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Abstract 
Motivation: Genome-wide CRISPR-Cas9 screen has been widely used to interrogate gene func-

tions. However, the rules to design better libraries beg further refinement. 

Results: We found sgRNA outliers are characterized by higher G-nucleotide counts, especially in 

regions distal from the PAM motif, and are associated with stronger off-target activities. Furthermore, 

using non-targeting sgRNAs as negative controls lead to strong bias, which can be mitigated by using 

sgRNAs targeting multiple "safe harbor" regions. Custom-designed screens confirmed our findings 

and further revealed that 19nt sgRNAs consistently gave the best signal-to-noise ratio. Collectively, 

our analysis motivated the design of a new genome-wide CRISPR/Cas9 screen library and uncov-

ered some intriguing properties of the CRISPR-Cas9 system. 

Availability: The MAGeCK workflow is available open source at 

https://bitbucket.org/liulab/mageck_nest under the MIT license. 

Contact: xsliu@jimmy.harvard.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

The clustered, regularly interspaced, short palindromic repeat (CRISPR)-

Cas9 system is a new genome editing technology that becomes promi-

nent in many biomedical research areas. In this system, single guide 

RNAs (sgRNAs) direct Cas9 nucleases to induce double-strand breaks at 

targeted genomic regions(Cong, et al., 2013; Jinek, et al., 2012; Mali, et 

al., 2013). Based on this system, CRISPR-Cas9 loss-of-function screens 

can interrogate the functions of coding genes(Koike-Yusa, et al., 2014; 

Shalem, et al., 2014; Wang, et al., 2014; Zhou, et al., 2014) and non-

coding elements(Canver, et al., 2015; Korkmaz, et al., 2016; Zhu, et al., 

2016), and generate hypotheses on cell dependency, drug response, and 

gene regulation in a high-throughput and unbiased manner(Diao, et al., 

2016; Hart, et al., 2015; Parnas, et al., 2015; Wang, et al., 2015). From a 

computational biology perspective, several algorithms have been devel-

oped to characterize sgRNAs with high specificity and 

efficiency(Doench, et al., 2016; Doench, et al., 2014; Hsu, et al., 2013; 

Xu, et al., 2015) that can be used in designing CRISPR screen libraries. 

Despite these efforts, methods for designing CRISPR screens are still 
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being refined from different aspects. First, sgRNA outliers, or sgRNAs 

with discrepant behaviors from other sgRNAs targeting the same gene, 

are common in screen data, but their features and mechanisms remain 

poorly characterized. Second, it's known that spacer length may vary in 

the CRISPR-Cas9 system (Fu, et al., 2014; Morgens, et al., 2017), but 

the optimal length was only studied in single guides and single targets. 

Furthermore, it remains unclear how spacer lengths affect signal-to-noise 

ratio (the extent of the fold changes of guides compared to their vari-

ances) in the screening settings.  

 

We studied both issues based on the MAGeCK-VISPR model we previ-

ously developed (Jiang, et al., 2015; Li, et al., 2015). By examining 

published screens(Wang, et al., 2015; Wang, et al., 2014), we identified 

outlier sgRNAs and uncovered their sequence features to inform future 

library design. We further showed stronger off-target cleavages contrib-

ute to the outlier behaviors. We also found a strong bias in CRISPR 

screen when normalizing read counts with commonly used non-targeting 

sgRNAs and proposed an alternative normalization to mitigate such bias. 

We performed custom-designed screens to validate these findings, and 

further explored sgRNA design rules that can improve the screening 

results, including the optimal spacer length for higher cutting efficiencies 

and better signal-to-noise ratios. Finally, we designed a genome-wide 

CRISPR/Cas9 screening library based on these new rules and demon-

strated its performance in identifying known essential genes in different 

cell types. 

2 Methods 

2.1   The MAGeCK and MAGeCK-VISPR model 

Our laboratory has previously developed algorithms MAGeCK and 

MAGeCK-VISPR for identifying CRISPR screen hits in different sce-

narios(Li, et al., 2015; Li, et al., 2014). In two-condition comparisons, 

MAGeCK uses a negative binomial model to assess the degree of selec-

tions of individual sgRNAs and adopts robust rank aggregation (RRA) 

algorithm(Kolde, et al., 2012) to aggregate multiple sgRNAs on a gene 

to evaluate gene selection. MAGeCK-VISPR(Li, et al., 2015) further 

quantitatively estimates gene selections by optimizing a joint likelihood 

function of observing the read counts of different sgRNAs with varying 

behaviors in multiple conditions. The output of MAGeCK-VISPR is a 

“beta score” for gene � in condition �, ���, analogous to the “log fold 

change” in differential gene expression analysis. More specifically, the 

read count of sgRNA � in sample �, or �	
 , is modeled as: 

�	
 ∼ 
�(�	
 , �	) 
Where �	
 and �	 are the mean and over-dispersion factor of the negative 

binomial (NB) distribution, respectively. The mean value �	
 is further 

modeled as: 

�	
���� = �
exp	(��
����
�

) 
Where �
 is the size factor of sample � for adjusting sequencing depths of 

the samples, and �� is the vector of all beta scores for gene �. To deal 

with complex experimental settings, we included design matrix (�). 

With � samples affected by   conditions, � is a binary matrix with its 

element �
� = 1 if sample � is affected by condition � and 0 otherwise. 

The objective function is a form of regularization: 

�"�� = #��$#%�∑ '(�)*+��	
; �	
����, �	� + Λ(��)	
 � − (1)    
Where )*+ is the probabilistic density function (PDF) of the Negative 

Binomial distribution, and 

Λ���� =�−���0
22�0 	

�
 

The estimated standard deviation, 2�, was calculated using the naive 

estimators of ���.  

 

2.2   Identifying sgRNA outliers 

sgRNA outliers are those that have different behaviors compared with 

other sgRNAs targeting the same gene. A single outlier that does not fit 

the assumed distributions can overly influence the estimations of the beta 

score. Therefore, we tried to identify these outliers using 3-step ap-

proach: candidate outlier prediction, candidate outlier validation, and 

outlier detection.  

 

Step-1: Candidate outlier prediction 

A sgRNA is likely to be an outlier if its log fold is extremely different 

from other sgRNAs. Therefore, in the first step, candidate outlier predic-

tion, we identified the potential sgRNAs outliers by considering their log 

fold changes (LFCs). For each paired condition, we calculated the medi-

an and standard deviation of the LFCs and defined the candidate outliers 

if their LFCs fall beyond median ± 1.5 standard deviation estimation 

(2). Specifically, we followed the “quantile matching” approach in 

DESeq2(Love, et al., 2014) : 2 is chosen such that the (1-p) empirical 

quantile of the absolute values of LFC (4|678|) matches the (1-p/2) theo-

retical quantile of 
	(0, 20) (4*), where p is set as 0.32: 

 

2 = 4|678|(1 − :)
4*(1 − :

2)
 

Note that for a distribution with a long tail, the traditional estimation of 

standard deviation will be distorted. Assuming that samples with beta 

scores close to 0 follows normal distribution, we set a value of p=0.32 to 

calculate standard deviation using only the 68% of samples (samples 

within 1 standard derivation) closes to zero. In this way, the samples 

with beta scores far from zero will not distort the estimation of standard 

deviation. 

 

Step-2: Candidate outlier in silico validation 

Noticing that a sgRNA outlier may significantly influence the beta score 

estimation, a candidate outlier is validated if there is a significant change 

of beta score, ���, after removing the candidate outlier. Therefore, in the 

second step, the candidate outlier in silico validation, we calculated the 

beta score with and without the candidate outlier respectively using 

Equation (1). Define: 

��;< = ���, when all sgRNAs are used; 

	�	 = ���, when sgRNA � is excluded. 

 

Then candidate outlier � is in silico validated if: 

log(#@�(��;<)/#@�(�	))	 > (5 − 0.2 ∗ FG$@H�	()	�� 
I�)	 
With outlier removal, we could prevent the beta score estimation from 

distortion by strong outliers. 

 

Step-3: Outlier detection 

With previous two steps, we could estimate the beta scores robustly. 

However, some moderate outliers cannot be identified if sufficient sgR-

NAs prevent the beta score from distortion by a single outlier. Therefore, 

with robust estimators of beta scores, in the final step, we re-defined a 

sgRNA as an outlier if the probability of observing its count conditioned 

on pre-calculated beta score falls below a certain threshold. In other 

words, sgRNA � is an outlier if: 

�'(�)*+��	
; �	
����, �	�



< K 

where )*+ is the probabilistic density function (PDF) of the Negative 

Binomial distribution. The threshold K was determined such that that 

90% of the validated outliers defined in step 2 can be removed.  
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2.3   Extracting sequence features using Elastic-Net regression 

To identify the sequence features that associate with stronger sgRNA 

outliers, we applied Elastic-Net regression to extract the sequence fea-

tures as our previous work(Xu, et al., 2015). Suppose 

L = {LN, L0, … , LP} is the set of encoded sequence vectors and R =
{RN, R0, … , RP}	is the set of outputs representing whether the sgRNAs are 

stronger outliers, where F is the number of sgRNAs samples for training. 

If sgRNA � is an outlier, the corresponding R	 = 1 and 0 otherwise. Let 

S be the length of the input vectors; the Elastic-Net regression computes 

the parameters T = [�N, �0, … , �V]X that minimize an object function E:  

 

Y = ||R − TXL||0 + Z(�[|T|[N + (1 − �)[|T|[0) 
 

Where � and Z are parameters estimated using cross validation, [|T|[N =
∑ |�	|	  and [|T|[0 = ∑ �	0	 . We used glmnet in R package to implement 

the Elastic-Net regression(Friedman, et al., 2010). 

 

2.4   CRISPR screening design and experimental procedure 

We designed and performed a CRISPR screening experiment to study 

the effects of different normalization methods and different sgRNA 

lengths. The screening library has four types of sgRNAs: sgRNAs target-

ing AAVS1 (a region whose disruption does not have any lethal pheno-

type), non-targeting sgRNAs, sgRNAs targeting 51 ribosomal genes and 

503 cancer-related genes that are considered to be lethal. The details of 

the library design and the experiment are in Supplementary Data. 

3 Results 

3.1 sgRNAs outlier identification and characterization 

Different sgRNAs targeting the same gene can lead to varying pheno-

types or selection levels in the screen due to different cleavage and repair 

efficiencies, local chromatin structure, protein domains, and potential 

off-target effects, etc. (Hsu, et al., 2013; Knight, et al., 2015; Shi, et al., 

2015). Some sgRNAs with outlier phenotypes compared with other 

sgRNAs on the same gene, regardless of the causes, behave consistently 

in multiple screen conditions(Wang, et al., 2015) (Fig. 1a, b), suggesting 

that the discrepant phenotypes could arise from intrinsic features of the 

sgRNA in addition to random variances in the experiments. We are 

especially interested in ‘strong negative outliers’ (as Fig. 1a), which are 

defined as having much larger negative LFCs compared with other sgR-

NAs targeting the same gene and are more likely caused by off-target 

cleavages.    

 

Based on the MAGeCK-VISPR model, we implemented an approach to 

identify such outliers, which tests whether one sgRNA has big effects on 

the gene-level beta score estimates or the probability of observing the 

sgRNA conditioned on the gene-level beta score is low (see Methods). 

This outlier detection and removal approach did identify sgRNAs with 

aberrant LFC on a gene (Fig. 1c). In published screens on four leukemia 

cell lines (Wang, et al., 2015), nine thousand out of 182K sgRNAs on 

average were identified as outliers Among them, 911 sgRNAs are outli-

ers that are consistent in all four screens (Supplementary Fig. 1), and 

80% of these outliers (729/911) are “strong negative outliers” with 

stronger negative selection as other gRNAs on the same gene (as Fig. 

1a). To rule out the possibility that these sgRNAs knockout their intend-

ed targets with extremely high efficiencies, we further limited our analy-

sis to 564 outliers (Supplementary Table 1) that target known non-

essential genes (Hart and Moffat, 2016), as inactivating these genes is 

unlikely to affect cell growth. 

 

Comparing the sequence features of these 564 ‘strong negative outliers’ 

with all 18,000 sgRNAs in the library, we found that they have higher G-

nucleotide but lower C-nucleotide counts in the target DNA sequence 

(Fig. 1d, Supplementary Fig. 1b-d). To identify potential sequence fea-

tures that can distinguish outliers and non-outliers, we trained an elastic 

net model(Friedman, et al., 2010), a regularized regression method that 

considers both the L1 and L2 penalties of the lasso and ridge methods. In 

the training dataset, the predictor variable is a binary vector representing 

the presence or absence of the nucleotides, and the response variable is a 

binary variable indicating whether the gRNA is an outlier. Our model 

showed that outliers tend to contain more G-nucleotides in the 10-

nucleotide non-seed region distal from the PAM motif (Fig. 1e). To 

exclude possible biases of a single library, we confirmed our finding 

using another screen dataset (Meyers, et al., 2017) (Supplementary Fig.  

2a-b). We further tested our predictive model on other CRISPR-Cas9 

knockout (Wang, et al., 2014) or CRISPR-dCas9 inhibition screening 

(Horlbeck, et al., 2016) datasets. The output of the model is an “outlier 

score”, indicating how likely the input sgRNA is an outlier. We found 

that ‘strong negative outliers’ in both datasets have significantly higher 

outlier scores than non-outliers (Supplementary Fig. 2d, e), suggesting 

outlier features we found are consistent across different datasets. These 

findings also suggest that a better CRISPR sgRNA design should at least 

avoid extreme G content in the non-seed region in case of potential off-

target effects.  

 

Considering that strong off-target activities can lead to ‘strong negative 

outliers’, we reanalyzed a previous study that measured the off-target 

activities between mismatched sgRNA:DNA pairs, defined as the de-

crease of CD33 protein level by sgRNAs with 1 nucleotide mismatch 

compared to the target DNA in CD33 locus (Doench, et al., 2016). In-

stead of modeling off-target activities as functions of mismatched nucle-

otide pair and position as in (Doench, et al., 2016), we tested how the 

nucleotide compositions in the Non-seed region affect the off-target 

activities. SgRNAs with more “G”s (≥5) in Non-seed region have signif-

icantly higher off-target activities than those with fewer “G”s (<5) (Fig. 

1f). In contrast, there is no difference in off-target activities between 

sgRNAs with more (≥5) and fewer (<5) “C”s (Supplementary Fig. 2f). 

These findings suggest sgRNAs targeting sequences with high G-content 

in the non-seed region have stronger off-target activities, which can lead 

to strong outlier phenotypes. 

 
Figure 1. Identifying and characterizing stronger negative sgRNAs 

outliers. 
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(a, b) The log fold changes of 10 sgRNAs targeting FARP1 and RPSA in 

4 screens (KBM7, K562, Jiyoye, and Raji). The red lines represent sgR-

NAs outliers, and the blue lines represent other sgRNAs. 

(c) Identifying and removing aberrantly stronger negative outliers (red 

dots). Each row of dots represents the log fold changes (LFCs) of sgR-

NAs targeting the same gene. . 

(d) The G-nucleotide counts of sgRNAs in three groups: stronger nega-

tive outliers (red), non-outliers (blue), and all sgRNAs (green). 

(e) The sequence features of stronger negative outliers versus non-

outliers derived by elastic-net regression. The "Seed" and "Non-seed" 

regions are defined as a 10-nucleotide window proximal to and distal 

from the PAM motif, respectively. The data for Fig. 1a-e is from a public 

screening dataset(Wang, et al., 2015). 

(f) The knockout of CD33 expression with different groups of sgRNAs. 

The ‘Perfect Match’ are 65 perfect-match sgRNAs with an NGG PAM 

that produced effective CD33 knockout defined in (Doench, et al., 2016). 

The “Negative Controls’ are the same set of sgRNAs with non-NGG 

PAM. Those in ‘≥5 "G"s in Non-seed region’ and ‘<5 "G" in Non-seed 

region’ are sgRNAs with an NGG PAM but 1-nt mismatch compared to 

the ‘Perfect Match’ sgRNAs. 

3.2 SgRNAs targeting multiple non-essential genes as nega-

tive controls reduce false positives in the screen 

Correct interpretations of genome-wide screens require proper read count 

normalization. Since most sgRNAs should generate knockouts without 

causing phenotype, a straightforward approach is to normalize based on 

the total read counts of all sgRNAs(Love, et al., 2014) (‘total normaliza-

tion’). Alternatively, many screen libraries include ‘non-targeting’ nega-

tive control sgRNAs, which match nowhere in the genome, for normali-

zation (‘non-targeting sgRNA normalization’). In public datasets(Wang, 

et al., 2015; Wang, et al., 2014), ‘total normalization’ resulted in a beta-

score distribution centered on zero (Supplementary Fig. 3a), while ‘non-

targeting sgRNA normalization’ led to a skewed distribution of beta 

scores where most of the genes appear as negatively selected (Fig 2a). 

The bias of ‘non-targeting sgRNA normalization’ is introduced when 

sgRNAs targeting non-essential genes impede cell growth from genome 

cleavage toxicity(Aguirre, et al., 2016; Munoz, et al., 2016), regardless 

of the gene knockout effects. Therefore, a more appropriate choice of 

negative controls is a set of sgRNAs targeting non-essential DNA re-

gions. These sgRNAs have already been included in recent library design 

(Wang, et al., 2017). Indeed, when normalizing read counts using sgR-

NAs targeting the ‘gold standard’ 927 non-essential genes previously 

derived from pooled shRNA screens(Hart, et al., 2014), the beta score 

distribution is centered on zero (Fig. 2b).  

 

In genome-wide screens, normalizations using either sgRNAs targeting 

non-essential genes or all genes lead to similar results (Fig. 2b, Supple-

mentary Fig. 3a), as the majority of the genes are assumed to be non-

essential. Such assumption may fail in focused (or custom) screens 

where many targeted genes may be under selection, which necessitates 

the selection of better negative control sgRNAs. AAVS1 (adeno-

associated virus integration site 1) is a "safe harbor" site preferred for 

gene knock-ins(DeKelver, et al., 2010; Sadelain, et al., 2012). This re-

gion appears to be epigenetically open for efficient cleavage, yet cutting 

or modification at this site results in no phenotypic changes(Ogata, et al., 

2003). To test whether sgRNAs targeting AAVS1 could serve as good 

negative controls, we first designed a genome-wide screen library con-

taining 134 AAVS1-targeting sgRNAs, 349 non-targeting sgRNAs, as 

well as five sgRNAs per gene in the human genome, and performed 

screening in a prostate cancer LNCaP-abl cell line. SgRNAs targeting 

AAVS1 or non-essential genes induced similar LFCs that are stronger 

than non-targeting sgRNAs, confirming the existence of cleavage toxici-

ty in non-essential regions (Fig. 2c). Also, by comparing normalization 

methods using different sets of sgRNAs (all, non-targeting, AAVS1-

targeting, and non-essential-gene-targeting sgRNAs, respectively), we 

found normalization using the AAVS1- and non-essential-genes target-

ing sgRNAs result in almost identical distributions of beta scores (Fig. 

2d). Moreover, both ‘all sgRNA normalization' and ‘non-targeting sgR-

NA normalization’ lead to biases, though to different degrees (Fig. 2d). 

Since normalization using control guides is an essential step in many 

computational methods including MAGeCK-VISPR and CRISPR Score 

(CS)(Wang, et al., 2014), the results of these methods will also be affect-

ed by the choice of negative controls (Supplementary Fig. 3b). While 

methods that only rely on gRNA ranks such as MAGeCK-RRA(Li, et al., 

2014) will not be affected, the rankings could not clearly distinguish 

genes that are negatively, positively, or not selected, which are important 

when comparing screens over multiple conditions. 

 

To evaluate the normalization methods in a focused screen, we also 

designed a small screening library that targets ~600 genes, including 

ribosomal genes and well-known cancer-related genes (see Methods, 

Supplementary Tables 2, 3). The library also includes the same set of 

AAVS1-targeting and non-targeting sgRNAs. Similar to genome-wide 

screens, AAVS1-targeting sgRNAs induced stronger negative selections 

compared with non-targeting sgRNAs (Supplementary Fig. 3c). Fur-

thermore, using AAVS1-targeting sgRNAs as negative controls in our 

MAGeCK algorithm substantially increases the sensitivity of the screen, 

while keeping the same level of false positives (Supplementary Fig. 3d). 

These results validated the applicability of including AAVS1-targeting 

sgRNAs in genome-wide, and more importantly in focused screen librar-

ies. 

 
Figure 2. Normalizing read counts using sgRNAs targeting non-

essential genes or AAVS1. 

(a-b) The distribution of beta scores in public dataset(Wang, et al., 2015) 

using non-targeting sgRNAs (a) and sgRNAs targeting non-essential 

genes (b) for normalization.  

(c) The log fold change distribution of 349 non-targeting sgRNAs, 467 

non-essential genes-targeting sgRNAs, 133 AAVS1-targeting sgRNAs, 

and 725 essential genes-targeting sgRNAs. P values were calculated 

using two-sided Student's t-test. 

(d) The distribution of beta score using all sgRNAs (black), non-essential 

genes-targeting sgRNAs (green), AAVS1-targeting sgRNAs (red), and 

non-targeting sgRNAs (blue) for normalizing read counts, respectively.  
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3.3 19nt spacers give rise to higher cutting efficiencies and 

better signal-to-noise ratio 

In spCas9 gene editing systems, truncated sgRNAs have been reported to 

have a better cleavage specificity compared with full-length sgRNAs(Fu, 

et al., 2014). However, the performances of truncated sgRNAs in screens 

compared with full-length sgRNAs, as well as the optimal length of 

truncated sgRNAs, have yet to been fully determined. Therefore, in our 

small screening library, we designed sgRNAs with 20nt spacers for each 

ribosomal gene and AAVS1-targeting sgRNAs and then truncated them 

to 19nt, 18nt, and 17nt (see Methods). We found that 19nt sgRNAs give 

significantly stronger LFCs in ribosomal genes, reflecting higher cleav-

age efficiencies (Fig. 3a). If we use the difference between positive-

control sgRNAs (sgRNAs targeting ribosomal genes) and negative-

control sgRNA (AAVS1-targeting sgRNAs) as a metric for signal-to-

noise, 19nt spacers on average give the best performance (Supplemen-

tary Fig. 4) in 11 of 12 screens. Moreover, for each ribosomal gene, 19nt 

sgRNAs gave lower relative standard deviation (i.e., standard deviation 

divided by mean; see Supplementary Methods.) of LFCs, indicating a 

more stable behavior (and potentially less off-target cleavages) of gene 

knockout effects (Fig. 3b).  

 
Figure 3. Comparing cleavage efficiencies and signal-to-noise ratios 

between different lengths of sgRNA spacers. 

(a) The log fold changes of sgRNAs with spacer lengths ranging from 

17- to 20-nts, including non-targeting sgRNAs and sgRNAs targeting 

ribosomal genes. For each spacer length, there are 100 non-targeting 

sgRNAs and 1020 ribosomal genes-targeting sgRNAs. P values were 

calculated using two-sided Student's t-test. 

(b) The relative standard deviation of log fold changes of sgRNAs target-

ing ribosomal genes with spacer lengths ranging from 17- to 20-nts. 

There are 612 data points (51 ribosomes genes repeated in 12 screens) 

for each spacer length.  P values were calculated using two-sided Stu-

dent's t-test. 

3.4 A new genome-wide library Improved screen performance  

Using the rules we uncovered in this study and our previous work(Xu, et 

al., 2015), we designed two sub-libraries that target 18,493 human cod-

ing genes (named "H1" and "H2"; Supplementary Tables 4, 5). Each sub-

library includes sgRNAs with 19nt-long spacers and contains 134 

AAVS1-targeting sgRNAs, 349 non-targeting sgRNAs, as well as five 

sgRNAs targeting each gene in the human genome. After removing 

sgRNAs that are enriched in G-nucleotide (>40%) and have perfect 

matches to other coding regions, we prioritized the remaining sgRNAs 

based on their predicted cleavage efficiencies(Xu, et al., 2015) and the 

number of perfect matches in the whole genome (see Methods). We 

conducted screens in LNCaP, abl and T47D cell lines using the H1/H2 

library and compared to other genome-wide screen datasets, including 

Brunello library(Doench, et al., 2016), TKO library(Hart, et al., 2015), 

and Ong library(Ong, et al., 2017). We found H1/H2 is among the librar-

ies with fewest outlier sgRNA rates (Supplementary Fig. 4b). Assuming 

that a good library should be able to rank known essential genes as most 

negatively selected ones, we found that H1/H2, Brunello, and Ong librar-

ies outperformed GeCKOv2 and TKO in identifying known essential 

genes (Supplementary Fig. 4c-d). These results provide support for our 

refined CRISPR screen library design rules. 

4 Discussions 

The CRISPR-cas9 knockout screen has been used to interrogate the 

functions of coding genes and non-coding elements systemically, but 

library design is still in their early stage. We first applied MAGeCK-

VISPR to public genome-wide screen data and identified a set of ‘strong 

negative outlier’ sgRNAs and their sequence characteristics: higher G-

nucleotide counts especially in regions distal from PAM motif. Unex-

pectedly, the effect of the outliers is independent of the count of C-

nucleotide, different from previous studies that suggest the role of ‘GC' 

content in determining cleavage efficiencies (Haeussler, et al., 2016; 

Doench, et al., 2014; Wang, et al., 2014). Since G-C hybridization 

strengths in DNA-RNA and RNA-DNA hybrids are similar, the distinct 

effect of G- and C-nucleotides suggests a more crucial role of DNA-

endonuclease rather than DNA-RNA interaction in determining outlier 

effects. Moreover, sgRNAs with higher G-contents in regions distal from 

PAM motif have stronger off-target activities. It is worth noting that the 

off-target activity of each sgRNA in Fig. 1e was measured between one 

sgRNA-DNA pair, and the seemly minor difference between sgRNAs 

with high and low G-contents will be multiplied by the enormous mis-

matched sgRNA-DNA pairs in the genome and lead to sgRNA outliers 

in screens. 

Although toxicity from CRISPR cutting has been reported, using non-

targeting control for normalization is still a common practice in pub-

lished literature (Aguirre, et al., 2016; Wang, et al., 2014). We found that 

normalization using non-targeting sgRNAs, as compared to using all 

sgRNAs or sgRNAs targeting non-essential genes, could lead to higher 

false positives (Supplementary Fig. 3d) in calling essential genes. The 

reason might be because cleavages in non-essential regions can still 

induce toxicity in cell growth, in consistency with two recent studies 

showing false positive hits from highly amplified regions in cancer ge-

nomes(Aguirre, et al., 2016; Munoz, et al., 2016). Through CRISPR 

screening experiments, we confirmed that sgRNAs targeting non-

essential genes or safe-harbor region could serve as better negative con-

trols and result in fewer false positives compared with non-targeting 

sgRNAs. Since a single chromatin region may be subject to copy number 

variations in different cell types, sgRNAs targeting multiple non-

essential regions will serve as more robust negative controls. For in-

stance, only 5% (57/1,043) CCLE cell lines have copy number gains in 

AAVS1 locus, such as HCC1937 and MDAMB157, suggesting that 

though chance is low, caution should be used when using single region 

as negative controls. Including correct negative controls is also necessary 

for custom-designed screens where genes are pre-selected and normali-

zation using total read counts is inappropriate. We proposed a solution to 

reduce the biases by using either multiple non-essential genes or 

AAVS1-targeting guides.  

Finally, sgRNAs with shorter lengths have been shown to be potent in 

efficiency and specificity (Fu, et al., 2014), but the optimal performance 

of truncated sgRNAs with different lengths has not been systematically 

Non-targeting 
gRNAs 

Ribosomal 
genes targeting 

gRNAs 

-- 17  -- 18 

-- 19  -- 20 
 

b 

17nt 18nt 19nt 20nt 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

R
e
la
ti
v
e
 s
ta
n
d
a
rd
 

d
e
v
ia
ti
o
n
 o
f 
L
F
C
s
 

L
o
g
 f
o
ld
 c
h
a
n
g
e
 

-2 

-1 

0 

1 
a 

p=6.4*10-6 

p=5.3*10-6 

p=2*10-5 

P=0.007 

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty450/5026664
by Ernst Mayr Library of the Museum Comp Zoology, Harvard University user
on 07 June 2018



Chen et al. 

investigated in screen setting. We discovered that 19nt sgRNAs consist-

ently provide better cleavage efficiencies and signal-to-noise separations 

compared with other lengths (17, 18, 20nt). Therefore, using 19nt sgR-

NAs in either low-throughput experiments or high-throughput screens 

may give rise to a more accurate inference of gene knockout effects.  

We demonstrated that H1/H2 libraries have improved performance in 

identifying known essential genes with less outlier sgRNAs. However, 

the fact that comparisons were not performed in the same cellular con-

text might contribute to the observed differences. Also, since different 

libraries used distinct approaches to improve screen performance, inte-

grating their respective advantages might further improve the next gen-

eration library design. 

Although we characterized multiple features of CRISPR screens using 

computational approaches, the exact mechanisms behind these findings 

remain unknown. First, it is unclear how sgRNAs with higher G-

nucleotide content are associated with stronger outliers. We suspected 

that outlier gRNAs with high G-nucleotides have promiscuous off-target 

binding and cutting at many CpG islands in the genome. Existing exper-

imental approaches to detect off-target cleavages (Kim, et al., 2015; Tsai, 

et al., 2015) may be limited to study these gRNAs, as the cleavages in 

each binding site may be low. Second, although we have shown the 

advantages of using 19bp sgRNA spacers from statistical perspectives, 

how different lengths of sgRNA spacers give rise to various cleavage 

strengths and off-targets remain to be determined. Last but not least, all 

the above findings are derived in the SpCas9 system, and the rules in 

different RNA-guided DNA endonuclease systems require further inves-

tigations.  

Collectively, our study provided novel insights into the properties of 

CRISPR and the design of both high- and low throughput CRISPR ex-

periments. We designed two genome-wide libraries and showed the 

improved performance using the rules we uncovered. The characterized 

features and design rules, as well as the libraries, will benefit and expe-

dite the application of CRISPR techniques.  
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