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Abstract

We review the main identification strategies and empirical evidence on the role of expec-
tations in the new Keynesian Phillips curve, paying particular attention to the issue of weak
identification. Our goal is to provide a clear understanding of the role of expectations that
integrates across the different papers and specifications in the literature. We discuss the prop-
erties of the various limited-information econometric methods used in the literature and provide
explanations of why they produce conflicting results. Using a common data set and a flexible
empirical approach, we find that researchers are faced with substantial specification uncertainty,
as different combinations of various a priori reasonable specification choices give rise to a vast
set of point estimates. Moreover, given a specification, estimation is subject to considerable
sampling uncertainty due to weak identification. We highlight the assumptions that seem to
matter most for identification and the configuration of point estimates. We conclude that the
literature has reached a limit on how much can be learned about the new Keynesian Phillips
curve from aggregate macroeconomic time series. New identification approaches and new data
sets are needed to reach an empirical consensus.

1 Introduction

The idea that there is a trade-off between the rates of inflation and unemployment (or related
measures of real economic activity), at least in the short run, is widely accepted in the economics
profession and guides monetary policy making by major central banks. Phillips (1958) provided
the first formal statistical evidence on this trade-off using data on wage inflation in the United
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Kingdom, though the idea had existed well before that.1 Samuelson and Solow (1960) extended
what they called “Phillips’ curve” to U.S. data and to price inflation. The subsequent study of
the nature of the Phillips trade-off and its implications for monetary policy and business cycle
fluctuations has been one of the most active research areas in economics over the last fifty years.

The Phillips curve has a fascinating history, marked by landmark contributions and heated
policy debates; see Gordon (2011) for an insightful recent survey. The literature is so large that it
is impossible to address all major contributions to it in any single survey article. Instead, we focus
on what is currently the most widely used model of this kind, the new Keynesian Phillips curve
(NKPC), which has gained its popularity from its appealing theoretical microfoundations and what
appeared to be early empirical success. The theory of the NKPC was laid out mostly in the 1980s
and 1990s, and it is, by now, a standard feature of modern macroeconomic textbooks, see, e.g.,
Woodford (2003) and Gaĺı (2008). The key property of the NKPC is that inflation is primarily a
forward-looking process, driven by expectations of future real economic activity, rather than past
shocks. From a policy perspective, this severely limits the scope for actively exploiting the Phillips
trade-off. Instead, the forward-looking behavior provides a central role for monetary policy rules
and opens the door to expectations management and communications as tools of monetary policy.2

Indeed, the early empirical success of the NKPC, along with its rigorous microfoundations, has led
to its widespread adoption as the key price determination equation in policy models used at central
banks around the world.

This survey focuses on the empirics of the NKPC, and more specifically on the recent literature
on the estimation of the NKPC using limited-information methods such as the generalized method
of moments (GMM). The literature, which dates back to the seminal papers by Roberts (1995),
Fuhrer and Moore (1995), Gaĺı and Gertler (1999) and Sbordone (2002), is vast. By focusing on
limited-information methods, we exclude estimation of the NKPC using full-information (system)
methods, in which the NKPC is one of multiple structural equations within a simultaneous system,
typically a dynamic stochastic general equilibrium (DSGE) model. By imposing a theoretical model
on all the variables in the system, full-information methods have the potential to improve estimator
precision, but they also introduce the risk of misspecification in other equations, inducing bias
or inconsistency of the NKPC parameters of interest (Lindé, 2005; Beyer et al., 2008; Fukač and
Pagan, 2010). In contrast, because they do not impose economic structure elsewhere in the model,
the limited-information methods we consider here are robust to extraneous model misspecification.
Full-information methods have been the subject of recent reviews by An and Schorfheide (2007)
and Schorfheide (2011). Another promising strand of the literature uses detailed micro data to
study price dynamics, see the review by Nakamura and Steinsson (2013). These papers are outside
the scope of our review, which focuses only on studies that use macro data.

Despite the apparent early empirical success of the NKPC, the literature which we survey is
full of puzzles. What should be relatively innocuous changes in instruments used, in vintages of
data and in model specification all seem to matter significantly for the results. For example, simply
reestimating the benchmark NKPC in Gaĺı and Gertler (1999), using the same data series, method,

1Mankiw (2001, p. C46) offers a prescient quote from the work of Hume (1752). Irving Fisher demonstrated a
strong correlation between U.S. inflation and unemployment already in 1926, cf. Fisher (1973), but he interpreted
the causality as running from prices to real economic activity.

2The policy relevance of this research agenda is highlighted in two speeches by Federal Reserve chairman Bernanke
(2007, 2008).
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and time period, but with revised data, reduces the estimate on the activity variable (real marginal
cost) by half and makes the coefficient no longer statistically significant (Rudd and Whelan, 2007).
This is but a single example of a high degree of sensitivity in this literature to minor econometric
changes. Our goals in this review are to understand the reasons for this sensitivity and, more
specifically, to provide a clear understanding of the role of expectations that integrates across the
different papers and specifications. We do so first by reviewing the papers in the literature and the
econometric theory underlying their approaches, then by estimating multiple specifications using
a common data set. Since the first empirical work on the NKPC, there have been significant
methodological developments in the area of estimation with weak instruments, and our analysis
draws heavily on these methods to help explain the puzzles in the literature. Earlier surveys on
the NKPC include Henry and Pagan (2004), Ólafsson (2006), Rudd and Whelan (2007), Nason
and Smith (2008b) and Tsoukis et al. (2011). We extend these surveys by emphasizing the many
econometric issues raised by estimation of the NKPC, and our empirical analysis spans a much
wider range of estimation approaches and specifications than what previous individual papers have
considered (in fact, we suspect we estimated more NKPC specifications than the entire preceding
literature combined).

The outline of the paper is as follows. Section 2 briefly reviews the derivation of the NKPC under
the Calvo (1983) assumption on price setting, followed by a description of the main extensions and
empirical specifications. We emphasize that uncertainty about the NKPC parameters translates
into significant uncertainty about the new Keynesian model’s policy implications. Departing from
the rational expectations assumption has non-trivial consequences for the model. Due to space
constraints, we do not discuss recent movements away from the NKPC, such as state dependent
pricing (Dotsey et al., 1999) or imperfect information (Mankiw and Reis, 2011).

Section 3 reviews the various limited-information econometric methods that have been used in
the study of the NKPC, including instrumental variables, minimum distance, maximum likelihood
and the use of survey data on inflation expectations. Furthermore, we propose a new idea for
identification using data revisions as external instruments that obviates the need to impose ad hoc
exclusion restrictions on the dynamics. We compare the different methods under both strong and
weak instruments. In the case of strong instruments, we provide results, not previously explicitly
available in the literature, that permit comparison of the various estimators, and we highlight the
trade-off between efficiency and robustness. We pay particular attention to methods that are robust
to weak instruments. The expectation of future inflation is the key endogenous covariate in the
NKPC. Because inflation is notoriously hard to forecast, it is difficult to find exogenous (i.e., lagged)
economic variables that correlate strongly with expected future inflation; in other words, potential
instruments that satisfy the exclusion restriction will likely be weak. We show that when this is
the case, even estimators that do not explicitly rely on instrumental variable techniques can be
severely biased. Hence, weak instrument issues provide a unifying explanation of the sensitivity of
NKPC estimates and of the puzzling disagreement between analyses based on standard inference
procedures. We also discuss complications arising from misspecification of the NKPC.

Section 4 surveys the vast empirical literature on the NKPC, covering over 100 papers we have
found on this topic. The initial success of the rational expectations specification (with the labor
share as the proxy for firm marginal cost) around the turn of the millennium was quickly followed
by doubts about robustness to data choices and estimation methods. A plethora of extensions
of the basic model have been pursued with no clear universal consequences. Approaches that
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exploit the non-rationality of expectations or positive trend inflation have recently been gaining
traction, while a parallel strand of the literature has emphasized the weak identification issues
inherent in estimating the NKPC. Due to differences across papers in data sets, instrument choices,
specifications, estimators and attention to the weak identification problem, no consensus has been
reached on parameter values or the reasons for the variability in estimates, and policy implications
are entirely unclear. To date, few papers have sought to compare or integrate more than a couple
of the empirical strategies, leaving the research program in considerable disarray.

Section 5 provides a new set of empirical results based on a common data set and a flexible
empirical strategy that spans multiple popular approaches in the literature. Like most papers, we
focus on quarterly post-war U.S. data. Apart from the standard data series, we have assembled
a unique real-time data set on the labor share. By computing point estimates of the NKPC
parameters from a comprehensive set of specifications that combine data and model choices from
the literature, we find that the specification uncertainty is vast: Almost any parameter combination
that is even remotely close to the range considered in the literature can be generated by some a
priori unobjectionable specification. Furthermore, given a particular specification, the sampling
uncertainty is large. We show this by computing weak identification robust confidence sets for
several benchmark specifications. One type of specification that appears to be typically better
identified uses survey forecasts as proxies for inflation expectations; however, such specifications are
only microfounded if survey forecasts are rational, which does not seem to be the case empirically.
Survey specifications are also less suitable for counterfactual policy analysis and forecasting.

Section 6 concludes by summarizing the main lessons from the literature and our empirical
exercise. We recommend that future research pursue substantially new types of data sets, as well
as estimation approaches that are tailored to handle the identification problem.

2 Economic Theory, Specifications and Policy Implications

The origins of the NKPC can be traced back to the late seventies, in the work of Fischer (1977)
and Taylor (1979). The NKPC is a forward-looking model of inflation, according to which current
inflation is determined by expected future inflation and marginal costs. It implies that monetary
policy can affect inflation through the management of inflation expectations. This contrasts sharply
with the traditional ‘old’ Phillips curve, which yields a strongly path dependent inflation process, so
that disinflation can be slow and costly (Mankiw, 2001). The importance of expectations was high-
lighted early on by Phelps (1967) and Friedman (1968). Their so-called ‘expectations-augmented’
Phillips curves emphasized that the inflation/unemployment trade-off shifts with expected infla-
tion, a property shared by the Phillips curves of the New Classical literature of the 1970s (e.g.,
Sargent and Wallace, 1975). The key difference of these Phillips curves from the NKPC is that past
(and thus predetermined) expectations about current inflation matter, not expectations about the
future.
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2.1 Economic foundations of the model

A simple derivation of the NKPC can be obtained as follows.3 The basic ingredients for the deriva-
tion of the NKPC is a microeconomic environment with identical monopolistically competitive firms
facing constraints on price adjustment. We consider here only time-contingent pricing constraints.
The details of the constraints do not matter much for the final form of the NKPC (Roberts, 1995),
so we focus on the assumption of Calvo (1983), which is analytically attractive. Prices are ex-
pressed in logs and inflation in percentage points. All variables, except prices and inflation, are
expressed in percent deviations from a zero-inflation steady state. We discuss the assumption of
zero steady-state inflation below. The Calvo framework assumes that each firm in the economy
has a constant probability 1 − θ of optimally adjusting its price in any given period. Because the
economy consists of a continuum of identical firms, by the law of large numbers it follows that a
fraction θ of firms cannot change their prices in any given period, and that prices remain fixed
on average for 1/ (1− θ) periods. Therefore, the parameter θ ∈ (0, 1) is an index of price rigidity.
Assume that each firm produces a differentiated product and faces a constant price elasticity of
demand ε > 1 for its product. Let p∗i,t denote the optimal price chosen by a firm i ∈ [0, 1] if it gets
to reoptimize in period t. By the law of large numbers, the aggregate price level pt evolves as a
convex combination of last period’s price and the cross-sectional average of the current reset prices:

pt = θpt−1 + (1− θ)
∫ 1

0

p∗i,tdi. (1)

In the absence of price rigidity, monopolistically competitive firms set prices as a markup over
their nominal marginal costs. With price rigidity, maximization over all expected discounted future
profits induces firms to take into account the probability that they will not be able to reset their
prices optimally in the future. Let β denote the common subjective discount factor. The optimal
reset price can, in a first-order log-linearization, be expressed as a mark-up over a weighted average
of current and expected future marginal costs:

p∗i,t = (1− θβ)

∞∑
j=0

(θβ)
j
Ei,t

(
mcni,t+j,t

)
, (2)

where mcni,t+j,t is the nominal marginal cost faced at time t + j for a firm i that was last able to
reset its price optimally at time t, and Ei,t denotes the expectation with respect to the beliefs of
firm i. Relating this to the aggregate marginal cost mcnt requires a specification of the production
function. Suppose the production function is Cobb-Douglas with labor elasticity 1 − α. Then it
can be shown that, to a first-order approximation,

mcni,t+j,t = mcnt+j +
αε

1− α
(
p∗i,t − pt+j

)
. (3)

Substituting (3) into (2) and rearranging yields

p∗i,t − pt−1 = (1− θβ)

∞∑
j=0

(θβ)
j

[κEi,t (mct+j) + Ei,t (πt+j)] , (4)

3For detailed derivations, see Woodford (2003, ch. 3) or Gaĺı (2008, ch. 3).
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where κ = 1−α
1−α+αε ≤ 1, inflation is given by πt = pt − pt−1, and mct = mcnt − pt denotes aggregate

real marginal costs. Inserting (4) into (1), we find

πt = (1− θ) (1− θβ)

∞∑
j=0

(θβ)
j
[
κÊt (mct+j) + Êt (πt+j)

]
, (5)

where Êt =
∫ 1

0
Ei,tdi is the cross-sectional average expectation operator.

Until this point we have not imposed any restrictions on the nature of firms’ beliefs about
future economic conditions. Assume now that firms have identical, rational expectations (RE), i.e.,
Ei,t ≡ Et. Then the cross-sectional expectation equals the rational expectation, Êt = Et. If we
shift equation (5) forward by one period and take time-t expectations on both sides, we get

Et(πt+1) = (1− θ) (1− θβ)

∞∑
j=0

(θβ)
j

[κEt (mct+j+1) + Et (πt+j+1)] , (6)

where we have, importantly, used the law of iterated expectations, Et[Et+1(·)] = Et(·). The infinite
sum on the right-hand side of (6) is closely related to the infinite sum on the right-hand side of (5)
(with Êt = Et). Combining these two equations gives rise to an expectational difference equation
for inflation:

πt = βEt (πt+1) +
(1− θ) (1− θβ)

θ
κmct. (7)

Empirical analyses of the NKPC use proxies for the real marginal cost measure mct. Under the
already exploited assumption of Cobb-Douglas production technology, mct is proportional both to
the labor share of income (nominal labor compensation divided by nominal output) and the output
gap (the deviation of real output from the level that would obtain if prices were fully flexible).
Letting xt denote a candidate proxy for real marginal cost and adding an unrestricted unobserved
disturbance term ut, we can rewrite the model as

πt = βEt (πt+1) + λxt + ut. (8)

This is the baseline purely forward-looking NKPC that we will refer to in subsequent sections.
The disturbance term ut can be interpreted as measurement error or any other combination of
unobserved cost-push shocks, such as shocks to the mark-up or to input (e.g., oil) prices.

Non-rational expectations While we did not need to impose assumptions on firms’ individual
beliefs to arrive at the expression (5) for inflation, the derivation of equation (6) – and thus the
difference equation (7) – crucially relied on the fact that the rational expectation operator Et
satisfies the law of iterated expectations. However, this law does not hold in general for the cross-
sectional average expectation operator Êt, even if individual firm expectations do satisfy the law.
Hence, under general non-rational expectation formation, the difference equation specification of the
NKPC in equation (7) is not consistent with the above microeconomic foundations that constitute
the standard new Keynesian modeling framework (a similar argument is given by Preston, 2005).4

4It is possible for non-RE models to result in a difference equation NKPC. Adam and Padula (2011) derive a
difference equation under a set of assumptions on the possibly non-rational cross-sectional expectation operator; their
“Condition 1” essentially invokes the law of iterated expectations at the aggregate level.
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This will be the case, for instance, if firms’ expectations are not based on the same information set
or if they are not perfectly model-consistent. As we discuss in section 3.1, this has implications for
empirical tests of the NKPC that use survey forecasts to proxy for the expectation term. Preston
(2005), Angeletos and La’O (2009) and Kurz (2011) have derived microfounded inflation equations
in certain models with non-rational or heterogeneous expectations.

2.2 Extensions

It was recognized early on that the purely forward-looking NKPC (8) has difficulty fitting aggregate
US inflation dynamics, see Fuhrer and Moore (1995) and Gaĺı and Gertler (1999). This led to
specifications that included lagged inflation terms in the model. This is often called ‘intrinsic
inflation persistence’. Gaĺı and Gertler (1999) introduce lagged terms by assuming that a fraction
of firms update their prices using some backward-looking rule of thumb, while Fuhrer and Moore
(1995) generate persistence through staggered relative wage contracts. Another popular device is
to assume that the fraction θ of firms that are unable to re-optimize their prices in the Calvo model
instead index prices to past inflation, see Christiano et al. (2005) and Sbordone (2005, 2006).5

Because it could be thought of as a combination of new and old Phillips curves, such a specifi-
cation is referred to as a ‘hybrid NKPC’. In principle, if the objective is to nest traditional Phillips
curves, one could allow for any number of lagged inflation terms in the model. An appropriate
baseline hybrid specification that nests most traditional Phillips curve specifications would take the
form

γ (L)πt = γfEt (πt+1) + λxt + η′wt + ut, (9)

where γ (L) = 1 − γ1L− γ2L2 − · · · − γlLl is a lag polynomial, xt is the main forcing variable, wt
denotes additional controls, and ut is an unobserved shock. If the lag polynomial only features one
lag, the coefficient γ1 is often denoted γb. Equation (9) nests the pure NKPC (8) with γ (L) = 1
and η = 0. With γf = 0, it also nests the backwards-looking “old” Phillips curve, and in particular,
Gordon’s (1990) “triangle” model . It is more general than the typical hybrid NKPC specifications
that only include one lag of inflation, such as Gaĺı and Gertler (1999), Sbordone (2005, 2006) and
Christiano et al. (2005). The latter are based on indexation to last quarter’s inflation, but this is
clearly arbitrary and can be easily generalized to include more general indexation schemes, such
as a weighted average of inflation over the previous four quarters (this includes, as a special case,
indexation to last year’s inflation, which nests the Atkeson and Ohanian, 2001, specification), or
richer rule-of-thumb behavior by backward-looking firms, see Zhang and Clovis (2010). Restrictions
on γ (L) are exclusion restrictions on the dynamics of inflation, which are typically used to provide
instruments for identification. Therefore, such exclusion restrictions are not innocuous. A popular
restriction, which is seldom rejected by the data, is that the inflation coefficients sum to 1, i.e.,
γf = 1− (γ1 + γ2 + · · ·+ γl) = γ (1).

The parameters of equation (9) are often referred to as ‘reduced-form’ or ‘semi-structural’ be-
cause they are functions of the deeper structural parameters of the microfounded model. For exam-
ple, when the discount factor is one, the Gaĺı and Gertler (1999) specification has γf = θ/ (θ + ω)

5Sheedy (2010) and Yao (2011) observe that intrinsic persistence arises when the hazard rate of price resetting
(the Calvo parameter) is not constant. See also Kozicki and Tinsley (2002) for further discussion on the sources of
lagged inflation dynamics in the NKPC.
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and γ1 = 1− γf , where ω is the fraction of price setters who are backward-looking. Restrictions on
the admissible range of the deep parameters can affect the range of the semi-structural ones and
thus have nontrivial implications for inference.

Trend inflation The derivation of equation (8) follows from log-linearizing firms’ optimizing
conditions around a zero-inflation steady state. Allowing for non-zero steady state inflation, often
referred to as “trend inflation”, has important implications for the specification of the NKPC, as
established by Kozicki and Tinsley (2002), Ascari (2004) and Cogley and Sbordone (2008). Trend
inflation π̄t corresponds to long-run inflation expectations, i.e., π̄t = limT→∞Et (πt+T ). With non-
zero trend inflation, the NKPC cannot in general be written in the difference equation form (9),
as extra forward-looking terms enter on the right-hand side and the semi-structural parameters
are functions of trend inflation. However, Cogley and Sbordone (2008, p. 2105) show that if non-
resetting firms’ prices are indexed to a mixture of past inflation πt−1 (weight ρ) and current trend
inflation π̄t (weight 1− ρ), then

π̂t = γfEtπ̂t+1 + γbπ̂t−1 + λxt + γb(βEt∆π̄t+1 −∆π̄t), (10)

where γf = β/(1 + βρ), γb = ρ/(1 + βρ), and we define the inflation gap π̂t = πt − π̄t. If trend
inflation is constant, π̄t ≡ π̄, the last term above drops out and we are left with a standard NKPC
in which the inflation gap replaces raw inflation.6 If furthermore β = 1, then γf + γb = 1, so the
NKPC can be expressed in terms of the change in inflation ∆πt = ∆π̂t, causing the constant trend
inflation to drop out of the relation altogether. Suppose instead that trend inflation is time-varying.
If β = 1 and Et∆π̄t+1 = ∆π̄t (the change in trend inflation is unforecastable), the last term on the
right-hand side of (10) vanishes and we are left with an NKPC relation in terms of the inflation
gap. Such a specification also obtains if non-reset prices are fully indexed to trend inflation (ρ = 0).

In the rest of this paper we will focus on inflation gap specifications of the NKPC, i.e., relations
of the form (10) without the last term on the right-hand side. We do this to keep the exposition
simple but acknowledge that we do not give the trend inflation issue as much attention as it deserves.
Interested readers are referred to the review by Ascari and Sbordone (2013).

2.3 Policy implications

Ideally, estimation uncertainty in the NKPC parameters would only translate into limited ambiguity
about our understanding of the effects of shocks and policy interventions on the broader economy.
Unfortunately, this is not the case for the range of NKPC parameter estimates reported in the
literature. Figure 1 displays impulse responses of inflation and the output gap to a 25 basis point
monetary policy shock in the canonical three-equation new Keynesian model (Gaĺı, 2008). The
model and calibration are described in section A.1 in the Appendix, and they are based on a hybrid
NKPC with one lag of inflation whose coefficient γ1 is equal to 1 − γf . By a monetary policy
shock we mean a shock to the innovation in the AR(1) process for the Taylor rule disturbance. We
treat the semi-structural parameters γf and λ as being variation free from the remaining structural
parameters (which are calibrated as in Gaĺı, 2008, ch. 3.4) and vary them over a set of values that

6This is equivalent to an NKPC written in terms of raw inflation πt with an intercept that depends on π̄, as
established by Yun (1996) for the special case ρ = 0.
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is consistent with the spread of estimates reported in the literature, cf. section 4 below, namely
γf = 0.3, 0.4, . . . , 0.8 and λ = 0.01, 0.03, 0.05. As Figure 1 shows, this leads to a wide range of
possible impulse responses, with substantially different short-run dynamics and steady state return
times. For given λ, lower values of γf imply more sluggish adjustment and more hump-shaped
dynamics in inflation. The disparity between the high-γf and low-γf dynamics increases the lower
is λ. For λ = 0.03 (the thick curves in the figure), the effect of the monetary policy shock is
felt for about twice as long for γf = 0.3 than for γf = 0.8. The most negative cumulative 15-
quarter inflation impulse response in Figure 1 is 5 times larger in magnitude than the least negative
cumulative inflation response; the ratio between the most and least negative cumulative output
gap responses is 5.7. This sensitivity of key economic measures to the NKPC parameters extends
beyond the simple model considered here, as demonstrated by Fuhrer (1997), Mankiw (2001) and
Estrella and Fuhrer (2002).7 If indeed the NKPC is a good approximation to actual price setting,
it is therefore highly desirable from a policy perspective to obtain precise estimates of the NKPC
coefficients.8

3 Econometric Methods

In this section we describe the main estimators that have been used in the literature and discuss their
properties under strong and weak identification. We focus on the “semi-structural” parametrization
of the NKPC, as opposed to the underlying structural parameters, to facilitate comparison across
different specifications.9 For ease of exposition, we focus in this section on estimation of the pure
NKPC (8), but all our points generalize to the hybrid specification (9).

3.1 Estimators

A glance at the NKPC (8) reveals two immediate estimation issues. First, as noted by Roberts
(1995), the forcing variable xt may be correlated with the structural error term ut (e.g., they may
both be driven in part by cost-push shocks). Second, the inflation expectation term Et(πt+1) is
certainly endogenous, and – even worse – it is unobservable. Different empirical approaches in
the literature differ mainly in the way they deal with inflation expectations. They can be usefully
categorized as follows:

1. Replace expectations by realizations and use appropriate instruments (GIV).

2. Derive expectations from a particular reduced-form model (VAR).

3. Use direct measures of expectations (Survey).

7Adding estimation uncertainty in the non-NKPC equations to the mix will of course generate even greater
uncertainty about appropriate impulse responses.

8The degree of inflation indexation also influences the relative optimality of policies that flexibly target the price
level or inflation rate (Woodford, 2003, ch. 8.2.1).

9Moreover, estimation of the structural parameters raises some additional issues if the mapping from the semi-
structural to structural parameters is not injective, so that the latter are not globally identified even when the former
are (Ma, 2002).
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We also propose a new strategy based on the use of data revisions as instruments. This can
be thought of as a variant of the first approach. All of these approaches can be implemented
using the Generalized Method of Moments (Hansen, 1982). We use GMM as a common unifying
framework in our discussion and empirical work, which is convenient because weak identification
robust methods are readily available for GMM. GMM estimation is briefly described in section
A.2.1 in the Appendix.

GIV This approach was originally proposed for the estimation of rational expectation (RE) mod-
els by McCallum (1976). Hansen and Singleton (1982), who studied estimation of Euler equation
models, called it Generalized Instrumental Variable estimation (GIV). It has been popularized in
the estimation of the NKPC by the seminal contributions of Roberts (1995) and Gaĺı and Gertler
(1999). It is the most common approach in the literature because it is simple to implement and more
robust than the alternatives. Identification is obtained via exclusion restrictions, i.e., excluding lags
of variables from the model and using them as instruments.

The simplest and most common implementation is to replace the rational expectation Et (πt+1)
in the difference equation (8) by the realization πt+1. This yields

πt = βπt+1 + λxt + ut − β [πt+1 − Et (πt+1)]︸ ︷︷ ︸
ũt

, (11)

where the residual ũt differs from ut because it includes the future one-step-ahead inflation forecast
error. Let ϑ = (β, λ) and define the ‘residual’ function

ht (ϑ) = πt − βπt+1 − λxt. (12)

Suppose Zt is a vector of valid instruments, such that

E [Ztht (ϑ)] = 0 (13)

holds at ϑ = ϑ0, the true parameter value. Efficient GMM estimation (see section A.2.1 in the

Appendix) is based on the sample moments fT (ϑ) = T−1
∑T
t=1 Ztht (ϑ) and a heteroskedastic-

ity and autocorrelation consistent (HAC) estimator of their variance, because ht (ϑ0) is generally
autocorrelated due to the presence of the inflation forecast error.

The most common identifying assumption in the literature, which is the one used by Gaĺı and
Gertler (1999), is that the cost-push shock ut satisfies Et−1 (ut) = 0. Under the RE assumption,
this implies Et−1(ũt) = 0 by the law of iterated expectations. This yields unconditional moment
restrictions of the form (13) with Zt = Yt−1, for any vector of predetermined (i.e., known at time
t − 1) variables Yt−1. Any predetermined variables can be used as instruments, and different
implementations of GIV estimation differ mainly in the choice of instruments. For example, Rudd
and Whelan (2005) obtain alternative GMM moment conditions by iterating the NKPC forward.
As we show in section A.2.2 in the Appendix, this is equivalent to estimating the original NKPC
difference equation (8) with transformed instruments.

VAR Almost all of the papers that use the second approach rely on the assumption that the
reduced-form dynamics of the variables can be represented by a finite-order vector autoregression
(VAR). This is why we refer to it as the VAR approach.
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Suppose the information set consists of current and lagged values of some n-dimensional vector
zt (this includes at least πt, xt and any other variables that are to be used as instruments), and that
zt admits a finite-order VAR representation of order l, which can be written in companion form as

Yt = AYt−1 + Vt, (14)

where Yt, Vt are nl×1 and A is nl×nl. If Et(Vt+1) = 0, equation (14) implies that Et (πt+1) = ζ ′Yt,
where ζ is the row of A that corresponds to the inflation equation in the VAR. Substituting this
in the NKPC (8), yields the moment conditions E [(πt − βY ′t ζ − λxt)Yt−1] = 0, which determine
the structural parameters ϑ = (β, λ) given ζ, and ζ is identified by the reduced-form equation
E
[(
πt − Y ′t−1ζ

)
Yt−1

]
= 0. The VAR assumption suggests using Yt−1 as instruments, so the model

can be estimated by GMM with the 2nl moment conditions

E
[
h̃t (ϑ0, ζ0)⊗ Yt−1

]
= 0, where (15)

h̃t (ϑ, ζ) =

(
πt − βY ′t ζ − λxt

... πt − Y ′t−1ζ
)′
. (16)

Here ζ0 is the true value of ζ. The seminal papers in this strand of the literature are Fuhrer
and Moore (1995) and Sbordone (2002), and they use two different econometric implementations:
maximum likelihood (VAR-ML) and minimum distance (VAR-MD), respectively. We describe
these methods in section A.2.3 in the Appendix. The realization that the VAR assumption to
identification can be easily imposed in GMM, which we refer to as VAR-GMM, appears to be new
in the literature.10 VAR-GMM, VAR-ML and VAR-MD are numerically identical if the model is
just-identified, i.e., if the dimension of Yt is the same as the dimension of the parameter vector ϑ.

Bayesian inference is mostly used for full-information analysis of DSGE models (e.g., Lubik
and Schorfheide, 2004), which is beyond the scope of the present survey. A few notable limited-
information Bayesian studies of the NKPC are reviewed in section 4. These all rely on the VAR
assumption.

Surveys This approach was introduced by Roberts (1995) and, after a lag, has seen increasing
popularity. Under the survey approach, direct measures of expectations from surveys, e.g., the
Survey of Professional Forecasters or the Federal Reserve’s “Greenbooks”, are used as proxies for
inflation expectations in the NKPC. Let πst+j|t denote the j-step-ahead survey forecast of inflation
at time t. The most common implementation substitutes the one-quarter-ahead forecast πst+1|t for

Et (πt+1) in the NKPC (8) to get

πt = βπst+1|t + λxt + ut + βεt, where (17)

εt ≡ Et (πt+1)− πst+1|t. (18)

The survey error εt can be a combination of measurement error and news shocks, the latter arising
when survey responses are based on a smaller information set than the one the agents in the model

10Guerrieri et al. (2010) use a VAR-GMM procedure to estimate an open-economy NKPC, but they do not compare
their estimates to non-VAR specifications. See also Sbordone (2005) for a discussion of the relation between VAR-MD
and GIV.
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use. Identification depends on the properties of this survey error εt as well as on the correlation
between πst+1|t and the cost-push shock ut. Some authors treat πst+1|t as exogenous, but we argue
below that the assumptions underlying this are too strong. Alternatively, one may use πst+1|t−1,
which is certainly predetermined, instead of πst+1|t, which is typically measured within the quarter.
Another possibility is to treat survey forecasts as endogenous and use predetermined variables as
instruments, as in the GIV approach.

Because estimation of the NKPC using survey forecast data obviates the need for modeling in-
flation expectations, some authors interpret the procedure as allowing for non-rational price setting.
When the NKPC is to be used for policy purposes, such as in forecasting, the lack of a dynamic
model for expectations becomes a disadvantage. To date, few papers have attempted to model non-
rational survey expectations formation (see Fuhrer, 2012). As argued in section 2.1, the difference
equation NKPC (8) is in general inconsistent with the standard new Keynesian framework if firm
expectations are not model-consistent or if they are based on dispersed information. Consequently,
survey specifications of the form (17) are only microfounded if the inflation forecasts firms rely
on are rational and identical across firms. However, common empirical findings are that survey
forecasts of inflation violate testable implications of rationality and the dispersion of expectations
across individual forecasters is large, see for example Thomas (1999) and Mankiw et al. (2004).
This point does not seem to have been taken to heart by the empirical NKPC literature. While
the proper microfoundations for price setting under non-rational expectation formation are lacking,
the survey forecast specification may still be taken as a primitive, which nicely summarizes our
intuition about price setting being partially forward-looking, partially backward-looking as well as
being responsive to aggregate demand conditions.

Nunes (2010), Fuhrer and Olivei (2010) and Fuhrer (2012) estimate versions of the NKPC where
inflation expectations are specified as a combination of rational and survey expectations, replacing
Et (πt+1) with φEt(πt+1) + (1− φ)πst+1 in the NKPC (8).11 The parameter φ is not identified if
survey expectations are rational.

External instruments Many of the time series typically used to estimate the NKPC, such as
GDP deflator inflation, the labor share and the output gap, undergo large revisions over time.
Because firms’ expectations of current and future economic conditions feature prominently in the
new Keynesian model, it is crucial to keep in mind the availability of data at different points in
time when estimating the NKPC. With access to real-time data, i.e., data sets of different vintages,
one possible identification strategy is to use past data vintages of inflation and the forcing variable
(and perhaps other time series) as instruments.

We appear to be the first to consider estimation of the NKPC using such external instruments.
An advantage of the approach is that it avoids placing exclusion restrictions on the NKPC. This is
discussed more formally in section A.2.4 of the Appendix. Regardless of the number and types of
right-hand side variables in the hybrid specification (9), past-vintage instruments should not affect
current inflation if we control for the latest-vintage data, and thus are plausibly uncorrelated with
the GIV error ũt in (11). Hence, real-time instruments are plausibly exogenous, although they

11Nunes (2010) argues that this nesting can be motivated by a variant of the argument of Gaĺı and Gertler (1999),
where a fraction of rule-of-thumb firms set their prices using published professional inflation forecasts as opposed
to lagged inflation. This justification cannot apply to the Federal Reserve’s Greenbook forecasts, as they are only
released to the public with lags of several years.
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could potentially be very weak. In section 5 we empirically evaluate the success of the external
instruments approach.

3.2 Comparison of estimators under conventional asymptotics

To compare the properties of the sampling distributions of the various estimators, we start out
by outlining the trade-offs between efficiency and robustness under the conventional asymptotic
approximations. The conventional asymptotic theory, which is the main analytical tool in graduate
econometrics textbooks, implies that GMM estimators of the parameters ϑ are consistent and
asymptotically normal under certain regularity conditions, see Newey and McFadden (1994). In
linear instrumental variable (IV) models this asymptotic theory has the first-stage F statistic, which
measures the explanatory power of the instruments for the endogenous variable, tending to infinity
at the same rate as the sample size, so we refer to the theory as strong-instrument asymptotics. In
section 3.3 below we will argue that the strong instrument approximation is not empirically relevant
in the present context, as it does not capture the kind of near-irrelevance of the instruments that
is prevalent in the estimation of the NKPC. Still, it is useful to first establish the properties of the
estimators in the most familiar analytical framework.

Most of the estimators are obtained from conditional moment restrictions of the form Et−1 [ht (ϑ0)] =
0, for which the theory of optimal instruments of Chamberlain (1987) provides an efficiency bound.
Et−1 [ht (ϑ0)] = 0 implies that all predetermined variables Yt−j , j ≥ 1, are admissible instruments.
The optimal choice of instruments is derived in section A.2.1 of the Appendix, and we summarize
the findings below.

GIV For GIV estimators, the residual function ht (ϑ0) = ut − β[πt+1 − Et(πt+1)] is generally
autocorrelated, so optimal instruments are given by an infinite-order moving average of Yt−1. Be-
cause their derivation requires modeling the conditional mean and variance of the data, none of the
papers in this literature has attempted to use optimal instruments.12 Therefore, we cannot rank
GIV estimators reviewed in this paper in terms of efficiency. Indeed, claims about their relative
efficiency are not formally justified.

VAR In contrast, the VAR-GMM estimator is based on the moment conditions (15). Let vπt de-
note the VAR error term in the reduced-form inflation equation in (14). When the VAR assumption
holds, the VAR residuals h̃t(ϑ0, ζ0) = (ut, vπt)

′ are serially uncorrelated, unlike the GIV residuals
ht(ϑ0) in (12). If the VAR residuals are also conditionally homoskedastic, then the VAR-GMM
estimator does indeed use optimal instruments, and is therefore asymptotically more efficient than
the corresponding GIV estimators that do not impose the VAR assumption. But note that the key
conditions for this, strong instruments and conditional homoskedasticity, are arguably too strong
in this application.

Fuhrer and Moore (1995), and several later papers, estimate the NKPC by ML. To evaluate
the likelihood, they combine the NKPC with reduced-form equations for all variables other than

12Fuhrer and Olivei (2005) propose a GMM implementation of a restricted VAR approach, which they refer to as
producing optimal instruments. Because these instruments are linear combinations of Yt−1, they are not optimal in
Chamberlain’s sense, cf. section A.2.1.
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inflation to form a complete ‘limited-information’ system of equations, and use an algorithm by
Anderson and Moore (1985) that finds a RE solution for any given value of the parameters. For
certain parameter combinations there may be multiple stable RE solutions, a situation known
as indeterminacy (see, e.g., Lubik and Schorfheide, 2004), and so the likelihood is not uniquely
determined by the NKPC and remaining reduced-form parameters. When the solution is unique
(determinacy), the reduced-form is a (restricted) finite-order VAR. The Fuhrer-Moore approach
restricts the parameter space to the region in which indeterminacy does not occur. The determinacy
assumption is standard in full-information estimation of DSGE models – for example, it is imposed
by Dynare (Adjemian et al., 2011) – but it can be restrictive.13 Kurmann (2007) proposes a simple
method for evaluating the limited-information likelihood under the assumption that the reduced
form is a finite-order VAR without imposing determinacy, see section A.2.3 in the Appendix for
details. He demonstrates in an empirical application that his method can give very different results
from the Fuhrer-Moore approach. This finding does not suffice to infer that the determinacy
assumption is incorrect, as the estimates can differ due to sampling uncertainty.14

The other prominent approach to imposing the VAR assumption on the reduced-form dynamics
is VAR-MD, see Sbordone (2005). As explained in section A.2.3 of the Appendix, the difference
between VAR-ML and VAR-MD is that the former uses a restricted and the latter an unrestricted
estimator for the reduced-form VAR parameters. Therefore, the relationship between VAR-ML
and VAR-MD is analogous to the relationship between limited information maximum likelihood
(LIML) and two stage least squares (2SLS), respectively, in the linear IV regression model (Fukač
and Pagan, 2010).

The assumption that the dynamics of the data can be represented as a finite-order VAR is
restrictive. One well-known case when this assumption fails is when there is indeterminacy and
sunspots, and the reduced form has moving average (MA) components. When the MA roots are
large (i.e., nearly noninvertible), a finite-order VAR may produce an inaccurate representation of the
dynamics. Infinite-order VARs may also arise for other reasons, e.g., by omitting relevant variables
from a finite-order VAR.15 Therefore, the VAR approach to identification is less robust than GIV. To
gain intuition about the restrictiveness of the VAR assumption, it is useful to think of the analogy to
iterated versus direct forecasts, a point made in Magnusson and Mavroeidis (2010). The VAR-GMM
moment conditions (15) differ from the GIV moment conditions E [Yt−1 (πt − βπt+1 − λxt)] = 0, in
that GIV uses direct projections of future inflation on predetermined variables, while VAR-GMM
uses iterated multi-step forecasts from a VAR.

Surveys The two alternative survey estimators that we consider here are those that use one-
step-ahead forecasts of inflation and those that use lagged two-steps-ahead forecasts. The former

13Kurmann (2007) shows that even if the equilibrium of the underlying structural model of the economy is de-
terminate, a limited-information system of equations, where some of the structural equations have been replaced by
their reduced form, may have an indeterminate solution. See Kurmann (2007, sec. 3.2) for an example.

14Kurmann (2007) does not formally test the hypothesis that his approach fits the data significantly better than
the Fuhrer-Moore approach. It is not trivial to develop a test for this hypothesis, especially when the structural
parameters may be weakly identified. Note that if the model restrictions hold and the true parameters imply deter-
minacy, the Fuhrer-Moore estimator (which imposes a correct restriction) will be more efficient than the Kurmann
estimator under conventional asymptotics.

15See also Fernández-Villaverde et al. (2007). But note that omission of variables from a VAR does not necessarily
cause misspecification (Fukač and Pagan, 2007).
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substitutes πst+1|t for Et (πt+1) in (8), yielding equations (17)–(18). The second possibility is to

substitute πst+1|t−1 for Et (πt+1) in (8) to get

πt = βπst+1|t−1 + λxt + ut + βε̃t, (19)

ε̃t = [Et (πt+1)− Et−1 (πt+1)] +
[
Et−1 (πt+1)− πst+1|t−1

]
. (20)

The first component of ε̃t is orthogonal to t − 1 information, and the second component has the
same interpretation as the one-step survey error in (18). The difference from the previous case is
that πst+1|t−1 is certainly predetermined, so it can be more plausibly treated as exogenous.

Some studies treat survey forecasts as exogenous for the estimation of the NKPC (Rudebusch,
2002; Adam and Padula, 2011). This can be justified under very specific assumptions about the
timing of expectations and the nature of the disturbance term in the model. For example, if there
is no cost-push shock, i.e., ut = 0 in (17), and the disturbance term εt defined in (18) is a pure
news shock, then πst+1|t in equation (17) will be exogenous. This will not be true if εt is a classical
measurement error. When ut 6= 0, exogeneity of πst+1|t requires that it should be predetermined,

i.e., measured before πt, but survey data are actually collected within the quarter. Equation (19)
overcomes this problem, because πst+1|t−1 is certainly predetermined, but exogeneity still requires

that πst+1|t−1 must be uncorrelated with ε̃t in (20). This will hold if expectations are rational and[
Et−1 (πt+1)− πst+1|t−1

]
is a news shock. Of course, even if the survey forecast is exogenous, the

forcing variable xt may still be endogenous.
If survey forecasts or the forcing variable are endogenous, then we need to find instruments. If

measurement errors are unsystematic, in the sense that they are unpredictable from information
at time t − 1, and survey forecasts are unbiased, i.e., rational based on their information set,
then Et−1 (εt) = 0 in (18). Therefore, moment conditions for (17) are the same as for the GIV
approach (13) where πt+1 has been replaced with πst+1|t and the instruments are predetermined
variables, including perhaps lags of πst+1|t. Our view is that it is more robust to treat survey data
as endogenous and use instruments for them. Nevertheless, we study the empirical implications of
treating survey forecasts as exogenous in section 5.

3.3 Weak identification

Identification of the structural parameter vector ϑ requires that the GMM moment conditions are
satisfied only at the true value ϑ0. Identification is clearly a necessary condition for obtaining useful
estimators of ϑ, but it is not sufficient. Weak identification arises when ϑ is almost unidentified,
i.e., when the moment conditions are close to being satisfied for all parameters ϑ in a non-vanishing
neighborhood of the true value ϑ0. In instrumental variable settings, weak identification arises when
the instruments are only weakly correlated with the endogenous regressors. When identification
is weak, conventional strong instrument asymptotic theory provides a poor approximation to the
sampling distribution of GMM estimators and tests, even in large samples. Instead, estimators can
be very non-normally distributed and severely biased toward their OLS (or NLS) counterparts, while
conventional confidence sets may drastically undershoot their advertised coverage rates. Kleibergen
and Mavroeidis (2009) discuss these issues at length in the context of estimation of the NKPC.
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As we pointed out in the Introduction, identification of the NKPC is likely to be weak because of
the familiar empirical finding that changes in inflation are hard to forecast (Atkeson and Ohanian,
2001; Stock and Watson, 2007), implying that potential instruments which are plausibly exogenous
(i.e., lagged) must necessarily be close to irrelevant. Indeed, we demonstrate empirically in section
5 that weak identification is pervasive in U.S. data, confirming a common finding in the literature.
Furthermore, there are good theoretical reasons to expect identification to be weak, see Mavroeidis
(2005) and Nason and Smith (2008a). For example, it is straightforward to see that when the
NKPC is flat, i.e., λ = 0 in (8), inflation is driven only by cost-push shocks. If these shocks are un-
predictable, then so is inflation, and the coefficient on inflation expectations is unidentified because
no relevant pre-determined instruments exist. Therefore, the model predicts that identification will
become arbitrarily weak as the slope of the NKPC λ gets closer to zero. Another situation in which
identification is weak is when monetary policy is very effective in anchoring short-term inflation
expectations. If inflation expectations do not vary, their effect on inflation is again unidentified. In
other words, effective economic policy is bad for econometric analysis (Mavroeidis, 2010; Cochrane,
2011).

When identification is weak, we show below that GIV and VAR-based estimators of the NKPC
can be biased in different directions. This helps explain some of the systematic differences in
empirical results that we report in section 5. There we also find that estimates are extremely
sensitive to specification choices, which is consistent with the moment conditions being insensitive
to the value of the parameter ϑ around the true value ϑ0. Recent advances in econometrics have
made it possible to do inference that is fully robust to weak identification. Because these weak
identification robust methods have been derived using alternative asymptotic approximations that
do not assume strong instruments, they are reliable irrespective of the strength of the instruments.
Surveys on the consequences of weak identification and methods of inference that are robust to it
include Stock et al. (2002), Dufour (2003), Andrews and Stock (2005) and Mikusheva (2013).

Simulation studies Mavroeidis (2005) illustrates the above-mentioned points in the context of
GIV estimation of the NKPC, and Kleibergen and Mavroeidis (2009) conduct an extensive set of
simulations demonstrating the performance of several alternative GMM methods. The conclusion
of these simulation exercises is that the theoretical consequences of weak identification are clearly
borne out in empirically realistic tests of the NKPC.

The finite-sample performance of VAR-based estimation methods under weak identification
has not received much attention in the literature. Therefore, we provide here simulation results
comparing four procedures: GIV estimation (Gaĺı and Gertler, 1999), VAR-MD (Sbordone, 2005),
VAR-ML (Kurmann, 2007) and VAR-GMM (introduced above). For simulation purposes, we write
the NKPC as

πt = c+ γfEt(πt+1) + (1− γf )πt−1 + λxt + ut, (21)

with accompanying VAR(2) reduced-form dynamics

πt = ζ ′Yt−1 + vπt, xt = ξ′Yt−1 + vxt. (22)

Here Yt = (πt, xt, πt−1, xt−1, 1)′, and the reduced-form coefficients are ζ = (ζπ1, ζx1, ζπ2, ζx2, cπ)′

and ξ = (ξπ1, ξx1, ξπ2, ξx2, cx)′. We consider four data generating processes (DGPs) here, as sum-
marized in Table 1. For each DGP, we simulate samples of 200 observations each and calculate
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point estimates for each of the four estimators.16 We execute 10,000 Monte Carlo repetitions per
DGP. The GIV estimator that we consider estimates (γf , λ, c) by linear GMM, with ∆πt as the in-
dependent variable, (πt+1−πt−1) and xt (and a constant) as regressors, and Yt−1 as instruments.17

The three VAR-based methods exploit the VAR(2) reduced form for (πt, xt) to estimate the same
three parameters, as explained in section 3.1.18 Details about the specifications and estimation
procedures, as well as a measure of the strength of identification, are given in section A.3 of the
Appendix.

DGPs 1a and 1b have γf = 0.7, λ = 0.03 and c = 0 as true NKPC parameters. Such parameter
values represent typical estimates from the literature, cf. section 4. In DGP 1a, our choice of
reduced-form parameters ξ for the forcing variable are based on OLS estimates on quarterly U.S.
data with the labor share as xt. The implied reduced-form parameters ζ for inflation feature very
limited second-lag dynamics relative to the variances of πt and xt, so inflation is hard to predict
with lagged variables and identification is weak.19 DGP 1b has ξ set to empirically unrealistic
values that yield much better predictability of inflation and thus much stronger identification. The
top panels in Figure 2 display the densities of the sampling distributions of the γf estimators under
DGPs 1a and 1b. Evidently, the four estimators exhibit quite different behaviors in the weakly
identified parametrization, DGP 1a. The GIV estimates of γf are biased downwards toward the
probability limit of the OLS estimator, which is close to 0.5 for all DGPs in this paper.20 While
the sampling distribution density for GIV has rather fat tails, it is single-peaked and not far from
bell-shaped.21 In contrast, the three VAR-based estimators all exhibit a distinct bimodal behavior,
with a large (or even dominant) share of estimates concentrating around γf = 1. VAR-MD is
particularly problematic in this regard. Due to the biased and decidedly non-Gaussian finite-
sample distributions of the VAR methods, conventional strong-instrument inference procedures will
give spurious results. In the strongly identified parametrization, DGP 1b, the situation is entirely
different. Here the sampling densities of all four estimators are of the conventional Gaussian shape,
and only a slight downward finite-sample bias remains. The VAR estimates do not cluster around
γf = 1. As the strong-instrument efficiency comparison in section 3.2 predicts, the sampling
densities for the three VAR methods are ever so slightly more narrowly concentrated around the
true value γf = 0.7 than the GIV density.

DGPs 2a and 2b set γf = 0.3, a value at the lower end of estimates reported in the literature,
and λ = −0.03, but are otherwise analogs of DGPs 1a and 1b, respectively. It is striking that the
reduced-form parameters for DGPs 1a and 2a are so similar, even though the structural NKPC pa-
rameters are completely different, cf. Table 1. The sensitivity of the mapping between reduced-form
and structural parameters is a key symptom of weak identification. Because structural estimation
works by backing out structural parameters from estimates of reduced-form features of the data, it
is clear that weak identification will have serious consequences regardless of the estimation method,
which is indeed what we find in our simulations. The bottom panels in Figure 2 display the sam-

16Because the specifications are overidentified, the VAR estimators do not coincide.
17Observe that the NKPC (21) may equivalently be written ∆πt = c+ γfEt(πt+1 − πt−1) + λxt + ut.
18Our VAR-MD implementation differs from that in Sbordone (2005) in the choice of distance function and weight

matrix. We focus on Kurmann’s (2007) version of VAR-ML for the reasons stated in section 3.2.
19Mavroeidis (2005) and Nason and Smith (2008a) discuss the role of lag dynamics in identification of the NKPC.
20By “OLS” we mean a simple regression of ∆πt on (πt+1 − πt−1) and xt.
21Simulations with smaller true values of λ yield a stronger bias of γf estimates toward 0.5.
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pling distributions of the γf estimators under DGPs 2a and 2b. The results are similar to those
for DGPs 1a and 1b (the slight bimodality of the VAR-MD estimator under DGP 2b disappears
if the strength of identification is increased further). In particular, the spurious clustering of VAR
estimates around γf = 1 under weak identification remains even with the true γf value set equal
to 0.3. This is interesting, as Sbordone (2005) and Kurmann (2007) both report rather large VAR-
based estimates of γf , and our empirical VAR-GMM estimates in section 5 similarly concentrate
around 1.

Section A.3 in the Appendix refers to an online supplement that provides additional simulation
results and Matlab code. Among other things, we find – not surprisingly – that misspecification of
the VAR can result in coefficient biases in any direction, irrespective of the strength of identification.

VAR methods To understand the behavior of VAR methods under weak identification, we set
c = λ = 0 for ease of exposition, but our results apply more generally. Equation (21) can then be
written as

∆πt = δEt(∆πt+1) + ūt, (23)

where δ = γf/(1 − γf ) and ūt = ut/(1 − γf ). Suppose the econometrician bases his analysis on a
reduced-form AR(1) in ∆πt.

22 Let ρ1 = E[∆πt∆πt−1]/E[(∆πt)
2] denote the first autocorrelation

of ∆πt, and let ρ̂1 be its sample analog. Since the specification is just identified (we have one
reduced-form parameter to identify γf ), all VAR estimators coincide, and it is easy to show that
the VAR estimator of δ is 1/ρ̂1. The implied γf estimator is then

γ̂VAR
f =

1

1 + ρ̂1
. (24)

Because the primary cause of weak identification is precisely that ρ1 ≈ 0 (inflation changes are
nearly unforecastable), we expect to find γ̂VAR

f ≈ 1. This must be the case for any true value of
γf that leads to ρ1 ≈ 0, i.e., for any empirically realistic DGP. This is different from the weak
instrument behavior of the GIV estimator γ̂GIV

f . As mentioned earlier, this estimator is biased
toward the probability limit of the OLS estimator of γf in the regression of ∆πt on (πt+1 − πt−1),
which equals 1/2.23 We are thus able to explain both biases observed in Figure 2.

Another way to view the weak identification VAR bias is as follows. The VAR estimator of δ
is precisely the inverse of the OLS estimator in the regression suggested by equation (23), i.e., the
regression of ∆πt+1 on ∆πt. There are only two ways in which the AR(1) assumption can hold.
The first possibility is that ūt ≡ 0, i.e., the NKPC is exact. The second possibility is that ūt 6= 0,
but the reduced form for inflation changes is ∆πt = ūt.

24 This is trivially an AR(1) with coefficient
0. Note, however, that if the DGP for inflation really has this form, γf is unidentified. This is the
sense in which VAR methods can lead to spurious identification: If the solution is ∆πt = ūt, VAR

22Our weakly identified DGPs 1a and 2a nearly have this reduced form, as their reduced-form coefficient on πt−1

in the inflation equation is approximately 1.
23Under stationarity, the OLS probability limit is E[(πt+1 − πt−1)∆πt]/E[(πt+1 − πt−1)2] = {E[(∆πt)2] +

E[∆πt+1∆πt]}/{2E[(∆πt)2] + 2E[∆πt+1∆πt]} = 1/2.
24Such a reduced form can arise in two ways. If γf < 1/2, the solution is determinate and equation (23) can

be iterated forward to yield ∆πt = ūt. Alternatively, if γf ≥ 1/2, the solution is indeterminate, and the so-called
minimum state variable solution ∆πt = ūt satisfies the NKPC.
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methods – by being equivalent to OLS estimation of (23) – implicitly select the other possibility
ūt ≡ 0 and obtain a seemingly very precise estimate of γf close to 1, even though the parameter is
unidentified.

Our discussion has focused on the tractable limits of λ = 0 and exact identification. While we
believe that the intuition translates to empirically realistic settings with λ ≈ 0 and overidentified
specifications, there is clearly room for more research on these matters. We stress that it is not
obvious from our results, or previous analyses in the literature, that GIV methods perform either
better or worse under weak identification than VAR-based methods. Only recently has the econo-
metric literature begun to analyze the consequences of weak identification for estimators other
than GMM. Magnusson and Mavroeidis (2010) introduce a robust MD test and apply it to the
NKPC. Robust VAR-ML analysis of the NKPC has not been attempted yet in the literature, but
weak identification robust procedures for general maximum likelihood analysis are currently under
development, cf. Andrews and Mikusheva (2011) and references therein.

3.4 Other issues

A number of other econometric issues have been raised in the literature.

Number of instruments Early implementations of the GIV approach to identification of the
NKPC used a large number of instruments relative to the sample size: Gaĺı and Gertler (1999)
used 4 lags of 6 variables on a sample of 160 observations. This practice is subject to the pitfall
of ‘many instrument’ biases, and most subsequent studies have used a significantly smaller number
of instruments. There is a large econometric literature on this issue, see e.g., Hansen et al. (2008).
It is well known that use of many instruments biases 2SLS estimators towards OLS. Intuitively, in
the limit case where the number of instruments is the same as the sample size, the first-stage yields
perfect fit, so 2SLS is identical to OLS. The problem becomes more severe if the instruments are
many and weak, which is the relevant framework for the NKPC. A recent contribution by Newey
and Windmeijer (2009) demonstrates some robustness properties of the weak identification robust
methods to many weak instruments. However, Newey and Windmeijer only cover situations in which
the instruments are sufficiently informative for the model to be strongly identified. Therefore,
their results exclude cases in which the instruments may be arbitrarily weak (e.g., completely
irrelevant).25 They also ignore the complications arising from uncertainty in the estimation of the
long-run variance of the moment conditions, which can be substantial when the number of moment
conditions is large. Therefore, we recommend against the use of many instruments in the estimation
of the NKPC.

Unit roots Empirically, U.S. inflation appears close to non-stationary in certain subsamples.
Fanelli (2008), Mikusheva (2009), Boug et al. (2010) and Nymoen et al. (2010) discuss the implica-
tions of inflation having a unit root. This raises issues about the validity of inference when the unit
root is left unaccounted for. When the inflation coefficients in the NKPC sum to 1, the model can

25Andrews and Stock (2007) provide conditions under which the weak identification robust tests remain valid under
many instruments that may be arbitrarily weak, but these results are for the homoskedastic linear IV regression model,
so they do not apply to the NKPC.
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be written in terms of changes in inflation. If the instrument set also uses lags of ∆πt, inference
will be robust to inflation having a unit root. A number of papers have taken that approach (e.g.,
Kleibergen and Mavroeidis, 2009) and we study it further in our empirical section.26

Misspecification The various methods described so far may be affected differently by misspecifi-
cation of the NKPC. Jondeau and Le Bihan (2003, 2008) study some special cases of misspecification
in the form of omitted lags of inflation in the NKPC that bias the GIV estimator of the coefficient
on future inflation upwards and the VAR-ML estimator downwards. This is consistent with the dif-
ference among empirical estimates reported by Fuhrer (1997), Gaĺı and Gertler (1999) and Jondeau
and Le Bihan (2005), so Jondeau and Le Bihan argue that misspecification could be the source
of disparity in the estimates. However, differences remain when the NKPC is extended to include
more lags of inflation.27 Mavroeidis (2005) explores the implications of omitted dynamics for the
bias of GIV estimation of the hybrid NKPC.

Cagliarini et al. (2011) and Imbs et al. (2011) discuss another type of misspecification due to
aggregation bias. Building on Carvalho (2006), they show that heterogeneity of (Calvo) price rigidity
across economic sectors can bias estimates of average price rigidity upwards and bias estimates of
the slope of the aggregate NKPC toward zero. Cagliarini et al. (2011) trace this bias to the presence
of an additional error term in the aggregate NKPC resulting from sectoral heterogeneity.

Autocorrelated cost-push shocks Autocorrelation of ut in the NKPC (8) violates the common
identifying assumption Et−1 (ut) = 0. Because cost-push shocks induce endogenous movements in
observables, in general autocorrelated cost-push shocks imply that lagged variables will be correlated
with ut, so that, with the exception of external instruments, all other identifying assumptions listed
earlier become invalid. Zhang and Clovis (2010) reiterate this point and perform autocorrelation
tests on the residual of the Gaĺı and Gertler (1999) specification. They find evidence of significant
residual autocorrelation, which can be removed by including three lags of inflation in the NKPC.
Note that the GIV residuals ũt include a future inflation forecast error, so they may exhibit MA(1)
autocorrelation even when the structural error ut is not autocorrelated (Jondeau and Le Bihan,
2005; Mavroeidis, 2005; Eichenbaum and Fisher, 2007). Boug et al. (2010) identify the cost-push
shock ut via VAR-ML and find it to be serially correlated. They also recommend using more lags
of inflation in the NKPC. Kuester et al. (2009) show by simulation that GIV estimates of the slope
of the NKPC are biased downwards when ut is autocorrelated, and the Hansen (1982) J test has
little power against this misspecification in realistic sample sizes.

Subsample stability Stability tests of the model parameters can be used to test the immunity
of the NKPC to the Lucas (1976) critique, as well as to assess the importance of time varying trend
inflation and lack of full indexation to it. The standard stability tests of Andrews (1993), Andrews
and Ploberger (1994) and Sowell (1996) require strong instruments, but weak identification robust

26Note that the restriction that inflation coefficients sum to 1 is not sufficient for inflation to have a unit root.
This depends on the dynamics of the forcing variable (B̊ardsen et al., 2004).

27As discussed in section 3.2, Kurmann (2007) offers another possible explanation for why VAR-ML estimates that
impose determinacy, such as those reported in Fuhrer (1997) and Jondeau and Le Bihan (2005), may differ from
GMM estimates.
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versions are available (Caner, 2007; Magnusson and Mavroeidis, 2012). Castle et al. (2010) give an
extensive discussion of the consequences of structural breaks in the NKPC.

4 Survey of the Empirical Literature

This section surveys the empirical literature on the NKPC. Rather than maintaining a strict chrono-
logical order, we have attempted to group the various contributions into the main econometric
approaches that were introduced in section 3. Figure 3 and Table 2 present a representative set
of results from some of the most frequently cited studies; additional papers are referenced below.
The major points of controversy in the literature concern the relative importance of forward- and
backward-looking price setting behavior, as well as the degree to which real activity influences
inflation dynamics. Although several methodological contributions have been proposed since the
beginning of the research program, an empirical consensus is not yet in sight.

4.1 Initial breakthroughs

Limited-information testing of the NKPC was initiated by Fuhrer and Moore (1995) and Roberts
(1995). As mentioned by Roberts, previous econometric tests of new Keynesian pricing equations
had been based on full-information (system) methods under the assumption of RE. Roberts (1995)
shows that three different theoretical frameworks – the staggered contracts model of Taylor (1980),
the infinite-horizon staggered pricing model of Calvo (1983) and the quadratic adjustment cost
model of Rotemberg (1982) – all lead to (what came to be known as) a difference equation spec-
ification of the pure NKPC, with the output gap as forcing variable. He suggests two different
limited-information approaches to testing the relationship: first, the use of survey expectations as
proxies for the expectation term, and second, McCallum’s (1976) technique of subsuming the RE
forecast error into the equation’s error term and instrumenting for next period’s inflation and the
output gap with lagged variables (GIV estimation, in the terminology of section 3.1). Using annual
U.S. data, Roberts finds a significant role for the output gap.

Seminal contributions by Gaĺı and Gertler (1999) and Sbordone (2002) helped propel the NKPC
research agenda into the forefront of empirical macroeconomics. Both papers take the now-standard
microfounded RE pricing model to U.S. data and obtain results that are supportive of the model’s
fit. Furthermore, both sets of authors exploit the model’s implication that aggregate marginal cost
may be proxied by the labor share. Indeed, Gaĺı and Gertler establish that the NKPC only fits
U.S. data if the labor share is used as forcing variable instead of the output gap, which may be
mismeasured. Gaĺı and Gertler also develop the now-standard hybrid NKPC, whose lagged inflation
terms introduce intrinsic persistence of the inflation rate on top of the extrinsic persistence imparted
by the forcing variable.

4.2 GIV estimation

Using linear and non-linear GIV methods, Gaĺı and Gertler (1999) find that, while the backward-
looking inflation term is significant, the forward-looking RE term dominates; they also obtain
a significant and correctly signed coefficient on the labor share (unlike the output gap). The
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NKPC restrictions are not rejected by overidentification tests or by visual inspection of fitted
inflation. Gaĺı et al. (2001) take the model to aggregate Eurozone data, largely confirming the U.S.
findings. Benigno and López-Salido (2006) find some heterogeneity in estimated coefficients for
major Eurozone countries. Eichenbaum and Fisher (2004, 2007) evaluate a variant of the NKPC
with price indexation that was developed by Christiano et al. (2005), and they also introduce
variable elasticity of demand, capital adjustment costs and pricing implementation lags. Blanchard
and Gaĺı (2007) consider a model with real wage rigidity, which leads to an NKPC featuring the
unemployment rate as forcing variable; GIV estimation on U.S. data yields intuitively reasonable
coefficients with significant forward-looking behavior. Krause et al. (2008), Ravenna and Walsh
(2008) and Blanchard and Gaĺı (2010) explore NKPCs with explicit labor market frictions that
lead to alternative expressions for marginal cost. Chowdhury et al. (2006) and Ravenna and Walsh
(2006) assume that firms must borrow to pay their wage bill up front each period, which leads to
the so-called cost channel of interest rates, i.e., marginal cost is directly influenced by the interest
rate. These papers find that, for most countries, the Treasury bill rate enters significantly into an
extended NKPC when estimated by GIV, but the coefficients on the forward- and backward-looking
inflation terms are not affected much relative to the baseline. Neiss and Nelson (2005) compute
the output gap that is implied by a standard new Keynesian model; this theoretically consistent
measure turns out to be essentially uncorrelated with quadratically detrended output (which is
used by Roberts, 1995, and Gaĺı and Gertler, 1999), and GIV estimates of the slope of the NKPC
are even more significant than when using the labor share.28 Gagnon and Khan (2005) extend
the NKPC to a more general CES production function and find that structural GIV estimates
imply less price stickiness than under the usual Cobb-Douglas specification. In addition to a CES
production function, McAdam and Willman (2010) add varying capacity utilization, which decreases
the estimated coefficient on the inflation expectation term. Batini et al. (2005) and Rumler (2007)
estimate open-economy NKPCs by GIV on data from European countries, finding a significant role
for international variables. Gwin and VanHoose (2008) and Shapiro (2008) construct alternative
measures of firm marginal costs from micro-level and sectoral data.

While the previously mentioned papers find a significant, and often dominant, role for the
forward-looking RE term, a number of papers that use the GIV framework have raised issues with
the mainstream analysis (see also the discussion of weak identification below). B̊ardsen et al.
(2004) point out that the literature has mostly not rejected the homogeneity restriction (i.e., that
the coefficients on last and next period’s inflation sum to 1), which, under strict exogeneity of the
forcing variable, implies that inflation is non-stationary. They show empirically that GIV estimates
are quite sensitive to the choice of instrument set and estimator (see also Guay and Pelgrin, 2005),
and the Gaĺı et al. (2001) hybrid NKPC is rejected in favor of alternative, encompassing models of
inflation. Fuhrer and Olivei (2005) employ a reduced-form VAR to compute expectations of next
period’s inflation and the output gap; they then use the computed expectations as instruments.
Their estimate of the coefficient on the forward-looking expectation term is much smaller than the
traditional GIV estimate. A series of papers by Rudd and Whelan (2005, 2006, 2007) contend
that the Gaĺı and Gertler (1999) estimation approach yields spurious results. Rudd and Whelan
criticize the use of the labor share as a proxy for marginal cost due to its countercyclicality.29 They

28See also Fukač and Pagan (2010) for a critique of “off-model” output detrending.
29This issue is further pursued by Mazumder (2010).

22



demonstrate that, provided the NKPC leaves out explanatory variables, the use of instruments
outside of the model (such as interest rates or wage and commodity price inflation) may bias the
estimates in the direction of establishing a high degree of forward-looking behavior. Furthermore,
Rudd and Whelan conduct several tests of the incremental explanatory power of the labor share and
conclude that it adds essentially no information to inflation forecasting. Estimating the model by
GIV in iterated form (cf. section A.2.2 in the Appendix) yields a smaller coefficient on the forward-
looking term. Finally, data revisions since 1999 have eroded the significance of the labor share, even
in the original Gaĺı and Gertler set-up. Gaĺı et al. (2005) counter that Rudd and Whelan (2005)
use a parametrization of the model that does not correspond to the structural parameters in Gaĺı
and Gertler (1999) and Gaĺı et al. (2001). Gaĺı et al. (2005) show that if the same parametrization
is used, iterated GIV estimation confirms the results in Gaĺı and Gertler (1999) and Gaĺı et al.
(2001).

As witnessed by the myriad of parallel sub-models and methods, the literature is still far from
producing a consensus set of specifications or empirical conclusions, even within the relatively
narrow RE GIV framework.

4.3 VAR estimation

In their seminal paper, Fuhrer and Moore (1995) augment a Taylor (1980) pricing equation with
reduced-form VAR equations for the output gap and Treasury bill rate and estimate the resulting
system by ML, using the AIM routine from Anderson and Moore (1985) to solve for a RE solution
given the parameters. Fuhrer and Moore reject the restrictions implied by the standard pricing
model based on a formal likelihood ratio test and inspection of the implied impulse responses,
which display too little inflation persistence. The data is more favorable to an alternative real wage
contracting model that implies sticky inflation instead of just sticky prices. Fuhrer (1997) uses a
similar approach to test for the significance of forward-looking rational inflation expectations rela-
tive to backward-looking (adaptive) expectations; he finds that the RE component is insignificant.
Subsequent papers have applied the AIM-based VAR-ML method to the Gaĺı and Gertler (1999)
hybrid NKPC. Fuhrer and Olivei (2005) and Fuhrer (2006) find a small coefficient on the forward-
looking term relative to that on lagged inflation. Roberts (2005), who also considers GIV and
impulse response matching, estimates a hybrid NKPC with four lags of inflation, obtaining about
50% weight on forward-looking behavior. Jondeau and Le Bihan (2005) estimate the NKPC on
data from the U.S. and major European countries. They find that GIV estimates of the coefficient
on forward-looking expectations tend to be high, while VAR-ML estimates tend to be lower. Kiley
(2007) uses VAR-ML to estimate an NKPC specification with four lags of inflation and expecta-
tions of next-period inflation taken with respect to previous-period (rather than current-period)
information. Here the forward-looking term is dominant, and the Bayesian Information Criterion
indicates that the structural model provides as good a fit to U.S. data as a reduced-form VAR.

Kurmann (2007) criticizes the AIM-based approach to ML estimation, as it imposes the extra-
neous assumption that the RE solution must be unique (determinate), cf. section 3.2. Using an
ML method that does not impose uniqueness, he finds evidence of a large share of forward-looking
behavior in the Gaĺı and Gertler (1999) U.S. dataset, which contrasts with estimates obtained under
the additional uniqueness assumption. It is an open question whether imposing the determinacy
assumption matters empirically across other data sets and NKPC specifications. Korenok et al.
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(2010) also eschew the AIM algorithm and instead write their model in a form that is amenable to
Kalman filtering.30

Sbordone (2002) tests the pure NKPC on U.S. data using a two-step approach akin to that
of Campbell and Shiller (1987, 1988). In a first step, she fits a reduced-form VAR to the data.
When iterated forward, the pure NKPC implies that inflation is given by an expected present value
of future marginal costs, and this quantity may be evaluated using the fitted VAR. The struc-
tural parameters of the NKPC can then be estimated by minimizing the squared distance between
model-implied and actual inflation. The estimated Calvo (1983) parameter is in line with micro-
estimates of price stickiness. Sbordone (2005) refines the estimation approach by interpreting it as
minimum distance estimation and accounting for sampling uncertainty of the first-step estimated
VAR (see also Kurmann, 2005). She provides estimates of the hybrid NKPC, broadly confirming
the conclusions in Gaĺı and Gertler (1999). Tillmann (2008) uses a related MD approach to assess
the importance of the cost channel of monetary policy. Sbordone (2006) develops a model of joint
price and wage determination, which is estimated by minimum distance. Coenen et al. (2007)
construct a model with a general, non-constant hazard rate of price resetting, which they estimate
using an indirect inference procedure that matches the model-implied dynamics to the estimated
reduced-form VAR. Carriero (2008) rejects the cross-equation restrictions that the one-lag NKPC
places on a reduced-form VAR in inflation and the labor share. Guerrieri et al. (2010) develop a
microfounded open-economy NKPC in which the relative price of foreign goods enters. To esti-
mate it they use a multi-equation GMM approach that adds reduced-form VAR equations for the
labor share and relative foreign goods prices. Their preferred specification yields an insignificant
coefficient on lagged inflation. Cornea et al. (2013) use VAR methods to estimate an NKPC with
evolutionary switching between forward-looking and backward-looking inflation expectations; they
find substantial time-variation and heterogeneity in the type of expectations formation.

Fanelli (2008) and Boug et al. (2010) conduct likelihood-based estimation of the hybrid NKPC,
taking into account the possibility that the variables are cointegrated. The likelihood is derived
conditional on a reduced-form vector error-correction model for inflation and the output gap, using
the Kurmann (2007) approach that does not impose uniqueness of the RE solution. Both papers
find that the NKPC restrictions are rejected for the Eurozone. Boug et al. (2010) find some support
for the hybrid NKPC in U.S. data, although the residuals are significantly autocorrelated, violating
an assumption of the model. The MLE of the coefficient on the inflation expectations term is much
larger than that on the lagged inflation term.

While popular in the DSGE literature, Bayesian methods have only been used in a few limited-
information analyses of the NKPC. Fuhrer and Olivei (2010) and Fukač and Pagan (2010) compute
posteriors for the parameters in versions of the NKPC, where the expectation of next period’s
inflation is determined by a reduced-form VAR. Cogley and Sbordone (2008) introduce drifting
trend inflation into the standard new Keynesian model, which changes the form of the NKPC.
They estimate the model using quasi-Bayesian methods, conditional on a reduced-form VAR with
drifting parameters and stochastic volatility. Their imputed inflation gap (i.e., the difference be-
tween inflation and its trend) is much less persistent than raw inflation, and the quasi-posteriors
indicate that once the trend is accounted for, there is no need to allow for backward-looking price

30Other papers that use filtering techniques include Nelson and Lee (2007), Kim and Kim (2008) and Kim and
Manopimoke (2011).
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indexation (see also Sahuc, 2006; Hornstein, 2007). Barnes et al. (2011) and Gumbau-Brisa et al.
(2011) argue, however, that this conclusion is sensitive to how the NKPC restrictions are imposed
in the estimation. Despite the reservations, the trend inflation research agenda is rapidly becoming
one of the most well-cited branches of the NKPC literature.

4.4 Estimation using survey expectations

As mentioned, Roberts (1995) uses survey measures of inflation expectations from the Michigan
and Livingston surveys as an alternative to the RE GIV approach.31 Roberts (1997) finds that the
apparent sluggishness and non-rationality of these survey forecasts generate sufficient inflation per-
sistence in the U.S. NKPC, and the data favors such a specification to the Fuhrer and Moore (1995)
sticky inflation model. Rudebusch (2002) estimates the hybrid NKPC on U.S. data by OLS, with
Michigan survey data proxying for inflation expectations. He finds a relatively small coefficient on
the expectations term but a significantly positive coefficient on the output gap. Adam and Padula
(2011) use SPF inflation forecasts and also find the forcing variable to be significant, regardless of
whether they use the labor share or output gap, but their OLS estimate of the coefficient on the ex-
pectation term is slightly larger than that on lagged inflation. Kozicki and Tinsley (2002) estimate
various pricing equations for the U.S. and Canada using survey forecasts and allowing for non-zero
trend inflation. Gerberding (2001), Paloviita and Mayes (2005), Paloviita (2006, 2008), Henzel and
Wollmershäuser (2008) and Koop and Onorante (2011) estimate NKPCs for European countries
using various measures of survey expectations of inflation and various estimation procedures. The
estimated extent of forward-looking pricing behavior varies greatly between studies and specifi-
cations. Brissimis and Magginas (2008) use SPF forecasts and the Federal Reserve’s Greenbook
projections to estimate the U.S. NKPC by GMM. They find a dominant role for forward-looking
expectations and a significantly positive coefficient on the labor share. Zhang et al. (2008, 2009)
consider both SPF, Greenbook and Michigan survey forecasts. Unlike the RE specification, the
survey forecast NKPC gets a positive and significant coefficient on the output gap but its estimates
appear more unstable over subsamples (see also Kim and Kim, 2008). Mazumder (2011) uses SPF,
Michigan and Greenbook forecasts to test the NKPC with a procyclical measure of marginal costs
developed in Mazumder (2010).

Nunes (2010) simultaneously includes rational expectations and SPF forecasts in an NKPC. The
GMM estimates point to non-rational expectations only playing a minor role in explaining U.S.
inflation dynamics. This conclusion is disputed by Fuhrer and Olivei (2010) and Fuhrer (2012),
who proxy for the RE term with expectations from a reduced-form VAR and estimate the NKPC
by Bayesian and ML methods. Smith (2009) gives conditions under which it is advantageous to
include data on survey forecasts for statistical reasons, even if the researcher has a purely rational
NKPC in mind.

Survey forecast methods have established a commanding presence in the NKPC literature. So
far, the literature has only scratched the surface in terms of providing full-fledged microfoundations,
and a detailed understanding of the interplay between non-rational expectation formation and price
setting remains elusive.

31Roberts still instruments for the output gap as it may be correlated with the inflation error term.
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4.5 Identification issues and robust inference

The literature’s awareness of the problems associated with weak identification has grown over time.
Gaĺı et al. (2001) guide the choice of their instrument set by the first-stage F statistic. Mavroeidis
(2004, 2005) provides analytical and simulation evidence that explains why weak identification
is likely to be an issue for NKPC estimation. Ma (2002) is the first paper to compute weak
identification robust confidence sets (specifically, the Stock and Wright, 2000, S set) for the NKPC,
finding the data to be completely uninformative about the structural parameters. Dufour et al.
(2006) compute Anderson and Rubin (1949) and Kleibergen (2002) confidence sets for both GIV
and survey forecast specifications. The U.S. GIV confidence region is fairly large, while the survey
forecast one is empty; no NKPC specification seems to fit Canadian data. Nason and Smith
(2008a) reject the hybrid NKPC for both Canada, the U.K. and the U.S. using the Anderson and
Rubin (1949) test and the Guggenberger and Smith (2008) GEL test. In contrast, Martins and
Gabriel (2009) find very wide robust GEL confidence sets. Using a variety of GMM-based robust
tests, Kleibergen and Mavroeidis (2009) conclude that inflation appears to be significantly forward-
looking, but the confidence regions are wide. Dufour et al. (2010a,b) carry out robust inference on
certain extensions of the NKPC with real wage rigidities and labor market frictions. Magnusson
and Mavroeidis (2010) develop a weak identification robust version of Sbordone’s (2005) minimum
distance test, finding somewhat smaller confidence regions than when using a robust GIV approach.
Kleibergen and Mavroeidis (2013) demonstrate the consequences of ignoring weak identification in
Bayesian analyses of the NKPC and propose ways of circumventing the problems.

Some papers have devised methods for improving the strength of identification in GIV estimation
of the NKPC. Dees et al. (2009) obtain instruments for individual-country NKPCs by estimating
a multi-country cointegrating VAR. Building on Beyer et al. (2008), Kapetanios and Marcellino
(2010) and Kapetanios et al. (2011) develop identification robust theory for GMM testing using
instruments that have been estimated by principal components from a large set of candidate vari-
ables. While this seems to improve identification of the slope of the NKPC, the relative shares
of forward- and backward-looking behavior remain very weakly identified. Motivated by the Lu-
cas critique, Magnusson and Mavroeidis (2012) suggest using robust parameter instability tests to
improve inference about the NKPC.

The lessons from weak identification analyses have so far only had limited impact on the broader
NKPC literature. Papers that do mention the identification issue often either treat it as merely
another robustness check or incorrectly dismiss it as a strictly GMM-specific problem. The conse-
quence is that comparison of results across papers is difficult.

5 Empirical Synthesis

In this section we generate estimates of the NKPC corresponding to a wide selection of empirical
approaches from the literature.32 Because we use a common data set for all estimates, we are
able to highlight the sensitivity of the inference to choices of specification and econometric strategy.
While our results largely confirm several isolated results in recent strands of the literature, they also
convey the strong message that the specification uncertainty surrounding estimation of the NKPC

32Estimation results are obtained using Ox (Doornik, 2007).
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is vast. We then show, using a number of benchmark specifications, that even given a model, the
sampling uncertainty of the estimates tends to be large. Both these conclusions can be explained by
the weakness of identification. We also demonstrate that the potential for the data to distinguish
between rational and non-rational price setting is limited.

5.1 Data

As in most of the literature, our dataset features U.S. aggregate time series at a quarterly fre-
quency, with the largest possible sample extending from 1947q1 to 2011q4. Most series have been
downloaded from the St. Louis Fed’s FRED database. The data consists of alternative series for
price and wage inflation, the labor share, output, interest rates and survey measures of inflation
expectations. We use the abbreviation “NFB” for the non-farm business sector. See section A.4 in
the Appendix for a detailed description of the data and transformations.

A few of our data series deserve mention here. Survey forecasts of inflation are taken from the
Survey of Professional Forecasters (SPF) and the Federal Reserve’s Greenbooks (GB). We consider
both one-quarter-ahead inflation forecasts made at time t, πst+1|t, and two-quarters-ahead inflation
forecasts made at time t− 1, πst+1|t−1.

Inflation gaps are calculated as the raw inflation rate minus a measure of trend inflation. Our
two model-based measures of trend inflation are the smoothed (two-sided) and filtered (one-sided)
permanent components of inflation from the UC-SV model of Stock and Watson (2007, 2010). For
CPI inflation, 10-year CPI inflation forecasts serve as an additional measure of trend inflation (this
series starts in 1991).

Real-time data on inflation and output is obtained from the Philadelphia Fed’s website. We
have compiled a unique dataset on real-time changes in the labor share (real unit labor cost), for
use as instruments, by combining internal records from the Bureau of Labor Statistics with figures
from the bureau’s historical news releases.33

Our output gaps include the official estimate from the Congressional Budget Office (CBO) as
well as various detrended output series. We also compute labor share gaps. This is done to remove
trends such as the recent dramatic decline in the labor share, which may arguably be attributed to
secular changes outside of the new Keynesian model.34 In addition to full-sample gaps, we use real-
time output data or current-vintage labor share data to compute one-sided gaps, for which the trend
is determined using only data points up to time t. Because such series do not estimate the trend
from future data, they (or their lags) can more plausibly be treated as exogenous for estimation
purposes.35 Another stationary analog of the labor share is the cointegrating relationship between
real wages and labor productivity found by Sbordone (2005, fn. 19). Like most of the literature,
we consider non-detrended labor share series as well.

In our empirical analysis we ignore measurement error in the estimates of the trends of inflation
and forcing variables.

33We are grateful to Shawn Sprague for assisting us in obtaining the real-time labor share data.
34See Gwin and VanHoose (2008) for a discussion of the need to detrend marginal cost measures.
35Unfortunately, we cannot use our real-time labor share data to construct actual real-time labor share gaps.

Because the BLS base year changes over time, we can only compute real-time changes in the (log) labor share, not
levels. Our one-sided labor share gaps therefore rely on current-vintage data.
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5.2 Specification sensitivity

We take the specification of Gaĺı and Gertler (1999) and Gaĺı et al. (2001) to be our benchmark:
a hybrid NKPC (9) with one lag of inflation and the labor share as forcing variable, estimated
by GIV under the RE assumption. As discussed in section 4, GIV analyses typically find point
estimates of the coefficient on expectations γf in the 0.5–0.7 range, and the coefficient on lagged
inflation γb, the measure of intrinsic persistence, is often significantly positive and not significantly
different from 1− γf . The coefficient on the labor share λ is generally estimated to be positive but
borderline significant (using the usual strong-instrument inference). In Table 3 we replicate these
findings using data of the same vintage as Gaĺı and Gertler (1999) but with the Gaĺı et al. (2001)
instrument set.36 Later papers have mostly obtained insignificant λ estimates, and like Rudd and
Whelan (2007) we find that this is even true on the Gaĺı and Gertler (1999) sample if revised data
(as of 2012) is used. Using the output gap as forcing variable also typically yields an insignificant
estimate of λ, and early papers in the literature tended to find negative point estimates.

The estimation results reported in the literature differ in terms of the choice of data series,
estimation sample and various other aspects of the specification, such as the number of inflation
lags, any additional regressors, the measurement of inflation expectations, and the identification
assumptions, including the set of instruments and other identifying restrictions. As we showed in
Figure 3, estimates of λ and γf reported in various papers differ markedly, but the key message
is that all highly cited papers obtain a positive slope coefficient (λ > 0), and, with the exception
of Fuhrer (2006), generally find forward-looking behavior to be dominant (γf > 0.5). The results
presented in Figure 3 are a tiny subset of possible specifications. Table 4 presents various dimensions
of the specification choice that have been considered in the literature.37 These combinations of
choices produce a very large number specifications that are not objectionable on a priori grounds.

To gauge the sensitivity of the results about the importance of forward-looking behavior to
variations in data, sample and identification assumptions, we obtain estimates of the coefficients
(λ, γf ) in the baseline NKPC (9) for various combinations of the specification choices listed in Table
4. We then plot the point estimates in (γf , λ)-space. These plots do not convey any information
about sampling uncertainty, i.e., they are not confidence sets. Confidence sets for a subset of those
specifications are analyzed in section 5.3 below. However, these plots, which we refer to as “clouds”,
do give a useful visual impression of the specification uncertainty. We study the specifications with
the labor share and output gap as forcing variable separately, because the coefficient λ on the
forcing variable is not comparable across these cases. As we are only able to report a limited
number of results here, we invite interested readers to explore the myriad of possible clouds using
our interactive Matlab plotting tool, available in the online supplement.38

We first look at the specification settings that have been used in the literature (i.e., not using
real-time data or survey expectations as instruments). Figures 4 and 5 report the results for the

36We obtained the 1998 vintage data from Adrian Pagan. We use CUE rather than 2-step GMM (cf. section A.2.1
in the Appendix) because the former is invariant to reparametrization of the moment conditions. The results are
comparable to the bottom two rows of Table 2 in Gaĺı et al. (2001).

37The only components of the table that have not been explored extensively in the literature are some of the
real-time data series (but see Paloviita and Mayes, 2005, Dufour et al., 2006, and Wright, 2009) and the use of
survey expectations as instruments (but see Wright, 2009, and Nunes, 2010). The latter is motivated by evidence
that surveys typically forecast inflation better than most alternatives, see Ang et al. (2007).

38https://sites.google.com/site/sophoclesmavroeidis/research/working-papers/online-supplement-for-nkpc-review
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labor share and output gap as forcing variable, respectively. Figure 4 also contains the Gaĺı and
Gertler (1999) vintage point estimate and associated Wald confidence ellipse from Table 3 for
comparison. These plots contain more than 600,000 estimates combined. Observe that the plotted
parameter space (γf , λ) ∈ [−1, 2]× [−0.3, 0.3] is much larger than that of Figure 3. Table 5 reports
summary statistics for the point estimates in Figures 4 and 5.

The main messages from the figures are that (i) estimates of the coefficient on the forcing variable
are symmetrically dispersed around zero, and (ii) estimates of the coefficient on expectations are
on average around 3/4 and very dispersed, though the vast majority (around 90%) of those are
positive. Importantly, only about half of the estimates lie in the positive orthant λ > 0, γf > 0.
Moreover, the fraction of cases in which λ and γf both appear statistically significantly positive
using (one-sided) 5%-level individual t-tests is quite small, while most of the reported estimates in
the literature appear to fall in that category. It is interesting that the frequency of significantly
positive coefficients for the output gap specifications is almost double the frequency for the labor
share ones. This is not in line with the view that NKPC specifications with the output gap as
forcing variable more frequently have estimates with the ‘wrong sign’ than do specifications using
the labor share as forcing variable (Gaĺı and Gertler, 1999). It is important to stress that the results
based on t-tests are reported for the comparison with the literature, and they do not yield reliable
evidence on the significance of the coefficients. In the next subsection we report results that are
robust to weak identification.

To shed some light on the issue of weak identification, the penultimate row of Table 5 reports the
median value of the heteroskedasticity and autocorrelation robust first-stage F statistic of Montiel
Olea and Pflueger (2013), denoted FHAR. A low value of this statistic can be thought of as a
warning sign for weak instruments.39 We see that instruments are quite strong for forecasting
the forcing variable (the median F statistic is 63.7 for labor share specifications and 166.5 for
output gap specifications) but rather weak for forecasting the inflation expectation proxy (median
F is 3.1 and 4.2, respectively).40 Even though this is not a formal test of weak instruments,
and we do not recommend the use of pre-tests in place of weak identification robust inference,
these results reinforce the intuition that changes in inflation are hard to forecast and we should
therefore worry about weak identification. Figure 6 displays smoothed density estimates of our
first-stage F statistics for forecasting the expectations proxy, treating RE GIV separately from
time-t dated SPF/GB forecasts, and using all instrument sets in Table 4. As one might expect,
time-t dated survey forecasts are much better predicted by the various instrument sets than is next
period’s realized inflation. The median F for forecasting next period’s inflation is 2.7 across all
labor share specifications (3.6 across output gap specifications). In comparison, the median is 12.8
(12.5) for SPF/GB forecasts, and if we restrict attention to the instrument set that includes lagged
survey forecasts, the median F is even higher at 42.1 (43.9). This suggests that survey forecast
specifications of the NKPC may be more strongly identified than their GIV counterparts, and the

39The well-known rule of thumb of F > 10 is a commonly used benchmark (Stock and Yogo, 2002), although
Montiel Olea and Pflueger (2013) show that this condition is neither necessary nor sufficient for instruments to be
strong in the presence of heteroskedasticity and autocorrelation.

40Low values of the F statistic for forecasting the forcing variable do arise in specifications that use the real-time
(RT) instrument set. For labor share specifications, the median value of the F statistic is 9.5 for the RT regressions,
whereas the median is 63.1 for all other instrument sets in Table 4. For output gap specifications, the corresponding
medians are 69.3 and 170.6, respectively.
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evidence reported in section 5.3 corroborates this conjecture.
The final row of Table 5 reports the rejection frequencies of a weak identification robust version

of Hansen’s (1982) J test of overidentifying restrictions, see section A.2.6 in the Appendix for details.
The rejection frequencies are just over 3% at the 5% level, so there is no systematic evidence against
the validity of the overidentifying restrictions. Notice, however, that this test is less powerful than
the standard J test because it uses larger critical values.

We now take a closer look at the different dimensions of the specification choice. In the following
we do not exclude estimates that use the real-time or survey instrument sets. In the remainder of
this subsection, the discussion is organized in self-contained paragraphs that can be skipped without
affecting the readability of the rest of the article. Additional details are provided in section A.5 of
the Appendix.

CUE versus 2-step GMM We generate GMM estimates using both the efficient 2-step estima-
tor (2S) and the continuous updating estimator (CUE) of Hansen et al. (1996). These are described
in section A.2.1 in the Appendix. Table 6 compares summary statistics of point estimates based
on 2S and CUE GMM for the various specifications listed in Table 4.41 The 2S and CUE are very
similar for λ, and CUE is typically larger than 2S for γf . Moreover, the 2S estimates are closer to
the corresponding OLS estimates than CUE. This finding is consistent with the well-known bias of
GMM estimators towards the OLS probability limit, which is stronger for 2S than for CUE (Stock
et al., 2002). The relatively better bias properties of the CUE come at the cost of greater dispersion,
which is confirmed by the 90% interquantile ranges: the ones for the CUE are more than double
the corresponding ones for 2S. B̊ardsen et al. (2004) and Guay and Pelgrin (2005) also report large
sensitivity of NKPC estimates to the choice of GMM estimator, as well as to the set of instruments.

VAR assumption Our VAR-GMM estimates are based on the moment condition (15). The
reduced form evolution of inflation is thus restricted to be a linear function of the variables in
the instrument set. Table 7 reports summary statistics comparing GIV and VAR-GMM estimates,
while Figure 7 plots clouds for estimates that impose the VAR assumption and those that do
not. There is no noticeable difference in the estimates of λ between the VAR and GIV methods,
but there is a substantial difference in γf : in the vast majority of cases (about 80%), imposing
the VAR assumption increases the estimate of γf and the median estimate is actually 1. This is
consistent with the results reported in Sbordone (2005) that use VAR-MD and find no role for
intrinsic persistence, as well as with the VAR-ML results in Kurmann (2007). It is inconsistent
with Fuhrer (2006, 2012), who additionally imposes determinacy, cf. section 3.2. As we pointed out
in section 3.3, weak identification can cause VAR estimates of γf to be biased toward 1. Imposing
the additional restrictions that coefficients on inflation in the NKPC sum to one (i.e., γ (1) = γf
in equation (9)) and that inflation enters the VAR in first differences (thus using lags of ∆π as
instruments) causes γf estimates to concentrate even more tightly around 1, but also increases the
dispersion of the λ estimates.

41In a small number of cases the CUE either failed to converge or produced estimates that were very large in
absolute value. This is consistent with the well-known property that the finite sample distribution of the CUE has
fat tails (Hansen et al., 1996).
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Survey forecasts There are large and systematic differences in the effect of using survey inflation
forecasts relative to RE GIV across labor share and output gap specifications, sample period,
inflation series (GDP deflator versus CPI) and forecast source (SPF versus GB). Survey forecasts
typically increase the estimate of λ across most specifications and sample periods, especially when
the output gap is used as forcing variable. The estimate of γf moves in different directions across
specifications: it is typically much lower than GIV in labor share specifications and either the same
or higher in output gap specifications. This is illustrated in Figure 8, which plots the post-1984
cloud for RE GIV estimates against that for time-(t − 1) dated exogenous SPF forecasts (results
are similar for other choices of survey forecasts), treating GDP deflator and CPI specifications
separately. Further details are given in Table 9 in section A.5 of the Appendix.

Subsample variation is also quite striking. The reduction in γf relative to GIV is much more
evident in the post-1981 sample (SPF CPI forecasts are only available from 1981q3). Survey
specifications with CPI inflation typically yield much larger estimates of γf than those with GDP
deflator inflation. SPF and GB forecasts do not yield systematically different full-sample estimates,
though there are some systematic difference to the estimates of γf before and after 1984. Treating
surveys as endogenous or exogenous does not seem to make much difference to the central tendency
of the estimates, though it does make a difference to dispersion (the latter estimates are a lot less
dispersed, as expected).

Instruments The last two rows of Table 6 give median differences for specifications using the
Gaĺı and Gertler (1999) instrument set (GG), which is considerably larger than the rest. This
instrument set produces estimates for γf that are typically lower than average. The GG estimates
are also less dispersed and more concentrated around the OLS estimates. Other than GG, the
choice of instrument set does not substantially change the central tendency of the estimates.

Number of inflation lags in the NKPC Estimates of γf are very sensitive to the number
of inflation lags included in the model, while estimates of λ seem to be unaffected, on average.
Specifically, adding lags of inflation to the NKPC tends to reduce the estimate of γf by about
0.25 when we add 1 lag to the pure NKPC, and by a similar amount when we add three more
lags. This corroborates results reported by Rudd and Whelan (2005), but it need not be due
to misspecification of the more restrictive NKPC specifications, as was suggested by Rudd and
Whelan (2005) and Mavroeidis (2005). The direction of the movement in the point estimates is
entirely consistent with the possibility that specifications with more inflation lags are more weakly
identified, in which case estimates of γf would exhibit a larger bias towards γf = 1/2.42 Indeed, the
median first-stage FHAR statistics for inflation expectations are 24.5, 3.2, and 2.3, for the 0, 1 and
4-lag NKPC models, respectively, across all specifications that use the labor share as the forcing
variable.43 This is further corroborated by the size of the robust confidence regions reported in the
next subsection: they get progressively larger as we move from 0 lags to 4 lags.

42As explained in section 3.3, the probability limit of the OLS γf estimator is often close to 0.5 for empirically
realistic NKPC parametrizations.

43The corresponding numbers for output gap specifications are 25.2, 4.1 and 3.1.
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Inflation series Figure 8 indicates that survey forecast specifications are more sensitive to the
choice of inflation series than GIV estimates are. Figure 9 compares GDP deflator and CPI es-
timates, pooling across all GIV and survey forecast specifications and all subsamples in Table 4.
Estimates of both parameters are considerably more dispersed in GDP deflator specifications, but
the median difference across these inflation series is very small. This is partly a result of the general
decrease in the dispersion of estimates from the pre-1984 to the post-1984 sample, since CPI spec-
ifications are under-represented in samples that contain data before 1981 due to the lack of CPI
survey forecasts. The bottom row of plots in Figure 8 compares CPI versus GDP deflator estimates
for a common post-1984 sample, and it is apparent that the dispersion of the estimates is generally
smaller and not substantially different across inflation series.

Using inflation gaps to account for trend inflation tends to produce somewhat lower estimates of
γf irrespective of whether the labor share or output gap is used as the forcing variable. For λ, there
is a small positive difference only in output gap specifications. The reason why these differences
are not large may be that the sum of the coefficients on inflation are close to one, thus mitigating
the impact of any trend inflation, as discussed in section 2.2. The inflation gap point estimates do,
however, cluster much tighter around λ = 0.

The remaining inflation series yield results that are similar to either GDP deflator or CPI
estimates. Using the chain-type GDP price index gives very similar results to those for GDP
deflator inflation. For GIV, PCE estimates are similar to CPI results, although in output gap
specifications λ tends to be estimated higher with CPI compared to PCE. There is little difference
between using CPI/PCE inflation and their core inflation equivalents, except that the core estimates
are less dispersed.

Output gap and labor share series There is generally very little systematic difference in the
results based on alternative labor share and output gap series, except that use of detrended labor
share series (labor share “gaps”), using either pseudo-real-time or full-sample trends, increases the
dispersion of the estimates of λ, without much change in central tendency. This could be due to the
fact that the detrended series are harder to forecast, thus making identification somewhat weaker.44

A striking conclusion is that the addition of a good decade’s worth of data (and data revisions)
since Gaĺı and Gertler (1999) completely overturns their conclusion that labor share specifications
yield markedly different results from output gap specifications.

Sample There is little systematic difference in the central tendency of estimates before and after
1984, cf. Table 10 in the Appendix. As Figure 8 suggests, survey estimates are, however, sensitive
to sample choice. This is consistent with Zhang et al. (2008). Figure 10 reports pre- and post-
1984 estimates in the survey specifications with GDP deflator inflation. For RE GIV specifications,
the central tendency of estimates does not depend much on the choice of sample, but post-1984
estimates are more tightly concentrated around λ = 0.

Other specification choices The restriction that coefficients sum to 1 does not matter much
except for VAR specifications, as discussed above. Use of oil prices or interest rates in the NKPC

44The median of the first-stage FHAR statistic for the labor share is 71 for the levels and 50 for the gap specifications,
respectively.
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does not affect the central tendency of the point estimates. This is consistent with Chowdhury
et al. (2006) and Ravenna and Walsh (2006).

5.3 Sampling uncertainty

The previous subsection focused on specification sensitivity, characterized by the variation in point
estimates across specifications. We now turn to sampling uncertainty, which we measure conven-
tionally using confidence sets for selected specifications based on methods that are robust to weak
identification. Our robust confidence sets, called S sets, are based on the S test of Stock and Wright
(2000), described in section A.2.5 of the Appendix. This is a test of the validity of the model’s
identifying restrictions at a hypothesized value of the structural parameters. Other weak identifica-
tion robust methods, such as conditional likelihood ratio or score tests (Moreira, 2003; Kleibergen,
2005), are more powerful than the S test under strong identification, but they are technically more
involved and computationally more demanding. We do not report results based on those tests
because in all the cases that we considered they gave similar results to the S test.

S sets are obtained by inverting the S test, i.e., by performing an S test for each candidate value
of the parameters in the parameter region and collecting all the points that are not rejected at the
given significance level. Unlike Wald sets, which are elliptical and can be computed analytically,
S sets need to be computed by grid search over the parameter space and they can be disjoint. In
this exercise, we use the same parameter region as the one that was used for the cloud plots (which
includes over 90% of all point estimates), namely, λ ∈ [−0.3, 0.3] and γf ∈ [−1, 2]. For each speci-
fication, we evaluate the test at over 1000 grid points. Because this procedure is computationally
intensive, we consider only a subset of all the specifications listed in Table 4, consisting of about
1400 specifications, see Table 8.45 The cloud of point estimates for the specifications in Table 8 is
qualitatively similar to that for the full set of specifications in Table 4. Perhaps not surprisingly,
the union of the joint 90% S sets for all specifications in Table 8 covers the entire parameter region
in our plots.46 These findings are detailed in section A.5 of the Appendix.

To get a sense of the impact of different specification choices on sampling uncertainty, we
compare the average size of 90% and 95% S sets across different specification choices (see section
A.5 in the Appendix for details). The S sets are generally quite large, covering on average between
1/3 (90% level) and 1/2 (95% level) of the parameter space for both labor share and output gap
specifications.47 However, there is systematic variation in size across specification choices. With
regards to the impact of adding lags of inflation to the NKPC, the size of the S sets becomes
progressively larger as we move from 0 to 4 lags. The difference between the pure and 1-lag hybrid
NKPC is small, but adding three more lags of inflation to the hybrid NKPC roughly doubles
the S sets, on average. The size of the S sets is smaller over the full sample than over pre- and
post-1984 subsamples, as expected, but pre-1984 S sets are smaller than post-1984 S sets. More
striking differences arise when we compare RE GIV to survey inflation expectations and when
we compare different instrument sets. S sets for RE GIV are on average much larger than for

45Computation of the S sets for VAR-GMM takes about 100 times longer than using the other single-equation
methods. Therefore, we only consider 16 specifications that impose the VAR assumption.

46The union of the S sets may be formally interpreted as a projection-based grand S set that projects over a latent
hyperparameter which indexes the different specifications.

47Additionally, the S sets are, on average, between 3 to 7 times larger than the corresponding Wald ellipses.
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surveys, as anticipated in the discussion of first-stage F statistics above, and it looks like most
of the difference arises from using GB forecasts. With regards to the different instruments, RT
(external) instruments yield the largest S sets covering 50–80% of the parameter space. These are
almost double the size of the S sets for exactly identified models, which are the smallest. Use of
lagged survey forecasts as instruments produces on average smaller S sets than using lags of realized
inflation, as conjectured by Wright (2009).

It is interesting to compute how often the S sets for (λ, γf ) lie entirely in the positive orthant,
as would be required to find significant evidence of forward-looking behavior. First, recall that
S sets can be empty, which would indicate violation of the model’s overidentifying restrictions,
but the frequency of empty S sets (for the overidentified specifications) is considerably below the
nominal significance level, so there is no systematic evidence against the validity of the identifying
restrictions. Jointly significantly positive coefficients λ and γf occur in a very small fraction of the
specifications considered (less than 5% at the 10% level).48 This happens more frequently when the
output gap rather than the labor share is used as the forcing variable. Interestingly, when the forcing
variable is the output gap, we obtain significantly positive coefficients only when survey forecasts
are used to proxy for inflation expectations, whereas when it is the labor share, the occurrence of
positive S sets is equally (un)likely for survey and RE GIV specifications. Significantly positive
coefficients almost never arise when 4 lags of inflation are included in the NKPC, or when real-time
instruments are used. Detailed results are provided in section A.5 in the Appendix.

Next, we draw 90% S sets and Wald confidence ellipses (based on the CUE) for (λ, γf ) in the
NKPC for a number of different specifications. The complete collection of robust confidence sets
can be accessed using our interactive Matlab plotting tool in the online supplement (cf. footnote
38). Figure 11 reports the results for specifications based on GDP deflator inflation using either the
labor share (NFB) or output gap (CBO) as forcing variables, imposing the restriction that inflation
coefficients sum to 1, and using the “small” instrument set (three lags of ∆πt and xt). Three
samples are considered: the full available sample, and the pre-1984 and post-1984 subsamples. The
confidence sets are not completely uninformative, and they are particularly tight along the λ axis
over the full sample, but rather wide across the γf axis. All S sets (and most Wald ellipses) contain
λ = 0. For most specifications, identification is sufficiently weak for the results to be consistent
both with the view that there is no forward-looking behavior, i.e., no role for expectations in price
setting, as well as with the view that expectations matter a lot. Martins and Gabriel (2009) and
Kleibergen and Mavroeidis (2009) reach similar conclusions. Regarding subsample variation, even
though the point estimates differ considerably across the pre- and post-1984 samples, the sampling
uncertainty is so large that we cannot infer that the coefficients have changed over time.49

Figure 12 reports confidence sets for the full sample based on the assumption that the reduced
form is a VAR(3) in the change in inflation and the forcing variable. The point estimate of γf is
larger than 1 when either the labor share or the output gap are used as forcing variables, and the
confidence sets are considerably tighter than for the corresponding GIV specification – compare
with the top row of Figure 11. Hence, the VAR assumption appears to be informative in these
specifications, consistent with the results in Magnusson and Mavroeidis (2010). However, we should

48Specifically, this is the fraction of the S sets that are non-empty and lie entirely in the area (λ, γf ) ∈ (0, .3]×(0, 2].
49Using weak identification robust stability tests, Kleibergen and Mavroeidis (2009) find some evidence of instability

before 1984 when they use a shorter pre-1984 sample, but no evidence of instability using their full 1960-2008 sample,
which is consistent with Magnusson and Mavroeidis (2012).
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stress that, due to computational limitations, we have only looked at very few VAR specifications,
so this result should be viewed as tentative. A more thorough investigation is needed in order to
assess the validity of the VAR assumption.

Figure 13 reports confidence sets based on survey specifications. Results are reported for SPF
and GB GDP deflator inflation forecasts, as well as SPF CPI inflation forecasts. For SPF GDP
deflator forecasts, the results are quite similar to the corresponding RE GIV specifications, given
in the bottom row of Figure 11 (post-1984 sample). However, when we use the GB forecasts,
confidence sets become considerably smaller. S sets based on SPF CPI forecasts are comparable in
size and have considerable overlap with those based on SPF GDP deflator forecasts. Results for SPF
GDP deflator inflation specifications over the pre- and post-1984 samples look very different. In
particular, the 90% Wald ellipses do not overlap, which, if identification were strong, would suggest
time-variation in the coefficients of the NKPC, as suggested by Zhang et al. (2008). However, the
S sets do overlap considerably over the two subsamples, so it is not clear whether the survey-based
NKPC is unstable.

To assess the empirical success of the external instruments approach, we plot robust confidence
sets for GDP deflator inflation using the real-time (RT) instrument set in Figure 14. These figures
are comparable to the top row in Figure 11, although the sample starts in 1971 due to data avail-
ability. Figure 14 demonstrates the unfortunate fact that the most plausibly exogenous instrument
set also results in very weak identification, as the 90% robust confidence sets contain all reasonable
γf values. Post-1984 confidence sets (not reported) are even larger.

5.4 Nesting RE and survey expectations

Finally, we assess the relative importance of rational and survey expectations in the NKPC, as
studied by Nunes (2010), Fuhrer and Olivei (2010) and Fuhrer (2012), cf. section 3.1. Figure 15
reports CUE estimates and 90% S sets for the coefficients of future inflation (RE) and time-t dated
one-quarter-ahead forecasts of inflation in the model

πt = λxt + γREπt+1 + γsπ
s
t+1|t + γbπt−1 + ũt. (25)

The coefficient λ here is treated as well-identified, and it is concentrated out.50 We consider both
SPF and GB GDP deflator inflation forecasts over the full available samples as well as a sample
that starts in 1984q1. The instrument set is the same as in Nunes (2010), i.e., GGLS (see Table 4)
plus two lags of survey inflation forecasts. The point estimates generally indicate a dominant role
for RE, consistent with the evidence in Nunes (2010), and different from the preferred estimates in
Fuhrer and Olivei (2010) and Fuhrer (2012). However, as acknowledged by Nunes (2010), sampling
uncertainty is very large, and there is considerable sensitivity to data and estimation sample. Only
when we use the labor share as forcing variable and the full available sample can we conclude that
the RE term is dominant. Interestingly, all the confidence sets exclude γRE = γs = 0.51

50This is a reasonable assumption since in all cases the first-stage FHAR statistic for xt is over 100.
51A number of authors have argued that non-rational expectations can account for the intrinsic persistence in the

NKPC (Roberts, 1997; Brissimis and Magginas, 2008; Nunes, 2010). Estimation results that impose γb = 0 (not
reported) are quite similar to the ones reported.
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6 Conclusion

Based on the foregoing comparison of more than 100 papers from the literature with our analysis
of thousands of a priori reasonable new Keynesian Phillips curve specifications estimated on U.S.
data, we reach six main conclusions.

First, estimation of the NKPC using macro data is subject to a severe weak instruments problem.
Consequently, seemingly innocuous specification changes lead to big differences in point estimates.
The specification sensitivity is even larger than what has been reported in the literature. Moreover,
given a choice of specification, sampling uncertainty is typically large, as weak identification robust
confidence sets often cover a substantial part of the parameter space. While these findings are
purely empirical, there are good theoretical explanations for why identification of the NKPC is
weak.

Second, we do not reject the NKPC – far from it. However, we are unable to pin down the role
of expectations in the inflation process sufficiently accurately for the results to be useful for policy
analysis. The evidence is consistent both with the view that expectations matter a lot, as well as
with the opposite view that they matter very little.

Third, because standard inference methods and efficiency comparisons are unreliable, weak
identification robust methods should be used when possible. Weak identification is not a GMM-
specific problem.

Fourth, estimation methods that rely on the assumption that inflation expectations can be
proxied by a reduced-form vector autoregression (VAR) typically point toward a much greater role
for forward-looking expectations in price determination than do less restrictive estimators. We
demonstrate that VAR-based inference can be spurious when identification is weak. Because the
VAR assumption is not innocuous, we recommend that VAR estimates be compared to non-VAR
estimates when possible.

Fifth, it is hard to interpret the empirical results from specifications that use survey forecasts
to proxy for inflation expectations. They often appear to be more strongly identified than other
types of specifications, but they are particularly sensitive to the choice of forecast source, sample
and inflation series. Moreover, the survey forecast specification of the NKPC is not microfounded
unless the forecasts are rational, which does not seem to hold empirically. It is an interesting topic
for future research to develop an internally consistent framework for analyzing inflation dynamics
under non-rational expectation formation.

Sixth, researchers should be aware of the large and frequent revisions to NKPC data. We have
proposed an estimation method that uses revisions as external instruments. While its assumptions
are appealingly unrestrictive, it does not yield informative empirical results.

The evidence we present in this paper leads us to conclude that identification of the NKPC
is too weak to warrant research on conceptually minor extensions. Issues related to the choice
of explanatory variables, instruments, alternate data constructions and small modifications of the
model are likely to be dwarfed by identification problems. Instead, we think it will be more fruitful
to explore fundamentally new sources of identification, such as micro/sectoral data, cross-country
models, information from large data sets and stability restrictions. Some recent papers have taken
up this challenge, and we hope more will follow. The onus is not purely on applied researchers;
theoretical macroeconomists can help by developing models that can be taken to the data in ways
that directly address the identification issue.
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A Appendix

A.1 Calibration of impulse responses

The model used to generate the impulse responses in Figure 1 is based on the canonical three-
equation new Keynesian framework as described by Gaĺı (2008):

πt = γfEt(πt+1) + (1− γf )πt−1 + λmct,

xt = − 1

σ
(it − Et(πt+1)− ρ) + Et(xt+1), mct =

(
σ +

ϕ+ α

1− α

)
xt,

it = ρ+ φππt + φxxt + vit, vit = ρvv
i
t−1 + εvt .

(26)

The first equation is a hybrid NKPC, the second is the dynamic IS curve, the third relates log real
marginal cost (in deviation from the zero inflation steady state) mct to the log output gap xt, the
fourth is a Taylor rule for the nominal interest rate it, and the fifth equation specifies that the
Taylor rule disturbance vit follows an AR(1) process. We call εvt the monetary policy shock.

When calibrating the structural parameters of the model, we use the benchmark values in Gaĺı
(2008, p. 52). The rate of time preference is ρ = − log(0.99), the elasticity of intertemporal
substitution is 1/σ = 1, the Frisch elasticity of labor supply is ϕ = 1, the labor exponent in the
production function is 1− α = 2/3, the Taylor rule coefficients are (φπ, φx) = (1.5, 0.5/4), and the
AR(1) coefficient for the Taylor rule disturbance is ρv = 0.5.

A.2 Econometric methods

A.2.1 GMM estimation and optimal instruments

GMM estimation can be briefly described as follows. Let fT (ϑ) denote sample moments, whose
expectation vanishes at the true value of the parameters. For example, for the moment conditions
(13) we set fT (ϑ) = T−1

∑T
t=1 Ztht(ϑ). Define the GMM objective function

ST
(
ϑ, ϑ

)
= fT (ϑ)

′
WT

(
ϑ
)
fT (ϑ) , (27)

where ϑ is some preliminary estimator of ϑ, and WT is a weighting matrix that may depend on
the data and on ϑ. A GMM estimator is the minimizer of ST

(
ϑ, ϑ

)
with respect to ϑ, if it exists.

Given the particular choice of moments fT (ϑ) , efficient GMM estimation requires WT

(
ϑ
)

to be

a consistent estimator of the inverse of the variance of
√
TfT (ϑ) – the long-run variance of the

moment conditions. The most commonly used GMM estimator is a 2-step estimator, where the
preliminary estimator ϑ is obtained using some weight matrix that does not depend on ϑ. When
the moment conditions are linear, ϑ may be obtained using two-stage least squares.

Setting ϑ = ϑ, so the efficient weight matrix estimator WT (ϑ) is evaluated at the same pa-
rameters as the sample moments fT (ϑ), yields the continuously updated estimator (CUE), which
was proposed by Hansen et al. (1996). 2-step GMM and CUE are asymptotically equivalent un-
der strong identification, but the latter has certain advantages under weak identification (see, e.g.,
Stock et al., 2002).
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Optimal instruments When identification is given by conditional moment restrictions of the
form Et−1 [ht (ϑ0)] = 0, where ht (·) is an s× 1 vector-valued function, there is an infinite number
of predetermined variables Zt that can be used as instruments to form unconditional moment
restrictions E [Ztht (ϑ0)] = 0. Efficiency (under strong identification) in the class of all GMM
estimators amounts to choosing the instruments in a way that minimizes the asymptotic variance of
the GMM estimator among all possible instruments Zt ∈ It−1, where It−1 denotes the information
set at time t − 1. If the residual function ht (ϑ0) is a martingale difference sequence (MDS), the
optimal instruments are given by

Zot =

[
Et−1

(
∂ht (ϑ0)

∂ϑ′

)]′ {
Et−1

[
ht (ϑ0)ht (ϑ0)

′]}−1
, (28)

see Chamberlain (1987).
When estimating the NKPC by VAR-GMM, the two-dimensional residual vector (16) satis-

fies the conditional moment restriction Et−1

[
h̃t (ϑ0)

]
= 0. The residual vector is a MDS be-

cause it is adapted to the information set at time t. Moreover, the VAR assumption implies that

Et−1

[
∂h̃t (ϑ0) /∂ϑ′

]
is spanned by Yt−1. So, applying the formula for the optimal instruments (28),

we see that under conditional homoskedasticity, the optimal instruments are spanned by Yt−1.
In the case of GIV estimation of the NKPC, the residuals are not adapted to It since ht (ϑ0) =

ũt ∈ It+1, see equation (12). Under the assumption Et−1 (ut) = 0, ht (ϑ0) can be represented as
a moving average of order 1, e.g., ht (ϑ0) = υt − ϕυt+1 = ϕ

(
L−1

)
υt, say, where υt is an MDS

with Et−1 (υt) = 0. Following Hayashi and Sims (1983), the optimal instruments can be obtained

as follows. First, forward-filter ht (ϑ0) to get υt = ϕ
(
L−1

)−1
ht (ϑ0) . Then compute the optimal

instruments Zot for Et−1 (υt) = 0 using (28). Finally, transform these instruments to the optimal

instruments Z̃ot for Et−1 [ht (ϑ0)] = 0, which are given by Z̃ot = ϕ (L)
−1
Zot =

∑∞
j=0 ϕ

jZot−j .

A.2.2 GIV estimation with iterated instruments

Rudd and Whelan (2005) suggested the following alternative to the Gaĺı and Gertler (1999) ap-
proach. Iterating equation (8) q periods forward using Et (ut+j) = 0, j > 0, and the law of iterated
expectations, we get

πt = βq+1Et (πt+q+1) + λ

q∑
j=0

βjEt (xt+j) + ut. (29)

Rudd and Whelan (2005) use the GIV approach to estimate the above relation. We now point out
how the iterated method relates to the previously described Gaĺı and Gertler (1999) procedure.
Using the definition of the residual ht (ϑ) in (12), equation (29) can be equivalently written as

Et

 q∑
j=0

βjht+j (ϑ)

 = ut.
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The identifying restriction Et−1 (ut) = 0 then implies the unconditional moment restrictions

E

 q∑
j=0

βjYt−1ht+j (ϑ)

 = 0, (30)

where Yt−1 is a vector of lags of πt, xt and any other variables used in the analysis. If we further
assume that the distribution of the data is stationary, so that E [Yt−1ht+j (ϑ)] = E [Yt−j−1ht (ϑ)] ,
then equation (30) is equivalent to

E

 q∑
j=0

βjYt−j−1

ht (ϑ)

 = 0. (31)

This makes it clear that the only difference between the iterated moment conditions (30) and the
difference equation moment conditions (13) is in the choice of instruments. That is, the underlying
identifying assumption Et−1 (ut) = 0 is the same, but each method uses a different subset of all
admissible instruments.

A.2.3 Alternative VAR estimators

VAR-MD This approach was introduced by Campbell and Shiller (1987) for the estimation of
asset pricing models and was popularized in the NKPC literature by the work of Sbordone (2002,
2005, 2006). It can be described briefly as follows. The structural model (8) implies restrictions
on the reduced-form VAR coefficients A in (14). These restrictions can be written as g (A, ϑ) = 0,
where g is a vector-valued “distance” function. Typically, the number of restrictions exceeds the
number of structural parameters, so the minimum distance estimator is defined as the minimizer
of the objective function

g
(
Â, ϑ

)′
Wg

(
Â, ϑ

)
,

where Â is a consistent first-step estimator of the reduced-form parameters (such as the OLS
estimator), and W is a possibly random weight matrix. The optimal choice of W is a consistent

estimator of the inverse of the asymptotic variance of g
(
Â, ϑ

)
.

Define eπ and ex to be the unit vectors with 1 in the position of πt and xt in Yt, respectively. If
we take time-(t− 1) expectations on both sides of the difference equation specification (8) and use
the VAR implication Et(Yt+1) = AYt, we obtain the parameter restrictions

g1 (A, ϑ)
′ ≡ e′πA− βe′πA2 − λe′xA = 0. (32)

Note that A = E
(
YtY

′
t−1
)
E
(
Yt−1Y

′
t−1
)−1

= E (Yt+1Y
′
t )E (YtY

′
t )
−1
, so that (32) can be equiva-

lently written as
E [Yt−1 (πt − βY ′t ζ − λxt)] = 0, (33)
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where ζ = A′eπ are the coefficients of the projection of πt+1 on Yt. These are exactly the moment
conditions for VAR-GMM given in (15).52

The VAR-MD distance function is not unique. If we iterate the pure NKPC (8) forward an
infinite number of times, we obtain the so-called “closed-form” solution

πt = λ

∞∑
j=0

βjEt (xt+j) + ut, (34)

provided the series converges and the terminal condition limτ→∞Et (βτπt+τ ) = 0 holds. Using
Et(Yt+j) = AjYt, we can write (34) as

πt = λ (I − βA)
−1
xt + ut.

The assumption Et−1 (ut) = 0 implies the restrictions

g2 (A, ϑ)
′

= e′πA− λe′xA (I − βA)
−1

= 0. (35)

The distance function g1 (A, ϑ) defined in (32) satisfies g1 (A, ϑ) = (I − βA)
′
g2 (A, ϑ) . Because

(I − βA) is nonsingular, the two sets of restrictions are equivalent. However, the MD estimator is
not invariant to nonlinear transformations of the distance function, so in finite samples the choice
of distance function matters.53

VAR-ML Suppose

zt =

l∑
j=1

Ajzt−j + vt (36)

denotes the l-th order VAR of zt, whose companion representation was given in equation (14)
above, where Aj are n×n coefficient matrices, and vt is a n× 1 vector of reduced-form errors. We
have omitted deterministic terms for simplicity. An alternative to MD estimation is to maximize
the likelihood function of the finite-order VAR (36) subject to the cross-equation restrictions (32)
implied by the structural NKPC (8).

ML estimation of the constrained VAR is typically implemented by solving out the equality
constraints (32) to express some of the reduced-form parameters in the likelihood in terms of the
structural parameters, ϑ, and the remaining reduced-form parameters. Denoting the latter as ψ, the
restricted reduced-form coefficients can be expressed as Aj (ϑ, ψ) , j = 1, ..., l. Assume, as in most
of the literature, that the VAR errors are i.i.d. Gaussian and homoskedastic, i.e., vt ∼ N (0,Ω) ,
where Ω is a l × l positive definite variance matrix. After concentrating with respect to Ω, the
log-likelihood function can be written as

L (ϑ, ψ) = constant− T

2
log det

[
Ω̂ (ϑ, ψ)

]
, (37)

52The VAR-GMM estimator reduces to the VAR-MD estimator for a particular (inefficient) choice of block diagonal
GMM weight matrix. Thus, VAR-MD can be viewed as a variant of VAR-GMM, which imposes that the OLS moment
conditions E[(Yt −AYt−1)Y ′t−1] = 0 for the VAR companion matrix A hold exactly.

53This was briefly discussed in Sbordone (2005), and in more detail in Barnes et al. (2011). An exception occurs

when the model is just-identified and the equations g1
(
Â, ϑ

)
= 0 and g2

(
Â, ϑ

)
= 0 can be solved for ϑ as a function

of Â, in which case the VAR-MD estimator does not depend on the choice of distance function.
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where Ω̂ (ϑ, ψ) = T−1
∑T
t=l+1 v̂t (ϑ, ψ) v̂t (ϑ, ψ)

′
and v̂t (ϑ, ψ) = zt−

∑l
j=1Aj (ϑ, ψ) zt−j . The choice

of ψ is not unique, i.e., there are several ways of imposing the restrictions (32) on the likelihood.
The pioneering approach by Fuhrer and Moore (1995) chooses ψ to be all the coefficients in the VAR
except those corresponding to the equation for inflation. Computation of Aj (ϑ, ψ) then requires
solving for the reduced-form coefficients in the inflation equation as functions of all other structural
and reduced-form parameters. There are generically multiple solutions to this problem, so this
mapping is not unique, and evaluating the likelihood (37) at all of the possible VAR solutions can be
impractical, see Kurmann (2007). Fuhrer and Moore (1995) circumvent this issue by restricting the
parameter space to the determinacy region, which by definition contains the parameter combinations
for which there is a unique stable VAR solution.

An alternative approach, proposed by Kurmann (2007), is to set ψ equal to all the reduced-form
VAR coefficients except those corresponding to the equation for the forcing variable xt. He shows
that the mapping Aj (ϑ, ψ) is then unique, except on a set of measure zero, and so evaluation of
the likelihood (37) is straightforward on the entire parameter space, also outside the determinacy
region. Inside the determinacy region the method gives the same likelihood as the Fuhrer-Moore
approach. The following example from Kurmann (2007) illustrates. Suppose the reduced form is a
VAR(1) in (πt, xt)

′:

πt = aπππt−1 + aπxxt−1 + vπt,

xt = axππt−1 + axxxt−1 + vxt,
(38)

where vπt and vxt are i.i.d. reduced-form shocks. The restrictions (32) can be expressed as

axπ (λ+ βaπx) = (1− βaππ) aππ, axx (λ+ βaπx) = (1− βaππ) aπx.

If we solve these equations for aππ, aπx as functions of ϑ = (β, λ)′ and ψ = (axπ, axx)′, then it can
be shown that there are generically three solutions, see Kurmann (2007, sec. 2).54 If we instead set
ψ = (aππ, aπx)′ and solve for the reduced-form parameters axπ, axx, then there is a unique solution
unless λ+ βaπx = 0.

Relationship between VAR methods Let Â be the OLS estimator of the VAR coefficients.
VAR-ML can be thought of as minimizing the distance between Â and A (ϑ, ψ) with respect to ϑ
and ψ. VAR-MD instead sets ψ equal to its OLS estimator and only minimizes this distance with
respect to ϑ. Thus, the relationship between VAR-MD and VAR-ML is analogous to the relationship
between 2SLS and LIML, respectively, in the textbook linear IV model (Fukač and Pagan, 2010).
The analogy suggests that VAR-ML and VAR-MD should be asymptotically equivalent under strong
identification, but not so under weak identification. Moreover, computation of VAR-MD (like 2SLS)
is easier than VAR-ML (like LIML). Another difference is that VAR-ML is invariant to nonlinear
transformations, i.e., it gives the same results in finite samples whether we specify the model as a
difference equation (8) or in closed form (34).

An advantage of the VAR-GMM estimator relative to VAR-MD and VAR-ML is that it is easy
to add zero restrictions to the coefficients of the reduced-form VAR so as to avoid many instrument
issues. For instance, if you want to use four lags of inflation but only two lags of xt and other

54The multiplicity of solutions increases with the dimension of the VAR.
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variables in the VAR, as in Gaĺı et al. (2001), you just need to include only those variables in
Yt−1 in the moment conditions (15)–(16). Hence, it is straightforward to check the implications of
imposing the VAR assumption given any choice of instruments, as we do in our empirical section.

A.2.4 External instruments

Consider a generalized version of the model (9) that does not place any exclusion restrictions on
the lags (we assume wt in eq. (9) is part of Yt−1):

πt = λxt + γfπ
e
t+1 + δ′Yt−1 + ut. (39)

We use πet+1 to denote inflation expectations so as to allow for the possibility that these may not
be rational. Define Y st to be the vintage-s observation, i.e., the statistical agency’s estimate of
Yt published at time s. Variables without superscripts denote the latent true values of the series.
Re-arrange (39):

πt = λxt + γfπt+1 + δ′Yt−1 + ũt, ũt = ut + γf
(
πet+1 − πt+1

)
.

Suppose that
E
(
ut|Yt−1,

{
Y rt−1, all r

})
= 0. (40)

This assumption can be interpreted as saying that the only way that data revisions enter the model
is through their use in forming expectations. For Y rt−1 to be valid instruments it must be the case
that

E
(
ũt|Yt−1, Y rt−1

)
= 0. (41)

If γf = 0, then ũt = ut and data revisions are exogenous by (40). Whether they are relevant is an
empirical issue, and depends on the extent to which expectations are formed using published data.

If instead γf 6= 0, things are more complicated. Let π∗t+1 denote the rational expectation of
πt+1, and suppose that

πet+1 = π∗t+1 + ζt, where E
(
ζt|Y t−1t−1

)
= 0, and (42)

E
(
πt+1 − π∗t+1|Y t−1t−1

)
= 0. (43)

Condition (42) holds if agents have rational expectations, in which case ζt = 0, but it also holds
under departures from RE, in which case ζt is some “opinion” that is orthogonal to observable
vintage-(t − 1) data. Condition (43) says that the information set used to compute π∗t+1 contains

Y t−1t−1 . Under these conditions, it can be shown that E
(
ũt|Y t−1t−1

)
= 0. In other words, Y t−1t−1 is an

exogenous instrument in the model (39). But this treats Yt−1 as endogenous, which leaves the
model underidentified (there are two more endogenous variables, πt+1 and xt, than instruments).
This identification problem can be “solved” by imposing some exclusion restrictions on elements
of Yt−1, though this goes against the idea of external instruments. Alternatively, if we replace
Y t−1t−1 in conditions (42) and (43) with

{
Y rt−1

}
r≤t−1, then we could use several vintages of Yt−1 as

instruments. This would satisfy the order condition for identification, but those instruments are
likely to be weak.
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A.2.5 S test

The S statistic for testing the null hypothesis H0 : ϑ = ϑ0 is given by T times the value of the
continuous updated GMM objective function (27) at ϑ0, i.e., TST (ϑ0, ϑ0). Under H0 and some
regularity conditions, this statistic is asymptotically χ2 (k) with degrees of freedom equal to the
number of moment restrictions (or instruments), irrespective of whether the model is identified or
not. A (1− a)% level S set is obtained by collecting all points ϑ0 for which ST (ϑ0, ϑ0) does not
exceed the (1− a) percentile of χ2 (k). When the model also contains exogenous and predetermined
variables, e.g., wt and πt−j in (9), their coefficients are concentrated out in order to improve the
power of the test, see Stock and Wright (2000, Theorem 3).

A.2.6 Weak identification robust Hansen test

The minimum value of the S statistic, minϑ TST (ϑ, ϑ), coincides with Hansen’s J test of overiden-
tifying restrictions that is based on the continuous updated GMM objective function, see Hansen
et al. (1996). Its strong-instruments asymptotic distribution under the null of correct specification
is the usual χ2 (k − p) , where k is the number of identifying restrictions and p is the total number
of estimated parameters. Under weak instruments, the asymptotic distribution of this statistic is
bounded by χ2 (k − q) , where q is the number of coefficients on exogenous regressors (cf. Stock and
Wright, 2000, Theorem 3). Hence, since q < p, a robust version of the test can be obtained using
the larger critical values associated with quantiles of χ2 (k − q) . The robust test is less powerful
than the standard one, because it uses the same test statistic but larger critical values.

A.3 Simulation study

Here we give details on the simulations presented in section 3.3. The main parameter choices for
our four DGPs are listed in Table 1. All DGPs set the intercepts in the reduced-form VAR equal
to 0. The innovations vt = (vπt, vxt)

′ are distributed i.i.d. Gaussian with mean zero and covariance
matrix Ω = ((0.07, 0.03)′, (0.03, 0.70)′), a typical reduced-form estimate on quarterly U.S. data from
1960–2011. The last column in Table 1 lists the smallest eigenvalue of the population concentration
matrix for the GIV specification. This is a measure of the strength of identification, for which
higher values mean stronger identification. It can loosely be thought of as an analog of 2 times the
smallest first-stage F statistic in homoskedastic linear IV (there are two endogenous regressors).

For DGPs 1a and 2a, the reduced-form coefficients ξ are set to values that are close to the
OLS estimates on the above-mentioned sample, with xt equal to the labor share. DGPs 1a–b are
indeterminate, since none of the Blanchard and Kahn (1980) generalized eigenvalues are outside
the unit circle. DGPs 2a–b are determinate.

The four estimators we consider are implemented as follows. GIV estimation uses efficient two-
step linear GMM with instruments Yt−1 and the Newey and West (1987) HAC long-run variance
estimator. VAR-GMM is based on efficient two-step GMM with heteroskedasticity robust weight
matrix. Because the moment conditions (15) are not linear, we resort to numerical optimization,
although we only have to optimize over the scalar parameter γf . VAR-MD uses a distance function
of the difference equation type (32) and a two-step efficient procedure. The estimator is available
in closed form. VAR-ML uses the Kurmann (2007) approach, described in subsection A.2.3, to
optimize over the parameters (γf , λ, c, ζ). This requires numerical optimization, which we carry out
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using Matlab’s fmincon routine. The optimizer is provided with analytical first derivatives of the
log likelihood, and we consider eight different initial values per estimation.

Matlab code and a full documentation of our approach are available in the online supplement
(cf. footnote 38). The documentation also provides a more comprehensive set of results, including
additional DGPs (some with VARMA reduced form such that the VAR assumption does not hold),
the behavior of λ estimators, and rejection frequencies for t-tests, overidentification tests and the
S test.

A.4 Data description

Most series mentioned in Table 4 are either self-explanatory or described in section 5.1. Unless
otherwise noted, the series are from the St. Louis Fed FRED database. All growth rates are loga-
rithmic and quarterly. Here we give details on some of the more involved constructions. Complete
data and transformation files are available in the online supplement (cf. footnote 38).

Wage and commodity price inflation, which we use as instruments, refer to the growth in business
sector compensation per hour and commodity PPI inflation from the Bureau of Labor Statistics
(BLS), respectively (the latter series is not seasonally adjusted). Interest rates are U.S. Treasury
rates.

All forcing variables are in logs. “Output” refers to real GDP per capita. We estimate trends
by fitting linear or quadratic polynomials in time, or by the HP or Baxter-King filters. The Baxter-
King filtered gaps retain cycles of duration between 6 and 32 quarters. For the HP filter, we use
a smoothing parameter (commonly referred to as λ) of 1,600 for output and 10,000 for the labor
share. Our computation of real-time (one-sided) output gaps proceeds as follows. For every quarter,
the series of real-time (i.e., then-current estimate of) output per capita is loaded. An AR(6) in
changes is fitted to this series and used to generate forecasts several quarters ahead. The detrending
routines are then applied to the concatenation of the real-time series and the generated forecasts.
Pseudo-real-time labor share gaps are calculated somewhat differently from the output gaps. First,
the data used is not actually real-time but is instead based on the latest vintage, as explained in
the main text. Second, to better capture the marked decrease in the labor share in the latter half
of the sample, the forecasting regression is an AR(15) in second differences.55

The real-time labor share data set is gleaned from the BLS’s Productivity and Cost “Prelimi-
nary” news releases on nominal unit labor costs and the implicit price deflator. The data corresponds
approximately to what was known around the middle of each quarter, like in the Philadelphia Fed’s
real-time dataset. Data vintages from 1971q2 to 1993q4 have been manually typed in from scanned
PDFs of the BLS news releases, available in the St. Louis Fed’s FRASER document database. Vin-
tages from 1994q1 to 2001q2 are parsed from electronic news releases available on the BLS website.
Finally, vintages from 2001q3 and onward are parsed from vintages of the BLS’ internal “edit 60”
flat text file.

A.5 Additional empirical results

Table 9 lists median differences in estimates of λ and γf across different survey specifications and
over different sub-samples. Table 10 reports a number of similar pairwise comparisons across other

55For the business sector log labor share, the AIC selects 15 lags on the full sample.
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specification choices. The results are discussed in section 5.2.
Figure 16 displays point estimates for all specifications listed in Table 8. For the collection of

labor share specifications, the union of the joint 90% S sets (not shown) covers the entire plotted
parameter space; the same is true for the collection of output gap specifications.

Table 11 reports the average size of 90% and 95% S sets as a fraction of the plotted parameter
space (γf , λ) ∈ [−2, 1] × [−0.3, 0.3] for various specification choices and samples. Here ‘all’ refers
to the different options listed in Table 8. The sample end date varies by series: for GB data the
sample ends in 2005q4, while for all other series it stretches to 2011q4.

Table 12 reports some additional statistics associated with the S sets corresponding to the
specifications of Table 8. Row “% empty S set” gives the fraction of the overidentified specifications
for which the S sets are empty at the specified significance level. The rest of the rows give the
frequency of non-empty and positive S sets for all specifications and for various subcategories.
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DGPs for Monte Carlo simulations

NKPC Red. form: forcing var. Red. form: inflation

DGP γf λ ξπ1 ξx1 ξπ2 ξx2 ζπ1 ζx1 ζπ2 ζx2 Conc.

1a 0.7 0.03 0.20 0.80 −0.10 0.10 1.00 −0.07 0.01 −0.01 1.8
1b 0.7 0.03 0.10 0.70 0.10 −0.10 0.79 0.25 0.05 −0.05 108.4

2a 0.3 −0.03 0.20 0.80 −0.10 0.10 0.98 −0.06 0.01 −0.01 0.7
2b 0.3 −0.03 0.70 1.05 0.08 −0.08 0.91 −0.07 −0.01 0.01 30.1

Table 1: List of our DGPs. Columns 2 and 3 list the true values of (γf , λ). The following 8 columns list
the VAR(2) reduced form coefficients in the equations for the forcing variable (ξ) and inflation (ζ). The
last column lists the minimum eigenvalue of the population concentration matrix (“Conc.”), cf. section A.3
in the Appendix. Numbers in columns 8–11 have been rounded off to 2 decimal points, while numbers in
the last column have been rounded off to 1 decimal point.
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Overview of Estimation Approaches in the Literature

Papers Estimation approach Expectation vs. lags Slope Rejection of model?

Gaĺı and Gertler (1999),
Gaĺı et al. (2001, 2005)

RE GIV.
Forward-looking behavior
dominant, but backward-
looking term significant.

Significantly positive
for labor share.

No, based on over-
ID test and visual
fit.

Fuhrer and Moore (1995),
Fuhrer (1997, 2006)

RE VAR-ML (AIM).
Price setting not very
forward-looking; need large
intrinsic persistence.

Positive for both labor
share and output gap,
but significance varies.

Pure NKPC rejected
based on LR test
and IRFs.

Roberts (1995, 1997, 2005)
GIV, VAR-ML, IRF
matching; RE and
survey forecasts.

Sluggish survey forecasts
impart necessary persistence.
For RE, need more than 1
lag of inflation.

Positive for both labor
share and output gap,
but significance varies.

No.

Sbordone (2002, 2005) RE VAR-MD.
Forward-looking behavior
clearly dominant, but lag
is significant.

Positive but marginally
insignificant in hybrid
model.

No, based on over-
ID test and visual
fit.

Rudd and Whelan (2005,
2006, 2007)

RE GIV (iterated).
Lagged inflation very
significant.

Neither labor share
nor output gap adds
explanatory power.

Yes, forcing variable
doesn’t help explain
inflation.

Rudebusch (2002)
OLS; survey
forecasts.

Four-quarter MA of lagged
inflation receives larger
weight than forecast.

Output gap coefficient
positive and significant.

No.

Ravenna and Walsh (2006)
RE GIV, interest
rate added to NKPC.

(Pure NKPC.) (Not directly estimated.)
No, based on over-
ID test.

Cogley and Sbordone (2008)

Bayesian estimation
using VAR with drifting
parameters and
stochastic volatility.

Backward-looking term in-
significant once trend infla-
tion is accounted for.

(Not directly estimated.)
No, based on visual
fit and magnitude of
forecast errors.

Table 2: Overview of well-cited papers in the limited-information empirical NKPC literature. Papers have been grouped according
to authorship. Each series of papers has been ranked by the number of Google Scholar citations (as of mid-September 2012) for
the single most cited paper within the series.



Baseline GIV estimates using different data vintages

Data vintage const λ γf γb Hansen test

1998 0.041 0.026 0.615 0.340 5.263
(0.030) (0.013) (0.057) (0.058) [0.628]

2012 -0.049 0.018 0.719 0.240 9.816
(0.040) (0.012) (0.099) (0.095) [0.199]

Table 3: Comparison of GIV estimates of the hybrid NKPC based on 1998 and 2012 vintages of data.
The estimation sample is 1970q1 to 1998q1. Inflation: GDP deflator. Labor share: NFB. Instruments:
four lags of inflation and two lags of the labor share, wage inflation, and quadratically-detrended output.
Estimation method: CUE GMM. Weight matrix: Newey and West (1987) with automatic lag truncation
(4 lags). Standard errors in parentheses and p-values in square brackets.
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NKPC specification combinations

Specification settings Options

Inflation (πt) GDP deflator, CPI, chained GDP def., GNP def.,
chained GNP def., NFB GDP def., PCE, core PCE,
core CPI, filtered GDP def. gap, smoothed GDP def. gap,
filt. CPI gap, sm. CPI gap, SPF-based CPI gap,
filt. core CPI gap, sm. core CPI gap,
filt. PCE gap, sm. PCE gap, filt. core PCE gap,
sm. core PCE gap

Labor share (ls) NFB, NFB coint. relation, HP filtered NFB gap,
Baxter-King filt. NFB gap, linearly detrended NFB gap,
quadratically detrended NFB gap,
real-time NFB HP gap, real-time NFB BK gap,
real-time NFB lin. detr. gap,
real-time NFB quadr. detr. gap

Output gap (ygap) CBO, HP filt., BK filt., lin. detr., quadr. detr.,
real-time HP filt., real-time BK filt.,
real-time lin. detr., real-time quadr. detr.

Reduced form Unrestricted, VAR
Survey forecasts (πst|τ ) SPF CPI, SPF GDP def., GB GDP def.

Expectations πt+1 (endogenous), πst+1|t (endog.), πst+1|t (exogenous)

πst+1|t−1 (endog.), πst+1|t−1 (exog.)

Instruments

GG: 4 lags of πt, ls, ygap, 10y–90d yield spread,
wage infl., commodity price infl.

GGLS: 4 lags of πt and 2 lags of ls, ygap, wage infl.
small: 4 lags of πt and 3 lags of forcing variable
exact: 1 extra lag of each endog. regr. (just-identified)
RT: 2 real-time lags of GDP def. inflation, ∆ls, ygap
survey: 2 lags of 1-quarter SPF/GB forecasts, forcing

variable
Extra regressors (e.g., oil) added to instruments
(if endog., use 2 lags)

Inflation lags 0 lags (pure NKPC), 1 lag, 4 lags
Parameter restrictions No restrictions, γ (1) = γf (inflation coef’s sum to 1)

With γ (1) = γf , use lags of ∆πt instead of πt as instr’s
Oil shocks None, log change of WTI spot price divided by GDP def.
Interest rate None, 90-day Treasury rate
Sample Full available, 1960–1997, 1968–2005, 1968–2008,

1971–2008, 1981–2008, 1984–end of sample
GMM estimator 2-step, CUE

Table 4: List of the specification options that we consider when estimating the NKPC (9). The efficient
GMM weight matrix is computed using the Newey and West (1987) heteroskedasticity and autocorrelation
consistent estimator with automatic lag truncation, except for VAR specifications, which use the White
(1980) heteroskedasticity consistent estimator.



Summary statistics for estimation results

labor share output gap
Parameter λ γf λ γf

median 0.004 0.753 0.004 0.760
5th percentile -0.068 -0.648 -0.070 -0.771

95th percentile 0.135 1.814 0.133 1.831
fraction both positive 0.525 0.505

. . . and signif. (5% one-sided t-test) 0.102 0.179
. . . and γf > 0.5 0.087 0.155

median FHAR 63.73 3.079 166.46 4.154
fraction rejections by 5% Hansen test 0.033 0.032

Table 5: Summary statistics of estimation results across specifications listed in Table 4, excluding real-
time and survey instrument sets. Hansen test is evaluated at the CUE using larger critical values that are
robust to weak identification, cf. section A.2.6 of the Appendix; results for this statistic do not include
VAR-GMM specifications.

Pairwise comparison of point estimates: 2-step vs. CUE GMM

labor share output gap
Parameter λ γf λ γf

Method 2S CUE 2S CUE 2S CUE 2S CUE

median 0.003 0.004 0.676 0.798 0.004 0.002 0.670 0.784
90% IQR 0.141 0.273 1.213 2.855 0.123 0.264 1.250 3.272

med. diff 2S-CUE -0.000 -0.030 0.000 -0.024
med. diff from OLS 0.000 0.002 0.168 0.239 -0.002 -0.003 0.156 0.213

med. diff 2S-CUE (GG) -0.001 -0.057 0.002 -0.041
med. diff from OLS (GG) 0.001 0.002 0.124 0.208 -0.002 -0.005 0.129 0.195

Table 6: Comparison of 2-step and CUE GMM estimates for the specifications in Table 4 (excluding VAR
specifications, for which we only computed 2-step GMM). “90% IQR” is the difference between the 95th
and 5th percentiles. Rows labeled “GG” focus on results for the GG instrument set.

Pairwise comparison of point estimates: Impact of VAR assumption

labor share output gap
Parameter λ γf λ γf

Method VAR GIV VAR GIV VAR GIV VAR GIV

median 0.002 0.002 0.997 0.747 0.002 0.001 0.997 0.750
90% IQR 0.137 0.087 1.912 1.124 0.198 0.106 3.207 1.116

median diff -0.001 0.178 0.000 0.176
fraction positive diff 0.481 0.844 0.513 0.797

Table 7: Effect of imposing the VAR identification assumption.
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NKPC specification combinations used for robust confidence regions

Specification settings Options

Inflation (πt) GDP deflator, CPI
Labor share (ls) NFB, real-time NFB BK gap
Output gap (ygap) CBO, real-time BK filter
Reduced form Unrestricted, VAR
Survey forecasts (πst|τ ) SPF CPI, SPF GDP def., GB GDP def.

Expectations πt+1 (endogenous), πst+1|t (endogenous)

Instruments GGLS, small, exact, RT, survey
Inflation lags 0, 1, 4
Parameter restrictions No restrictions, γ (1) = γf (inflation coef’s sum to 1)
Sample Full available, pre–1984, 1984–end of sample

Table 8: Different specifications of the NKPC for which we compute robust confidence sets.

Pairwise comparison of point estimates: RE GIV vs. survey forecasts

labor share output gap
Parameter λ γf λ γf

SPF vs GIV: post-81 0.002 -0.200 0.042 0.092
SPF vs GIV: CPI post-81 -0.002 0.030 0.049 0.286

SPF vs GIV: GDP def. post-81 0.004 -0.326 0.038 -0.043
SPF vs GIV: GDP def. post-68 0.002 -0.200 0.042 0.092

GB vs GIV: post-68 0.039 -0.093 0.047 -0.000
endogenous vs exogenous -0.000 -0.000 -0.001 -0.045

GB vs SPF 0.003 -0.016 -0.007 -0.063
GB vs SPF: pre-1984 -0.010 0.069 -0.017 0.007

GB vs SPF: post-1984 0.009 -0.076 0.003 -0.103

Table 9: Effect of using observed inflation forecasts (SPF or GB) to proxy for inflation expectations in
the NKPC. Numbers are median pairwise differences in estimates across specifications that differ by one
characteristic, keeping all other specification aspects constant. For example, “SPF vs GIV” is the median
difference of coefficient estimates in SPF specifications from the corresponding RE GIV specifications.
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Pairwise comparisons of point estimates: Other specification choices

labor share output gap
Parameter λ γf λ γf

RT vs small instr. -0.003 0.008 -0.003 -0.012
survey vs small instr. 0.001 0.001 -0.001 -0.018

1 vs 0 lags -0.001 -0.256 -0.000 -0.256
4 vs 1 lags -0.004 -0.223 0.009 -0.277

post- vs pre-84 sample -0.008 -0.024 -0.002 0.000
GDP def. vs CPI inflation 0.001 0.011 0.004 0.018

gap vs level of inflation -0.001 -0.054 0.013 -0.072
oil vs no controls 0.000 0.001 -0.001 -0.001

Treas. rate vs no controls -0.000 0.005 0.001 0.000

Table 10: Median pairwise differences in estimates across specifications that differ by one characteristic,
keeping all other specification aspects constant. For example, row “RT vs small instr.” compares the
specifications that use “small” and “RT” instrument sets; row “1 vs 0 lags” gives the median difference of
estimates in the hybrid NKPC with 1 lag from the corresponding estimates in the pure NKPC.

Size of robust confidence regions

labor share output gap
Confidence level 90% 95% 90% 95%

spec. Sample

all all 0.33 0.47 0.30 0.47
0 lags all 0.19 0.34 0.18 0.34
1 lag all 0.24 0.38 0.19 0.34

4 lags all 0.49 0.63 0.48 0.67
all full 0.25 0.36 0.24 0.39
all pre-1984 0.35 0.50 0.25 0.41
all 1984q1–end of sample 0.41 0.56 0.41 0.59

all RE 1984q1–2011q3 0.49 0.65 0.46 0.65
all survey 1984q1–end of sample 0.35 0.50 0.38 0.55
SPF only 1984q1–2011q4 0.37 0.53 0.44 0.62
GB only 1984q1–2005q4 0.31 0.45 0.26 0.42

GGLS instr. 1984q1–end of sample 0.33 0.48 0.43 0.60
small instr. 1984q1–end of sample 0.46 0.66 0.43 0.59
exact instr. 1984q1–end of sample 0.29 0.42 0.32 0.52

RT instr. 1984q1–end of sample 0.64 0.78 0.54 0.73
survey instr. 1984q1–end of sample 0.32 0.47 0.35 0.52

Table 11: Size of 90% and 95% S sets corresponding to the different specifications of the NKPC in Table
8, as a fraction of the parameter space shown in Figure 16 (using 1025 grid points). “RE” refers to all RE
GIV and VAR-GMM specifications.
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Anatomy of robust confidence regions

labor share output gap
Level 90% 95% 90% 95%

No. of specs 698 698 698 698
fraction empty S set 0.038 0.013 0.016 0.004

fraction non-empty and positive 0.034 0.010 0.049 0.020
all RE 0.034 0.010 0.000 0.000

all survey 0.035 0.010 0.085 0.035
0 lags 0.072 0.014 0.094 0.036
1 lag 0.046 0.018 0.074 0.032

4 lags 0.004 0.000 0.000 0.000
GGLS instr. 0.062 0.021 0.042 0.000
small instr. 0.035 0.014 0.035 0.021
exact instr. 0.000 0.000 0.079 0.043

RT instr. 0.007 0.007 0.000 0.000
survey instr. 0.069 0.008 0.092 0.038

Table 12: Anatomy of 90% and 95% S sets for specifications listed in Table 8. S sets are computed on the
parameter space shown in Figure 16 using 1025 grid points. “Fraction empty” lists fraction of cases with
empty S set. “Fraction non-empty and positive” lists fraction of cases for which S set is non-empty and lies
entirely in positive orthant; rows “all RE” to “survey instr.” give the latter fraction for different subcases.
“RE” refers to all RE GIV and VAR-GMM specifications.
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Impulse responses to monetary policy shock
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Figure 1: Impulse responses of inflation and the output gap to a 25 basis point monetary policy shock in
a standard three-equation new Keynesian model with γf = 0.3, 0.4, . . . , 0.8 and λ = 0.01, 0.03, 0.05. The
other parameters are calibrated to the benchmark values listed in Appendix A.1. More sluggish responses
correspond to lower values of γf . The figure was generated using Dynare (Adjemian et al., 2011).
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Sampling distribution of γf estimators
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Figure 2: Kernel-smoothed density estimates of the sampling distribution of γf estimators in the hybrid NKPC model (21) for
the DGPs listed in Table 1. The dotted vertical line marks the true parameter value.



Point estimates reported in the literature

Figure 3: Point estimates of λ (vertical axis) and γf (horizontal axis) reported in the literature. Only
estimates that use U.S. data and the labor share as forcing variable are plotted. For some papers the
semi-structural point estimates have been imputed from point estimates of deeper parameters. The dotted
blue lines indicate 95% confidence intervals for λ where available. We include papers with readily available
estimates and more than 25 Google Scholar citations as of mid-September 2012: Gaĺı and Gertler (1999),
Gaĺı, Gertler and López-Salido (2001), Fuhrer and Olivei (2005), Gagnon and Khan (2005), Guay and
Pelgrin (2005), Jondeau and Le Bihan (2005), Roberts (2005), Sbordone (2005), Dufour, Khalaf and Kichian
(2006), Fuhrer (2006), Kiley (2007), Kurmann (2007), Rudd and Whelan (2007), Brissimis and Magginas
(2008), Adam and Padula (2011) and Henzel and Wollmershäuser (2008).
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Point estimates: Labor share specifications

Figure 4: Point estimates of λ, γf from the various specifications listed in Table 4 that use the labor share
as forcing variable, excluding real-time and survey instrument sets. The black dot and ellipse represent the
point estimate and 90% joint Wald confidence set from the 1998 vintage results in Table 3.

Point estimates: Output gap specifications

Figure 5: Point estimates of λ, γf from the various specifications listed in Table 4 that use the output gap
as forcing variable, excluding real-time and survey instrument sets.
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First-stage F statistics
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Figure 6: Smoothed density estimates of robust first-stage F statistics for forecasting the expectation
proxy, using realized next-period inflation (solid line, left axis) or time-t dated endogenous SPF/GB survey
forecasts of inflation (dotted line, right axis). The left and right panels show results for all labor share and
output gap specifications, respectively, that are listed in Table 4.

Point estimates: VAR (red) vs. unrestricted (blue)

Labor share Output gap

Figure 7: Point estimates of the coefficient on the forcing variable and inflation expectations for the
specification combinations listed in Table 4. The red points correspond to estimates that impose the VAR
assumption, while the blue points do not impose the assumption. The left and right panels plot specifications
with the labor share and output gap as forcing variable, resp.
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Point estimates: Survey forecasts (red) vs. RE GIV (blue)
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Figure 8: Point estimates of the coefficient on the forcing variable and inflation expectations using time-
(t − 1) dated exogenous SPF forecasts (red) versus RE GIV (blue), for the various specification settings
listed in Table 4. The top row of figures use GDP deflator inflation, while the bottom row uses CPI inflation.
In each row, the left and right panels correspond to labor share and output gap specifications, resp. Sample:
1984q1–2011q4.
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Point estimates: CPI (red) vs. GDP deflator (blue) inflation
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Figure 9: Point estimates of the coefficient on the forcing variable and inflation expectations using CPI
(red) versus GDP deflator (blue) inflation, for the various specification settings listed in Table 4. The top
row gives results for all available samples, while the bottom row selects only the post-1984q1 sample. The
left and right panels plot specifications with the labor share and output gap as forcing variable, resp.
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Point estimates: Pre-1984 (red) and post-1984 (blue) samples

Labor share Output gap

Figure 10: Point estimates of the coefficient on the forcing variable and inflation expectations in survey
forecast specifications (SPF and GB) on pre-1983q4 (red) and post-1984q1 (blue) samples. The inflation
series is GDP deflator inflation. The left and right panels plot specifications with the labor share and output
gap as forcing variable, resp.
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Robust confidence regions: RE specifications

Labor share Output gap

F
u

ll
sa

m
p

le
P

re
-1

98
4

P
os

t-
19

84

Figure 11: 90% S set (grey), 90% Wald ellipse and CUE GMM point estimate (bullet) of the coefficients
of the labor share and future inflation in the hybrid NKPC specification with one lag of inflation, where
inflation coefficients sum to 1. Inflation: GDP deflator. Forcing variable: NFB labor share (left panels),
CBO output gap (right panels). Instruments: three lags of ∆πt and the forcing variable. Sample: starts
1948q2 (labor share), 1949q4 (output gap), ends 2011q3; full sample (top row), pre-1983q4 (middle row),
post-1984q1 (bottom row). Weight matrix: Newey-West with automatic lag truncation.
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Robust confidence regions: VAR specifications

Labor share Output gap

Figure 12: 90% S set (grey), 90% Wald ellipse and CUE VAR-GMM point estimate (bullet) of the
coefficients of the labor share and future inflation in the hybrid NKPC specification with one lag of inflation,
where inflation coefficients sum to 1. Inflation: GDP deflator. Forcing variable: NFB labor share (left
panel), CBO output gap (right panel). Instruments: three lags of ∆πt and the forcing variable, implying
VAR(3) reduced form. Sample: starts 1948q2 (labor share), 1949q4 (output gap), ends 2011q3. Weight
matrix: White (1980) heteroskedasticity-consistent.
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Robust confidence regions: Survey forecast specifications

Labor share Output gap

S
P

F
G

D
P

d
ef

.
1
9
84

–
2
01

1
G

B
G

D
P

d
ef

.
19

84
–2

00
5

S
P

F
C

P
I

19
84

–2
01

1
S

P
F

G
D

P
d

ef
.

19
68

–1
98

3

Figure 13: 90% S set (grey), 90% Wald ellipse and CUE GMM point estimate (bullet) of the coefficients
of the labor share and future inflation in the hybrid NKPC specification with one lag of inflation, where
inflation coefficients sum to 1. Forcing variable: NFB labor share (left panels), CBO output gap (right
panels). Instruments: three lags of ∆πt and the forcing variable. Specifications: SPF GDP deflator 1984q1-
2011q4 (top row), GB GDP deflator 1984q1-2005q4 (second row), SPF CPI 1984q1-2011q4 (third row), SPF
GDP deflator 1968q3-1983q4 (bottom row), all time-t dated and endogenous. Weight matrix: Newey-West
with automatic lag truncation.



Robust confidence regions: Real-time instruments

Labor share Output gap

Figure 14: 90% S set (grey), 90% Wald ellipse and CUE GMM point estimate (bullet) of the coefficients
of the labor share and future inflation in the hybrid NKPC specification with one lag of inflation, where
inflation coefficients sum to 1. Inflation: GDP deflator. Forcing variable: NFB labor share (left panels),
CBO output gap (right panels). Instruments: 2 lags of GDP deflator inflation, the output gap and the
change in the labor share, all measured in real time. Sample: 1971q1-2011q2. Weight matrix: Newey-West
with automatic lag truncation.
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Robust confidence regions: Specifications with both rational and survey expectations
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Figure 15: 90% S set (grey), 90% Wald ellipse and CUE GMM point estimate (bullet) of the coefficients of future inflation (γRE ,
vertical axis) and 1-quarter forecasts (γs, horizontal axis) in the nesting NKPC specification (25). Inflation: GDP deflator. Forcing
variable: NFB labor share (left two columns), CBO output gap (right two columns). Instruments: GGLS plus two lags of survey
forecasts. Sample: full available (top row), 1984q1–end of sample (bottom row). Survey forecasts: SPF (1st and 3rd columns),
Greenbook (2nd and 4th columns), all time-t dated and endogenous. Weight matrix: Newey-West with automatic lag truncation.



Point estimates for specifications in Table 8
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Figure 16: CUE point estimates of the coefficient on the forcing variable and inflation expectations for
the various specification settings listed in Table 8. The left and right panels plot specifications with the
labor share and output gap as forcing variable, resp.
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