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This document contains supplemental material for the article “Bayesian Inference on Struc-
tural Impulse Response Functions”. It contains a simulation study illustrating the workings of
the SVMA procedure; supporting results and discussion for the news shock application; tech-
nical details concerning SVMA likelihood evaluation, reweighting, the Hamiltonian Monte
Carlo routine, and posterior consistency; and supplemental proofs.

Any references to equations, figures, assumptions, propositions, lemmas, or
sections that are not preceded by “C.” refer to the main article.

C.1 Simulation study

To illustrate the workings of the SVMA approach, I conduct a small simulation study with
two observed variables and two shocks. I show that prior information about the smoothness
of the IRFs can substantially sharpen posterior inference. It is thus desirable to use an
approach, like the SVMA approach, for which prior information about smoothness is directly
controlled. I also illustrate the consequences of misspecifying the prior.

The illustration is based on the bivariate example from Section 2 with n = 2 and q = 10,
cf. Figure 1. The number of parameters is n2(q + 1) = 22(10 + 1) = 44, smaller than the
dimensionality of realistic empirical applications but sufficient to elucidate the flexibility,
transparency, and effectiveness of the SVAR approach.

C.1.1 Parameters, prior, and simulation settings

I consider a single parametrization, with a prior that is correctly centered but diffuse. The
sample size is T = 200. The true IRF parameters Θ are the noninvertible ones plotted
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in Figure 1. The true shock standard deviations are σ1 = 1 (monetary policy shock) and
σ2 = 0.5 (demand shock). I first show results for the prior specification in Figure 4 with
ρij = 0.9 for all (i, j). The prior is centered at the true values but it expresses significant
prior uncertainty about the magnitudes of the individual impulse responses. The prior on
σ = (σ1, σ2) is median-unbiased for the true values but it is very diffuse, with prior standard
deviation of log σj equal to τσj = 2 for j = 1, 2.

I simulate a single sample of artificial data from the Gaussian SVMA model and then
run the HMC algorithm using the Whittle likelihood (I do not reweight the draws as in
Section C.3.2). I take 10,000 MCMC steps, storing every 10th step and discarding the
first 3,000 steps as burn-in.C.1 The full computation takes less than 3 hours in Matlab 8.6
on a personal laptop with 2.3 GHz Intel CPU and 8 GB RAM. Below I provide graphical
diagnostics on the convergence and mixing of the MCMC chain.

C.1.2 Baseline results

Figure C.1 shows that the posterior for the IRFs accurately estimates the true values and
that the data serves to substantially reduce the prior uncertainty. The posterior means are
generally close to the truth, although the means for two of the IRFs are slightly too low in this
simulation. The 5–95 percentile posterior credible intervals are mostly much narrower than
the prior 90% confidence bands, so this prior specification successfully allows the researcher
to learn from the data about the magnitudes of the impulse responses. Figure C.2 shows
the posterior draws for the shock standard deviations and compares them with the prior
distribution. The posterior draws are tightly centered around the true values despite the
very diffuse prior on σ. Overall, the inference method for this choice of prior works well,
despite the noninvertibility of the true IRFs.

To illustrate the importance of prior information about the smoothness of the IRFs, I
run the HMC algorithm with the same specification as above, except that I set ρij = 0.3
for all (i, j) in the prior, as in Figure 5. Figure C.3 summarizes the posterior distribution
of the IRFs corresponding to this alternative prior. Compared to Figure C.1, the posterior
credible intervals are much wider and the posterior means are less accurate estimates of the
true IRFs.

The higher the degree of prior smoothness, the more do nearby impulse responses “learn
from each other”. Due to the prior correlation structure in Equation (7), any feature of the

C.1The results are virtually identical in simulations with 100,000 MCMC steps.
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Figure C.1: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with prior
smoothness ρij = 0.9. The plots show true values and prior means (thick lines), prior 90% confidence
bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals (vertical bars).
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Figure C.2: Summary of posterior shock standard deviation (σ) draws for the bivariate SVMA
model with prior smoothness ρij = 0.9. The plots show the true value (thick vertical line), prior
density (curve), and histogram of posterior draws, for each σj , j = 1, 2.
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Figure C.3: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with prior
smoothness ρij = 0.3. See caption for Figure C.1.

data that is informative about the impulse response Θij,` is also informative about Θij,`+k;
more so for smaller values of |k|, and more so for larger values of the smoothness hyperpa-
rameter ρij. Hence, a higher degree of prior smoothness reduces the effective number of free
parameters in the model. If the true IRFs are not smooth but the prior imposes a lot of
smoothness, posterior inference can be very inaccurate. It is therefore important to use a
framework, like the SVMA approach, where prior smoothness is naturally parametrized and
directly controlled. SVAR IRFs also impose smoothness a priori, but the degree of smooth-
ness is implicitly controlled by the VAR lag length and restrictions on the VAR coefficients.

C.1.3 Misspecified priors

I now report results for modifications of the baseline simulation above, maintaining the prior
distribution but substantially modifying the true IRFs. I maintain the same prior on IRFs
and shock standard deviations as the ρij = 0.9 prior. Here, however, I modify the true values
of the IRFs so they no longer coincide with the prior means. I consider two such experiments:
one in which the shocks have less persistent effects than the prior indicates, and one in which
the true IRF of the output gap to a monetary policy shock is zero everywhere. In both

4



cases, the inaccurate prior is overruled by the data, delivering reasonably accurate posterior
inference. This happens because the implied prior distribution of the ACF is inconsistent
with the true ACF. Since the data is informative about the latter, the posterior distribution
puts more weight than the prior on parameters that are consistent with the true ACF, as
shown formally in Section 5.3.C.2

I first consider an experiment in which the prior overstates the persistence of the shock
effects, i.e., the true IRFs die out quicker than indicated by the prior means µij,` in Figure 4.
The true IRFs are set to Θij,` = cije

−0.25`µij,` for all (i, j, `), where cij > 0 is chosen so
that max` |Θij,`| = max` |µij,`| for each IRF. The true shock standard deviations, the prior
(ρij = 0.9), the sample size, and the HMC settings are exactly as in Section C.1.2. Figure C.4
compares these true IRFs to the prior distribution. The figure also summarizes the posterior
distribution for the IRFs. The posterior is not perfectly centered but is much closer to the
truth than the prior is. Figure C.5 shows why this is the case: The prior distribution on
(Θ, σ) implies a distribution for auto- and cross-correlations of observed variables that is
at odds with the true ACF. Since the data is informative about the ACF, the posterior
distribution for IRFs puts higher weight than the prior on IRFs that are consistent with the
true auto- and cross-correlations.

The second experiment considers a prior that misspecifies the cross-correlations between
the observed variables. I set the true IRFs equal to the prior means in Figure 4, except
that the true IRF of the output gap to a monetary policy shock equals zero, i.e., Θ21,` = 0
for 0 ≤ ` ≤ q. The true shock standard deviations, the prior (ρij = 0.9), the sample size,
and the HMC settings are as above. Figure C.6 shows that posterior inference is accurate
despite the misspecified prior. Again, Figure C.7 demonstrates how the data corrects the
prior distribution on auto- and cross-correlations, thus pulling the posterior on IRFs toward
the true values (although here the true ACF is not estimated as accurately as in Figure C.5).

C.2By the same token, if the true parameter values were chosen to be observationally equivalent to the
prior medians in Figure 4 (i.e., they imply the same ACF), then the posterior would look the same as in
Figures C.1 and C.2 up to simulation noise, even though the true parameters could be very different from
the prior medians. Hence, not all misspecified priors can be corrected by the data, cf. Section 5.3.
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Figure C.4: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a prior that
is too persistent relative to the true parameter values. The plots show true values (thick lines), prior
90% confidence bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals
(vertical bars). The prior means (not shown) are the midpoints of the prior confidence bands, as
in Figure 4.
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Figure C.5: Posterior auto- and cross-correlation draws for the bivariate SVMAmodel with a prior
that misspecifices the persistence of the IRFs. The displays plot draws of Corr(yi,t, yj,t−k | Θ, σ),
where i indexes rows, j indexes columns, and k runs along the horizontal axes. The top right
display, say, concerns cross-correlations between the FFR and lags of the output gap. The plots
show true values (thick lines), prior means (dashed lines) and 5–95 percentile confidence bands
(shaded), and posterior means (crosses) and 5–95 percentile intervals (vertical bars).
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Figure C.6: Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a prior
that misspecifies the cross-correlations between variables. See caption for Figure C.4.

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1
FFR

F
F

R

0 2 4 6 8 10
-1

-0.5

0

0.5

1
Output gap

0 2 4 6 8 10
-1

-0.5

0

0.5

1

O
u

tp
u

t 
g

ap

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

Figure C.7: Posterior autocorrelation draws for the bivariate SVMA model with a prior that
misspecifies the cross-correlations between variables. See caption for Figure C.5.
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Figure C.8: MCMC chains for each IRF parameter (Θ) in the ρij = 0.9 simulations in Sec-
tion C.1.2. Each jagged line represents a different impulse response parameter (two of them are
normalized at 1). The vertical dashed line marks the burn-in time, before which all draws are
discarded. The horizontal axes are in units of MCMC steps, not stored draws (every 10th step is
stored).

C.1.4 MCMC diagnostics

I report diagnostics for the baseline ρij = 0.9 bivariate simulation in Section C.1.2, but
diagnostics for other specifications in this paper are similar. The average HMC acceptance
rate is slightly higher than 0.60, which is the rate targeted by the NUTS algorithm when
tuning the HMC step size. The score of the posterior was evaluated about 382,000 times.
Figures C.8 and C.9 show the MCMC chains for the IRF and log shock standard deviation
draws. Figures C.10 and C.11 show the autocorrelation functions of the draws.
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Figure C.9: MCMC chains for each log shock standard deviation parameter (log σ) in the ρij = 0.9
simulations in Section C.1.2. See caption for Figure C.8.

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

F
F

R

MP shock

0 200 400 600 800 1000
-1

-0.5

0

0.5

1
Demand shock

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

O
u

tp
u

t 
g

ap

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

Figure C.10: Autocorrelation functions for HMC draws of each IRF parameter (Θ) in the ρij = 0.9
simulations in Section C.1.2. Each jagged line represents a different impulse response parameter.
Only draws after burn-in were used to computed these figures. The autocorrelation lag is shown
on the horizontal axes in units of MCMC steps.
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Figure C.11: Autocorrelation functions for HMC draws of each log shock standard deviation
parameter (log σ) in the ρij = 0.9 simulations in Section C.1.2. See caption for Figure C.10.
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C.2 Application: Additional results and discussion

This subsection presents additional details, results, and discussion related to the news shock
application in Section 4. First, I detail the data construction. Second, I summarize the
posteriors for long-run (cumulative) impulse responses. Third, I demonstrate the economic
importance of noninvertibility. Fourth, I use the Kalman smoother to draw inference about
the shocks. Fifth, I examine the sensitivity of posterior inference to the choice of prior.
Sixth, I assess the model’s fit. Seventh, I compare my empirical results to the literature.
Finally, I show that the SVMA procedure accurately estimates IRFs on simulated data.

C.2.1 Data construction

TFP growth equals 100 times the log growth rate of TFP and is taken from the data appendix
to Fernald (2014).C.3 The remaining data is from the St. Louis Federal Reserve’s FRED
database.C.4 Real GDP growth is given by 100 times the log growth rate of seasonally
adjusted GDP per capita in chained dollars, as measured by the Bureau of Economic Analysis
(NIPA Table 7.1, line 10). My real interest rate series equals the nominal policy interest
rate minus the contemporaneous inflation rate.C.5 The nominal policy rate is the average
effective federal funds rate, expressed as a quarterly rate. The inflation rate equals 100
times the log growth rate in the seasonally adjusted implicit price deflator for the non-farm
business sector, as reported by the Bureau of Labor Statistics.

I detrend the three data series to remove secular level changes that are arguably unrelated
to the business cycle. Following Stock & Watson (2012), I estimate the trend in each series
using a biweight kernel smoother with a bandwidth of 100 quarters; the trends are then
subtracted from the raw series. The data is plotted in the Online Appendix.

Figure C.12 plots the raw data and estimated trends.

C.3The TFP measure is based on a growth accounting method that adjusts for differing marginal products
of capital across sectors as well as changes over time in labor quality and labor’s share of income. Fernald
(2014) also estimates utilization-adjusted TFP, but the adjustment is model-based and reliant on estimates
from annual regressions on a separate dataset, so I prefer the simpler series. Data downloaded July 14, 2015.

C.4FRED series codes: A939RX0Q048SBEA (real GDP per capita), FEDFUNDS (effective federal funds
rate), and IPDNBS (implicit price deflator, non-farm business sector). Data downloaded August 13, 2015.

C.5If agents form inflation expectations under the presumption that quarterly inflation follows a random
walk, then my measure of the real interest rate equals the conventional ex ante real interest rate.
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Figure C.12: Raw data on TFP growth, GDP growth, and the real interest rate (IR), along with
estimated time-varying trends (smooth curves). The final data used in the empirical analysis are
differences between the raw series and the trends.

C.2.2 Long-run responses

Figure C.13 plots the posterior distribution of long-run (i.e., cumulative) impulse responses∑q
`=0 Θij,` for each variable-shock combination (i, j).

C.2.3 Economic significance of noninvertibility

The noninvertibility of the estimated IRFs is economically significant. Figure C.14 summa-
rizes the posterior distribution of those invertible IRFs that are closest to the actual (possibly
noninvertible) IRFs. Specifically, for each posterior draw (Θ, σ) I compute the parameter
vector (Θ̃, σ̃) that minimizes the Frobenius distance ‖Θ diag(σ)−Θ̃ diag(σ̃)‖ over parameters
for which Θ̃ is invertible and (Θ̃, σ̃) generates the same ACF as (Θ, σ).C.6 While the invertible
IRFs for the productivity and monetary policy shocks are similar to the unrestricted IRFs,

C.6According to Appendix A.2, (Θ̃, σ̃) is obtained as follows. First apply transformation (ii) in Proposition 3
several times to (Θ, σ) in order to flip all roots outside the unit circle. Denote the resulting invertible
parameters by (Θ̌, σ̌). Then Θ̃ diag(σ̃) = Θ̌ diag(σ̌)Q, where Q is the orthogonal matrix that minimizes
‖Θ diag(σ)− Θ̌ diag(σ̌)Q‖. This is an “orthogonal Procrustes problem”, whose solution is well known.
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Figure C.13: Histograms of posterior draws of long-run impulse responses
∑q
`=0 Θij,` for each

(i, j), news shock application. Curves are prior densities. Histograms and curves each integrate to
1.

the invertible news shock IRFs look nothing like the actual estimated IRFs.C.7 Thus, no
SVAR identification scheme can deliver accurate inference about the effects of technological
news shocks in this dataset.

C.2.4 Inference about shocks

Figure C.15 shows the time series of posterior means for the structural shocks. For each poste-
rior draw of the structural parameters (Θ, σ), I compute E(εt | Θ, σ, YT ) using the smoothing
recursions corresponding to the Gaussian state-space representation in Section C.3.1 (Durbin
& Koopman, 2012, p. 157), and then I average over draws. If the structural shocks are in
fact non-Gaussian, the smoother still delivers mean-square-error-optimal linear estimates of
the shocks. If desired, draws from the full joint posterior distribution of the shocks can
be obtained from a simulation smoother (Durbin & Koopman, 2012, Ch. 4.9). It is also
straight-forward to draw from the predictive distribution of future values of the data using
standard methods for state-space models.

C.7Figure C.14 cannot be interpreted as the posterior distribution corresponding to a prior which truncates
the prior from Figure 6 to the invertible region. It is difficult to sample from this truncated posterior, as
essentially none of the unrestricted posterior draws are invertible, so an accept-reject scheme is inapplicable.
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Figure C.14: Posterior distribution of the invertible IRFs that are closest to the actual IRFs, news
shock application. The figure shows posterior means of actual IRFs from Figure 7 (thick lines),
posterior means of the closest invertible IRFs (crosses), and posterior 5–95 percentile intervals for
these invertible IRFs (vertical bars).
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Figure C.15: Posterior means of standardized structural shocks (εjt/σj) at each point in time,
news shock application.
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C.2.5 Prior sensitivity

To gauge the robustness of posterior inference with respect to the choice of prior, I compute
the sensitivity measure “PS” of Müller (2012). This measure captures the first-order ap-
proximate effect on the posterior means of changing the prior mean hyperparameters. Let θ
denote the vector containing all impulse responses and log shock standard deviations of the
SVMA model, and let ek denote the k-th unit vector. Because my prior for θ is a member
of an exponential family, the Müller (2012) PS measure for parameter θk equals

PSk = max
ν :
√
ν′Var(θ)−1ν=1

∂E(θk | YT )
∂E(θ)′ ν =

√
e′kVar(θ | YT )Var(θ)−1Var(θ | YT )ek. (C.1)

This is the largest (local) change that can be induced in the posterior mean of θk from
changing the prior means of the components of θ by the multivariate equivalent of 1 prior
standard deviation.C.8 PSk depends only on the prior and posterior variance matrices Var(θ)
and Var(θ | YT ), which are easily obtained from the HMC output.

Figure C.16 plots the posterior means of the impulse responses along with ±PSk intervals
(where the index k corresponds to the (i, j, `) combination for each impulse response). The
wider the band around an impulse response, the more sensitive is the posterior mean of
that impulse response to (local) changes in the prior. In economic terms, most of the
posterior means are seen to be insensitive to changes in the prior means of magnitudes smaller
than 1 prior standard deviation. The most prior-sensitive posterior inferences, economically
speaking, concern the IRF of GDP growth to a news shock, but large changes in the prior
means are necessary to alter the qualitative features of the posterior mean IRF.

C.2.6 Posterior predictive analysis

I conduct a posterior predictive analysis to identify ways to improve the fit of the Gaussian
SVMA model (Geweke, 2010, Ch. 2.4.2). For each posterior parameter draw produced by
HMC, I simulate an artificial dataset of sample size T = 213 from a Gaussian SVMA model
with the given parameters. On each artificial dataset I compute four checking functions.
First and second, the skewness and excess kurtosis of each series. Third, the long-run
autocorrelation of each series, defined as the Newey-West long-run variance estimator (20
lags) divided by the sample variance. Fourth, I run a reduced-form VAR regression of the

C.8In particular, PSk ≥ maxb |∂E(θk | YT )/∂E(θb)|
√
Var(θb). Whereas PSk is a local measure, the effects

of large changes in the prior can be evaluated using reweighting (Lopes & Tobias, 2011, Sec. 2.4).
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Figure C.16: PSk measure of the sensitivity of the posterior IRF means with respect to changes in
the prior means of all parameters, cf. (C.1), in the news shock application. The symmetric vertical
bars have length 2PSk and are centered around the corresponding posterior means (crosses).

three-dimensional data vector yt on its 8 first lags and a constant; then I compute the first
autocorrelation of the squared VAR residuals for each of the three series. The third measure
captures persistence, while the fourth measure captures volatility clustering in forecast errors.

Figure C.17 shows the distribution of checking function values across simulated datasets,
as well as the corresponding checking function values for the actual data. The Gaussian
SVMA model does not capture the skewness and kurtosis of GDP growth; essentially, the
model does not generate recessions that are sufficiently severe relative to the size of booms.
The model somewhat undershoots the persistence and kurtosis of the real interest rate.
The fourth column suggests that forecast errors for TFP and GDP growth exhibit volatility
clustering in the data, which is not captured by the Gaussian SVMA model.

The results point to three fruitful model extensions. First, introducing stochastic volatil-
ity in the SVMA model would allow for better fit along the dimensions of kurtosis and
forecast error volatility clustering. Second, nonlinearities or skewed shocks could capture
the negative skewness of GDP growth. Finally, increasing the MA lag length q would allow
the model to better capture the persistence of the real interest rate, although this is not a
major concern, as I am primarily interested in shorter-run impulse responses.
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Figure C.17: Posterior predictive checks, news shock application. Observed variables along rows,
checking functions along columns. Histograms show the distribution of checking function values
on simulated datasets based on the posterior parameter draws; thick vertical lines mark checking
function values on actual data. Checking functions from left to right: skewness; excess kurtosis;
Newey-West long-run variance estimate (20 lags) divided by sample variance; first autocorrelation
of squared residuals from a VAR regression of yt on a constant and 8 lags.
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C.2.7 Comparison with the literature

My conclusion that technological news shocks are not important for explaining business
cycles is consistent with the literature, but my method is the first to allow for noninvertibil-
ity without additional assumptions. Forni, Gambetti & Sala (2014) estimate small effects
of technological news shocks in a factor-augmented SVAR. Their empirical strategy may
overcome the noninvertibility issue if technological news are well captured by the first few
principal components of their large macroeconomic panel data set. They confirm that low-
dimensional systems (without factors) are noninvertible. Papers that estimate fully-specified
DSGE models with news shocks also tend to find a limited role for technological news, cf. the
review by Beaudry & Portier (2014, Sec. 4.2.2). Unlike these papers, I do not dogmatically
impose restrictions implied by a particular structural model.

Several SVAR papers on news shocks have used stock market data in an attempt to
overcome the invertibility problem, cf. Beaudry & Portier (2014, Sec. 3). Such SVAR
specifications may be valid if the stock market is a good proxy for the news shock, i.e., if the
market responds immediately and forcefully upon arrival of technological news. On the other
hand, if market movements are highly contaminated by other types of shocks, incorporating
stock market data may lead to biased SVAR estimates.

C.2.8 Consistency check with simulated data

I show that the SVMA approach, with the same prior and HMC settings as in Section 4,
can recover the true IRFs when applied to data generated by the log-linearized Sims (2012)
DSGE model. I simulate data for the three observed variables from an SVMA model with
i.i.d. Gaussian shocks. The true IRFs are those implied by the log-linearized Sims (2012)
model (baseline calibration) out to horizon q = 16, yielding a noninvertible representation.
The true shock standard deviations are set to σ = (0.5, 0.5, 0.5)′. Note that the prior for
the IRF of TFP growth to the news shock is not centered at the true IRF, as explained in
Section 4. The sample size is the same as for the actual data (T = 213).

Figures C.18 and C.19 summarize the posterior draws produced by the HMC algorithm
when applied to the simulated data set. The posterior means accurately locate the true
parameter values. The equal-tailed 90% posterior credible intervals are tightly concentrated
around the truth in most cases. In particular, inference about the shock standard deviation
parameters is precise despite the very diffuse prior.
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Figure C.18: Summary of posterior IRF (Θ) draws, simulated news shock data. See caption for
Figure C.1.

0 0.5 1
0

1

2

3

4

5

6
Prod. shock

0 0.2 0.4 0.6 0.8
0

5

10

15
News shock

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14
MP shock

Figure C.19: Summary of posterior shock standard deviation (σ) draws, simulated news shock
data. See caption for Figure C.2.
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C.3 Exact likelihood and reweighting

I now describe the Kalman filter for SVMA models and the reweighting procedure for trans-
lating Whittle posterior parameter draws into draws from the exact Gaussian posterior.

C.3.1 Kalman filter

The state space representation of the SVMA model is

yi,t = Ψiαt, i = 1, . . . , n, t = 1, . . . , T,

αt =
 0 0
Inq 0

αt−1 +
 ε̃t

0

 , ε̃t
i.i.d.∼ N(0, In), t = 2, 3, . . . , T,

α1 ∼ N(0, In(q+1)),

where Ψi is the n(q + 1)-dimensional i-th row vector of Ψ = (Ψ0,Ψ1, . . . ,Ψq) = Θ diag(σ),
ε̃t is the n-dimensional standardized structural shock vector (each element has variance 1),
and αt = (ε̃′t, ε̃′t−1, . . . , ε̃

′
t−q)′ is the n(q + 1)-dimensional state vector.

I use the “univariate treatment of multivariate series” Kalman filter in Durbin & Koop-
man (2012, Ch. 6.4), since that algorithm avoids inverting large matrices. For my purposes,
the algorithm is as follows.

1. Initialize the state forecast mean a1,1 = 0 and state forecast variance Z1,1 = In(q+1).
Set t = 1.

2. For each i = 1, . . . , n:

(a) Compute the forecast error vi,t = yi,t − Ψiai,t, forecast variance λi,t = ΨiZi,tΨ′i,
and Kalman gain gi,t = (1/λi,t)Zi,tΨ′i.

(b) Compute the log likelihood contribution: Li,t = −1
2(log λi,t + v2

i,t/λi,t).

(c) Update the state forecast mean: ai+1,t = ai,t + gi,tvi,t.

(d) Update the state forecast variance: Zi+1,t = Zi,t − λi,tgi,tg′i,t.

3. Let ãn+1,t denote the first nq elements of an+1,t, and let Z̃n+1,t denote the upper left
nq × nq block of Zn+1,t. Set

a1,t+1 =
 0
ãn+1,t

 , Z1,t+1 =
 In 0

0 Z̃n+1,t

 .
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4. If t = T , stop. Otherwise, increment t by 1 and go to step 2.

The log likelihood log pY |Ψ(YT | Ψ) is given by ∑T
t=1

∑n
i=1 Li,t, up to a constant.

C.3.2 Reweighting

An optional reweighting step may be used to translate draws obtained from theWhittle-based
HMC algorithm into draws from the exact Gaussian posterior density pΘ,σ|Y (Θ, σ | YT ). The
Whittle HMC algorithm yields draws (Θ(1), σ(1)), . . . , (Θ(N), σ(N)) (after discarding a burn-in
sample) from the Whittle posterior density pWΘ,σ|Y (Θ, σ | YT ). If desired, apply the following
reweighting procedure to the Whittle draws:

1. For each Whittle draw k = 1, 2, . . . , N , compute the relative likelihood weight

wk = pY |Ψ(YT | Ψ(Θ(k), σ(k)))
pWY |Ψ(YT | Ψ(Θ(k), σ(k))) ∝

pΘ,σ|Y (Θ(k), σ(k) | YT )
pWΘ,σ|Y (Θ(k), σ(k) | YT ) .

2. Compute normalized weights w̃k = wk/
∑N
b=1 wb, k = 1, . . . , N .

3. Draw N samples (Θ̃(1), σ̃(1)), . . . , (Θ̃(N), σ̃(N)) from the multinomial distribution with
mass points (Θ(1), σ(1)), . . . , (Θ(N), σ(N)) and corresponding probabilities w̃1, . . . , w̃N .

Then (Θ̃(1), σ̃(1)), . . . , (Θ̃(N), σ̃(N)) constitute N draws from the exact posterior distribution.
This reweighting procedure is a Sampling-Importance-Resampling procedure (Rubin, 1988)
that uses the Whittle posterior as a proposal distribution. The reweighting step is fast, as it
only needs to compute the exact likelihood – not the score – for N different parameter values,
whereN is typically orders of magnitude smaller than the required number of likelihood/score
evaluations during the HMC algorithm.

C.4 Hamiltonian Monte Carlo implementation

I here describe my implementation of the posterior simulation algorithm. First I outline my
method for obtaining an initial value. Then I discuss the modifications I make to the Hoff-
man & Gelman (2014) algorithm. The calculations below require evaluation of the log prior
density, its gradient, the log likelihood, and the score. Evaluation of the multivariate Gaus-
sian log prior and its gradient is straight-forward; this is also the case for many other choices
of priors. Evaluation of the Whittle likelihood and its score is described in Appendix A.3.
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C.4.1 Initial value

The HMC algorithm produces draws from a Markov Chain whose long-run distribution is the
Whittle posterior of the SVMA parameters, regardless of the initial value used for the chain.
However, using an initial value near the mode of the posterior distribution can significantly
speed up the convergence to the long-run distribution. I approximate the posterior mode
using the following computationally cheap procedure:

1. Compute the empirical ACF of the data.

2. Run q steps of the Innovations Algorithm to obtain an invertible SVMA representation
that approximately fits the empirical ACF (Brockwell & Davis, 1991, Prop. 11.4.2).C.9

Denote these invertible parameters by (Θ̂, σ̂).

3. Let C denote the (finite) set of complex roots of the SVMA polynomial corresponding
to (Θ̂, σ̂), cf. Proposition 3.

4. For each root γj in C (each complex conjugate pair of roots is treated as one root):

(a) Let (Θ̌(j), σ̌(j)) denote the result of flipping root γj, i.e., of applying transformation
(ii) in Proposition 3 to (Θ̂, σ̂) with this root.

(b) Determine the orthogonal matrix Q(j) such that Θ̌(j) diag(σ̌)(j)Q(j) is closest to
the prior mean E(Θ diag(σ)) in Frobenius norm, cf. Footnote C.6.

(c) Obtain parameters (Θ̃(j), σ̃(j)) such that Θ̌(j) diag(σ̌(j))Q(j) = Θ̃(j) diag(σ̃(j)), i.e.,
apply transformation (a) in Proposition 3. Calculate the corresponding value of
the prior density π(Θ̃(j), σ̃(j)).

5. Let j̃ = argmaxj π(Θ̃(j), σ̃(j)).

6. If π(Θ̃(j̃), σ̃(j̃)) ≤ π(Θ̂, σ̂), go to Step 7. Otherwise, set (Θ̂, σ̂) = (Θ̃(j̃), σ̃(j̃)), remove γj
(and its complex conjugate) from C, and go back to Step 4.

7. Let the initial value for the HMC algorithm be the parameter vector of the form
((1− x)Θ̌ + xE(Θ), (1− x)σ̌ + xE(σ)) that maximizes the posterior density, where x
ranges over the grid {0, 0.01, . . . , 0.99, 1}, and (E(Θ), E(σ)) is the prior mean of (Θ, σ).

C.9In principle, the Innovations Algorithm could be run for more than q steps, but this tends to lead to
numerical instability in my trials. The output of the first q steps is sufficiently accurate in my experience.
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Step 2 computes a set of invertible parameters that yields a high value of the likelihood.
Steps 3–6 find a set of possibly noninvertible parameters that yields a high value of the
prior density while being observationally equivalent with the parameters from Step 2 (I use a
“greedy” search algorithm since it is computationally prohibitive to consider all combinations
of root flips). Because Steps 2–6 lexicographically prioritize maximizing the likelihood over
maximizing the prior, Step 7 allows the parameters to shrink toward the prior means.

C.4.2 Modifications to NUTS algorithm

I use the HMC variant NUTS from Hoffman & Gelman (2014), which automatically tunes the
step size and trajectory length of HMC. See their paper for details on the NUTS algorithm.
I downloaded the code from Hoffman’s website.C.10 I make two modifications to the basic
NUTS algorithm, neither of which are essential, although they do tend to improve the
mixing speed of the Markov chain in my trials: step size jittering and diagonal mass matrix
adaptation. These modifications are also used in the NUTS-based statistics software Stan
(Stan Development Team, 2015).

Each step I draw a new HMC step size from a uniform distribution over some interval
(Neal, 2011, Sec. 5.4.2.2). The jittering is started after the stepsize has been tuned as
described in Hoffman & Gelman (2014, Sec. 3.2). For the applications in this paper, the
step size is chosen uniformly at random from the interval [0.5ε̂, 1.5ε̂], where ε̂ is the tuned
step size.

I allow for a diagonal “mass matrix”, where the entries along the diagonal are estimates
of the posterior standard deviations of the SVMA parameters (Neal, 2011, Sec. 5.4.2.4). I
first run the NUTS algorithm for a number of steps with an identity mass matrix. Then I
calculate the sample standard deviations of the parameter draws over a window of subsequent
steps, after which I update the mass matrix accordingly.C.11 I update the mass matrix twice
more using windows of increasing length. Finally, I freeze the mass matrix for the remainder
of the NUTS algorithm. In this paper, the mass matrix is estimated over steps 300–400,
steps 401–600, and steps 601–1000, and it is fixed after step 1000.

C.10http://matthewdhoffman.com
C.11The sample standard deviations are partially shrunk toward 1 before updating the mass matrix.
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C.5 Posterior consistency: Auxiliary lemma

Following Ghosh & Ramamoorthi (2003, Thm. 1.3.4), I give general sufficient conditions for
assumption (ii) of Lemma 1. These are used in the proof of Lemma 3.

Let ΠΓ(·) denote the marginal prior measure for parameter Γ, with parameter space
ΞΓ. Let pY |Γ(YT | Γ) denote the (possibly misspecified) likelihood function. The posterior
measure is given by

PΓ|Y (A | YT ) =
∫
A pY |Γ(YT | Γ)ΠΓ(dΓ)∫
ΞΓ
pY |Γ(YT | Γ)ΠΓ(dΓ)

for measurable sets A ⊂ ΞΓ.

Lemma C.1. Define the normalized log likelihood ratio φ̂(Γ) = T−1 log pY |Γ(YT |Γ)
pY |Γ(YT |Γ0) for all

Γ ∈ ΞΓ. Assume there exist a function φ : ΞΓ → R, a neighborhood K of Γ0 in ΞΓ, and a
scalar ζ < 0 such that the following conditions hold.

(i) supΓ∈K |φ̂(Γ)− φ(Γ)| p→ 0.

(ii) φ(Γ) is continuous at Γ = Γ0.

(iii) φ(Γ) < 0 for all Γ 6= Γ0.

(iv) supΓ∈Kc φ̂(Γ) < ζ w.p.a. 1.

(v) Γ0 is in the support of ΠΓ(·).

Then for any neighborhood U of Γ0 in ΞΓ, PΓ|Y (U | YT ) p→ 1.

C.6 Supplemental proofs

C.6.1 Proof of Proposition 3

As in Lippi & Reichlin (1994, p. 311), define the rational matrix function

R(γ, z) =
 z−γ

1−γ̄z 0
0 In−1

 , γ, z ∈ C.

Transformation (ii) corresponds to the transformation Ψ̌(z) = Ψ(z)QR(γk, z)−1 if γk is
real. If γk is not real, the transformation corresponds to Ψ̌(z) = Ψ̃(z)Q̌, where Ψ̃(z) =
Ψ(z)QR(γk, z)−1Q̃R(γk, z)−1 and Q̌ = Ψ̃(0)−1J is a unitary matrix. I proceed in three steps.
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Step 1. Consider the first claim of the proposition. Let f(ω; Γ) = (2π)−1∑q
k=−q Γ(k)e−ıkω,

ω ∈ [−π, π], denote the spectral density matrix function associated with the ACF Γ(·). Since
Ψ(z) = Θ(z) diag(σ) with (Θ, σ) ∈ S(Γ), we must have Ψ(e−ıω)Ψ(e−ıω)∗ = 2πf(ω; Γ) for all
ω by the usual formula for the spectral density of a vector MA process (Brockwell & Davis,
1991, Example 11.8.1). Because R(γ, e−ıω)R(γ, e−ıω)∗ = In for any (γ, ω), it is easy to verify
that Ψ̌(z) – constructed by applying transformation (i) or transformation (ii) to Ψ(z) – also
satisfies Ψ̌(e−ıω)Ψ̌(e−ıω)∗ = 2πf(ω; Γ). Hence, Ψ̌(z) = ∑q

`=0 Ψ̌`z
` is a matrix MA polynomial

satisfying ∑q−k
`=0 Ψ̌`+kΨ̌`

∗
= Γ(k) for all k = 0, 1, . . . , q. In Step 2 below I show that Ψ̌(z) is

a matrix polynomial with real coefficients. By construction of Θ̌(z) = ∑q
`=0 Θ̌`z

` and σ̌, we
then have ∑q−k

`=0 Θ̌`+k diag(σ̌)2Θ̌`

′
= Γ(k) for all k = 0, 1, . . . , q, so (Θ̌, σ̌) ∈ S(Γ), as claimed.

Step 2. I now show that transformation (ii) yields a real matrix polynomial Ψ̌(z). This
fact was asserted by Lippi & Reichlin (1994, pp. 317–318). I am grateful to Professor Marco
Lippi for providing me with the proof arguments for Step 2; all errors are my own.

Ψ̌(z) is clearly real if the flipped root γk is real (since η and Q can be chosen to be real
in this case), so consider the case where we flip a pair of complex conjugate roots γk and γk.
Recall that in this case, Ψ̌(z) = Ψ̃(z)Q̌, where Ψ̃(z) = Ψ(z)QR(γk, z)−1Q̃R(γk, z)−1 and Q̌
is unitary. It follows from the same arguments as in Step 1 that the complex-valued matrix
polynomial Ψ̃(z) = ∑q

`=0 Ψ̃`z
` satisfies ∑q−k

`=0 Ψ̃`+kΨ̃`
∗ = Γ(k) for all k = 0, 1, . . . , q

Let ¯̃Ψ(z) = ∑q
`=0 Ψ̃`z

` denote the matrix polynomial obtained by conjugating the coef-
ficients of the polynomial Ψ̃(z). By construction, the roots of det(Ψ̃(z)) are real or appear
as complex conjugate pairs, so det( ¯̃Ψ(z)) has the same roots as det(Ψ̃(z)). Furthermore, for
k = 0, 1, . . . , q,

q−k∑
`=0

¯̃Ψ`+k
¯̃Ψ`

∗
= Γ(k) = Γ(k) =

q−k∑
`=0

Ψ̃`+kΨ̃∗` .

By Theorem 3(b) of Lippi & Reichlin (1994), there exists a unitary n×n matrix ˜̃Q such that
¯̃Ψ(z) = Ψ̃(z) ˜̃Q for z ∈ R. The matrix polynomial Ψ̃(z)Ψ̃(0)−1 then has real coefficients:C.12

For all z ∈ R,

Ψ̃(z)Ψ̃(0)−1 =
(
Ψ̃(z) ˜̃Q

) (
Ψ̃(0) ˜̃Q

)−1
= ¯̃Ψ(z) ¯̃Ψ(0)−1 = Ψ̃(z)Ψ̃(0)−1.

Consequently, with the real matrix J defined as in the proposition, Ψ̌(z) = Ψ̃(z)Ψ̃(0)−1J is

C.12Ψ̃(0) is nonsingular because det(Ψ(0)) 6= 0.
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a matrix polynomial with real coefficients. Note that, since ˜̃Q is unitary, the matrix

Ψ̃(0)Ψ̃(0)∗ =
(

¯̃Ψ(0) ˜̃Q
)(

¯̃Ψ(0) ˜̃Q
)∗

= Ψ̃(0)Ψ̃(0)∗

is real, symmetric, and positive definite, so J is well-defined.

Step 3. Finally, I prove the second claim of the proposition. Suppose we have a fixed ele-
ment (Θ̌, σ̌) of the identified set that we want to end up with after transforming the initial ele-
ment (Θ, σ) appropriately. Define Ψ̌(z) = Θ̌(z) diag(σ̌). Since (Θ, σ), (Θ̌, σ̌) ∈ S(Γ), the two
sets of SVMA parameters correspond to the same spectral density, i.e., Ψ(e−ıω)Ψ(e−ıω)∗ =
Ψ̌(e−ıω)Ψ̌(e−ıω)∗ for all ω ∈ [−π, π]. As in the proof of Theorem 2 in Lippi & Reichlin (1994),
we can apply transformation (ii) finitely many (say, b) times to Ψ(z), flipping all the roots
that are inside the unit circle, thus ending up with a polynomial

B(z) = Ψ(z)Q1R(γk1 , z)−1 · · ·QbR(γkb
, z)−1Qb+1

for which all roots of det(B(z)) lie on or outside the unit circle. Likewise, denote the
(finitely many) roots of det(Ψ̌(z)) by γ̌k, k = 1, 2, . . . , and apply to Ψ̌(z) a finite sequence
of transformation (ii) to arrive at a polynomial

B̌(z) = Ψ̌(z)Q̌1R(γ̌ǩ1
, z)−1 · · · Q̌b̌R(γ̌ǩb̌

, z)−1Q̌b̌+1

for which all roots of det(B̌(z)) lie on or outside the unit circle. Since det(B(z)) and
det(B̌(z)) have all roots on or outside the unit circle, and we have B(e−ıω)B(e−ıω)∗ =
B̌(e−ıω)B̌(e−ıω)∗ = 2πf(ω; Γ) for all ω, there must exist an orthogonal matrix Q such that
B̌(z) = B(z)Q (Lippi & Reichlin, 1994, p. 313; Hannan, 1970, p. 69). Thus,

Ψ̌(z) = Ψ(z)Q1R(γk1 , z)−1 · · ·QbR(γkb
, z)−1Qb+1QQ̌

∗
b̌+1R(γ̌ǩb̌

, z)Q̌∗
b̌
· · ·R(γ̌ǩ1

, z)Q̌∗1,

and
det(Ψ̌(z)) = det(Ψ(z))

(z − γ̌ǩ1
) · · · (z − γ̌ǩb̌

)(1− γk1z) · · · (1− γkb
z)

(z − γk1) · · · (z − γkb
)(1− γ̌ǩ1

z) · · · (1− γ̌ǩb̌
z)
,

so any root of det(Ψ̌(z)) must either equal γk or it must equal 1/γk, where γk is some root
of det(Ψ(z)). It follows that we can apply a finite sequence of transformation (ii) (i.e., an
appropriate sequence of root flips) to Ψ(z) to obtain a real matrix polynomial ˜̃Ψ(z) satisfying
det( ˜̃Ψ(z)) = det(Ψ̌(z)) for all z ∈ C. Theorem 3(b) in Lippi & Reichlin (1994) then implies
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that Ψ̌(z) can be obtained from ˜̃Ψ(z) through transformation (i) (i.e., an orthogonal rotation,
which clearly must be real). Finally, obtain (Θ̌, σ̌) from Ψ̌(z) by transformation (a).

C.6.2 Proof of Lemma 2

Suppressing the arguments (Ψ), let Lk = log det(fk) + ỹ∗kf
−1
k ỹk. Then

∂Lk
∂(f ′k)

= f−1
k − f−1

k ỹkỹ
∗
kf
−1
k = Ck.

Writing f ′k = Ψ̃kΨ̃′k, we have

∂ vec(f ′k)
∂ vec(Ψ`)′

= (Ψ̃k ⊗ In)eıωk` + (In ⊗ Ψ̃k)K ′ne−ıωk`,

where Kn is the n2 × n2 commutation matrix such that vec(B′) = Kn vec(B) for any n× n
matrix B (Magnus & Neudecker, 2007, Ch. 3.7). Using vec(ABC) = (C ′ ⊗ A) vec(B),

∂Lk
∂ vec(Ψ`)′

= ∂Lk
∂ vec(f ′k)′

∂ vec(f ′k)
∂ vec(Ψ`)′

= vec
(
CkΨ̃ke

ıωk` + C∗kΨ̃keıωk`
)′
.

Since C∗k = Ck, we get ∂Lk/∂Ψ` = 2 Re
(
CkΨ̃ke

ıωk`
)
, so

∂ log pWY |Ψ(YT | Ψ)
∂Ψ`

= −1
2

T−1∑
k=0

∂Lk
∂Ψ`

= −
T−1∑
k=0

Re
Ck q+1∑

˜̀=1

e−ıωk(˜̀−1)Ψ˜̀−1e
ıωk`


= −

q∑
˜̀=0

Re
(
T−1∑
k=0

Cke
−ıωk(˜̀−`)

)
Ψ˜̀.

Finally, ∑T−1
k=0 Cke

−ıωk(˜̀−`) = ∑T−1
k=0 Cke

−ıω˜̀−`k = C̃˜̀−` for ˜̀ ≥ `, and ∑T−1
k=0 Cke

−ıωk(˜̀−`) =∑T−1
k=0 Cke

−ıωk(T+˜̀−`) = ∑T−1
k=0 Cke

−ıωT +˜̀−`k = C̃˜̀−` for ˜̀< `.

C.6.3 Proof of Lemma C.1

I follow the proof of Theorem 1.3.4 in Ghosh & Ramamoorthi (2003). Set κ2 = supΓ∈Uc φ(Γ).
Notice that φ̂(Γ0) = 0 and assumption (i) together imply φ(Γ0) = 0. By assumptions (ii)–
(iii), we can therefore find a small neighborhood V of Γ0 in ΞΓ such that κ1 = infΓ∈V φ(Γ)
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satisfies max{κ2, ζ} < κ1 < 0. We may shrink V to ensure that it also satisfies V ⊂ U ∩ K.
Choose δ > 0 such that κ1 − δ > max{κ2 + δ, ζ}. Write

PΓ|Y (U | YT ) =
1 +

∫
Uc eT φ̂(Γ)ΠΓ(dΓ)∫
U e

T φ̂(Γ)ΠΓ(dΓ)

−1

≥

1 +
∫
Kc eT φ̂(Γ)ΠΓ(dΓ) +

∫
Uc∩K e

T φ̂(Γ)ΠΓ(dΓ)∫
V e

T φ̂(Γ)ΠΓ(dΓ)

−1

.

Assumptions (i) and (iv) imply that the following three inequalities hold w.p.a. 1:

inf
Γ∈V

φ̂(Γ) > κ1 − δ, sup
Γ∈Uc∩K

φ̂(Γ) < κ2 + δ, sup
Γ∈Kc

φ̂(Γ) < ζ.

We then have

PΓ|Y (U | YT ) ≥
(

1 +
∫
Kc eζTΠΓ(dΓ) +

∫
Uc∩K e

(κ2+δ)TΠΓ(dΓ)∫
V e

(κ1−δ)TΠΓ(dΓ)

)−1

≥
(

1 + eζT + e(κ2+δ)T

ΠΓ(V)e(κ1−δ)T

)−1

w.p.a. 1. Since ΠΓ(V) > 0 by assumption (v), and κ1 − δ > max{κ2 + δ, ζ}, I conclude that
PΓ|Y (U | YT ) p→ 1 as T →∞.

C.6.4 Proof of Lemma 3

The proof closely follows the steps in Dunsmuir & Hannan (1976, Sec. 3) for proving con-
sistency of the Whittle maximum likelihood estimator in a reduced-form identified VARMA
model. Note that the only properties of the data generating process used in Dunsmuir &
Hannan (1976, Sec. 3) are covariance stationarity and ergodicity for second moments, as in
Assumption 3. Dunsmuir & Hannan also need T−1yty

′
t+T−k

p→ 0 for fixed t and k, which
follows from Markov’s inequality under covariance stationarity. Where Dunsmuir & Hannan
(1976) appeal to almost sure convergence, I substitute convergence in probability.

Define the normalized log likelihood ratio

φ̂(β,Σ) = T−1 log
pWβ,Σ(YT | β,Σ)
pWβ,Σ(YT | β0,Σ0) .
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By the Kolmogorov-Szegö formula, for any (β,Σ) ∈ Bn,q × Sn,

1
2π

∫ π

−π
log det(f̃(ω; β,Σ)) dω = log det(Σ)− n log(2π). (C.2)

Hence,

φ̂(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

4π

∫ π

−π
tr
{

[f̃(ω; β0,Σ0)−1 − f̃(ω; β,Σ)−1]Î(ω)
}
dω. (C.3)

Define also the function

φ(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

4π

∫ π

−π
tr{In − f̃(ω; β,Σ)−1f̃(ω; β0,Σ0)} dω.

φ(β,Σ) is continuous. By the argument in Dunsmuir & Hannan (1976, p. 342) (see
also Brockwell & Davis, 1991, Prop. 10.8.1, for the univariate case), we have φ(β,Σ) ≤
φ(β0,Σ0) = 0 for all (β,Σ) ∈ Bn,q × Sn, with equality if and only if (β,Σ) = (β0,Σ0).

The remainder of the proof verifies the conditions of Lemma C.1 in four steps.

Step 1. I first show that there exists a neighborhood K of (β0,Σ0) in Bn,q × Sn such that

sup
(β,Σ)∈K

|φ̂(β,Σ)− φ(β,Σ)| = op(1). (C.4)

By definition of the Wold decomposition of a time series with a non-singular spectral den-
sity, all the roots of z 7→ det(Φ(β0; z)) lie strictly outside the unit circle. f̃(ω; β,Σ)−1 =
Φ(β; eıω)−1′Σ−1Φ(β; e−ıω)−1 is therefore uniformly continuous in (ω, β,Σ) for all ω ∈ [−π, π]
and (β,Σ) in a small neighborhood of (β0,Σ0). Denoting this neighborhood by K, the
discussion around Lemma 1 in Dunsmuir & Hannan (1976, p. 350) implies (C.4).

Step 2. For any (β,Σ) ∈ Bn,q × Sn and z ∈ C, define the adjoint of Φ(β; z) as

Φadj(β; z) = Φ(β; z)−1 det(Φ(β; z)),

so f̃(ω; β,Σ) = | det(Φ(β; e−ıω))|2Φadj(β; e−ıω)−1ΣΦadj(β; e−ıω)−1∗. The elements of Φadj(β; z)
are polynomials in z, each polynomial of order at most κ ≤ q(n− 1) (Dunsmuir & Hannan,
1976, p. 354). Write the matrix polynomial as Φadj(β; z) = In + ∑κ

`=1 βadj,`z
`, and define

Φ̃adj(β) = (∑κ
`=1 ‖βadj,`‖2)1/2.
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Now define, for δ ≥ 0,

f̃δ(ω; β,Σ) = (| det(Φ(β; e−ıω))|2 + δ)Φadj(β; e−ıω)−1ΣΦadj(β; e−ıω)−1∗,

φ̂δ(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

4π

∫ π

−π
tr
{

[f̃(ω; β0,Σ0)−1 − f̃δ(ω; β,Σ)−1]Î(ω)
}
dω,

and

φδ(β,Σ) = 1
2 log det(Σ0Σ−1) + 1

4π

∫ π

−π
tr{In − f̃δ(ω; β,Σ)−1f̃(ω; β0,Σ0)} dω.

Because Î(ω) is positive semidefinite for each ω ∈ [−π, π], we have φ̂(β,Σ) ≤ φ̂δ(β,Σ) for all
(β,Σ) ∈ Bn,q × Sn and δ > 0.

Finally, for any c1, c2, c3 > 0, define the set

K̃(c1, c2, c3) = {(β,Σ) ∈ Bn,q × Sn : λmin(Σ) ≥ c1, ‖Σ‖ ≤ c2, Φ̃adj(β) ≤ c3},

where λmin(Σ) is the smallest eigenvalue of Σ.
The discussion surrounding Lemma 1 in Dunsmuir & Hannan (1976, p. 350) then gives

sup
(β,Σ)∈K̃(c1,c2,c3)

|φ̂δ(β,Σ)− φδ(β,Σ)| = op(1),

for any c1, c2, c3 > 0. Because φδ(β,Σ) is continuous in (β,Σ, δ) at (β = β0,Σ = Σ0, δ = 0),
and φ(β,Σ) = φδ=0(β,Σ) is uniquely maximized at (β0,Σ0),

inf
δ>0

sup
(β,Σ)/∈K

φδ(β,Σ) < φ(β0,Σ0) = 0.

I conclude that there exist δ > 0 and ζ < 0 such that, for all c1, c2, c3 > 0,

sup
(β,Σ)∈K̃(c1,c2,c3)∩Kc

φ̂(β,Σ) ≤ sup
(β,Σ)∈K̃(c1,c2,c3)∩Kc

φ̂δ(β,Σ) ≤ ζ + op(1).

Step 3. Let ζ be the scalar found in the previous step. The proof of Theorem 4(i) in
Dunsmuir & Hannan (1976, pp. 354–355) (see also the beginning of the proof of their
Theorem 3, pp. 352–353) shows that there exist c1, c2, c3 > 0 such that

sup
(β,Σ)∈(Bn,q×Sn)∩K̃(c1,c2,c3)c

φ̂(β,Σ) ≤ ζ.
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Step 4. Steps 1–3 imply that the sufficient conditions in Lemma C.1 hold. I conclude that
PW
β,Σ|Y (Ũ | YT ) p→ 1 for any neighborhood Ũ of (β0,Σ0) in Bn,q × Sn.

Remark. Finally, I prove an assertion in Appendix A.4.2: Lemma 3 holds for the dis-
cretized Whittle likelihood that replaces integrals (2π)−1 ∫ π

−π g(ω) dω in the definition of
log pWY |β,Σ(YT | β,Σ) with sums T−1∑T−1

k=0 g(ωk), ωk = 2πk/T .
The proof of Theorem 4(ii) of Dunsmuir & Hannan (1976, p. 356) shows that steps

1–3 above carry through if the integral in expression (C.3) is replaced with a discretized
sum. The only other effect of discretizing the integrals in the Whittle likelihood is that the
discretized version of the Kolmogorov-Szegö formula (C.2) does not hold exactly. Instead,

T−1
T−1∑
j=0

log det(f̃(ωj; β,Σ)) = log det(Σ)− n log(2π) + T−1
T−1∑
j=0

log | det(Φ(β; e−ıωj ))|2.

The posterior consistency result for the discretized Whittle posterior follows from steps 1–4
above if I show

T−1∑
j=0

log | det(Φ(β; e−ıωj ))|2 ≤ 2nq log 2 (C.5)

for all (β,Σ) ∈ Bn,q × Sn, and furthermore,

T−1∑
j=0

log | det(Φ(β; e−ıωj ))|2 = op(1) (C.6)

uniformly in a small neighborhood of (β0,Σ0) in Bn,q × Sn.
For any β ∈ Bn,q and z ∈ C, write det(Φ(z; β)) = det(In +∑q

`=1 β`z
`) = ∏nq

b=1(1− ab(β)z)
for some complex scalars {ab(β)}1≤b≤nq that depend on β and satisfy |ab(β)| < 1 (Brockwell
& Davis, 1991, p. 191). From the Taylor series log(1 − z) = −∑∞s=1 z

s/s (valid for z ∈ C
inside the unit circle) we get, for all β ∈ Bn,q,

T−1∑
k=0

log det(Φ(e−ıωk ; β)) = −
T−1∑
k=0

nq∑
b=1

∞∑
s=1

(ab(β)e−ıωk)s
s

= −
nq∑
b=1

∞∑
s=1

(ab(β))s
s

T−1∑
k=0

e−ıωks.

Since ∑T−1
k=0 e

−ıωks equals T when s is an integer multiple of T , and equals 0 otherwise,

T−1∑
k=0

log det(Φ(e−ıωk ; β)) = −
nq∑
b=1

∞∑
s=1

(ab(β))sT
s

=
nq∑
b=1

log
(
1− (ab(β))T

)
.
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Hence,

T−1∑
k=0

log | det(Φ(e−ıωk ; β))|2 =
T−1∑
k=0

log det(Φ(e−ıωk ; β)) +
T−1∑
k=0

log det(Φ(e−ıωk ; β)∗)

=
nq∑
b=1

log
∣∣∣1− (ab(β))T

∣∣∣2
≤ nq log 4,

where the inequality uses |1− (ab(β))T | < 2. Claim (C.5) follows. For β in a small neighbor-
hood of β0, maxb |ab(β)| is uniformly bounded away from 1. This implies claim (C.6).

References
Beaudry, P. & Portier, F. (2014). News-Driven Business Cycles: Insights and Challenges. Journal

of Economic Literature 52(4), 993–1074.

Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods (2nd ed.). Springer
Series in Statistics. Springer.

Dunsmuir, W. & Hannan, E. J. (1976). Vector Linear Time Series Models. Advances in Applied
Probability 8(2), 339–364.

Durbin, J. & Koopman, S. (2012). Time Series Analysis by State Space Methods (2nd ed.). Oxford
Statistical Science Series. Oxford University Press.

Fernald, J. (2014). A Quarterly, Utilization-Adjusted Series on Total Factor Productivity. Federal
Reserve Bank of San Francisco Working Paper No. 2012-19.

Forni, M., Gambetti, L. & Sala, L. (2014). No News in Business Cycles. Economic Journal 124(581),
1168–1191.

Geweke, J. (2010). Complete and Incomplete Econometric Models. The Econometric and Tinbergen
Institutes Lectures. Princeton University Press.

Ghosh, J. K. & Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. Springer.

Hannan, E. (1970). Multiple Time Series. Wiley Series in Probability and Statistics. John Wiley
& Sons.

Hoffman, M. D. & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15, 1593–1623.

Lippi, M. & Reichlin, L. (1994). VAR analysis, nonfundamental representations, Blaschke matrices.
Journal of Econometrics 63(1), 307–325.

32



Lopes, H. F. & Tobias, J. L. (2011). Confronting Prior Convictions: On Issues of Prior Sensitivity
and Likelihood Robustness in Bayesian Analysis. Annual Review of Economics 3(1), 107–131.

Magnus, J. & Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics (3rd ed.). Wiley Series in Probability and Statistics. John Wiley & Sons.

Müller, U. K. (2012). Measuring prior sensitivity and prior informativeness in large Bayesian
models. Journal of Monetary Economics 59(6), 581–597.

Neal, R. M. (2011). MCMC Using Hamiltonian Dynamics. In S. Brooks, A. Gelman, G. L. Jones, &
X.-L. Meng (Eds.), Handbook of Markov Chain Monte Carlo, Handbooks of Modern Statistical
Methods, Ch. 5, 113–162. CRC Press.

Rubin, D. B. (1988). Using the SIR algorithm to simulate posterior distributions. In J. M. Bernardo,
M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian Statistics 3, 395–402. Oxford
University Press.

Sims, E. R. (2012). News, Non-Invertibility, and Structural VARs. In N. Balke, F. Canova,
F. Milani, & M. A. Wynne (Eds.), DSGE Models in Macroeconomics: Estimation, Evaluation,
and New Developments, Vol. 28 of Advances in Econometrics, 81–135. Emerald Group Publishing.

Stan Development Team (2015). Stan Modeling Language Users Guide and Reference Manual,
Version 2.8.0.

Stock, J. H. & Watson, M. W. (2012). Disentangling the Channels of the 2007–09 Recession.
Brookings Papers on Economic Activity (Spring), 81–135.

33


	Simulation study
	Parameters, prior, and simulation settings
	Baseline results
	Misspecified priors
	MCMC diagnostics

	Application: Additional results and discussion
	Data construction
	Long-run responses
	Economic significance of noninvertibility
	Inference about shocks
	Prior sensitivity
	Posterior predictive analysis
	Comparison with the literature
	Consistency check with simulated data

	Exact likelihood and reweighting
	Kalman filter
	Reweighting

	Hamiltonian Monte Carlo implementation
	Initial value
	Modifications to NUTS algorithm

	Posterior consistency: Auxiliary lemma
	Supplemental proofs
	Proof of Proposition 3
	Proof of Lemma 2
	Proof of Lemma C.1
	Proof of Lemma 3

	References

