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ABSTRACT

Competing endogenous RNAs (ceRNAs) are RNA
molecules that sequester shared microRNAs (miR-
NAs) thereby affecting the expression of other tar-
gets of the miRNAs. Whether genetic variants in
ceRNA can affect its biological function and dis-
ease development is still an open question. Here
we identified a large number of genetic variants that
are associated with ceRNA’s function using Geu-
vaids RNA-seq data for 462 individuals from the 1000
Genomes Project. We call these loci competing en-
dogenous RNA expression quantitative trait loci or
‘cerQTL’, and found that a large number of them
were unexplored in conventional eQTL mapping. We
identified many cerQTLs that have undergone recent
positive selection in different human populations,
and showed that single nucleotide polymorphisms in
gene 3′UTRs at the miRNA seed binding regions can
simultaneously regulate gene expression changes
in both cis and trans by the ceRNA mechanism.
We also discovered that cerQTLs are significantly
enriched in traits/diseases associated variants re-
ported from genome-wide association studies in the
miRNA binding sites, suggesting that disease sus-

ceptibilities could be attributed to ceRNA regulation.
Further in vitro functional experiments demonstrated
that a cerQTL rs11540855 can regulate ceRNA func-
tion. These results provide a comprehensive cata-
log of functional non-coding regulatory variants that
may be responsible for ceRNA crosstalk at the post-
transcriptional level.

INTRODUCTION

RNA molecules can operate as competing endogenous
RNAs (ceRNAs), which titrate away some of the active
miRNAs and thereby indirectly regulate the expression of
other transcripts targeted by the same set of miRNAs. Many
classes of RNAs may act as ceRNAs, including mRNAs,
pseudogene transcripts, long non-coding RNAs and circu-
lar RNAs (1), and play critical roles in cellular metabolism
and disease development (2). Genetic alteration of ceRNA
sequences has been associated with disease progression,
which illustrates the potential importance of ceRNA to hu-
man health (3,4).

The ceRNA regulatory network is determined by
miRNA response elements (MREs), which are the target
sites of miRNAs. Genetic variants that perturb MREs can
therefore change the dynamic equilibrium of all ceRNAs
and miRNAs within the network (2,5,6). One example is the
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single nucleotide polymorphism (SNP) rs17228616, which
disrupts the interaction between miR-608 and the mRNA
product of the gene AChE. As a result, miR-608 released
from the interaction is able to suppress other targets such
as CDC42 and IL6 (7). Despite the fact that numerous ex-
amples of genetic variants that affect ceRNAs have been re-
ported (8), no study to our knowledge has been conducted
to systematically identify such variants at the genome-wide
scale.

Recent advances in sequencing technologies have made
it possible to identify genetic variants with molecular phe-
notypes, which are known as molecular quantitative trait
loci (QTLs) (9). Previous studies have reported variants
that affect miRNA gene expression (miRNA-eQTL) (9–
13) which in turn affect the expression of coding genes
whose 3′ untranslated region are targeted by the miRNA
(3′UTR-eQTLs) (14,15). Here we use genotypes and RNA-
seq data from the 1000 Genomes Project (16) and the Geu-
vadis Project (12) to better understand how genetic poly-
morphisms shape human ceRNA regulation. Our study is
the first systematic investigation of genetic variants that are
associated with ceRNA crosstalk.

MATERIALS AND METHODS

Expression data and genotype data

We used Geuvadis RNA sequencing data and small RNA
sequencing data of 462 unrelated human lymphoblastoid
cell line samples from the CEPH (CEU), Finns (FIN),
British (GBR), Toscani (TSI) and Yoruba (YRI) popula-
tions in the 1000 Genomes Project (12,16).

Construct variant-miRNA-ceD-ceT unit

We extracted human 3′UTR sequences using the GEN-
CODE (17) V12 annotation, which was also used by
Geuvadis for RNA-seq quantification, and obtained 714
Geuvadis-quantified miRNA sequences from miRBase
(18). We mapped Geuvadis biallelic genotypes to 3′UTR se-
quences to construct reference and alternative miRNA tar-
gets, and used TargetScan 6.2 (19) and ViennaRNA Pack-
age (20) to predict miRNA–target relationships. We then
selected those ‘variant-miRNA–target’ units that show al-
tered binding affinity between reference and alternative
alleles. The miRNA targets that meet the above crite-
ria are termed as putative ceRNA driver genes (ceDs),
which were predicted to have differential binding affinity
under reference and alternative alleles. For each selected
variant-miRNA-ceD unit, we further searched for candi-
date ceRNA target genes (ceTs) under the control of the
same miRNA as the ceD (on either reference or alternative
3′UTR sequence) according to TargetScan predictions. Fi-
nally, we tested for association between genetic variants and
their respective miRNA-ceD-ceT (details in Supplementary
Methods).

Multivariate multiple regression and confounding factors

We sought to investigate whether a given variant regulates
the expression of a ceD and a ceT in a reciprocal pattern

due to the ceRNA competition. For each variant-miRNA-
ceD-ceT unit, we considered gene expression, measured as
the sum of all transcript RPKMs of the ceD (Yd) and the
ceT (Yt), as two dependent variables and normalized to fol-
low approximately a standard normal distribution. As pre-
dictors we include the individual’s genotype (G) and the fol-
lowing factors which might influence the response variables:
the PEER (21) residual of miRNA expression (Mr), the 10
PEER factors of ceD expression (PFd), the 10 PEER factors
of ceT expression (PFt) and the first three principal compo-
nents of individual genotype (PC). The multivariate multi-
ple regression on the (ceD, ceT) pair is modeled as:

(Yd, Yt) = G + Mr + P F d + P F t + PC + ε,

where we simultaneously observed two responses, Yd and
Yt, and the same set of predictors on each sample unit. The
error vector ε = (ε1, ε2) ′ is assumed to follow a multivari-
ate Gaussian distribution with expectation zero and an un-
known covariance matrix (i.e. allowing for correlations and
different variances for the two responses).

Thus, the variant effect for ceD and ceT can be estimated
by the corresponding coefficients on genotype G (βd and βt),
and the significance of the multivariate multiple regression
model can be assessed by Pillai’s trace test statistics (22).
However, in our definition of cerQTLs, we required oppo-
site expression trends between ceD and each of its ceTs ac-
companying the genotype change (AA = 0, AB = 1 and BB
= 2), so we further filtered variants to only keep those with
their βd and βt values having opposite signs (βd × βt < 0).
We finally reported the variant-miRNA-ceD-ceT units with
a Benjamini-Hochberg false discovery rate (FDR) < 0.05
(23). To calibrate the effectiveness of model, we generated
an empirical null by performing genotype permutation on
each investigated locus by randomly switching the genotype
among individuals and applying the model to the permuted
data (details in Supplementary Methods).

cerQTL analysis

To be consistent with the Geuvadis RNA-seq quantifica-
tion, we utilized GENCODE V12 gene annotation to inves-
tigate functional properties of ceDs and ceTs. We also used
DAVID to find enriched gene annotations and pathways
(24). We used SNVrap to annotate genetic variants (25,26),
and grouped the genome-wide association study (GWAS)
traits according to ontology mapping (human phenotype
ontology and disease ontology) of GWASdb (27). We used
six statistical measurements from dbPSHP (28), including
difference of derived allele frequency (DDAF) (29), fixa-
tion Index (FST) (30), Tajima’s D (31), integrated haplotype
score (iHS) (32), cross-population extended haplotype ho-
mozygosity (XPEHH) (33) and cross-population compos-
ite likelihood ratio (XPCLR) (34), to evaluate signals of
positive selection on each detected cerQTL SNP. To intu-
itively verify and visualize positive selection of the candi-
date cerQTLs, we applied hierarchical clustering on their
derived allele frequencies (DAF) (details in Supplementary
Methods).
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GWAS enrichment

SNPs associated with GWAS traits were collected from
GWASdb and NHGRI GWAS Catalog (34), and we ob-
tained all linked SNPs with r2 > 0.8 in EUR for each GWAS
lead SNP and identified cerQTLs overlapping with this ex-
panded list. We used the hyper-geometric test to assess the
enrichment of cerQTLs in GWAS signals (details in Supple-
mentary Methods).

cerQTL experimental validation

We used in vitro assays to validate the functional role of a
cerQTL unit (rs11540855-miR-4707-3p-ABHD8-AXIN1).
First, we independently evaluated whether both ceD
(ABHD8 A-allele or ABHD8 G-allele) and ceT (AXIN1)
are biological targets of miR-4707-3p using dual luciferase
reporter assay (35) and Western blot (details in Supple-
mentary Methods). To investigate changes of ceRNA com-
petition under different alleles, we then engineered the
MCF116 breast cancer cells to stably express ABHD8 A-
allele or ABHD8 G-allele and inspected the AXIN1 pro-
tein change upon miR-4707-3p agomir treatment. We fur-
ther investigated ceRNA expression changes by miR-4707-
3p agomir dose-dependent experiments (details in Supple-
mentary Methods).

RESULTS

The logic for detecting genetic variants affecting ceRNA reg-
ulation

We assume that genetic variants in MREs, such as SNPs
and indels, will perturb ceRNA regulation by titrating
miRNA availability. Specifically, a variant in a gene’s
3′UTR can influence miRNA–target interaction, by creat-
ing, erasing, strengthening or weakening an MRE. We re-
fer to genes with altered MREs as ceDs, and the interac-
tion among miRNAs and ceRNAs as miRNA-ceRNA net-
works. Changes to ceDs can perturb the miRNA-ceRNA
network and affect the expression of other ceRNAs. Con-
sidering the independent effect of one SNP or indel in a sin-
gle MRE of a ceD, the variant will mostly affect the asso-
ciated miRNA and its direct targets (ceTs) although other
miRNAs and ceRNAs in the regulatory network can also be
indirectly affected. To simplify the investigation of SNPs’
effects, we focused on each pair of ceD-ceT for a unique
miRNA in this study, representing the minimum miRNA-
ceRNA system (2,5,6,36). An SNP or indel that creates or
strengthens an MRE will decrease the expression of its own
host gene (the ceD), and thus increase the expression of
the corresponding ceT, whereas a SNP or indel that erases
or weakens an MRE will have the opposite effect (Figure
1A). We therefore termed these variants candidate com-
peting endogenous RNA expression quantitative trait loci
(cerQTLs).

Genetic effects on ceRNA regulation in human populations

Summary of the detection pipeline. Using the genotype
dataset of 462 Geuvadis individuals, we first identified ge-
netic variants in the human genome and then examined

the impact of these variants on miRNA binding accord-
ing to TargetScan predictions (19). We identified 3544 can-
didate genetic variants (including 3263 SNPs and 281 in-
dels) in seed binding sites of 2753 miRNA putative target
genes (putative ceDs). These loci showed differential bind-
ing affinity to 439 miRNAs (out of 714 profiled by Geu-
vadis) between the reference and alternative alleles (see Sup-
plementary Methods). For each putative ceD, we identified
other genes (ceTs) that are targeted by the same miRNA
and constructed a minimum variant-associated miRNA-
ceRNA unit which we call variant-miRNA-ceD-ceT. To
measure the genotype effect on ceRNA regulation, we ap-
plied a multivariate regression model to jointly model the
genetic contribution on variability of ceRNA expression
and considered several factors, such as miRNA concen-
tration among individuals, covariates of RNA-seq quan-
tification and population stratification (see Supplementary
Methods and Figure 1B on whole detection pipeline). This
multivariate regression model can simultaneously test for
both ceD and ceT expressions and take advantage of the po-
tentially correlated nature between ceD and ceT. At FDR
5%, we obtained the coefficients of ceD (βd ) and ceT (βt)
for the significant pairs which estimate the genotype ef-
fect on ceD and ceT, respectively. To capture the underlying
miRNA sponge effect explained by the genotype change, we
further filtered out units with βd × βt > 0 and only retained
those showing opposite signs of association between genetic
variants and gene expression of the two ceRNAs (details in
Supplementary Methods).

Genome-wide detection of cerQTLs in different populations.
We applied our model and filtering strategy to five Geuvadis
populations and detected genome-wide cerQTLs. We found
47 (YRI, 89 individuals), 66 (TSI, 93 individuals), 67 (CEU,
91 individuals), 97 (FIN, 95 individuals) and 106 (GBR,
94 individuals) significant cerQTLs at 5% FDR, respec-
tively (Supplementary Table S1). To improve the detection
power, we merged four European subpopulations (EUR,
373 individuals) and detected 387 significant cerQTLs and
1875 variant-miRNA-ceD-ceT units (Supplementary Table
S2 and Figure 2). To assess whether the signals in our model
differ significantly from the permuted null, we also applied
our model to the EUR population with randomly permuted
genotypes among individuals. The permutation result in the
Q-Q plot shows little signal for these loci, indicating the
effectiveness of model (Supplementary Figure S1). In the
387 cerQTLs associated with the EUR population, 344 are
SNPs (out of 3263) and 43 are indels (out of 281) (Fig-
ure 3A), which suggests that indels are more likely to be
cerQTLs than SNPs by accounting for all tested variants
in each category (Chi-square test P = 0.04).

cerQTLs are not only directly associated with their ceDs
in cis, but also synchronously associated with their corre-
sponding ceTs in trans through their common miRNA reg-
ulator. We found only six cerQTLs that overlap with the
Geuvadis fine-mapped (‘the best’) cis-eQTL result from the
EUR population, implying that most of these ‘best’ cis-
eQTLs cannot be explained by ceRNA regulation. How-
ever, when we considered the Geuvadis ‘all mapped’ cis-
eQTLs, the overlap with cerQTLs is significantly improved
(43%, Figure 3B). This suggests that cerQTLs could ex-
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Figure 1. The schematic diagram of cerQTL detection for genetic variants affecting ceRNA regulation. (A) The model will investigate the variants effect of
each ceD-ceT pair in local and unique miRNA-centered regulatory network (minimum miRNA-ceRNA system). If a mutation creates a gain-of-function
MRE in the 3′UTR of an mRNA (C1) targeted specifically by a miRNA (M1), C1 will be treated as a ceD and biologically participates in local network
centered on M1. The original targets (including C2, T1 and T2) of M1 will naturally become ceRNA targets (ceTs) of C1. Alternatively, if a loss-of-
function mutation erases an MRE of C1 which originally targeted by M1, then C1 will be released from M1-centered regulatory network. Therefore, both
scenarios can initiate the perturbation of ceRNA regulation by mutation-driven redistribution of associated miRNA and ceRNAs. Ideally, assuming the
concentration of miRNA is relatively stable among investigated individuals, one would observe reciprocal and coordinated expression trend between C1
and each of its ceTs (such as C2) under additive genetic effect. M: miRNA; T: target; C: investigated ceRNA; ceD: ceRNA driver; ceT: ceRNA target.
(B) The pipeline first constructs variant-miRNA-ceD-ceT unit according to Geuvaids individual genotypes and TargetScan prediction. For each variant-
miRNA-ceD-ceT unit, we test the genotype effect of ceRNA regulation using a multivariate multiple linear regression with two responses (ceD and ceT)
by incorporating several confounding factors. Also, different function evidences area applied to prioritize the detected cerQTLs.
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Figure 2. Circos plot of all detected cerQTLs. Features or glyphs are displayed from the outer to the inner, include the number of chromosome, the
chromosome ideograms, copy number variation hotspots (red region), Manhattan plot for cerQTLs with –log10(P-value), Manhattan plot for GWAS
TASs in miRNA binding site predicted by TargetScan, genome variant density (red: dbSNP, black: 1000 Genomes, purple: HapMap 3), OMIM gene
distribution and disease-susceptible region distribution.

plain many functional associations in the linked region of
each Geuvadis ‘best’ cis-eQTL. Additionally, the cerQTL
analysis has identified many additional gene expression-
associated signals that were missed by conventional eQTL
analyses.

Positive selection on ceRNA regulation. By simply overlap-
ping the cerQTLs in different subpopulations, we can find
many loci in common or specific to each subpopulation
(Figure 3C and D). Similar patterns can also be observed
for related miRNAs, ceDs and ceTs of cerQTLs as well
(Supplementary Figure S2). Interestingly, the number of de-
tected cerQTLs is different across subpopulations despite
their similar sample sizes and expected statistical power.
The number of detected cerQTLs is correlated with the
subpopulation’s distance from Africa, which suggests that
ceRNA evolution may play a role in adaptation to new envi-
ronments following migration (Supplementary Figure S3).
To investigate whether cerQTLs are putative targets of re-
cent positive selections, we screened cerQTLs using six sta-
tistical measures (including DDAF, FST, Tajima’s D, iHS,

XPEHH, XPCLR) for each subpopulation. We found 46
cerQTLs with positive selection signals for at least one of
the measures according to their corresponding empirical
thresholds (Supplementary Tables S3 and 4). To visualize
loci with putatively positive selection, we clustered these
46 genetic variants according to their DAF in 5 investi-
gated subpopulations. The clustering clearly recapitulates
the population relationship and shows distinct patterns on
individual locus (Supplementary Figure S4A). For example,
one YRI-specific cerQTL rs1050286 (P = 8.11E-6) shows
very different DAF in African (DAF of YRI: 0.89) and Eu-
ropean populations (DAF of TSI: 0.44; CEU: 0.47; GBR:
0.54; FIN: 0.53) (Supplementary Figures S4B, C and 5).

Putative causality of cerQTLs

Properties of cerQTLs. Functional interpretation of
cerQTLs is pivotal to our understanding of their under-
lying biological mechanisms and phenotype causality.
Coefficients of ceD and ceT in our regression model can
reflect the degree of gene expression perturbation under
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Figure 3. Genome-wide detection of cerQTLs. (A) The proportion of cerQTLs for SNP and indel. (B) The overlapping of cerQTLs in Geuvadis cis-eQTLs.
(C) Venn diagram of cerQTLs in European populations. (D) Venn diagram of cerQTL between European and African populations.

different genotypes. Using the 387 EUR cerQTLs, we
found that majority of βd and βt are small (<1) in the
1875 significant variant-miRNA-ceD-ceT units (Figure 4A
and B), which indicates a moderate effect of these genetic
variants on target gene expression and ceRNA regulation.
To investigate whether the 298 cerQTL-associated ceDs and
1459 ceTs are engaged in important biological processes, we
performed DAVID gene-annotation enrichment analysis
of these two gene sets (24). We found that ceDs and ceTs
were enriched in many transcriptional regulation and cell
signaling processes (Supplementary Figures S6 and 7).

A variant’s effect on miRNA–target interaction can be
assessed by functional prediction algorithms that have been
developed to estimate the change of binding affinity among
different variant alleles (37). To evaluate whether the direc-
tion of association (βd ) is concordant with computational
prediction on ceD through variant effect in cis, we calcu-
lated two scores, the �context+ score and ���G, using
TargetScan and an energy-based method (38) for the 387
cerQTLs in the EUR population. Intuitively, �context+
score estimates the difference between alternative and ref-
erence alleles in binding affinity to the miRNA and ���G
reflects the difference between the two alleles in combined
interaction energy with the miRNA. Overall, 53 and 59% of
cerQTLs have βd in a consistent direction with �context+
score and ���G in functional prediction, respectively,
with a union of 75% (Figure 4C). These results suggest that
many detected cerQTLs can be validated by functional pre-
dictions in their ceD locus.

Functional prioritization of cerQTLs. To comprehensively
evaluate the association between cerQTLs and ceRNA reg-
ulation, we rely not only on the statistical significance, but
also on the magnitude of cerQTL function on titrating
miRNA availability and ceRNA-dependent gene expres-

sion changes. Several factors have been reported to influ-
ence ceRNA effectiveness, including miRNA and ceRNA
expression level, the binding affinity of MRE, as well as the
positive correlation between ceRNA expression (3,5,39).
We attempted to prioritize the functional cerQTLs accord-
ing to these factors. Since our regression model has al-
ready accounted for factors from miRNA expression vari-
ation in the cerQTL calling step, we therefore only focused
on ceRNA-centered factors in the prioritization. For 1875
significant variant-miRNA-ceD-ceT units, we first calcu-
lated and ranked the degree of gene expression change on
ceD and ceT in different genotypes, which can be mea-
sured by the sum of log|βd | and log|βt|. We further re-
quired consistent direction between βd and the �context+
functional prediction score from TargetScan. Finally, we
required positive correlation (Pearson’s r > 0.1) between
ceD and ceT in the specific homozygous cerQTL genotypes,
when ceD and ceT actively compete for miRNA binding.
Based on these criteria, we identified 239 variant-miRNA-
ceD-ceT units for 93 unique cerQTLs with sufficient func-
tional evidences (Supplementary Table S5). The top variant
rs3208409 creates a miR-940-3p binding site in the 3′UTR
of HLA-DRB1 gene, which competes with L3MBTL2 for
miR-940-3p binding (P = 7.94E-27). The large effect of
rs3208409 on the gene expression of ceD (βd = -115.18)
and ceT (βt = 1.14), the consistent functional prediction
(�context+ score = −0.21), and the high correlation (r =
0.38) between ceD and ceT in homozygote individuals pro-
vides a strong support for the causality of this cerQTL (Sup-
plementary Figure S8). We further overlapped this priori-
tized list with GWAS signals and identified 21 phenotype-
associated variant-miRNA-ceD-ceT units (Supplementary
Table S6). These results combine statistically significant
association and functional evidences to support potential
cerQTL causality.
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Figure 4. The functional properties of cerQTLs for EUR population. (A) The distribution of βd . (B) The distribution of βt . (C) The direction concordance
between association and functional prediction for all cerQTLs.

Illustration of cerQTL impact on ceRNA gene regulation.
We use an example to illustrate how cerQTLs affect
ceRNA regulation. SNP rs1056984 is predicted to affect the
seed binding between hsa-miR-296-5p and the 3′UTR of
DIDO1. TargetScan predicted effective binding for the G
allele (7mer-m8, context+ score: −0.236), but not for the
A allele on this SNP. Furthermore, thermodynamic estima-
tion confirms that allele G has a better binding stability to
the miRNA (MFE of A allele: −26.7 kcal/mol; MFE of G
allele: −30.5 kcal/mol). The simulated binding pattern also
shows that allele G enhances the binding stability by creat-
ing a G:C match to position 8 of hsa-miR-296-5p (Figure
5A and B). Our model quantitatively identifies rs1056984
as a cerQTL (P = 4.76E-05) that affects the regulation of
hsa-miR-296-5p to its targets ENSG00000101191 (DIDO1)
and ENSG00000185361 (TNFAIP8L1). The βdvalue of ceD
DIDO1 is −1.34 (Figure 5C), and the βt value of ceT TN-
FAIP8L1 is 0.20 (Figure 5D), with the opposite coefficient
signs supporting the competing nature of ceRNA regula-
tion. As the genotype of this variant changes from AA to
AG to GG, the gradually enhanced sponge effect down-
regulates DIDO1 expression (ceD) and up-regulates TN-
FAIP8L1 expression (ceT). When this locus is homozygous
GG, we observed a significant positive correlation (r = 0.29,
P = 0.01) between DIDO1 and TNFAIP8L1, further sup-
porting the interaction between ceD and ceT through com-
petition for hsa-miR-296-5p (Figure 5E).

Previous studies on gene functions suggest the impor-
tance of DIDO1, TNFAIP8L1 and miR-296-5p in regu-
lating cancer development. miR-296 has been character-
ized as ‘angiomiR,’ which can regulate angiogenesis (40).
It is reported to have a specific role in promoting tumor
angiogenesis by targeting HGS mRNA, resulting in the

overexpression of VEGF receptors in angiogenic endothe-
lial cells (41). MiR-296 may also contribute to carcino-
genesis by dysregulating p53 (42). In this scenario, DIDO1
gene is a tyrosine-phosphorylated putative transcription
factor, previously thought to induce apoptosis and mitotic
division (43,44) and might be a tumor suppressor gene
(45). In contrast, many publications reported TNFAIP8L1
to be an antiapoptotic molecule and oncogene in devel-
oping many cancers (10,46–48). Here, we predicted that
cerQTL rs1056984 affect the ceRNA regulation by balanc-
ing the expression of the pro-apoptotic DIDO1 and the anti-
apoptotic TNFAIP8L1 under different genotypes. Specifi-
cally, efficient miRNA competition occurs in the G allele of
rs1056984, while the A allele has a protective effect in main-
taining tumor suppressor DIDO1 expression and inhibit-
ing oncogenic TNFAIP8L1 expression by shifting miR-296-
5p binding from DIDO1 to TNFAIP8L1 (Figure 5F). Al-
though there is no diseases/traits associated evidences for
rs1056984 at the current stage, the cerQTL investigation
could provide a disease-causal indication underlying this lo-
cus. Also, we found that African population has lower A al-
lele frequency of rs1056984 (DAF of YRI is 0.28, DAF of
CEU is 0.65) in the 1000 Genomes project (Supplementary
Figure S9). Further calculation on FST (0.24) between CEU
and YRI indicates that positive selection may drive the evo-
lution of this locus.

cerQTLs explain GWAS traits and diseases associated
signals in miRNA binding sites. To investigate whether
cerQTL-affected gene expression changes contribute to hu-
man phenotypes, we connected cerQTLs in the EUR popu-
lation to GWAS trait/disease-associated SNPs and found 8
of 387 cerQTLs to overlap with GWAS lead SNPs (Table 1).
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Figure 5. The genetic effect of rs1056984 in ceRNA regulation for EUR population. (A) Hybridization pattern between miR-296-5p and binding site of
DIDO1 on derived allele A. (B) Hybridization pattern between miR-296-5p and binding site of DIDO1 on ancestral allele G. (C) Boxplot of gene expression
of DIDO1 on different genotype. (D) Boxplot of gene expression of TNFAIP8L1 on different genotypes. (E) The gene expression correlation of DIDO1 and
TNFAIP8L1 under different genotypes. (F) Schematic diagram for rs1056984 affecting ceRNA competition under different alleles, it impacts the expression
of tumor suppressor and oncogene in a reciprocal and coordinate manner. MFE: minimum free energy.

The top lead SNP is rs7294, which is located in the 3′UTR
region of VKORC1 and associated with warfarin mainte-
nance dose in anticoagulant therapy (49–51) (Supplemen-
tary Figure S10A–D).

Since GWAS lead SNPs may not be causal, we further
scanned SNPs in high LD (r2 > 0.8) of the lead SNPs. We
found 15.7% of 344 cerQTLs (SNPs only and not indels)
to be associated with 145 GWAS hits (Supplementary Ta-
ble S7), a significant enrichment of cerQTLs in GWAS hits
compared with background SNPs for both the miRNA seed
binding site (P = 7.54E-28, hypergeometric test) and dif-
ferential miRNA binding signals (P = 3.30E-4, hypergeo-
metric test) (Supplementary Table S8). Most of these 145
GWAS leading SNPs are located in introns or intergenic re-
gions with poorly annotated functions and they are mostly
related to autoimmune diseases and blood cell traits (Sup-
plementary Table S9). Our analysis suggests that the causal
SNPs for these leading SNPs might arise from cerQTLs
which underly disease/trait-associated SNPs within GWAS
LD proxies.

Functional effect of cerQTLs in ceRNA regulatory network

The altered expression of individual genes might affect the
expression of many other genes in the ceRNA regulatory
network by the miRNA sponge mechanism (52,53). We
merged the 1875 significant variant-miRNA-ceD-ceT units
our model identified and constructed the global ceRNA
regulatory network under the control of 387 independent
cerQTLs in the EUR population (Supplementary Figure
S11). We also generated the network for 21 phenotype-
associated variant-miRNA-ceD-ceT units (Supplementary
Figure S12). The majority of ceDs can be associated with
more than one ceT by a single genetic effect. For exam-

ple, rs11540855 on ceD ABHD8 may influence the expres-
sion of two ceTs AXIN1 and RPRM through competing
for binding to miR-4707-3p (Figure 6A) and the expres-
sion of ABHD8 and its two ceTs are positively correlated
under the active genotype GG (Figure 6B–D). Interest-
ingly, the cerQTL rs11540855 is located in the 3′UTR of
ABHD8 and has been recently reported to have the highest
association with breast cancer risk (GWAS P = 1.65E-09)
(54,55). In addition, AXIN1 and RPRM were recently re-
ported as tumor suppressors in breast cancer development
(56), and miR-4707-3p is highly expressed in breast cancer
(57). These observations suggest that cerQTL rs11540855
might affect breast cancer risk by regulating tumor suppres-
sors AXIN1 and RPRM through the ceRNA pathway. In
addition to the aforementioned regulatory relationship, one
ceD can also be regulated by multiple miRNAs and a single
miRNA can regulate multiple ceDs and ceTs through differ-
ent cerQTLs. These interactions highlight the complexity of
genetic effect on ceRNA regulatory network.

In vitro cerQTL functional validation

To further illustrate cerQTL effect in the minimum miRNA-
ceRNA system, we experimentally validated one breast
cancer-associated cerQTL unit (rs11540855-miR-4707-3p-
ABHD8-AXIN1) (Figure 7A) in the breast cancer cell line
MCF116. We first attempted to independently validate
whether both ceD and ceT were biological targets of miR-
4707-3p, which was the premise of ceRNAs competition.
Using dual luciferase reporter assay, we observed signif-
icantly reduced luciferase activity and mRNA expression
level upon miR-4707-3p agomir treatment in the G-allele
but not the A-allele in the 3′UTR of ABHD8. This indicates
that miR-4707-3p preferably binds to the 3′UTR of ABHD8
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Table 1. The cerQTLs that overlap with GWAS leading TASs

Chr Pos SNP Ref Alt
cerQTL
P-valuea ceD ceTs miRNA Effectb

GWAS
P-valuec GWAS traits

16 31102321 rs7294 C T 1.37E-06 VKORC1 EIF2B5, RPTOR, LRRFIP1 miR-147a Gain 1.40E-45 Warfarin and acenocoumarol
maintenance dosage (68)

11 18388128 rs4596 G C 1.15E-05 GTF2H1 TSTD2, TMOD1, TOB1,
PPARGC1A, KLF5

miR-642a-5p Loss 2.17E-35 Amyloid A Levels (69), Colorectal
cancer (70)

12 56863770 rs2657880 G C 1.87E-51 SPRYD4 XKR6, AC004985.2 miR-3157-5p Loss 2.28E-31 Serum metabolite levels (71)
10 100176869 rs701801 C T 4.70E-13 HPS1 TRIOBP, KLHL30 miR-491-5p Loss 1.34E-25 Serum metabolism (72)
19 10397238 rs281437 C T 0.00019 ICAM1 C16orf54, FBXO41, SH2D4A miR-3667-5p Loss 3.00E-10 Soluble intercellular adhesion

molecule 1 level (73)
16 67708897 rs12449157 A G 7.69E-06 GFOD2 COASY, LMAN2L, VPS9D1 miR-4792-5p Gain 2.00E-07 Coronary artery disease (74)
17 37921742 rs907091 C T 9.50E-05 IKZF3 RGL3, DDX11 miR-330-5p Gain 3.38E-07 Esophageal cancer (75)
8 11643915 rs804292 G A 0.00024 NEIL2 ZNF583 miR-143-3p Loss 2.00E-06 Alcohol/nicotine dependence (76)

athe best cerQTL P-value among all significant variant-miRNA-ceD-ceT units.
bthe predicted function effect of alternative allele for miRNA–target interaction.
cthe best GWAS P-value among all mapped GWAS traits.

Figure 6. The genetic effect of rs11540855 in ceRNA regulation for EUR population. (A) Small ceRNA regulatory network driven by rs11540855, circle:
ceD and ceTs; triangle: miRNA; suppression line with label: the miRNA-ceD regulation, G for gain-of-function mutation; other suppression lines: the
miRNA-ceT regulation; arrow: ceD activate ceTs in gain-of-function situation (βd < 0 and βt > 0). (B) Boxplot of gene expression for ABHD8 on different
genotypes of Geuvaids individuals. (C) Boxplot of gene expression for AXIN1 and on different genotypes of Geuvaids individuals and the correlation with
ABHD8 on genotype GG. (D) Boxplot of gene expression for RPRM and on different genotypes of Geuvaids individuals and the correlation with ABHD8
on genotype GG.
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Figure 7. In vitro experimental validation of rs11540855-miR-4707-3p-ABHD8-AXIN1. (A) Graphic representation of genetic effect on miR-4707-3p-
ABHD8-AXIN1, circle: ceD and ceT; triangle: miRNA; suppression line with label: the miRNA-ceD regulation, G for gain-of-function mutation; other
suppression lines: the miRNA-ceT regulation; arrow: ceD activate ceTs in gain-of-function situation (βd < 0 and βt > 0). (B) Fold change of luciferase
activity ratio for ABHD8 A-allele or ABHD8 G-allele (Firefly luciferase) and the internal control (Renilla luciferase) in response to miR-4707-3p agomir,
n = 6 experiments; (C) Fold change of relative ABHD8 A-allele or ABHD8 G-allele mRNA expression level (with GAPDH) in response to miR-4707-3p
agomir, n = 6 experiments; (D) A representative immunoblot and fold change of MCF116 native AXIN1 expression in response to miR-4707-3p agomir,
n = 5 experiments; (E) A representative immunoblot and fold change of AXIN1 expression in MCF116 cells stably expressing the two ABHD8 alleles in
response to miR-4707-3p agomir, n = 5 experiments; (F) Relative expression level of miR-4707-3p, ABHD8 and AXIN1, as a function of miR-4707-3p
agomir dosage (range: 0, 5, 10, 15, 20 pmol/well), n = 6 experiments.

G-allele and negative regulates ABHD8 protein level (Fig-
ure 7B and C). Moreover, miR-4707-3p agomir significantly
inhibited the expression of AXIN1 in MCF116 (Figure 7D).
We hence concluded that rs11540855 alters miR-4707-3p-
ABHD8 interaction affinity in vitro, and both ceD (ABHD8
G-allele) and ceT (AXIN1) are valid targets of miR-4707-
3p.

Given that miR-4707-3p is associated with the 3′UTR
of both ABHD8 and AXIN1, we next aimed to evaluate
the competitive effect of these two ceRNAs in different al-
lele states of ABHD8. By constructing MCF116 cells that
stably express ABHD8 A-allele or ABHD8 G-allele, we in-
spected the changes of ceRNA expression with the treat-
ment of miR-4707-3p agomir. MCF116 cells carrying the
3′UTR of ABHD8 A-allele suppressed the protein level of
AXIN1 more than those carrying the G-allele (Figure 7E),
suggesting stronger competition between ABHD8 G-allele

and miR-4707-3p competing target AXIN1. Furthermore,
dose-dependent experiments showed that increasing miR-
4707-3p treatment suppresses the protein levels of both
ceRNA genes. At the same level of miR-4707-3p treatment,
AXIN1 level decreases less in MCF116 cells carrying the
ABHD8 G-allele which binds stronger to miR-4707-3p than
in MCF116 cells carrying the ABHD8 A-allele (Figure 7F).
Taken together, these experiments support the genetic ef-
fect of cerQTL in the minimum miRNA-ceRNA system and
motivate further functional evaluation of cerQTL cancer
relevance.

DISCUSSION

In this study, we integrated the 1000 Genomes genotype
and Geuvadis RNA sequencing data to investigate the asso-
ciation between human genetic variation and ceRNA reg-
ulation. Using a multivariate multiple regression model,
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we identified hundreds of cerQTLs and related ceD-ceTs
genome-wide. We found evidence suggesting that recent
natural selection has acted on many cerQTLs in different
human populations. cerQTLs are significantly enriched in
GWAS risk loci and are likely to be important for many
biological processes. Furthermore, we prioritized these loci
with their associated ceRNAs according to different criteria
and evaluated their collective effect on the ceRNA regula-
tory network. We also experimentally validated a cerQTL
by in vitro functional assays. Our study provides a novel an-
gle to interpret genetic effect in post-transcriptional gene
regulation and highlights the utility of ceRNA gene regula-
tion in explaining disease susceptibility.

Although our regression model already considered many
potential confounding factors, such as miRNA expression
level, ceRNA expression variability, as well as population
genetic structures, there may still be missing factors that im-
pact the performance and statistical power in the cerQTL
detection. One potential limitation is that we only treated
each pair of ceD and ceT as an independent test unit in the
local miRNA-centered regulatory network instead of mod-
eling the whole ceRNA regulatory network. Studies have
shown that a small perturbation of ceRNA expression usu-
ally shifts the equilibrium of ceRNA regulatory network es-
pecially when concentrations of miRNAs and targets are
comparable (6). The cascade effect from miRNA redistri-
bution and ceRNA competition at the global level (2,58,59)
requires a much more complex mathematical model to ac-
curately describe the full responses of the whole network.

Another limitation of our study is that current compu-
tational predictions of miRNA binding sites are far from
perfect (60). In our study, we chose to use a strict con-
text+ score threshold from TargetScan predictions and de-
scribed the result based on this criterion. It is possible that
our cerQTLs detection can both miss target sites not pre-
dicted by TargetScan and introduce false positives. Alter-
natively, one could consider the union or intersection of
multiple miRNA–target prediction algorithms such as Tar-
getScan, PITA (38), miRanda (61), etc. However, union
might introduce many false positives and intersection might
introduce false negatives and drastically reduce the number
of valid variant-miRNA-ceD-ceT units (from 1875 to 331,
Supplementary Table S10). Our current criteria may pro-
vide a reasonably reliable reference for further functional
investigation. Future experiments combining CLIP-seq and
Degradome-Seq could better capture global miRNA|target
interactions and improve our cerQTL inference.

Using genetic and transcriptomic data from different
populations, we found many population-specific cerQTLs
and identified loci that are putative targets of recent posi-
tive selections. These results represent a useful supplement
to studies of recent natural selection of human miRNA
targets (56,62,63) and significantly extend functional cate-
gories for positively selected loci (64). Besides, GWAS sig-
nals enrichment of our detected cerQTLs implies putative
disease-causal mechanisms driven by ceRNA gene regula-
tion, and we can connect cerQTLs to many human complex
diseases and phenotypes. Importantly, we have experimen-
tally validated a breast cancer-associated SNP rs11540855
that can regulate the competition of two ceRNAs for miR-
4707-3p availability in vitro, including a tumor suppressor

gene AXIN1. This may highlight that cerQTL detection
could be an important addition to our current understand-
ing of disease pathogenesis and trait development.

Since many genes contain multiple binding sites for the
same miRNA, single MRE perturbations might be expected
to have small effects on ceRNA expression and the down-
stream miRNA regulatory network. However, although
many QTLs individually exert relatively small effects, in
combination they might contribute substantially to com-
plex traits (65). Theoretical simulations and quantitative ex-
periments have demonstrated that perturbations on individ-
ual miRNA binding site can indeed affect the entire ceRNA
regulatory network (2,36,66,67). Although our in vitro func-
tional evaluation demonstrates the SNP effect on ceRNA
competition in the minimum miRNA-ceRNA system, it still
could not characterize the entire miRNA-ceRNA network.
In summary, our cerQTL analyses on human populations
suggest that DNA polymorphisms affecting ceRNA regula-
tion might be a common phenomenon and likely contribute
substantially to complex traits.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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