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How confident are you? As humans, aware of our subjective sense of confidence, we can readily answer. Knowing your level of
confidence helps to optimize both routine decisions such as whether to go back and check if the front door was locked and
momentous ones like finding a partner for life. Yet the inherently subjective nature of confidence has limited investigations by
neurobiologists. Here, we provide an overview of recent advances in this field and lay out a conceptual framework that lets us
translate psychological questions about subjective confidence into the language of neuroscience. We show how statistical
notions of confidence provide a bridge between our subjective sense of confidence and confidence-guided behaviors in
nonhuman animals, thus enabling the study of the underlying neurobiology. We discuss confidence as a core cognitive process
that enables organisms to optimize behavior such as learning or resource allocation and that serves as the basis of metacognitive
reasoning. These approaches place confidence on a solid footing and pave the way for a mechanistic understanding of how the
brain implements confidence-based algorithms to guide behavior.

In a world that is often ambiguous and unpredictable,
we nonetheless have a remarkable ability to form a range
of beliefs based on different degrees of confidence about
future possibilities, decisions, or events. Will I, for in-
stance, benefit from reading this review? Will I make
money by investing in the stock market? From an econom-
ic perspective, knowing the degree of certainty in a belief
is fundamental to attaining our goals. How much time you
should invest reading a review will depend on your assess-
ment of how much useful information you might gain.
How much money you should invest in the stock market
will depend on your assessment of the economy and
whether particular investments will thrive. But it is not
just humans: When navigating uncertain environments,
all living organisms face these kinds of challenges. In
predicting the availability of food resources, animals
must use ambiguous information to decide which option
will lead to a richer resource or if they should abandon a
chosen path. Survival requires having accurate estimates
of confidence about each option. In this sense, confidence
is an essential faculty to guide optimal behavior.
Yet we experience the sense of confidence as deeply

subjective, generated by a process of apparent self-reflec-
tion termed metacognition (Flavell 1979; Dunlosky and
Metcalfe 2009). Given this, could animals experience a
similar sense of certainty? Can they think about their
thoughts and report their confidence? And even if they
could, how would one establish this rigorously without
an explicit verbal self-report? Over the past decade, nu-
merous neuroscientific studies have addressed many of
these issues and this exciting research area has been

thoroughly reviewed (Metcalfe 2008; Rolls et al. 2010;
Kepecs and Mainen 2012; Middlebrooks and Sommer
2012; Shadlen and Kiani 2013; Fleming and Dolan
2014; Fleming and Lau 2014; Grimaldi et al. 2015;
Meyniel et al. 2015b; Pouget et al. 2016), a task we will
not attempt here. Rather, we outline a research program
focusing on how neuroscientists can turn these deep but
apparently squishy questions about confidence into neu-
roscientific ones and eventually provide answers in terms
of neural circuit mechanisms.

THE TWO FACES OF CONFIDENCE: BELIEFS
AND STATISTICS

Confidence has been extensively studied in multiple
disciplines, primarily psychology and statistics, and the
distinct conceptual frameworks of the two fields reveal
confidence’s dual manifestation as a subjective belief
and an objective prediction. In psychology, confidence is
often studied as a subjective feeling associated with beliefs
about theworld (Dunlosky andMetcalfe 2009;Kepecs and
Mensh 2015). Introspection seems to be the only way to
access this sense of confidence, and it is best communicat-
ed through verbalized self-reports. However, confidence is
also a statistical quantity that can be defined as the likeli-
hood that a belief is correct (Kepecs and Mainen 2012;
Hangya et al. 2016; Pouget et al. 2016). This objective
face of confidence measuring the degree of a belief can
be precisely quantified using standard mathematical and
statistical techniques. Indeed, confidence calculations lie at
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the foundation of statistical decision theory,machine learn-
ing, and hypothesis testing (Berger 1985).
But what is the relationship between the subjective sense

of confidence in beliefs we experience as humans and the
objective statistical computation that is also referred to as
confidence? And because we are primarily interested in
understanding the subjective sense of confidence, could
we entirely avoid questions related to objective, statistical
notions of confidence and simply focus on self-reported
confidence measures? In other words, could we not just
link human verbal reports of confidence to measures of
neural activity and entirely sidestep issues related to sta-
tistical computations? Alas, confidence reports are often
idiosyncratic: They are influenced by many factors, vary
across contexts, and are inconsistent across individuals.
For instance, the specific degrees of beliefs reported,
whether low, high, or in-between levels of confidence,
differs widely across individuals (Ais et al. 2016). The
same decision situations can also lead to different confi-
dence reports in one individual depending on context. At
worst, self-reports do not provide useful predictions at all
(Dunlosky and Metcalfe 2009). In these situations, identi-
fying neural correlates of self-reported confidence would
be expected to reveal a range of neural processes related to
each individual’s private notion of confidence and context.
Therefore, although it is incumbent on any research on
confidence to start from the human sense of confidence,
there is a danger in taking confidence reports at face value,
leading to a circular definition that makes it difficult to
identify the neural underpinnings of confidence. But the
challenge of linking subjective phenomenal experience
with neural activity can be overcome by grounding self-
reported confidence in objective statistical computations.

ATHEORY OF STATISTICAL DECISION
CONFIDENCE

How should a statistical theory of decision confidence
be formulated? We can start by taking a closer look at
mathematical formulations of generic decision-making
processes. In common decision-making models, we base
decisions on evidence from the environment—for in-
stance, sensory stimuli. But because this evidence is often
ambiguous, we use subjective percepts based on these
external stimuli to form beliefs about the world. With a
statistical definition of confidence, we can precisely quan-
tify the likelihood that a decision is correct given our
subjective perception of the evidence used to make that
decision (“decision confidence”) (Kepecs and Mainen
2012; Hangya et al. 2016; Fleming and Daw 2017).
This definition of confidence is akin to a statistician cal-
culating the probability that a hypothesis is correct given
the observed evidence—hence, it is identical to statistical
confidence. Importantly, using statistical decision confi-
dence to guide future behavior enables optimal behavior;
that is, it provides adaptive advantage in an uncertain
world (Kepecs and Mainen 2012; Meyniel et al. 2015b;
Pouget et al. 2016). Thus, a statistical theory of confidence
provides a normative account of behavior that describes

human and animal behavior as the result of an adaptive
process and has fundamental implications for how confi-
dence could be computed in neural circuits that represent
sensory, cognitive, and motor variables (Knill and Pouget
2004; Körding and Wolpert 2004; Ma and Jazayeri 2014;
Vasconcelos et al. 2017).
To see how this type of confidence estimate can be use-

ful, consider a situation where you are driving on a foggy
night with a broken navigation system to a restaurant you
are unfamiliar with. You just passed a street sign you could
hardly see—do you have to turn right or go straight? You
made a decision based on what you could make out on the
sign—for instance, you believe that the sign showed the
street you were looking for and make the turn. How confi-
dent you are will depend on how well you could perceive
the sign (“subjective evidence”)—the less you could see,
the less confident you are. As you keep driving on the street
and the restaurant does not appear, how long you go before
turning around depends on your confidence that the deci-
sion to turn onto the street was correct. Indeed, to optimize
your search time, you should set the time invested into each
turn according to your degree of confidence informed by
the statistics of your available evidence.
Statistical decision confidence can be formally defined

as the probability estimate that the chosen hypothesis is
correct, given the evidence available to a subject—that
is, P(correct|subjective evidence, choice) (Hangya et al.
2016). Here the subjective evidence can be any source of
evidence contributing to a decision: perceptual, memory,
or otherwise. However, the subjective evidence is internal
to the decision-maker and cannot be directly experimen-
tally observed or manipulated. How then can we hope to
determine the contribution of a statistical confidence com-
putation to behavior and neural signals? By leveraging our
statistical model of decision confidence, we can construct
precise predictions of optimal confidence (i.e., what an
ideal observer would do to maximize success) for a range
of variables that we can control or observe: the external
evidence in the environment and the observed choices and
outcomes.
This model of decision confidence yields several test-

able predictions about the relationship between optimal
statistical confidence, evidence, and choice (Fig. 1A;
Hangya et al. 2016). First, the degree of confidence pre-
dicts the fraction of correct choices—that is, choice accu-
racy, as intuitively expected (“calibration curve”). Second,
statistical confidence increases with evidence strength for
correct choices, but counterintuitively; for incorrect choic-
es, confidence decreases with increasing evidence strength
(“vevaiometric curves,” from Greek vevaios, certain). Fi-
nally, although evidence strength determines accuracy (as
expressed by a psychometric function), confidence pro-
vides further information improving the prediction of ac-
curacy for any given level of evidence (“conditioned
psychometric curves”).
Under a set of moderate assumptions, these three sig-

natures of decision confidence provide a powerful quali-
tative tool to determine if behavioral confidence reports
(e.g., verbal self-reports) are informed by decision confi-
dence and to delineate potential distinct contributions
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related to evidence or choice (Hangya et al. 2016). The
assumptions amount to decision situations where there
are right and wrong choices about a potential outcome
and an explicit model of the internal, noisy representation
of the evidence that determines the choice. The precise
shape of the confidence signatures can depend on the
specific decision model used and the structure of the en-
vironment (Kiani et al. 2014; King and Dehaene 2014;
Adler and Ma 2018; Rausch and Zehetleitner 2018). Nev-

ertheless, an ideal observer model provides a solid starting
point for formal investigations of decision confidence.
This framework enables a comparison of optimal,

model-predicted confidence estimates with observed con-
fidence signals, whether these are human verbal confi-
dence reports or neurons putatively signaling confidence.
Importantly, this approach provides a way to quantify the
degree to which confidence reports are informed by or
depart from optimal statistical confidence computation.

A

B

C

D

E

Figure 1. Behavioral and neural signatures predicted by a normative computational model of statistical decision confidence. (A) Model
predictions of how confidence—the probability of being correct—relates to observable variables in a perceptual decision experiment in
which subjects must make a binary choice based on available evidence. (Left) Calibration curve: Confidence predicts accuracy. (Middle)
Vevaiometric curve: Confidence increases with increasing evidence strength in correct trials but decreases in error trials. (Right)
Conditioned psychometric curve: Psychometric curve for high-confidence trials is steeper as compared to low-confidence trials (Hangya
et al. 2016). (B) Verbal self-reports of confidence in humans (points) follow all key signatures of statistical decision confidence (lines)
(Sanders et al. 2016). (C ) Time investment (TI) behavior in rats (points) follows all key signatures of statistical decision confidence (Lak
et al. 2014). (D) A single neuron in rat orbitofrontal cortex encodes statistical decision confidence (Hirokawa et al. 2017). (FR) Firing
rate. (E) Dopamine (DA) neurons in primate ventral tegmental area (VTA) encode statistical decision confidence (Lak et al. 2017).
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FROM HUMANS TO ANIMALS: STATISTICAL
CONFIDENCE INFORMS BEHAVIOR

How can we tell whether our sense of confidence is
informed by an objective, statistical computation of con-
fidence? By precisely controlling the external evidence
and leveraging the normative theory of confidence, human
self-reports of subjective confidence can be compared
with statistical decision confidence. Under controlled con-
ditions—by systematically varying choice difficulty and
analyzing choice patterns—subjective confidence reports
followed the statistical predictions in sensory and general-
knowledge tasks (Fig. 1B), thus linking objective and
subjective notions of confidence (Sanders et al. 2016).
Human self-reports were remarkably close to optimal con-
fidence levels predicted by the model, providing a frame-
work to assess if and how other factors corrupt the
relationship between statistical confidence and subjective
reports of confidence.
How can we ask nonverbal species to report their con-

fidence? The key idea is to incentivize the use of confi-
dence by creating situations in which using confidence
information benefits the subject. For instance, we can pre-
cisely control ambiguous evidence available to a subject
and provide an opportunity for it make an investment in its
decision, time, or effort, in order to earn a reward. In this
approach, the “investment” provided is an implicit confi-
dence report that can be analyzed using the normative
theory of confidence in the same way one would use ex-
plicit self-reports. Our laboratory has developed a post–
decision time investment task in which animals place bets
on difficult decisions by how long they are willing to wait
for an uncertain reward (Kepecs et al. 2008; Lak et al.
2014). In these tasks, rats decide between two choices
based on noisy sensory information (“evidence”) in order
to obtain a reward (Kepecs et al. 2008; Hirokawa et al.
2017). Reward delivery is randomly delayed, and no feed-
back is provided when the subjects make an incorrect
choice. Thus, rats earn a drop of water for correct choices
but must invest time in waiting for its arrival. Alternative-
ly, a rat could decide to start a new trial. A single trial can
hence provide a continuous measure of time investment
that can be quantitatively related to the amount of sensory
information and the choice. We showed that time invest-
ment, reflecting the rats’ willingness to wait for an uncer-
tain reward, follows the three signatures of the normative
theory of confidence (Kepecs and Mainen 2012; Lak et al.
2014). Rats use statistical confidence to decide how much
time to invest in decisions, thus providing a nonverbal
readout of their subjective confidence levels (Fig. 1C).
This approach to study confidence without verbal re-

ports makes it possible to ask whether infants are capable
of estimating their confidence or if this ability develops
only later in life. This question has been a challenging
problem for developmental psychology because the de-
layed ability of verbal expression precluded testing pre-
verbal toddlers and infants. Using a similar behavioral
paradigm and quantitative approach as in the rat studies,
preverbal infants were shown to guide their behavior
based on confidence. One-year-old babies persisted

longer in their attempts to find hidden toys for correct
choices than for error choices, which corresponded with
predictions of the statistical confidence model (Goupil
et al. 2016; Goupil and Kouider 2016). These studies
show that the statistical framework can help us study de-
cision confidence without having to rely on verbal reports.
Extending this approach, we are now ready to ask how
neural systems realize confidence computations that guide
these behaviors.

HOW TO FIND A CONFIDENCE NEURON?

By operationalizing decision confidence as a neural
computation, we can use the tools of neuroscience
to search for neurons coding for confidence. Our current
understanding of how neural sensory and motor circuits
support perception and action fundamentally builds on
conceptualizing the function of neural circuits as realiz-
ing specific computations. Neurons in cortical areas are
often characterized by their response properties related to
changes in the environment (i.e., their “tuning curve”). For
instance, neurons in the primary visual cortex are charac-
terized as edge detectors because they preferentially
respond to moving bars at a specific orientation over an-
other (Hubel and Wiesel 1962). We can understand the
transformation of retinal information along the cortical
hierarchy into more and more complex features like edges
or objects as a series of computational operations such as
filtering, amplification, or normalization (Heeger et al.
1996; Gollisch and Meister 2010; Carandini and Heeger
2012; Yamins and DiCarlo 2016). By identifying the tun-
ing curves for a range of complex variables, from faces to
places, neuroscience has begun to determine the computa-
tions relevant for numerous brain regions. Analogously,
we can use the normative model of statistical confidence
to search for “confidence-tuning curves.” This lets us ask
whether the neuronal responses are consistent with these
confidence-tuning properties and establish whether they
are informed by a confidence computation (Fig. 2, left).
The confidence-tuning properties can be further character-
ized by evaluating their invariance to contextual changes
such as decisions based on a range of sensory information
from different sensory modalities. This approach has been
used to find “confidence-tuned” neurons in rat orbitofron-
tal cortex (Kepecs et al. 2008; Hirokawa et al. 2017) and
primate pulvinar (Komura et al. 2013). These studies re-
vealed that confidence computations contributed to neural
activity and that other computations such as reinforcement
learning could be ruled out as producing this neural activity
(Fig. 2, left; Kepecs et al. 2008).
In our quest to identify neurons that represent decision

confidence, “confidence neurons,” we need to additional-
ly ask how this neural activity is related to confidence-
guided behaviors. Determining if neural activity or any
other signal is informed by a confidence computation is
not sufficient to establish its role in behavior. For instance,
sensory cortical neurons (Britten et al. 1993) or even phys-
iological signals such as pupil dilation (Urai et al. 2017;
Kawaguchi et al. 2018) can also be informed by a
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confidence computation. To probe a neuron’s role in con-
fidence-guided behavior, we also need to establish that its
neural activity supports confidence reporting behavior by
correlating neural activity with time investment on a trial-
to-trial basis and causally manipulating its activity in order
to change behavior. Because the same confidence signal
could be expected to drive a multitude of behaviors, in-
cluding time investment or strategy switching (Fig. 2,
right), we need to determine whether a particular neural
signal predicts confidence-guided behavior such as ex-
plicit confidence reports, investment decisions, or other
behaviors informed by confidence like changes of strategy
(Meyniel et al. 2015a). For instance, neurons in the pari-
etal cortex (Kiani and Shadlen 2009) and pulvinar
(Komura et al. 2013) predict opt-out choices based on
confidence. We then need to manipulate the activity of
these specific neurons to directly probe their contribution
to confidence-guided behavior. Finally, a confidence neu-
ron is expected to respond irrespective of the source of
information (e.g., invariant across sensory modalities
contributing to a decision). Together, these criteria serve
to identify “confidence neurons” by understanding their
function as realizing a confidence computation and driv-
ing specific confidence-guided behaviors.

COGNITIVE CELLTYPES: PLACE, FACE,
AND CONFIDENCE

The notion of a “confidence neuron” is akin to other
success stories in systems neuroscience that identified
key functions of specific neurons each instantiating differ-
ent neural computation. For example, “face cells” in the
primate temporal cortex selectively respond to faces or

features of faces but are invariant to many other features
like brightness or orientation (Tsao 2014; Freiwald et al.
2016; Yamins and DiCarlo 2016). “Place cells” and “grid
cells” in rodent hippocampus and entorhinal cortex are
active only at specific spatial locations because they com-
pute spatial location based on sensory and mnemonic in-
formation (O’Keefe and Dostrovsky 1971; Moser et al.
2008). In the same sense, establishing that a particular
neural tuning curve reflects a confidence computation
(Kepecs et al. 2008) establishes that it represents decision
confidence.
One might question whether these neurons should be

called “confidence” neurons rather than “anxiety” or
“arousal” or even “attention” neurons. Indeed, relating
these squishy subjective experiences to neurons has been
a major challenge for cognitive neuroscience (Anderson
andAdolphs 2014). The solution offered by computational
models is that they formalize cognitive processes as a series
of well-defined computations with variables that serve as
proxies for those that are unobservable (e.g., confidence,
value, or attention) (Sugrue et al. 2005; Daw and Doya
2006; Corrado and Doya 2007; Doya 2008; Reynolds
and Heeger 2009; Carrasco 2011). By systematically prob-
ing observable and controllable parameters—such as sen-
sory variables—and evaluating decision patterns using
computational models, we can infer unobservable or inter-
nal variables explaining behavior and relate these to the
activity of neurons in the brain. Hence, our interpretations
do not hinge on the subjective notion of confidence but
rather on the computational process that best explains neu-
ral firing patterns. This way the label “confidence” refers to
the computation required and the requisite class of compu-
tational models that can be tested and iteratively improved,
scientifically grounding the process of identifying neural
representations.

NEURAL MECHANISM OF CONFIDENCE

Where should we look for confidence neurons in the
brain? We have said that estimating confidence is a fun-
damental computation providing important summary sta-
tistics that guide behavior. If confidence estimates are
central to behavior, they should be present across many
brain regions. Using the conceptual framework to identify
neural signatures of confidence, we and others have re-
corded single neurons coding for at least some aspects of
decision confidence in the orbitofrontal cortex (Kepecs
et al. 2008; Hirokawa et al. 2017), parietal cortex (Kiani
and Shadlen 2009; Rutishauser et al. 2018), pulvinar
(Komura et al. 2013), and prefrontal cortex (Middlebrooks
and Sommer 2012; Teichert et al. 2014).
Recent and ongoing work from our laboratory has iden-

tified the orbitofrontal cortex in rodents as a key hub for
confidence computations (Kepecs et al. 2008; Lak et al.
2014; Hirokawa et al. 2017). This work builds on two
pillars outlined above: a normative theory of decision
confidence and a postdecision wagering task that allows
us to obtain a nonverbal behavioral measure of decision
confidence—the time invested in a decision. Single-

Figure 2. Neuronal representations viewed as the result of a
computational process and as driving behavior. We can charac-
terize a neuron or neural population by determining the compu-
tational processes informing its activity (left side). This amounts
to constructing tuning curves for the sensory or cognitive variable
in question under varying contexts. Different computational pro-
cesses, including statistical decision confidence (the probability
of being correct given subject evidence x̂ and choice) or experi-
enced value (computed by reinforcement learning) that are part of
a computational model, can influence neural activity. Another
consideration is how neural activity drives behavior, such as
reports of confidence (e.g., verbal reports or time investments)
or choice strategies (e.g., switching behavior) (right side). The
neuron’s function can be understood by considering the encoding
process, the computation that describes its activity, and its rela-
tionship to behavior. Note that the same neurons could be in-
formed by additional computational processes and drive other
kinds of behaviors besides the ones under consideration.
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neuron recordings in rat orbitofrontal cortex revealed that
the activity of a group of neurons closely followed the
predictions from the normative theory of confidence
(Fig. 1D). The activity of these neurons directly after
making a choice predicted if rats made a mistake, even
with the same amount of sensory evidence, and the activ-
ity was graded with average accuracy before any feedback
about choice-correctness was provided (Kepecs et al.
2008). Confidence signals also contribute to value repre-
sentations because they are an estimate of the outcome
probability. Therefore to distinguish whether the neural
activity we observed specifically encodes confidence,
we systematically varied reward size for different choices.
Interestingly, distinct groups of neurons encode decision
confidence (irrespective of reward size) and outcome val-
ue (confidence combined with reward size) (Hirokawa
et al. 2017). Recently, we have also established that these
neuronal signatures of confidence are invariant across sen-
sory modalities and that single-neuron activity predicted
confidence-guided time investment behavior on a trial-to-
trial basis.
Pharmacologically silencing the orbitofrontal cortex

produced a specific impairment of investment behavior:
Choice behavior and average investment time were unaf-
fected, but time investment was no longer informed by
statistical confidence (i.e., all relations predicted by the
normative theory of confidence broke down). These re-
sults suggest that orbitofrontal cortex plays a key role in
estimating decision confidence, along with other areas—
like the pulvinar (Komura et al. 2013) and frontal pole
(Miyamoto et al. 2018)—that have been found to con-
tribute to decision confidence in primates. In other brain
regions, confidence estimates can contribute to other com-
putations, such as prediction error signals in the midbrain
dopamine neurons involved in reinforcement learning
(Fig. 1E; Lak et al. 2017).
These results bring us close to identifying confidence

neurons—neurons characterized by a confidence compu-
tation. It is important to note, however, that these neurons
would be expected to drive a range of confidence-guided
behaviors beyond time investment—“anxiety” or “curios-
ity,” for instance, as both these concepts are related to
specific uses of uncertainty information (Gottlieb et al.
2013).

OUTLOOK: QUANTIFYING CONFIDENCE
FROM CIRCUITS TO METACOGNITION

The subjective nature of confidence presents a chal-
lenge for its scientific study. Here we have described an
approach that leverages advances of computational theo-
ries to establish the relationship between subjective con-
fidence, objective statistical mental computations, and
neural activity. By grounding confidence as a normative
computational process, it becomes possible to evaluate
whether a subjectively experienced sense of confidence
is related to an objectively computed estimate of confi-
dence, providing a bridge between the two. This frame-
work has been used to show that self-reported confidence

in a range of decision tasks follows the normative statis-
tical predictions (Sanders et al. 2016; Lebreton et al.
2018), and that preverbal infants have the ability to act
on their confidence (Goupil and Kouider 2016), as do rats
investing time into perceptual decisions (Lak et al. 2014).
Indeed, the capacity to estimate and deploy confidence is
an adaptive process that maximizes fitness in uncertain
environments. Based on these considerations, we expect
that computing confidence is a widespread ability across
the animal kingdom and that, because of its broad com-
putational role, it is realized by diverse neural systems.
Placing confidence on solid footing allows us to use this

framework to identify its neural basis. The operationaliza-
tion of decision confidence as a cognitive computation
provides the means to identify the neural circuit mecha-
nisms analogous to the approaches used by sensory and
motor neuroscience. It has become clear that confidence is
represented in a number of brain regions, consistent with
theoretical ideas about the centrality of uncertainty in
neural computations (Beck et al. 2008; Denève et al.
2017). Finally, inactivation studies have revealed that the
orbitofrontal and frontopolar cortex have central roles
in confidence reports (Lak et al. 2014; Miyamoto et al.
2018). These results provide a strong foundation for
identifying neural circuit mechanisms underlying confi-
dence estimation and deployment for different behaviors.
Further progress will likely reveal how specific neuron
types contribute to the algorithms underlying confidence
computations.
The orbitofrontal cortex contains a centralized confi-

dence representation that is thought be a prerequisite for
metacognition—explicitly reasoning about one’s own be-
liefs (Dehaene et al. 2017). Quantifying the “degree of
metacognition” is an area of active research in psychology
(Fleming and Lau 2014; Sherman et al. 2018). Previous
suggestions that metacognition could be quantified via
signal detection theory rely on strong assumptions and
are often limited in their application (see the following
back and forth discussion: Rounis et al. 2010; Bor et al.
2017, 2018; Ruby et al. 2018). Our normative theory of
confidence offers the advantage of quantifying an optimal
use of statistical confidence defined using a generative
model. This approach allows us to dissociate choice sen-
sitivity frommetacognitive ability and offers a path toward
investigating how metacognitive ability differs across
individuals, thus seemingly offering a way to predict
psychological traits or psychopathologies (Rouault et al.
2018). Indeed, how well-calibrated confidence estimates
are (i.e., how well they predict accuracy) varies across
subjects (Björkman et al. 1993; Olsson and Winman
1996; Moore and Healy 2008; Shea et al. 2014; Ais
et al. 2016), and in some cases confidence can be low
irrespective of objective probability (i.e., statistical confi-
dence), a hallmark of underconfidence in anxiety disorders
such as obsessive–compulsive disorder (Barahmand et al.
2014). This framework to measure confidence in humans
can be also applied as a method in computational psychi-
atry to quantify how confidence computations are impact-
ed in these disorders (Montague et al. 2012; Kepecs and
Mensh 2015).

OTT ET AL.14



Our approach thus roots the subjective experience of
confidence and metacognitive ability in a precisely de-
fined computation, a statistical theory of confidence.
This framework enables us to use the tools of a neuro-
scientist to address psychological questions. New experi-
ments will now be able to identify neural circuit
mechanisms for how the brain implements confidence-
based algorithms to guide behavior. We anticipate that a
mechanistic understanding of confidence and metacogni-
tion will bridge a psychological understanding of the mind
and its disorders with its neurobiological basis in human
and nonhuman animals.
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