decision process (MDP),

could also produce confidence-guided updating. Such a model is largely similar to the model

described above with one fundamental difference: the computation of prediction error does not

have access to the belief state. In other words, prediction errors are computed by comparing the

outcome with the average value of chosen action, without consideration of the belief in the accuracy

of that action. In the model variant with two states (L and R), after learning, VL and VR reflect the

average reward expectations for each choice and prediction errors are computed by comparing the

outcome with this average expectation. Decisions made by this model show substantial effects of

past reward (Figure 3c): after receiving a reward, the model has a tendency to make the same deci-

sion. However, compared to the belief-based model, this bias shows little dependence on the diffi-

culty of the previous choice, and this dependence is absent after applying our normalization

(Figure 3c, left). An extended version of this model that represents stimuli across multiple states

also cannot reproduce confidence-dependent updating (see Materials and methods). Thus, MDP

TDRL models (i.e. TDRL without a stimulus belief state) do not exhibit confidence-guided choice

updating. We also considered whether a MDP TDRL model with slowly fluctuating response side

bias could show trial-by-trial choice updating (Figure 3d). A modified MDP TDRL model that

includes a slowly drifting side bias term showed a substantial effect of past reward on choices, which

was mildly dependent on the difficulty of the previous sensory judgement (Figure 3d, left). This

dependence, however, vanished after normalizing the choices to account for slowly drifting side bias

(Figure 3d, right). This reveals that slowly fluctuating side bias in TDRL models without a belief state

does not result in confidence-guided choice updating, despite apparent trial to trial fluctuations.
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The results also further confirm the effectiveness of our normalization procedure (i.e. subtracting the

bias in the previous trials from next trials) in isolating trial-by-trial confidence-guided choice updat-

ing. We also ruled out the possibility that choice updating reflected an elementary win-stay strategy

(Figure 3e). The decisions of an MDP TDRL model that was modified to include win-stay strategy (to

repeat the previously rewarded choice, with p=10% in this example) show strong dependence on

past rewards. The normalization removes the dependence of updating size on choice difficulty that

is due to a correlation across choices. However, it does not remove the signatures of win-stay /

loose-switch behavior (Figure 3e). Thus, in this model variant the effect of past rewards is indepen-

dent of the difficulty of the previous choice, differing from the rat data in which the size of the bias

induced by previous reward is proportional to the difficulty of the previous decision.

The predictions of the confidence-dependent TDRL and MDP TDRL models differ in two principal

ways. First, the learned values of actions (VL and VR) converge to different values over learning (Fig-

ure 3—figure supplement 1c). In the confidence-dependent TDRL, VL and VR both converge to just

below the true size of reward. However, in the MDP TDRL model they converge to the average

choice accuracy (average reward harvest), which is lower than the true reward size (Figure 3—figure

supplement 1c). This difference emerges because in the belief-based model values are updated

using prediction errors scaled by confidence. Confidence is relatively low in the error trials, leading

to small adjustments (reductions) of values after those trials, and hence the convergence of values to

just below the true reward size (i.e. reward value, when the reward is given). This difference is impor-

tant for understanding updating in particular in the case of very easy correct trials. In the confi-

dence-dependent model, large confidence associated with a correct easy choice together with

higher values of stored values produce Q values similar to the true reward size, and hence near-zero

prediction errors when receiving the reward. However, in the MDP model, Q values are compared

with relatively low stored values (compared to the reward value), and hence reward prediction errors

persist even for very easy correct choices. The second major difference between the two models is

how choice difficulty determines reward prediction errors and hence updating. While in the confi-

dence-dependent model prediction errors depend on the choice difficulty (Figure 3a; Figure 3—fig-

ure supplement 1d), in the MDP TDRL the prediction errors do not reflect choice difficulty

(Figure 3—figure supplement 1d, see Materials and methods). The prediction errors of the belief-

based model thus result in graded levels of updating in the subsequent trials depending on the diffi-

culty of the previous choice.

On-line learning in margin-based classifiers explains choice updating
We next considered whether another class of models based on classifiers could also explain choice

updating. Perceptual decision-making processes produce discrete choices from ambiguous sensory

evidence. This process can be modelled with classifiers that learn a boundary in the space of sensory

evidence. For instance, in our olfactory decision task evidence is a two-dimensional space spanned

by the odor components A and B (Figure 4a). The hyperplane separating choice options creates a

decision boundary determining whether each odor mixture is classified as A or B, which can be

learned over trials. To apply these ideas to our decision tasks, we examine a probabilistic interpreta-

tion of Support Vector Machine (SVM) classifiers, a powerful technique from machine learning (see

Materials and methods). SVMs learn classification hyperplanes that produce decision boundaries

that are maximally far away from any data sample. Applying this framework to our particular decision

problem requires an on-line implementation of a probabilistic interpretation of SVMs (Sollich, 2002).

In the SVM terminology, the distance of a sample x from the category boundary or hyperplane is

called the ‘margin’ of the data point (orange arrow in Figure 4a). The size of the margin for a stimu-

lus is proportional to the likelihood of that data point belonging to a class given the current classi-

fier. After appropriate normalization, this model yields an estimate of the classification success for a

given decision. Indeed, the Bayesian posterior of classification success is a normative definition of

confidence (Hangya et al., 2016; Pouget et al., 2016).

Simulation of this on-line, Bayesian SVM produces choice updating similar to that from the RL

model (Figure 4b, c). Thus, statistical classifiers, in which the decision boundary is continuously

updated in proportion to the estimated classification success (i.e. decision confidence), provides

another account of choice updating. The core computational feature common to reinforcement

learning and classifier models is that statistical decision confidence contributes to the trial-by-trial

adjustment of choice bias.
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In the following sections, we examine whether confidence-guided choice updating is observed in

sensory modalities other than olfaction, and in species other than rats.

Confidence-guided choice updating in rat auditory decisions
We next investigated decisions of rats performing a two-alternative auditory decision task (Figure 5).

Rats were trained to report which of two auditory click trains delivered binaurally had a greater num-

ber of clicks (Sanders et al., 2016; Sanders and Kepecs, 2012; Brunton et al., 2013; Figure 5a).

The click trains were presented for 250 ms and generated using a Poisson process with the sum of

the two rates held constant across trials. To control decision difficulty, the ratio of click rates for

each side was randomly varied from trial to trial. The strength of evidence on a given trial was com-

puted based on the number of clicks, that is the difference in the number of clicks between left and

right divided by the total number of clicks. Rats showed steep psychometric curves (slope:

0.37±0.03, mean± S.D) with minor overall bias (-1±4.9% sound A) and near-zero lapse for easy stimuli
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Figure 4. An on-line statistical classifier accounts for choice updating. (a) Schematic of a classifier using Support

Vector Machine for learning to categorize odor samples. The dashed line shows one possible hyperplane for

classification and shaded area around the dashed line indicates the margin. Orange arrow indicates the distance

between one data point and the classification hyperplane, that is the margin for that data point, given the

hyperplane. Each circle is one odor sample in one trial. (b) Average estimates of the margins of the classifier. (c)

The size of shift in the classification as a function of previous and current stimulus. (d) Choice updating as a

function previous odor separated for current easy and hard choices.
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(0.05±0.09%). We found that, similar to the olfactory task, difficult choices were biased in proportion

to the difficulty of previous choice (Figure 5b-d, p=0.007, rank sum test).

Confidence-guided choice updating in mouse auditory decisions
We next considered decisions of mice performing an auditory decisions task (Figure 6). Mice were

trained on a two-alternative auditory tone decision task. The auditory stimuli in different trials were

presented as percentages of a high and low frequency complex tone, morph A and morph B

(Figure 6a). To manipulate perceptual uncertainty, we varied the amplitude ratio of the two spectral

peaks in a trial-by-trial manner. Mice showed steep psychometric curves (slope: 0.25±0.06, mean ±

S.D) with minor overall bias (-1±6.9% sound A) and negligible lapse for easy stimuli (3±2%). The

choices showed significant dependence on the difficulty of previous choice (Figure 6b-d, p=0.01,

rank sum test).

Confidence-guided choice updating in mouse visual decisions
We next considered mice trained to perform visual decisions (Figure 7; Burgess et al., 2017). Head-

fixed mice were trained to report the position of a grating on the monitor by turning a steering

wheel placed under their front paws (Figure 7a). If the mouse turned the wheel such that the stimu-

lus reached the center of the screen, the animal received water. If instead the mouse moved the

stimulus by the same distance in the opposite direction, this incorrect decision was penalized with a

timeout of 2 s (Burgess et al., 2017). We varied task difficulty by varying the contrast of the stimulus

in different trials. Mice showed steep psychometric curves (slope: 0.260±11, mean ± S.D) with minor

overall bias (1±9.1% stimulus contrast) and negligible lapse for easy stimuli (5±4.9%). The decisions

showed significant dependence on the difficulty of previous choice (Figure 7b-d, p=0.001, rank sum
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test), consistent with similar results in a different version of this task that also included manipulation

of reward size (Lak et al., 2019).

Confidence-guided choice updating in human visual decisions
Next, we asked whether confidence-guided choice strategy was specific to rodents or could also be

observed in humans (Urai et al., 2017). Human observers performing a visual decision task updated

their choices in a confidence-dependent manner (Figure 8). Observers performed a two-interval

forced choice (2IFC) motion coherence discrimination task (Figure 8a). They judged the difference in

motion coherence between two successively presented random dot kinematograms: a constant ref-

erence stimulus (70% motion coherence) and a test stimulus with varying motion coherence in differ-

ent trials (Urai et al., 2017). Observers performed the task well (slope: 0.2±0.01, bias: 0±3%

stimulus coherence, lapse: 1±2%), and their choices showed significant dependence on the difficulty

of previous choice (Figure 8b-d, P<0.05, rank sum test).

Confidence-guided choice updating transfers across sensory modalities
We found that rats exhibit confidence-dependent choice updating even if the sensory modality of

current decision differed from the modality of the previous decision (Figure 9). We trained rats in a

dual sensory modality 2AFC task with randomly interleaved trials of auditory and olfactory decisions

(Figure 9a-b). Rats performed the task well (slope: 0.35±0.03, bias: -2±6%, lapse: 1±0.4%) and their

choices showed significant dependence on the difficulty of the past choice, and this dependence

transferred across the sensory modalities. Rats updated their olfactory decisions after difficult audi-

tory decisions (Figure 9c-e p=0.008, rank sum test), and similarly, they updated their auditory
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choices after difficult olfactory decisions (Figure 9f, h, p=0.01, rank sum test). The updating

occurred also across trials in which the modality of the choice did not change (i.e. in consecutive

auditory choices and consecutive olfactory choices). Choice updating appeared largest in two conse-

cutive olfactory decisions, yet updating was present in consecutive auditory choices as well as in con-

secutive trials with a modality switch (Figure 9—figure supplement 1). These results show that the

updating effect depends on the choice outcome, rather than the identity, that is modality, of the

sensory stimulus. This observation further indicates that choice updating mainly occurs in the space

of action values, similar to our RL model.

Diversity of confidence-guided choice updating across individuals
Having observed confidence-guided choice updating across various data sets, we next quantified

this behavioral effect in each individual, and observed a weak but negative correlation between the

strength of choice updating and psychometric lapse rate (Figure 10). To quantify the choice updat-

ing effect for each individual, we performed linear regressions on the updating data (Figure 10a

inset) and computed the updating index as the difference in the slope of the fits for current easy and

current difficult trials. A large fraction of individuals in each data set showed substantial choice

updating consistent with the predictions of the model (positive numbers in Figure 10a). Neverthe-

less, we also observed individuals with negligible updating, and even in rare instances a choice bias

in the direction opposite to the model’s prediction (negative numbers in Figure 10a). Quantifying

individual behavior enabled us to ask whether this observed diversity could be explained by varia-

tions in the quality of perceptual processing (psychometric slope and lapse rate; Figure 10b,c). The

slope and updating did not exhibit a significant relationship (p=0.21), but the lapse rate and updat-

ing showed a weak significant negative correlation (p=0.03). In other words, choice updating was

strongest among individuals with lower lapse rate (Figure 10c). The results suggest that choice

updating of the form we observed, is strongest when subjects are well trained in the perceptual

task, with stable psychometric slope and minimal lapse rate.
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of previous auditory stimulus separated for current odor-guided easy (square) and difficult (circle) trials, averaged across subjects. (f-h) Similar to c-e but

for trials in which the current stimulus has been auditory and the previous trial has been based on olfactory stimulus.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Choice-updating in rats performing a task in which the modality of sensory stimulus in different trials is either auditory or

olfactory.
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Different strategies for choice updating after error trials due to
different noise sources
Lastly, we asked whether subjects show choice updating following error trials. We observed substan-

tial diversity in choice bias after error trials, both across individuals and data sets. For example, two

rats that performed olfactory decisions with similar choice updating after correct choices

(Figure 11a,b top panel), showed divergent patterns of updating after incorrect choices

(Figure 11a,b bottom panel). Interestingly, reinforcement learning models with different parameter

settings also produced diverse choice bias patterns after error trials, depending on the dominant

source of noise, that is whether errors were produced by sensory noise (external) or due to value

fluctuations (internal). When sensory noise is high and leads to errors, these errors cannot be system-

atically corrected hence there is little or no net updating effect (Figure 11c, bottom panel). On the

other hand, when the internal noise is high, such as high learning rate producing over-correction,

systematic post-error updating is observed (Figure 11d, bottom panel). Although we found individ-

ual subjects matching these specific patterns of post-error updating (Figure 11a,b), the diversity

across individuals and populations, as well as the low number of error trials precludes a more in-

depth analysis. Note that for post-correct updating our RL model makes qualitatively similar predic-

tions about choice updating, independent of whether the dominant source of noise is external or

internal (Figure 11c,d top panels).

Discussion
Our central observation is that even well-trained and well-performed perceptual decisions can be

informed by past sensory evidence and outcomes. When the sensory evidence is strong, it deter-

mines choices, as expected, and past outcomes have little influence. When sensory evidence is

weak, however, choices are influenced by trial history. We show that this effect of past rewards can

depend on the difficulty of past sensory decisions: subjects repeat the previously rewarded choice
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mainly when past sensory decision was difficult. This confidence-guided choice updating occurs in a

trial-by-trial manner, and it is not due to slow drifts in choice strategy. We demonstrate that these

history-dependent choice biases can be explained with reinforcement learning models that consider

sensory ambiguity as a belief state computation, and hence produce confidence-scaled reward pre-

diction error signals. We illustrate that this form of choice updating is a robust and widespread

behavioral phenomenon observed across various perceptual decision-making paradigms in mice,

rats and humans. Notably we found evidence for the same reinforcement learning process across

data sets despite substantial variations in experimental setups and other conditions across the

experiments examined.

The influence of past trials on perceptual decisions does not necessarily reflect active, trial-by-trial

learning. In fact, our simulations illustrate that slow and non-specific drifts in the decision boundary

result in correlations between consecutive choices, which can produce psychometric shifts similar to

choice bias updating (Figures 2 and 3). To correct for this and isolate reinforcement learning-based

choice updating, we used a simple procedure to compute choice updating with respect to slow fluc-

tuations in the choice bias. We show the trial history effects persisting after this correction reflect

confidence-guided reinforcement learning processes. These analyses also indicate that trial history

effects and serial choice biases should be considered with care because correlations across choices

at various time scales can produce apparent updating of perceptual choices. A similar confound has

been previously reported in post-error slowing analysis, and similar normalization procedures were

used to correct for it (Dutilh et al., 2012; Purcell and Kiani, 2016).

Confidence in the correctness of a choice determines the degree to which the reward can be

expected. Hence, decision confidence informs how much the decision maker should learn from the

decision outcome, as suggested by RL models that incorporate belief states representing confidence

(Lak et al., 2017; Lak et al., 2019). Rewards received after decisions with high confidence are

expected and hence there is not much to learn from them. In contrast, rewards received after deci-

sions with lower confidence are relatively unexpected and could provide an opportunity to learn

(Figure 3). Our results reveal that rodents and humans exhibit this form of learning (Figure 10).

0 100
0

100

0 100
0

100

Previous odor (%A)

C
u

rr
e

n
t 
o

d
o

r 
(%

A
)

20 80
20

80

20 80
20

80

Model 

Large sensory noise

Model 

Large internal noise

-12

0

12

Example rat Example rat

U
p

d
a

tin
g

 %

0 100
0

100

20 80
20

80

0 100
0

100

20 80
20

80

A
ft

e
r 

c
o

rr
e

c
t

A
ft

e
r 

e
rr

o
r

a b c d

Figure 11. Diverse learning effects after error trials. (a) Choice updating after correct trials (top) and after error trials (bottom) in one example rat. (b)
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These results were robust across various datasets, enabling us to isolate an elementary cognitive

computation driving choice biases.

Trial-by-trial transfer of choice updating across sensory modalities provides some evidence that

this form of learning is driven by comparing the decision outcome with confidence-dependent

expectation and performing updating in the space of action values. However, updating across trials

with different modalities was relatively weaker compared to trials within the same sensory modality.

This later observation might point to the fact that in trial-by-trial learning animals follow a mixture of

two strategies: one which updates values in the space of actions, and one that keeps track of stimu-

lus identity and statistics across trials for such learning. The trade-off between these model-free and

model-based trial-by-trial learning during perceptual decisions remains to be explored in future

studies.

What are the neuronal substrates of confidence-dependent choice updating? Several lines of evi-

dence indicate that the dopaminergic system is centrally involved in this phenomenon. First, dopa-

mine neuron responses during perceptual decisions quantitatively match confidence-dependent

prediction errors in both monkeys and mice (Lak et al., 2017; Lak et al., 2019). Second, dopamine

responses predict the magnitude of the psychometric choice bias in the subsequent trial (Lak et al.,

2019). Third, optogenetic manipulation of dopamine neurons biases psychometric curves in a trial-

by-trial fashion (Lak et al., 2019). In addition, different frontal cortical regions, medial prefrontal cor-

tex (Lak et al., 2019) and orbitofrontal cortex (Hirokawa et al., 2019) are also likely to contribute to

confidence-guided choice updating strategies.

Rewards induce choices bias in perceptual decisions
There is mounting evidence that in perceptual decision making tasks, even though reward is only

contingent on accurate judgment about the current sensory stimulus, choices can be influenced by

previous trials across species (Abrahamyan et al., 2016; Akaishi et al., 2014; Akrami et al., 2018;

Braun et al., 2018; Busse et al., 2011; Cho et al., 2002; Fan et al., 2018; Fischer and Whitney,

2014; Fritsche et al., 2017; Fründ et al., 2014; Gold et al., 2008; Hwang et al., 2017;

Lueckmann et al., 2018; Luu and Stocker, 2018; Marcos et al., 2013; Tsunada et al., 2019;

Urai et al., 2017). Several such studies have shown that subjects might repeat the previously

rewarded choice or avoid it after an unsuccessful trial, suggesting that basic forms of reward-based

learning are at work even at asymptotic, steady-state perceptual performance. Given that these trial-

history effects diminish the overall reward return, and are hence suboptimal, the question is why

they persist even after subjects are well trained in the task? Our results showed a similar phenome-

non across various data sets and species that produced choice bias in perceptual decisions after

rewarded decisions that were difficult, consistent with recent reports (Mendonça et al., 2018;

Lak et al., 2019). We show that these behavioral effects are normatively expected from various

models that consider the uncertainty of stimulus states inherent in perceptual decisions. It is worth

noting that the confidence-gauged learning described here requires observing the trial feedback,

and it might thus differ from sequential choice effects in the absence of trial feedback (Braun et al.,

2018; Glaze et al., 2015). Moreover, confidence-dependent learning differs from trial history-effects

for highly discriminable stimuli, that is “priming of popout“ effect (Maljkovic and Nakayama, 1994).

These observations suggest that there are various types of selection-history mechanism operating in

the brain with distinct constraints and properties.

Computational mechanisms of confidence-driven choices bias
What classes of models can account for our behavioral observations? It is clear that a purely sensory-

based model or a purely reward-based model cannot account for our data. One approach is to start

with a reinforcement learning model and add a belief state to account for stimulus-induced uncer-

tainty (Lak et al., 2017; Lak et al., 2019). We show that this class of models provides teaching signal

reflecting past confidence and accounts for the observed choice bias strategy. Alternatively, we also

considered a statistical classifier model that on-line adjusts the decision boundary in proportion to

estimated classification success (Sollich, 2002). We show that this Bayesian on-line support vector

machine also accounts for the observed choice bias strategy. Similarly, Bayesian learning in drift-dif-

fusion models of decision making also makes similar predictions about confidence-dependent choice

biases (Drugowitsch et al., 2019). Thus, either a sensory-based classification model modified to
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produce statistically optimal adjustments based on on-line feedback, or a reward-based model mod-

ified to account for the ambiguity in stimulus states produce broadly similar confidence-dependent

choice biases. These models share one main computation: they adjust the degree of learning based

on the statistical confidence in the accuracy of previous decisions. Therefore, the key features of our

data can be accounted for by either reinforcement learning mechanisms or on-line statistical

classifiers.

These model classes can be distinguished chiefly on the basis of their respective decision varia-

bles: RL updates value, while classifiers update boundaries in sensory coordinates. Using a mixed

sensory modality decision task it is possible to test whether updating is based on action values or

stimulus variables. Actions value updating, predicted by RL models, leads to the transfer of choice

bias across decisions with mixed sensory modalities. Category boundary updating in sensory coordi-

nates, predicted by classifier models, leads to updating solely across the same sensory modality. We

found that choice bias transferred across sensory modalities, suggesting that updating occurs in the

space of action values. However, across-modality choice bias updating was weaker than within-

modality updating, pointing to the possibility that animals update choices both based on stimulus

statistics and action values.

All correct trials are alike; each incorrect trial is incorrect in its own way
When learning from outcomes, it is natural to consider not only correct choices but also what hap-

pens after incorrect choices. Surprisingly, we found that post-error behavioral effects were highly

variable across subjects and datasets, unlike the post-correct choice updating we observed.

To paraphrase Leo Tolstoy’s famous opening sentence of the novel Anna Karenina: all correct tri-

als are alike; each incorrect trial is incorrect in its own way. Correct perceptual performance requires

appropriate processing and evaluation of the stimulus. In contrast there are many processes that can

lead to incorrect performance without consideration of the stimulus, from inattention to lack of moti-

vation to exploration. Indeed, in our behavioral data, the post-error behavioral effects were diverse,

usually even within the same dataset.

We examined the RL model to gain insights into the possible origins of this post-error diversity.

Note that the model’s qualitative predictions about post-correct trials are largely independent of

model parameters. In contrast, the predictions of the model for post-error trials depend on parame-

ter settings, in part based on the balance in the sources of decision noise. When stimulus-noise was

dominant there was little post-error updating. However, when the model’s internal noise was high

(e.g. large learning rate), it exhibited post-error updating. We found that individual subjects match

these specific patterns but in fact the diversity in the data was greater, as expected, since the model-

ing framework does not take into account many relevant sources of decision noise, such as atten-

tional lapses, lack of motivation or exploration, a multitude of processes that can all lead to errors.

Identifying the origin of decision noise is critical for the appropriate interpretation of any psycho-

metric decision task. In the signal detection theory-based psychometric framework, negligible lapse

rates and asymptotic psychometric slopes point to the interpretation that fluctuations in decisions

are solely due to noise in perceptual processing. However, the ongoing learning mechanisms

described here contribute to apparent fluctuations in the decisions, indicating that the contribution

of sensory processing to decision noise may be often lower than previously thought (Zariwala et al.,

2013). This ongoing learning might eventually go away after extended behavioral training yet we still

observed signatures of this learning process in many subjects after 3–4 months of almost daily

training.

Consilience of perceptual and reward-guided decisions
Choice biases in perceptual decisions are typically considered maladaptive and suboptimal because

in laboratory experiments trials are often designed to be independent from each other and isolate

the perceptual process under study (Britten et al., 1992; Hernández et al., 1997). Indeed, percep-

tual choice biases that are entirely stimulus-independent are suboptimal. However, the confidence-

guided choice bias we examined could point to an underlying optimal choice strategy from various

perspectives. First, this strategy is optimal when considering that the world can change, and hence

the precise decision category boundary may not be stable over trials. In this situation, the outcome

of decisions closer to the category boundary provide the most informative feedback as to where the
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category boundary should be set. Second, confidence-guided choice updating is optimal when con-

sidering that in natural environments external events can be temporally correlated. In such environ-

ments, when the evidence in favor of choice options is limited and hence there is uncertainty in

decisions, it is beneficial to consider prior beliefs and the temporal statistics of events and adjust

choices accordingly (Yu and Cohen, 2008). Thus, despite being suboptimal from the experimenter’s

perspective, confidence-guided learning can be optimal in dynamic, real world situations, revealing

that perceptual and reinforcement learning processes jointly contribute to many previously studied

decision paradigms.

Materials and methods

Data analysis and psychometric fitting
For the psychometric analysis, we calculated the percentage of choice as a function of sensory stim-

uli. We fitted these data with the psychometric function  sð Þ ¼ lþ 1� 2lð ÞF s;�;sð Þ where F xð Þ is a

cumulative Gaussian. The parameter m represents the mean of the Gaussian and define the side

bias. The parameter s determines the slope of the fitted curve. The parameter l represents the

lapse rate of the curve. We fitted this function via maximum likelihood estimation (Wichmann and

Hill, 2001).

We used the psychometric fits to evaluate whether the performance was substantially differed

across days of testing in each subject. In addition, we computed conditional psychometric curves by

computing the curves from a subset of trials, that is those that were preceded by specific stimulus

level, action direction and outcome in the previous trial. We used the same procedure as above for

fitting these conditional curves.

Subtracting the average performance (for each level of stimulus) from performance in the condi-

tional curves for the same level of stimulus provided an estimate of choice updating, that is the level

of side bias for each stimulus (Figure 2). The size of these side biases was plotted in the heatmaps

for each dataset.

To isolate trial-by-trial updating independent of possible slow fluctuation in the choice bias, we

estimated the slow side bias and subtracted it from the updating heatmaps (Figure 2, Figure 2—fig-

ure supplement 1e, Figure 3). This procedure involved computing conditional psychometric curves

after a subset of trials (with specific stimulus, action and outcome) as well as computing the condi-

tional curves prior to these trials, plotting heatmaps for both these sets of curves, and subtracting

the later heatmap from the former heatmap (Figure 2—figure supplement 1e, Figure 3).

Behavioral models
TDRL model with stimulus belief state
In order to examine the nature of choice updating during perceptual decision making, we adopted a

reinforcement learning model which accommodate trial-by-trial estimates of perceptual uncertainty

(Lak et al., 2017; Lak et al., 2019). In all our tasks, the subject can select one of two responses

(often left vs right) to indicates its judgement about the stimulus (i.e. whether it belongs to category

A or B, or left or right for simplicity). Knowing the state of the trial (left or right) is only partially

observable, and it depends on the quality of sensory evidence.

In keeping with the standard psychophysical treatments of sensory noise, the model assumes that

the internal estimate of the stimulus, ŝ, is normally distributed with constant variance around the true

stimulus contrast: p ŝjsð Þ ¼ N ŝ; s;s2ð Þ. In the Bayesian view, the observer’s belief about the stimulus s

is not limited to a single estimated value ŝ. Instead, ŝ parameterizes a belief distribution over all pos-

sible values of s that are consistent with the sensory evidence. The optimal form for this belief distri-

bution is given by Bayes rule:

p sĵsð Þ ¼
p ŝjsð Þ:p sð Þ

p ŝð Þ

We assume that the prior belief about s is uniform, which implies that this optimal belief will also

be Gaussian, with the same variance as the sensory noise distribution, and mean given by ŝ:
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p sĵsð Þ ¼N s; ŝ;s2ð Þ. From this, the agent computes a belief, that is the probability that the stimulus

was indeed on the right side of the monitor, pR ¼ p s>0ð ĵs), according to:

pR ŝð Þ ¼

Z

¥

0

p sĵsð Þds

where pR represents the trial-by-trial probability of the stimulus being on the right side and

pL ¼ 1� pR similarly represents the probability of it being on the left.

The expected values of the two choices L and R are computed as QL ¼ pLVL and QR ¼ pRVR,

where VL and VR represent the stored values of L and R actions. Over learning these values are con-

verging to a quantity just below the true reward size available in correct choices (Figure 3—figure

supplement 1c). To choose between the two options, we used an argmax rule which selects the

action with higher expected value deterministically. Using other decision functions such as softmax

did not substantially change our results (Figure 3—figure supplement 1a). The outcome of this is

thus the choice c (L or R), its associated confidence pC, and its predicted value QC.

QC ¼
QL if choice¼ L

QR if choice¼ R

�

When the trial begins, the expected reward prior to any information about the stimulus is

Vtrialonset ¼ ðVLþVRÞ=2 . Upon observing the stimulus and making a choice, the prediction error signal

is: QC �Vtrialonset. After receiving the reward, r, the reward prediction error is d¼ r�QC.

Given this prediction error, the value of the chosen action will be updated according to:

VC  VC þ a:d where a is the learning rate. For simplicity, the model does not include temporal

discounting. Parameter values used in Figure 3 are: s2=0.2 and a=0.5. Each agent received 500 tri-

als per stimulus level (randomly presented to the model), and plots reflect averages across 1000

agents.

TDRL models without stimulus belief state
The TDRL model without the belief state was largely similar to the model described above with one

fundamental difference; computation of prediction error did not have access to the belief state used

for choice computation. In other words, prediction errors are computed by comparing the outcome

with the average value of chosen action, without consideration of the belief in the accuracy of that

action.

Similar to the model above, the expected values of the two choices L and R are computed as

QL ¼ pLVL and QR ¼ pRVR, where VL and VR represent the stored values of L and R actions. Over

learning these values are converging to the average value of reward received in the past trials,

that is average performance in the task (Figure 3—figure supplement 1c). To choose between the

two options, we used an argmax rule which selects the action with higher expected value determinis-

tically. The outcome of this is thus the choice (L or R), its associated confidence pC, and its predicted

value QC.

QC ¼
QL if choice¼ L

QR if choice¼ R

�

After receiving the reward, r, the reward prediction error is d¼ r�VC, where c is choice, as

before. Given this prediction error, the value of the chosen action will be updated according to:

VC VCþa:d

Because VC does not reflect decision confidence, the prediction errors only reflect the presence

or absence of reward, but are not modulated by the decision confidence (Figure 3—figure supple-

ment 1d). Thus, they drive learning based on past outcome but not past decision confidence. Note

that prior to normalization, there is an apparent small tendency for this model to exhibit updating

that depends on the difficulty of the previous choice (Figure 3c, left). This reflect the correlation of

stored values across trials and transient regimes in these stored values that make it more probable

to achieve two consecutive correct same-side difficult choice. However, after the normalization, the
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updating does not show any effect of previous difficulty, and merely reflects the presence or

absence of reward in the previous trial (Figure 3c, right).

An extended version of this model is the one that includes multiple states: that is one state for

storing the average value of each stimulus level. In this model, reward prediction error can be com-

puted in two ways: with or without access to the inferred state. The first scenario makes prediction

errors independent of past difficulty. The second scenario has access to the inferred state and com-

pares reward with the value of that state to produce confidence-dependent prediction errors. How-

ever, since the updates only impact the current state there is no learning expected for different

(nearby) stimuli.

Modifications to include slowly drifting choice bias
We modified the TDRL model without the belief state to include slowly drifting side bias (Figure 3d).

The bias over trials was defined as the moving average (across 50 trials) of sin t þ Að Þ þ B, where A is

the temporal noise over trials (drawn from a normal distribution, N 0; 1ð Þ), and B is the amplitude

noise (drawn from a normal distribution, N 0; 1ð Þ: On each trial, the bias (a negative or positive num-

ber), was added to QL, and choice was made by comparing QL and QR, as described before. This

induced drift causes a strong correlation across trials that influence choices. However, the normaliza-

tion removes this correlation and the model shows an effect of past reward which is independent of

the difficulty of the past stimulus.

Modifications to include with win-stay-lose-switch strategy
We incorporated a simple probabilistic win-stay-lose-switch strategy into the TDRL model without

the stimulus belief state. To do so, in 10% of randomly chosen trial, the choice was determined by

the choice and outcome of the previous trial, rather than comparing QL and QR. In these trials, the

previous choice was repeated when the previous trial was rewarded (win-stay), or the alternative

choice was reported if the previous trial was not rewarded (lose-switch).

On-line Bayesian support vector machine (SVM)
The SVM algorithm finds the decision hyperplane that maximizes the margin between the data

points belonging to two classes. The margin refers to the space around the classification boundary

in which there is no data point, that is the largest minimal distance from any of the data points

(Figure 4a). The data points falling on the margin are referred to as support vectors.

Following the conventional form of a linear SVM, stimuli are represented as xi each representing

the two odor components A and B, and yi 2 �1; 1f g corresponding to different class labels reflecting

dominant odor A or B in the stimulus. The algorithm finds the hyperplane in this feature space that

separate the stimuli. Assuming that the classification is determined by the following decision function

f xð Þ ¼ sign wT :f xð Þ þ bð Þ, the classification hyperplane would be w:xþ b ¼ 0, where w is a weight vec-

tor and b is an offset. Thus, data point x is assigned to the first class if

f xð Þ ¼ sign wT :f xð Þ þ bð Þ equals +1 or to the second class if f xð Þ equals �1. In the simplest form (lin-

ear separability and hard margin), it is possible to select two parallel hyperplanes that separate the

two classes of data, the distance between these hyperplanes is 2= wk k, and hence to maximize this

distance, wk k should be minimized. In a more general form, the weights w can be found by minimiz-

ing the following equation subject to the SVM constraints (i.e. no data point within the margin):

l

2
wk k2

2
þ
X

i

1� yiw
Txi

where l is the optimization hyperparameter that determines the trade-off between increasing the

margin size and ensuring that the xi lie on the correct side of the margin. The equation above thus

ensures a tradeoff between classification errors and the level of separability.

In the online active form, weights can be iteratively adjusted. In this form, is updated iteratively

according to

w¼
wþa �lwþ yxð Þif ywTx<1
w�alw if ywTx>¼ 1

�

where a is a learning rate. In Bayesian SVMs the size of the margin for one data point is proportional
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to the likelihood of that point belonging to a class given the classifier. Thus, the posterior class prob-

abilities, P yi ¼þ1jxi;Dð Þ, can be obtained by integrating over the posterior distribution of w and b

after appropriate normalization. This quantity is proportional to the statistical decision confidence,

that is an estimate of confidence about which odor mixture component predominates (Figure 4b). In

simulation presented in Figure 4, we used a¼ 0:15 as the learning rate for updating of weight vector

and the s2=0.25 for underlying noise level of stimuli to be classified. Each agent received 500 trials

per stimulus level (randomly presented to the model), and plots reflect averages across 1000 agents.

Behavioral experiments
The experimental procedures were approved by Institutional committees at Cold Spring Harbor Lab-

oratory (for experiments on rats), MIT and Harvard University (for mice auditory experiments) and

were in accordance with National Institute of Health standards (project ID: 18-14-11-08-1). Experi-

ments on mice visual decisions were approved by the home Office of the United Kingdom (license

70/8021). Experiments in humans were approved by the ethics committee at the University of

Amsterdam (project ID: 2014-BC-3376).

Rat olfactory experiment
The apparatus and task have been described previously (Hirokawa et al., 2019; Kepecs et al.,

2008; Uchida and Mainen, 2003). The apparatus was controlled using PulsePal and Bpod

(Sanders and Kepecs, 2014) or with the BControl system (https://brodylabwiki.princeton.edu/bcon-

trol/index.php?title=Main_Page). Rats self-initiated each experimental trial by introducing their snout

into the central port where odor was delivered. After a variable delay, drawn from a uniform random

distribution of 0.2–0.5 s, a binary mixture of two pure odorants, S(+)�2-octanol and R()�2-octanol,

was delivered at one of six concentration ratios (80:20, 65:35, 55:45, 45:55, 35:65, 20:80) in pseudo-

random order within a session. In some animals we also used ratios of 100:0 and 0:100. After a vari-

able odor sampling time up to 0.7 s, rats responded by withdrawing from the central port, and

moved to the left or right choice port. Choices were rewarded with 0.025 ml of water delivered from

stainless tube inside of the choice port according to the dominant component of the mixture, that is,

at the left port for mixtures A/B > 50/50 and at the right port for A/B < 50/50. The task training for

these data and other dataset presented here focused on achieving high accuracy and did not specifi-

cally promote the confidence-dependent choice bias we have observed.

Rat auditory experiment
Rats self-initiated each trial by entering the central stimulus port. After a random delay of 0.2–0.4 s,

auditory stimuli were presented. Rats had to determine the side with the higher number of clicks in

binaural streams of clicks (Brunton et al., 2013; Sanders et al., 2016; Sanders and Kepecs, 2012).

Auditory stimuli were Poisson-distributed click trains played binaurally at the two speakers placed

outside of the behavioral box for a fixed time of 0.25 s. For each rat, we chose a maximum click rate

according to the performance of the animal, typically 50 clicks/s. This maximum click rate was fixed

for each animal. For each trial, we randomly chose a delta click rate between left and right from a

uniform distribution between 0 and maximum click rate. The sum of the left and right click rate was

kept constant at maximum click rate. Rats indicated their choice by exiting the stimulus port and

entering one of two choice ports (left or right) with a maximum response time of 3 s after leaving

the stimulus port. Choices were rewarded according the higher number of clicks presented between

the left and right click train. Exiting the stimulus port during the pre-stimulus delay or during the

stimulus time (first 0.25 s) were followed by a white noise and a time out of 3–7 s.

Rat randomly interleaved auditory-olfactory experiment
Rats self-initiated each trial by entering the central stimulus port. After a random delay of 0.2–0.4 s,

either an olfactory or auditory stimulus was presented (randomly interleaved). For olfactory stimuli,

rats had to determine the dominant odor of a mix of pure odorants +2-octanol and –2-octanol.

Odor stimuli were delivered for at least 0.35 s or until the rat left the center port (max. 3 s). Odor

mixtures were fixed at seven concentration ratios, which we adjusted to match the performance lev-

els for each mixture ratio across animals, as described above in the rat olfactory experiment. One of

the stimuli was a 50/50 ratio stimulus for which correct side is randomly assigned and those trials
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were removed from the analysis. After a variable odor sampling time, rats exited the stimulus port,

which terminated odor delivery, and indicated their choice by entering one of two choice ports (left

or right) with a maximum response time of 3 s after leaving the stimulus port. Choices were

rewarded according to the dominant odor component in the mixture. For auditory stimuli, rats had

to determine the side with the higher number of clicks in binaural streams of clicks. Auditory stimuli

were random Poisson-distributed click trains played binaurally at the two speakers placed outside of

the behavioral box for a fixed time of 0.25 s, as described above for the rat auditory experiment.

Exiting the stimulus port during the pre-stimulus delay or during the stimulus time (first 0.35 s for

olfactory trials) were followed by a white noise and a time out of 3–7 s. Choices were rewarded

according the higher number of clicks presented between the left and right click train. Reward tim-

ing was sampled from a truncated exponential distribution: minimum reward delay was 0.6 s, maxi-

mum delay 8 s and decay tine constant of 1.5 s.

Mouse auditory experiment
Mice were water restricted for a week (administered 1.2 ml of water in a single session per day), han-

dled for 2 days and then gradually shaped for 5–7 sessions to the contingencies of a two-alternative

choice paradigm and subsequently trained to discriminate two complex stimuli before introducing 6

morphs of those stimuli. Trials were self-initiated upon the breaking of an infrared beam by a nose

poke into the center port of three adjacent ports. Once mice remain in the center port over 0.2 s,

mice were presented with one of two complex tones, following a 0.2–0.5 s delay (uniformly distrib-

uted). Auditory cues were presented until the mouse exited the center port. If a mouse entered the

correct side port within 4 s, a 4 ml water drop was delivered from gravity-fed reservoirs regulated by

solenoid valves. Trials in which mice did not remain in the center port long enough to elicit a cue

were not considered valid trials and are not represented in our analyses. During the training period

only, error trials were followed by a progressively increasing 3–10 s timeout in order to prevent rapid

guessing. During initial training of the task, two complex tones were used for training. These are

comprised of three tones centered on 3 kHz and three tones centered on 7.5 kHz, all components

share base frequency of 1.5 kHz. These two training tones are described as 0 and 100 (%A) stimuli,

respectively. In the perceptual decision-making task, each of the 36 complex tones varied in the bal-

ance of 6 components of Tones A and B. To vary discrimination difficulty, we varied the amplitude

ratio of the two spectral peaks (3 kHz and 7.5 kHz). Morph tones comprised six sets of auditory stim-

uli described here as percentages of a high- and low-frequency complex tone, morph A and morph

B, respectively. Each of six sets is comprised of six similar stimuli with percentages in terms of morph

A of 5–10, 25–30, 35–40, 60–65, 70–75, 90–95. We thereby challenged mice with a variety of 36

stimuli, and were able to pool members of each stimulus set for the analysis. Stimuli were delivered

through generic electromagnetic dynamic speakers located on each side of the behavior chamber.

Mouse visual experiment
Mice were trained in a 2-alternative forced choice visual detection task (Burgess et al., 2017). After

mouse kept the wheel still for at least 0.5 s, a sinusoidal grating stimulus of varying contrast

appeared on either the left or right monitor, together with a brief tone (0.1 s, 12 kHz) indicating that

the trial had started. The mouse could immediately report its decision by turning the wheel located

underneath its forepaws. Wheel movements drove the stimulus on the monitor, and a reward was

delivered if the stimulus reached the center of the middle monitor (a successful trial), but a 2 s white

noise was played if the stimulus reached the center of the either left or right monitors (an error trial).

The inter trial interval was set to 3 s. As previously reported, well-trained mice often reported their

decisions using fast stereotypical wheel movements (Burgess et al., 2017). After 2–3 weeks of train-

ing, the task typically included 6 or 7 levels of contrast (three on the left, three on the right) which

were presented in a random order across trials with equal probability.

Human visual experiment
The experiments are described in detail in Urai et al. (2017). Observers performed a two-interval

forced choice motion coherence discrimination task at constant luminance. Specifically, observers

judged the difference in motion coherence between two successively presented random dot kinema-

tograms (RDKs): a constant reference stimulus (70% motion coherence) and a test stimulus (varying
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motion coherence levels specified below). A beep indicated the onset of each (test and reference)

stimulus. The intervals before, in between, and after (until the inter-trial interval) these two task-rele-

vant stimuli had variable duration and contained randomly moving dots. After offset of the test stim-

ulus, observers had 3 s to report their judgment (button press with left or right index finger,

counterbalanced across observers). After a variable interval (1.5–2.5 s), a feedback tone was played.

Dot motion was stopped 2–2.5 s after feedback, with stationary dots indicating the inter-trial inter-

val, during which observers were allowed to blink their eyes. Observers self-initiated the next trial by

button press. The difference between motion coherence of test and reference was taken from three

sets: easy (2.5, 5, 10, 20, 30), medium (1.25, 2.5, 5, 10, 30) and hard (0.625, 1.25, 2.5, 5, 20). All

observers started with the easy set and were switched to the medium set when their psychophysical

thresholds (70% accuracy) dropped below 15%, and to the hard set when thresholds dropped below

10%, in a given session. Motion coherence differences were randomly shuffled within each block.
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