The Puzzle of War

Pablo Balán

GOV 40, February 212019

- Review of game theory
- Review of the graphical model
- Game theoretic version of the model ... with math! - 2

WHY WAR?

Naive explanations

- "They hate each other"
- "They're crazy"
- They chose to go to war
- Create a model in which war does not occur
- Find the conditions that will break this result

GRAPHICAL MODEL

Graphical model

Graphical model

Graphical model

Graphical model

Graphical model

Graphical model

Graphical model

GAME-THEORETIC MODEL

War as a costly lottery

- Outcomes
- Lose
- Win
- Probability of each outcome
- $\operatorname{Pr}($ Lose $)=0.98$
- $\operatorname{Pr}($ Win $)=0.02$
- Payoffs
- $\operatorname{Win}=100,000$
- Lose $=0$
- Value of the ticket?
- $0.98 \times 0+0.02 \times 100,000=2,000$

Elements of a game

- Players
- Actions
- Preferences

Model

- Players: Country A, Country B
- Outcome: Divisions of a piece of territory of size $=1$
- Country A gets x
- Country B gets $1-x$
- Game: Country A offers a division: $\{x, 1-x\}$
- Country B: accepts or rejects
- If Country B accepts, territory is divided
- If Country B rejects, they go to war
- Country A wins entire territory with probability p_{A}
- Country B wins entire territory with probability $1-p_{A}$
- Country A pays cost c_{A}, Country B pays cost c_{B}

Game tree

Country B's dilemma

- $E U_{B}($ Accept $)=1-x$
- $E U_{B}($ Reject $=$ War $)=\left(1-p_{A}\right) \times\left(1-C_{B}\right)+p_{A} \times\left(-c_{B}\right)=1-p_{A}-c_{B}$
- Accept if $E U_{B}($ Accept $) \geq E U_{B}($ Reject $)$
- $1-x \geq 1-p_{A}-c_{B}$
- $x \leq p_{A}+c_{B}$
- Player 1 offers:
- $x^{*}=p_{A}+c_{B}$ THE MINIMUM OFFER

Country A's dilemma

- $E U_{A}($ Offer $)=x^{*}=p_{A}+c_{B}$
- $E U_{A}($ War $)=\left(p_{A}\right) \times\left(1-c_{A}\right)+\left(1-p_{A}\right) \times\left(-c_{A}\right)$
- Accept if $E U_{A}($ Offer $) \geq E U_{A}$ (War)
- $p_{A}+c_{B} \geq p_{A}-c_{A}$
- $c_{A}+c_{B} \geq 0$ ALWAYS TRUE
- There exists an equilibrium such that Country A makes an offer and Country B accepts. No war.
- Solution (NE) is: $\{x, 1-x\}=\left\{p_{A}+c_{B}, 1-p_{A}-c_{B}\right\}$

Comparative statics (predictions)

- How does x^{*} change as..?
- p_{A} increases
- x^{*} increases
- c_{B} increases
- x^{*} increases
- c_{A} increases
- x^{*} stays the same

Why war?

1. Asymmetric information (+ incentives to misrepresent)
2. Commitment problems
3. Indivisibility

Mistakes?

What have we learned?

- Review of the graphical model
- Game-theoretic model
- Why war? (key concepts)

