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Drifting neuronal representations: Bug or feature?
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Abstract

The brain displays a remarkable ability to sustain stable memories, allowing animals to execute precise behaviors or recall
stimulus associations years after they were first learned. Yet, recent long-term recording experiments have revealed that single-
neuron representations continuously change over time, contravening the classical assumption that learned features remain
static. How do unstable neural codes support robust perception, memories, and actions? Here, we review recent experimental
evidence for such representational drift across brain areas, as well as dissections of its functional characteristics and underlying
mechanisms. We emphasize theoretical proposals for how drift need not only be a form of noise for which the brain must
compensate. Rather, it can emerge from computationally beneficial mechanisms in hierarchical networks performing robust

probabilistic computations.
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1 Introduction

A hallmark of natural intelligence is the ability to con-
tinuously learn from external sensory stimuli. Despite this
flexibility, the brain achieves consistent perception and
stores long-term memories, requiring it to maintain stable
neuronal representations of sensory stimuli. The implicit
assumption—supported by some experimental evidence—of
classical theories of neural coding is that these stable rep-
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resentations are supported by stable single-neuron activity
(Barnes et al 1997; Thompson and Best 1990; Tonegawa
et al 2015)

While many neurons in sensory cortex show stable
responses to simple artificial stimuli, long-term neural pop-
ulation responses to more naturalistic and behaviorally
relevant stimuli remained largely unexplored until recent
years. Technical advances have enabled researchers to per-
form longitudinal recordings of large neural populations in
complex tasks and in freely behaving animals for weeks and
months. These recordings, starting with studies in the hip-
pocampus, have revealed that population activity in brain
regions that are responsible for certain tasks changes contin-
uously over time even after the animals have fully learned
and maintained the tasks, a phenomenon termed “represen-
tational drift” (Kentros et al 2004; Mankin et al 2012; Ziv
et al 2013; Rule et al 2019; Mau et al 2020; Gonzalez et al
2019; Schoonover et al 2021; Marks and Goard 2021; Deitch
et al 2021; Clopath et al 2017).

At the most basic level, representational drift involves sys-
tematic changes in how neurons encode a particular stimulus
or behaviorally relevant variable (Rule et al 2019). Here,
we use the definition of “neural representation” employed
in most experimental studies: the response of a neuron in a
short window (on the order of a second) around a defined
event (e.g., presentation of a specific stimulus or a position
in space). Drift is said to occur if these responses change, for
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all other experimental conditions kept constant, at a slower
timescale (days to weeks). Importantly, these changes do
not simply result from trial-to-trial variability. Depending on
how changes in single-neuron tuning are organized across
the population, drift may preserve or disrupt aspects of rep-
resentational geometry, such as the similarity of responses
to different stimuli (Rule et al 2019; Kriegeskorte and Wei
2021; Qin et al 2021).

Classic theoretical work on changes in neural representa-
tions over time largely focused on synaptic weight changes
due to continual learning in memory-storage areas. In a
network with finite-precision synapses, synaptic updates
induced by the storage of new memories act as noise on previ-
ously stored patterns, eventually leading to forgetting (Amit
and Fusi 1994; Fusi and Senn 2006; Fusi and Abbott 2007;
Fusi 2021). This leads to a fundamental tradeoff between sta-
bility and plasticity, in which the flexibility to memorize new
patterns must be balanced with the rate of forgetting. In this
view, drift of tasks learned long ago can be at once a bug and
a feature: forgetting may be beneficial if the importance of a
memory increases with its recency, so long as memories are
forgotten elegantly rather than catastrophically (Parisi 1986;
Kulhavy and Zarrop 1993; French 1999; Kirkpatrick et al
2017; Zenke et al 2017; Fusi 2021). However, these theories
would predict that representations of practiced tasks on which
an animal maintains a high degree of proficiency should gen-
erally remain stable. Therefore, new normative theories are
required to account for drift in neural representations of fixed
tasks.

Observations of representational drift naturally raise ques-
tions regarding its causes, its ubiquity across brain areas,
and its computational implications. In this brief review, we
first highlight recent technical advances that enable long-
term recording of large populations of neurons in behaving
animals, and the resulting experimental observations of rep-
resentational drift in several brain areas. We then identify
three theoretical proposals for how representational drift may
be consistent with normative computational principles: 1)
drift as a signature of Bayesian sampling of the space of
solutions ii) drift due to redundancy in the neural code and
iii) drift due to compensation for changes in connectivity
elsewhere in the network. We emphasize how these three pro-
posals are not mutually exclusive, and can be unified in the
framework of stochastic optimization. Finally, we suggest
potential directions for future theoretical and experimental
studies leveraging these normative principles.

2 Experimental techniques
Recent technical advances such as high-density electrodes

(Jun et al 2017b; Steinmetz et al 2021; Chung et al 2019;
Dimitriadis et al 2018) and two-photon calcium imaging
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(Svoboda and Yasuda 2006; Ahrens et al 2013; Li et al 2017)
have enabled researchers to simultaneously record the activ-
ity of hundreds of neurons over days and weeks. This is
further fostered by the development of automated cluster-
ing methods which allow isolation of single-neuron activity
from either electrophysiological traces (Chung et al 2017;
Pachitariu et al 2016; Yger et al 2018; Jun et al 2017a) (Fig.
1Bi) or imaging data (Pnevmatikakis et al 2016; Pachitariu
et al 2017; Giovannucci et al 2019; Saxena et al 2020) (Fig.
1Ci), and new surgical methods which provides greater sta-
bility of implants (Musk and Neuralink 2019; Juavinett et al
2019; Luo et al 2020; Schoonover et al 2021) and imaging
at depth (Attardo et al 2015; Ulivi et al 2019; Li et al 2017).
Together, these techniques and methods constitute a high-
throughput pipeline that enables researchers to directly probe
how the tuning of individual neurons within large ensembles
changes across time. These experiments have transformed
our understanding of the neural code, from an explanation of
representations at the level of single neurons to an explana-
tion at the level of neural populations (Yuste 2015; Saxena
and Cunningham 2019; Urai et al 2021; Ebitz and Hayden
2021).

A prerequisite for assessing the stability of tuning of single
neurons is the ability to record the same neurons over days or
weeks. This requires consistent assignment of neuron iden-
tities across days, a process that is complicated by instability
in the electrode location or the focal plane. In electrophysi-
ological recordings, the templates of putative single neurons
across different electrodes of a probe can be matched across
days and shown to be similar within neurons (Fig. 1Bii). In
calcium imaging data, there is a wealth of anatomical infor-
mation that can be used to correctly assign neuron identities
across days (Fig. 1Cii).

However, assigning neuron identities based on the similar-
ity of waveforms measured at discrete time points can easily
miss a (potentially biased) part of the neural population. As
shown in Fig. 1D, the recorded waveform of some neurons
can change significantly on the timescale of hours and post
hoc corrections are often needed to ensure proper identifica-
tion (Dhawale et al 2017; Steinmetz et al 2021). Similarly,
experiments using one-photon microscopy can suffer from
poor resolution of the images and control of the focal plane,
leading to a more difficult segmentation problem (Liberti
et al 2016) with an increased probability of misattributing
neuron identities across days (Fig. 1E). In comparison, two-
photon microscopy can more reliably track the same neurons
over weeks but is largely confined to head-fixed experimental
setups (Fig. 1C).

As highlighted by these examples, the process of identify-
ing neurons across days is still challenging and can be prone
to errors, both false positives (different neurons labeled as
the same) and false negatives (the same neuron labeled as
different). If these errors are biased toward subtypes of neu-
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Fig. 1 Drifting neural representations and experimental tools to mea-
sure neural activity across days. a: Drift in the neural representation is
defined as a change over time in how the population encodes a given
stimulus. Left: change in the tuning curve of a single neuron. Right:
change in the population code. These visualizations were generated
using the drift model from Rule and O’Leary (2021). b: i. The spike
waveform of a single neuron across electrodes can be used to iden-
tify it across days. ii. Waveform similarity across days within neurons
is much higher than across neurons. Adapted from Schoonover et al
(2021). ¢: i. Two-photon microscopy can identify the same neurons
across long periods of time. Note that there is a wealth of anatomi-
cal information (axon initial segment, dendrites, etc.) that can help in
the identification across days. ii. The activity of within-cell pixels is

rons (e.g., those with low firing rates or from a specific cell
type) the experiments could lead to misleading interpreta-
tions. Yet, with careful registration of neuron identity and
knowledge of the limitations of the experimental methods,
both electrophysiology and two-photon calcium imaging can
achieve stable long-term recordings to investigate the stabil-
ity of the neural code.

05 1.0
Waveform similarity

0 1
Correlation

strongly correlated across days in comparison with across-cell pixels.
Adapted from Katlowitz et al (2018). d: Continuous electrophysiolog-
ical recordings show that substantial drift in the waveform can occur
on a timescale of hours. Experiments recording cells solely during an
experimental session could miss a significant (and potentially biased)
number of cells. Adapted from Dhawale et al (2017). e: One-photon
microscopy can also be used for longitudinal recordings and allows
recording in a wider set of experimental conditions than two-photon
microscopy, including freely moving behavior. However, usually less
anatomical information is available and great care has to be taken to
confirm neuron identity across days. Arrows indicate neurons coming
into and out of the field of view across days. Adapted from Liberti et al
(2016)

3 Experimental observations

Stable long-term recordings enabled by these technical
advances have revealed evidence for drifting neuronal rep-
resentations across both neocortical and allocortical areas.
Below, we review evidence for representational drift in hip-
pocampus and in parietal, primary sensory, and motor areas.
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3.1 Hippocampus and parietal cortex

Hippocampal CAL1 place cells play a crucial role in spatial
navigation and episodic memories. When an animal repeat-
edly explores a given environment, CA 1 pyramidal cells form
place fields that tile the physical space. Early studies using
low-throughput electrophysiology have suggested that once
established, place fields of the same environment remain sta-
ble over months in some single neurons (Thompson and Best
1990). However, recent long-term recordings showed that the
ensemble of place cells representing a familiar environment
change day-by-day (Ziv et al (2013); see also Mankin et al
(2012); Kentros et al (2004)) (Fig. 2A). Place cells that are
identified in a given day have place fields that tile the linear
track, but may drop out of the task-relevant ensemble in the
subsequent days. Despite this highly dynamic representation
of space, spatial information can be decoded from the small
shared subset of neurons that remain active across days (Ziv
et al 2013). Similar drift of place cell activity during long-
term recordings has been reported by Gonzalez et al (2019)
and Sheintuch et al (2020), and further confirmed using two-
photon imaging by Lee et al (2020).

Neurons in posterior parietal cortex (PPC) are believed
to represent the association between sensation and action,
which plays a crucial role in many sensorimotor tasks (Har-
vey et al 2012; Driscoll et al 2017). Using two-photon
microscopy, Driscoll et al (2017) recorded hundreds of PPC
neurons while mice were proficiently performing visual cue
guided virtual reality “T-maze” task over weeks (Fig. 2B).
They found that a subset of neurons fired transiently dur-
ing task trials, with each neuron firing strongly when the
animal was at different locations of the T-maze. Thus, the
neuron population exhibits sequential patterns of activity that
tile the T-maze. Strikingly, PPC neuronal activity continu-
ously changes over weeks even though the task performance
remains stable. As shown in Fig. 2B, many neurons changed
their activity pattern (tuning properties), either by exiting or
entering the neuron ensemble that represents the task or by
changing their tuning curves, i.e., firing strongly at differ-
ent locations. Despite the single-neuron drift, task-relevant
behavioral information can be linearly decoded from some
subpopulation of PPC neurons on any given day using a
decoder trained on activity from that day.

3.2 Sensory cortex

Representational drift has recently been observed even in
primary sensory cortices. In the conventional view, neurons
in the primary sensory cortices are tuned directly to features
of physical stimuli, and have stable and well-defined tuning
properties (Hubel 1995). This intuitive picture is challenged
by recent measurements of population responses in mouse
primary olfactory (piriform) and visual (V1) cortices.
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Piriform cortex is commonly thought to encode odor
identity (Stettler and Axel 2009; Roland et al 2017).
Yet, Schoonover et al (2021) recently found that odor-
evoked population activity in piriform is unstable. Though
some population-level statistics—such as the fraction of
active neurons, the response sparsity, and the within-day
response correlation—remain stable, the representations of
odor responses change gradually over time (Fig. 2D). Daily
exposure to the same odor can slow down the drift, but once
the exposure is halted, the drift continues. Odor-associated
fear-conditioning does not reduce the drift. In all, these obser-
vations suggest that odor representation in the piriform cortex
strongly depends on recent history, and is not anchored by
odor valence.

Marks and Goard (2021) compared the stability of the
responses of mouse V1 neurons to artificial periodic oriented
drifting gratings (PDG) and to naturalistic movies (MOV)
over several weeks. They found that neurons responded
highly stably to PDG, while the responses to MOV showed
strong drift (Fig. 2C). Such drift happened in all cortical lay-
ers, in both excitatory and inhibitory neurons. Neurons that
showed strong responses tended to be more stable. Interest-
ingly, for neurons that responded to both PDG and MOV,
only responses to MOV drifted across time. Similar drift in
six mouse visual areas has also been reported by Deitch et al
(2021) using the Allen Brain Observatory Dataset.

3.3 Motor areas

Though evidence for representational drift in sensory cor-
tex, parietal cortex, and hippocampus appears compelling,
the picture in motor areas is murkier. Intuitively, one might
expect greater stability in these regions because their repre-
sentations are only a few synapses away from terminal motor
neurons (Gallego et al 2017, 2020). Thus far, studies of repre-
sentational stability in motor systems have focused primarily
on the circuits that underlie two precise learned behaviors:
song in zebra finch and reaching movements in monkeys.
The adult zebra finch song is exceptionally stereotyped,
with less than 2% timing variability across renditions (Glaze
and Troyer 2006). This precise timing depends on the pre-
motor nucleus HVC, which generates bursts of activity with
submillisecond precision across hours of recording (Hahn-
loser et al 2002; Long et al 2010). While chronic one-photon
imaging experiments indicated instability in the activity of
nearly 40% of recorded HVC projection neurons over a 5-day
period (Liberti et al 2016) (Fig. 1E), subsequent two-photon
imaging recordings over 60 days showed that HVC activity
remained highly stable at both single-neuron and network
levels (Katlowitz et al 2018) (Fig. 1C). Given the limita-
tions of one-photon imaging, further study will be required to
conclusively determine whether these discrepant conclusions
reflect differences between recording methods and/or exper-
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Fig. 2 Observation of representational drift in various brain areas. a:
Place field maps for CA1 pyramidal cells found across different days
after the mice were familiar with the linear track environment. Neurons
are ordered by the response centroid position at day 5 (first row), day 20
(second row), and day 35 (last row). Adapted from Ziv et al (2013). b:
Mice were trained to turn left or right based on the visual patterns when
navigating through a virtual reality “T-maze.” PPC neurons developed
tuning to either left-turn or right-turn task. Right: mean activity of neu-
rons identified at three different days. Neurons were sorted for the same

imental conditions, and thus whether or not single-neuron
activity in HVCis stable. Nevertheless, the two-photon imag-
ing results suggest that HVC representations likely remain
substantially stable.

Studies of mammalian motor cortex have primarily
focused on the stability of primary motor cortex (M1) popu-
lation representations in monkeys trained to perform precise
reaching tasks (Rokni et al 2007; Chestek et al 2007; Dickey
et al 2009; Stevenson et al 2011; Kaufman et al 2014,
Stavisky et al 2017; Gallego et al 2017, 2020). Some early
work claimed that single-neuron activity in M1 is inherently
variable (Rokni et al 2007), while other studies asserted that
it is stable within measurement noise (Chestek et al 2007;
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day in each row. Adapted from Driscoll et al (2017). ¢: Responses of
mouse V1 neurons to natural movies (MOV) drift, while responses to
periodic drifting gratings (PDG) remain relatively stable. Lower: Fluo-
rescence trace for an example neuron over weeks. Adapted from Marks
and Goard (2021). d: Left: Odor-evoked response of piriform cortex
neurons over 32 days. Black bars mark the duration of odor stimuli.
Neurons are ordered based on their response at day 0. Right: Corre-
lation coefficient of population vectors decrease gradually over days.
Adapted from Schoonover et al (2021)

Stevenson et al 2011). However, the multielectrode arrays
used in most of these chronic recordings cannot sample a
stable set of neurons over long periods (Dickey et al 2009;
Stevenson et al 2011; Gallego et al 2020). As a result, experi-
ments were roughly limited to careful characterization of the
population code, and could not interrogate the possibility of
single-neuron drift (Kappel et al 2015; Stavisky et al 2017,
Gallego et al 2017, 2020). Within these constraints, Gal-
lego et al (2020) proposed that M1 activity during reaching
lies on alow-dimensional “neural manifold” whose geometry
remains highly stable throughout recordings lasting up to two
years (Gallego et al 2017, 2020). We note that a very recent
report suggests that representations of innate behaviors in
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rodent motor cortex may indeed be stable at a single-neuron
level (Jensen et al 2021), consistent with representations of
learned behavior in the finch (Katlowitz et al 2018).

To conclude, there is a growing body of work suggesting
that single-neuron representations in diverse brain areas drift
on a timescale of days to weeks. Further work will help eluci-
date the differences in the structure of drift observed across
tasks and brain areas, as well as the factors governing the
rate of drift across the cortical hierarchy (Pérez-Ortega et al
2021; Katlowitz et al 2018; Jensen et al 2021).

4 Theoretical ideas

Observations of representational drift seem to contradict
the idea that stable neural activities underlie stereotyped
behaviors, contravening simple theories of neural coding
(Thompson and Best 1990; Barnes et al 1997; Tonegawa et al
2015). Here, we discuss how Bayesian inference can provide
a unifying framework for understanding the computational
role of drift.

4.1 Noisy plasticity and sampling

For clarity of exposition, we introduce these theoretical ideas
within a feedforward toy model of a population of neurons
responding to a single input. We assume that the population
activity r is given in terms of the input x by a simple linear—
nonlinear model:

r(x) = g(Vx), (D

where g is a fixed activation function and V is a matrix of
tunable synaptic weights. We suppose that the “goal” of this
network is to produce some desired output y, and that it has
access to a function £ that measures the error between the
target and actual activities:

E=E@rx),y). @

A typical example of an error metric is the squared error
£ = |lr(x) —y||>. This picture could of course be generalized
to the average error over multiple inputs, but we will focus
on the single-input case for clarity.

In neuroscience and machine learning, learning tasks of
this form are most often framed as searches for a single set
of synaptic weights V, that minimizes the error £. A simple
plasticity rule that aims to accomplish this goal is gradient
descent, which updates the weights as a function of time via

V,=V,1 —nVE, (3)

@ Springer

where (VE&);; = d£/dV;; is the gradient of the error with
respect to the synaptic weights and 1 is a learning rate, which
can be understood as the inverse of the learning timescale.
From this perspective, the parameters should remain static
after the minimization procedure has converged, yielding sta-
ble network activity.

Yet, considering the stochasticity of synaptic dynamics, it
is implausible that synaptic weight updates in the brain would
be noise-free (Attardo et al 2015; Kappel et al 2015; Mongillo
et al 2017). The simplest possible noisy generalization of the
plasticity rule (3) would be to add a Gaussian noise term to
the update (Rokni et al 2007; Kappel et al 2015; Gardiner
1985; @ksendal 2003):

Vi =V —nVE+ /287 1nE,. “

Here, the noise matrices Z, are independent and identically
distributed in time, with elements that are independent and
identically distributed standard Gaussian random variables,
and the parameter 8 > 0 sets the variance of the noise. In the
limit » — O of long learning timescales, these noisy updates
tend to the Langevin dynamics (Gardiner 1985; Jksendal
2003)

dV, = =VE&dr + /2B~ 1dW,, 5)
where the components of the matrix W, are independent stan-
dard Brownian motions.

With the addition of this noise term, the synaptic weights
no longer converge to a steady state, and the network func-
tion is never static. At long times, instead of converging to a
fixed value, the Langevin dynamics will explore the weight
space. Concretely, under mild assumptions (Gardiner 1985;
@ksendal 2003), these dynamics sample an equilibrium dis-
tribution with density

Poo(V) ocexp [-BE], (6)

as illustrated in Fig. 3b.

Though the noise in the dynamics (5) renders the represen-
tation unstable, it serves a concrete computational purpose.
In particular, a principled probabilistic choice for £ is the
energy associated to the Bayesian posterior probability of
the weights V given the data (x, y):

BE = —logp(V|X,y). @)

Then, the sampling procedure allows the network to per-
form Bayesian inference. Concretely, by averaging outputs
over time once the weights have equilibrated, the network
can average predictions over the possible parameters con-
sistent with the given data, as measured by the posterior
probability (Neal 1993; Welling and Teh 2011). In contrast
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Fig. 3 Theoretical explanations for drifting neural representations. a:
A single-layer neural network takes an input X and maps it to an output
r. The error function £ quantifies task performance. b: Noisy learning
as sampling in weight space. Left: Shown is an example of task whose
error function has two local minimal in the w; — w7 space. The orange
trace corresponds to the sampled trajectory in weight space (equation
5). Right: The equilibrium probability distribution of w; is bimodal,
corresponding to the two minima of £. The projection of the trajectory
onto w; in the left panel samples this distribution. ¢ Networks with
redundancy can exhibit representational drift while maintaining stable
performance. Left: Once the learning process reaches the flat valley
in the error landscape £, any noise will cause drift along this valley,

to simply choosing a single error-minimizing weight matrix
V.., this allows the network to account for the uncertainty
inherent in inference from limited data. When only a few
task examples are available, the posterior will be broad, but
as more data is received and the evidence becomes stronger,
the posterior predictive will become increasingly concen-
trated. This natural accounting for uncertainty may allow
better generalization compared to maximum-likelihood esti-
mation (Kappel et al 2015; Neal 1993; Welling and Teh 2011;
Wilson and Izmailov 2020; Izmailov et al 2021).

In neuroscience, this idea has principally been explored
from the point of view of short-timescale activity inference.
Instead of sampling the weights as described above, these
models consider sampling the network activity r rather than
fixing the input—output map (Buesing et al 2011; Orbén et al
2016; Aitchison and Lengyel 2017; Fiser et al 2010; Savin
and Deneve 2014; Deneve et al 2017). This proposal has suc-
cessfully explained a range of experimental measurements of
short-timescale variability (Orbén et al 2016; Echeveste et al
2020).

Recent work has extended these ideas to the learning
of synaptic weights in the manner described above (Kap-
pel et al 2015; Aitchison et al 2021; Llera-Montero et al
2019). Instead of sampling the space of neural representa-

wy

Representation Output

Error signal

corresponding to different representations that yield equally good task
performance. Right: In the neural activity space, a task performance
may be invariant to the change of neural activities in certain directions
(Null space). For example, if task performance only depends on | and
ry through their sum r; + rp, then both r| and r, can change with-
out compromising performance so long as r; + r, remains constant.
d: Various sources can contribute to representational drift in hierar-
chical networks. To maintain stable performance, the representation in
the layer of interest might have to change to compensate for drift in
upstream and downstream layers, including changes in the input A and
output B synaptic weights.

tions consistent with a given stimulus, the network explores
the space of synaptic weights consistent with the set of stimuli
experienced over a longer time period. In these models, the
stochasticity in dendritic spine dynamics induces stochastic-
ity in synaptic weights (Attardo et al 2015). When coupled
with error signals, this process can implement Bayesian sam-
pling at a slower timescale than activity sampling (Kappel
et al 2015; Hiratani and Fukai 2018; Aitchison et al 2021).
The changing synaptic weights lead to drifting single-neuron
representations, but these stochastic dynamics are not arbi-
trary. Rather, they allow the network to explore the space of
parameters consistent with its history.

4.2 Sampling in the presence of redundancy

In the sampling picture, the structure of the error landscape
strongly affects the statistics of drift (Kwon et al 2005). In
biological contexts, one particularly salient form of structure
in error landscapes is redundancy. Redundancy in task perfor-
mance is thought to be necessary to achieve robust function,
as it allows for accommodation of the parameter imprecision
inherent in biological systems (Marder et al 2015; Goaillard
and Marder 2021; Li et al 2016). In our toy model, redun-
dancy would correspond to the existence of multiple sets

@ Springer
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of synaptic weights V that achieve minimal error. A simple
form of this redundancy would be a flat valley in the error
landscape (Fig. 3C). Once the learning process has found
the valley, even small amounts of noise will drive substantial
drift in synaptic weights along the flat direction of the val-
ley. As aresult, neural representations will drift. Importantly,
the structure of the error landscape can also suppress drift;
variance will be reduced along high-curvature directions.

Rokni et al. first applied the idea of redundancy in activity
to explain their measurements of drifting single-neuron tun-
ing curves in monkey motor cortex (Rokni et al 2007). They
built a redundant neural network and trained it to perform
simple reaching tasks. They found that the random compo-
nent in synaptic modifications during learning drives synaptic
weights wandering in a subspace that give the same behavior
but different neural representations. More generally, high-
dimensional representations of low-dimensional tasks have
been observed in various brain regions (Gao et al 2017; Gal-
lego et al 2018). If only the low-dimensional task-encoding
manifold affects task performance—as quantified by the error
E—many distinct high-dimensional configurations could be
functionally equivalent (Rule et al 2019; Gallego et al 2020).
A closely related idea is the concept of a “coding null space,”
a subspace of neural activity that is orthogonal to the task-
encoding subspace (Fig. 3C). This idea has been used to
explain preparatory and inter-area communication activity
in primary motor cortex by Kaufman et al (2014).

However, these previous works have not proposed biolog-
ically plausible mechanistic models for how drift can arise
in redundant circuits. Recent work by Qin et al (2021) stud-
ied a mechanistic model for the dynamics of drift during
noisy representation learning. This model considers a neu-
ral population that learns to represent stimuli in a way that
optimizes a representational similarity objective. This objec-
tive has many degenerate minima (Qin et al 2021; Pehlevan
et al 2017; Sengupta et al 2018), hence even relatively small
amounts of noise in synaptic updates can drive the network
to explore the space of near-optimal representations. Impor-
tantly, unlike in the Rokni et al (2007) model, this redundancy
does not result from having a large number of neurons in the
representation layer, but directly from the structure of the
task. The drift of single-neuron receptive fields in this model
can be described by a coordinated random walk, a prediction
which is consistent with the statistics of measured drift in
the responses of hippocampal CA1 neurons (Qin et al 2021;
Gonzalez et al 2019). Despite this instability in single-neuron
representations, the geometry of the population code remains
approximately stable over time, as enforced by the represen-
tational similarity error. In all, this model recapitulates many
features of the experimental observations in hippocampus
and PPC through sampling in an error landscape with a sub-
space of degenerate minima.

@ Springer

4.3 Sampling in hierarchical networks

In the preceding sections, we introduced sampling in a
single-layer feedforward network. However, biological neu-
ral networks are both hierarchical and recurrent. In this
section, we highlight some of the new phenomena that can
emerge during weight sampling in such networks.

For simplicity, we will illustrate these ideas using a rate
network. We consider a network with input x weighted by a
feedforward matrix A, neuron firing rates r, recurrent weights
W, output weights B and output y (Fig. 3D). The goal of the
network is to minimize the error £(¥, y) between the network
output and the target y. The dynamics of the population activ-
ity r is described by a simple firing rate model:

F = —r + ¢ (Wr + Ax), ®)

where 7 is the neurons’ membrane time constant and ¢ (-)
is an element-wise nonlinear activation function. We refer
to the steady-state neural activity of single neurons in (8)
as their “representation’ of the input. The network output is
given by a simple feedforward readout of the rate:

y = f(Br), ©))

where B is the decoding weight matrix and f(-) is some
element-wise nonlinear function. We assume that the
timescale of synaptic plasticity is much slower than the
timescale of neural dynamics.

In a hierarchical network (Fig. 3D), learning (and drift)
can occur in populations downstream and upstream of the
recorded population. In our framework, this would corre-
spond to changes in the matrices A and B. To maintain
task proficiency, the recurrent connectivity W would need
to change to compensate for this drift. These compensatory
changes will in turn result in drift in the experimentally mea-
sured representations r. Similarly, if drift in r due to changes
in A or W is confined to some subspace, a static readout
can achieve robust decoding. However, if the drift is less
structured, then the decoder weights B must compensate
for changes in activity in order to produce the desired out-
put y. Such compensation appears to be necessary in order
to linearly read out task and behavioral information from
PPC activity during T-maze tasks, as the performance of a
fixed decoder degrades significantly after several days due to
measured drift (Rule et al 2020). Rule et al. have explored
different possible biologically plausible adaptation rules that
achieve robust readout under various constraints, including
the absence or presence of explicit external error signals
(Rule et al 2020; Rule and O’Leary 2021). However, these
studies have yet to investigate compensatory drift in hierar-
chical networks performing probabilistic computations.
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5 Outlook

In this review, we presented the technical advances and exper-
imental observations that have recently led researchers to
question the stability of single-neuron representations. We
then presented possible mechanisms through which drift
could occur within a network performing normative com-
putation. Importantly, these mechanisms are not mutually
exclusive. They affect different parts of neural computations,
and—considering that they have distinct roles—it is likely
that they coexist, with each accounting for some fraction of
the drift observed in neural population codes. Here, we out-
line some promising directions for future experimental and
theoretical research.

The stability of the geometry of population representations
remains an important open question. Though the tuning of
individual neurons determines the manifold of neural activ-
ity, the same coding geometry in a redundant circuit could
arise from different single-neuron tuning (see Sect. 4.2 and
Kriegeskorte and Wei (2021)). Analyses of neural responses
in the monkey motor cortex and rodent visual cortex suggest
that the geometry of the population code is stable (Gallego
et al 2020; Xia et al 2021), while analysis of drifting repre-
sentations in olfactory cortex suggests a changing geometry
(Schoonover et al 2021). In higher areas, the representational
similarity of spatial representations in CA1 appears to remain
stable over weeks (Qin et al 2021; Gonzalez et al 2019); it
will be interesting to test whether this is also true in PPC.

In the simple model described in Sect. 4.3, drift in the
representation r is driven by two sets of synaptic weights:
the feedforward weights A and the recurrent weights W. In
a biologically plausible model, it is likely that these two sets
of synaptic weights would have different learning dynamics.
Different classes of stimuli will recruit different degrees of
recurrent interaction, resulting in representations that may be
driven primarily by forward input Ax or recurrent input Wr.
Differences in the rate at which these two weights matrices
drift would thus lead to differences in measured drift rates of
representations across stimulus classes. In visual cortex, rep-
resentations of stimuli known to elicit maximum activation
(drifting gratings) appear relatively stable in comparison with
representations of more complex visual scenes (Deitch et al
2021; Marks and Goard 2021). This could be interpreted as
stability of the feedforward weights establishing the classical
(center) receptive field and drift of the recurrent and feed-
back weights contributing to the extra-classical (surround)
receptive field (Rao and Ballard 1999; Angelucci et al 2002;
Chalk et al 2017; Carandini and Heeger 2012). Extending
these concepts to modalities in which the notion of classical
and extra-classical receptive fields is less well understood
remains a challenge (Carandini and Heeger 2012; Wanner
and Friedrich 2020).

Thus far, most studies have defined representations by
the steady-state firing or average activity over a relatively
large window (~ 1 s). Yet, neurons also have rich transient
dynamics; the stability of these dynamics has not been com-
prehensively characterized. Comparing drift in transient and
steady-state responses could potentially afford some insight
into the relative contributions of feedforward and feedback
weights (Wanner and Friedrich 2020).

This issue highlights one of the key difficulties faced
by neuroscientists. Learning in artificial neural networks is
defined through synaptic weight dynamics, but experimental
neuroscientists typically have access to only time-resolved
large-scale measurements of neural activity, and not of synap-
tic weights. Inferring weights and learning rules from neural
activity is extremely challenging. Some theoretical work has
started to attempt inference of network weights from activity,
but much work remains before these methods can be applied
to neural recordings (Pereira and Brunel 2018; Nayebi et al
2020; Goldt et al 2021; Chalk et al 2021). This work will
be important to directly link drift in representations with
changes in synaptic weights beyond comparison between
transient and steady-state responses.

Attempts to probe redundancies in neural circuits will also
face similar challenges. Within the illustrative model of Sect.
4.3, a simple way to model redundancy due to the presence
of a coding null space would be for the error to depend on
the representation r only through some linear readout Br. If
the matrix B has a nontrivial null space, any drift in the pop-
ulation representation r within this null space would keep
the error constant. However, in most settings the error land-
scape will be more complex, and experimentally identifying
the redundant directions in neural representations will be
challenging. Even for artificial networks, for which one has
access to complete information about every neuron, precise
characterization of high-dimensional error landscapes is a
highly nontrivial task (Baldi and Hornik 1989; Kawaguchi
2016; Geiger et al 2019). Therefore, precise characterization
of redundancies in complex neural systems is likely to be a
challenging task.

Previous attempts to experimentally probe circuit redun-
dancies have focused either on characterizing the task-
relevant activity subspace (Kaufman et al 2014; Gallego
et al 2017, 2020) or on characterizing perturbations that
severely impair long-term neural dynamics and behavioral
performance (Li et al 2016; Inagaki et al 2019). To obtain
a fine-grained understanding of circuit redundancies, it will
be necessary to perform high-precision perturbation experi-
ments (Adesnik and Abdeladim 2021; Banerjee et al 2021;
Jazayeri and Afraz 2017). Such experiments would elucidate
causal links between neural activity and behavioral function,
which cannot conclusively be established with correlative
measurement of activity. If one can identify redundant direc-
tions in activity space, one would then expect to observe
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greater drift along those directions than along task-relevant
directions. However, for the abovementioned reasons, com-
prehensive mapping of the high-dimensional landscape is
likely to be quite challenging.

On the theoretical side, studies of weight sampling in neu-
ral networks have thus far mostly focused on the properties of
the prior and Bayes posterior, and do not consider nonequilib-
rium properties of the sampling process. Even at this level, the
link between the choice of prior distribution over weights and
the prior distribution over network activity remains poorly
understood (Wilson and Izmailov 2020; Izmailov et al 2021;
Aitchison 2020; Zavatone-Veth and Pehlevan 2021; Yang
2019). One can predict the approximate equilibrium statis-
tics of representations for simple network architectures and
error metrics in certain regimes (Aitchison 2020; Zavatone-
Veth et al 2021), but these calculations remain challenging
even for feedforward nonlinear networks. As a result, sig-
nificant theoretical work will be required in order to make
experimentally testable predictions for the statistics of drift-
ing representations during sampling.

In our discussion of theories of drift, we focused on the
learning of a single task. However, it is important to note
that representational drift due to Bayesian sampling and clas-
sic proposals for representational changes due to continual
learning are not mutually exclusive. Indeed, these ideas can
be unified under the umbrella of Bayesian continual learning
(Opper 1999; Kirkpatrick et al 2017; Kulhavy and Zarrop
1993). Depending on the timescales of intrinsic synaptic
noise and of the arrival of new tasks, equilibrium sampling
may or may not be a good approximation for probabilistic
computations in the brain. If different tasks are well sep-
arated in time, drift after learning a single task can result
from equilibrium sampling, particularly in the presence of
redundancy. The introduction of a new task would alter the
error landscape, introducing additional sources of representa-
tional modification beyond sampling variability (Fusi 2021;
Schoonover et al 2021). Further changes could result from
the need to compensate for neuron death (Barrett et al 2016;
Calaim et al 2020). In addition to the ideas around Bayesian
sampling proposed here, ongoing synaptic plasticity has been
posited to be crucial for maintaining network dynamics near
criticality, which has been proposed to be computationally
beneficial (Zeraati et al 2021; Beggs and Timme 2012; Yu
et al 2017; Das and Levina 2019; de Andrade Costa et al
2015). These processes could all contribute to measurable
drift—as defined experimentally—but their timescales and
statistical structure are likely to differ.

Disentangling the relative contributions of different
sources of drift will require both new theoretical work and
new experiments spanning larger stimulus sets and wider spa-
tial and temporal scales. Mechanistic modeling of circuits
performing Bayesian continual learning will help elucidate
how the temporal structure of tasks contributes to the struc-
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ture of drift. Moreover, it will be important to theoretically
elucidate how stimulus statistics and circuit architecture
affect differences in the statistical structure of representa-
tional changes due to continual learning and drift due to
sampling (Qin et al 2021; Zavatone-Veth et al 2021). Experi-
mentally, it will be important to probe how stimulus structure
and task complexity affect the structure of drift (Schoonover
et al 2021; Pashkovski et al 2020). Moreover, multi-area
recordings (Luo et al 2020; Sofroniew et al 2016; Steinmetz
et al 2021; Chung et al 2019) may allow experimentalists to
quantify co-variation in representational drift across the cor-
tical hierarchy. This may allow separation of compensatory
drift from other mechanisms.

In summary, we propose that drift could be a feature of
robust probabilistic computation in hierarchical networks.
Nonetheless, significant challenges remain to properly under-
stand and characterize drift in neuronal representations.
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