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Abstract

I show that the multicategory SVM (MSVM) of Lee, Yin and Wahba (2004) is equivalent to
the Simplex Cone SVM of Mroueh, Poggio, Rosasco and Slotine (2012). This allows me to provide
finite-dimensional kernel asymptotics for MSVM and to partially answer the open question relating
to the very competitive performance of the seemingly more naive One-vs-Rest method against
MSVM. In particular, I give a Donsker theorem for MSVM along with an asymptotic covariance
formula having a sample analog, and I display a case in which the One-vs-Rest procedure is strictly
more accurate than MSVM, in expectation, for out-of-sample prediction. Furthermore, I use the
obtained covariance formula to develop a variance-weighted classification rule which improves the
traditional One-vs-Rest approach.

1 Introduction

Support vector machines (SVM) is a well established algorithm for classification with two categories
(Vapnik (1998), Smola and Schölkopf (1998), Steinwart and Christmann (2008), Friedman et al.
(2009)). The method, detailed in the appendix, finds the maximum margin separating hyperplane; it
finds the hyperplane dividing the input space (perhaps after mapping the data to a higher dimensional
space) into two categories and maximizing the minimum distance from a point to the hyperplane.
SVM can also be adapted to allow for imperfect classification, in which case we speak of soft margin
SVM (see appendix).

Given the success of SVM at binary classification, many attempts have been made at extending the
methodology to accommodate classification with K > 2 categories. Each of these can be understood
as subscribing to one of two broad approaches. The first approach consists in doing multicategory
classification using the standard, binary SVM. For instance, the popular One-vs-Rest approach works
as follows: to predict the category of a point in a test set (i.e. out of sample), run K binary SVMs
where the first category is one of the original K categories, and the second category is the union of
of the remaining K − 1 categories. The predicted category is the one that was picked against all
others with the greatest “confidence”. In practice, the confidence criteria used is the distance of the
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test point to the separating hyperplane. The second approach consists in generalizing the standard
SVM to develop a single machine which implements multicategory classification solving a single, joint
optimization problem. We call such algorithms multicategory support vector machines (MSVM). Many
such algorithms have been suggested (Weston and Watkins (1999), Crammer and Singer (2002), Lee
et al. (2004)). Intuition would suggest that joint optimization would make for a more statistically
efficient procedure, and for superior out-of-sample prediction performance.

Two interesting and important observations emerge from a study of these multicategory classifica-
tion methods. First, in a quite counterintuitive turn of events, it is widely observed in practice that
multicategory classification with binary machines offers a performance (for instance, in out of sample
classification) which is competitive with, and sometimes superior to, that of MSVM algorithms. This
phenomenon is widely acknowledged (Rifkin and Klautau (2004)) but very little theory has been put
forth to explain it. Second, in a One-vs-Rest implementation, it is apparent that assessing the “con-
fidence” of classification into a given category (against the the category formed by the union of the
remaining categories) using the distance of the test point to the separating hyperplane is inefficient,
in the sense that relevant information is foregone. Very intuitively, having a point that is far from
a hyperplane, but where the hyperplane is extremely variable, ought to make for a less “confident”
classification than having a point which is not as deep within its predicted category, but where the
separating hyperplane is very stable.

Amongst the available MSVM agorithms, I focus on the one by Lee et al. (2004). It is a most
natural generalization of the standard, binary SVM and it is Fisher consistent (i.e. the classification
rule it produces converges to the Bayes rule), which is a key property and motivation for the use
standard SVM. Naturally, it encompasses standard SVM as a special case.

In their article, Lee, Yin, and Wahba (2004) convincingly establish the good properties of their
MSVM algorithm. However, the algorithm has not been widely used in application, nor has it been
studied from a statistical perspective the way SVM has been. Indeed, three major publications (Jiang
et al. (2008), Koo et al. (2008), Li et al. (2011)) have established Donsker theorems for SVM, and none
have done so for MSVM. The reason for this is that the optimization problem which MSVM consists
of is done under a sum-to-zero constraint on the vector argument. This makes both the numerical
optimization task and the statistical asymptotic analysis of the estimator more difficult.

The issue is that Lee et al. (2004) encode categories with K-tuples, to give a natural indexing.
However, the output space is K − 1 dimensional, whence the additional linear restriction (see section
2).

This motivates the use of a different encoding of the categories. A desirable encoding does away
with the extraneous restriction while remaining interpretable and has an intuitive relationship to the
original encoding. Mroueh et al. (2012) propose an interpretable, K − 1 dimensional encoding and
suggest that it yields a loss function which is similar to that of the MSVM of Lee et al. (2004). In this
article, I show that both loss functions are in fact exactly equivalent, and that the equivalence of the
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two encodings can be intuited through a notion of maximum volume.
With this equivalent reformulation of the MSVM of Lee, Yin, and Wahba (2004), I can overcome the

computational and analytical problems encumbering MSVM in its standard encoding. In particular, I
give a Donsker theorem for MSVM.

Furthermore, this result in turn makes available analytical tools to tackle the two aforementioned
open problems: first, I suggest a better assessment of “confidence” for One-vs-Rest schemes. I give
closed form formulae allowing for the computations of a more efficient notion of distance. The idea is
to normalize the distance to the hyperplane by the variance of the hyperplane.

The variance formulae I provide are also valid for the special case of binary SVM. To the best of my
knowledge, this article is the first to explicitly and correctly1 give asymptotic covariance formulae for
SVM (even for K = 2) which have sample analogs. In certain applications, these covariance formulae
may nevertheless be challenging to estimate. In separate work (Pouliot (2015)) I give a fast bootstrap
algorithm circumventing the estimation difficulties.

Second, I get an analytical characterization of the superior performance of One-vs-Rest. I exhibit
a case in which the One-vs-Rest procedure is strictly more statistically efficient than MSVM, thus
providing some theoretical explanation for the so far flummoxingly good comparative performance of
One-vs-Rest.

The remainder of the paper is divided as follows. Section 2 details the equivalence of MSVM ans SC-
SVM. Section 3 explores the implications for statistical asymptotic analysis, and suggests a studentized
notion of distance for multicategory classification. Section 4 gives an analytical characterization of
the comparative performance of One-vs-Rest with MSVM. Section 5 concludes and discusses related
research. The appendix includes background material on SVM as well as deferred mathematical
derivations.

2 Equivalence

The multicategory SVM (MSVM) of Lee et al. (2004) is the more elegant and natural generalization
of SVM to multicategory data. However, its implementation, even for moderate size data sets, is
complicated by the presence of a sum constraint on the vector argument.

The simplex encoding of Mroueh et al. (2012) is conceptually attractive and is relieved of the linear
constraint on the vector argument. However, I believe the simplex encoding is not more widely used
because practitioners do not know what standard encoding it corresponds to. This article addresses
precisely that issue, making it of practical interest for analysts and researchers using MSVM methods.

With K categories, the data is of the form (xi, yi) ∈ Rp × {1, ...,K}, i = 1, ..., N . When carrying
out multicategory classification, different choices of encodings of the category variables yi lead to

1(Li et al. (2011)) is the only other paper providing them, albeit incorrectly. The expectation in the third display of
p. 17 should be conditional on y. They provide no derivations.

3



optimization problems that are differently formulated and implemented.
For their multicategory SVM (MSVM), Lee et al. (2004) encode a yi associated with category

k ∈ {1, ...,K} as a K-tuple with 1 in the kth entry and −1
K−1 in every other entry. For instance,

”y in category 2”⇔ y =

(
−1

K − 1
, 1,

−1

K − 1
, · · · , −1

K − 1

)
.

The loss function they suggest is then based on the difference between the decision function and the
encoded y. Specifically, in the case of finite-dimensional feature maps, they suggest minimizing

1

n

n∑
i=1

L(yi) · [Wxi + b− yi]+ +
λ

2
|||W |||, (1)

where |||W ||| = trace(WTW ), and L(yi) = 1K − eyi is a vector that has 0 in the kth entry when yi
designates category k, and a 1 in every other entry. Importantly, the decision function is constrained
to sum to zero, i.e. 1Tk (Wx+ b) = 0, ∀ x. The function [·]+applies pointwise to its vector argument.

Mroueh et al. (2012) preconize an encoding that does away with the sum-to-zero constraint. The
loss function they suggest is based on the inner product between the decision function and their
encoding of y. Likewise in the finite-dimensional case, the penalized minimization problem entailed by
their loss function is

1

n

n∑
i=1

∑
y′ 6=y

[
1

K − 1
+
〈
cy′ , W̃xi + b̃

〉]
+

+
λ̃

2
|||W̃ |||, (2)

where cy is a unit vector in RK−1 which encodes the response; it is a row of a simplex coding matrix,
which is the key building block of their construction.

A simplex coding matrix (Mroueh et al. (2012); Pires et al. (2013)) is a matrix C ∈ RK×(K−1)

such that its rows ck satisfy (i) ‖ck‖22 = 1; (ii) cTi cj = − 1
K−1 for i 6= j ; and (iii)

∑K
k=1 ck = 0K−1. It

encodes the responses as unit vectors in RK−1 having maximal equal angle with each other. Further
note that, because its domain is a (K − 1)-dimensional subspace of RK , any given C has a unique
inverse operator C̃ defined on the image {x ∈ RK : 1TKx = 0}.

For a given choice of simplex encoding defined by C, the operator C : RK−1 → RK can be thought
of as mapping decision functions and encoded y’s from the unrestricted simplex encoding space to the
standard, restricted encoding space used by Lee et al. (2004).

A natural question is then: if f(x) = Wx + b and f̃(x) = W̃x + b̃ are solutions to (1) and (2),
respectively, are C̃ (Wx+ b) and C(W̃x + b̃) then solutions to (2) and (1), respectively? I show that
this is in fact the case. That is, both problems are exactly equivalent.

I now show the problems are equivalent. The equivalence of the loss functions is trivial. Indeed, it
is immediate that
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∑
y′ 6=y

[
fy′(x) +

1

K − 1

]
+

=
∑
y′ 6=yi

[(
Cf̃(x)

)
y′

+
1

K − 1

]
+

=
∑
y′ 6=yi

[〈
cy′ , f̃(x)

〉
+

1

K − 1

]
+

, (3)

which is exactly the SC-SVM loss of Mroueh et al. (2004). Writing out f and f̃ as linear functions,
the identity becomes

∑
y′ 6=y

[
ωy′x+ by′ +

1

K − 1

]
+

=
∑
y′ 6=yi

[〈
cy′ , W̃x+ b̃

〉
+

1

K − 1

]
+

(4)

with f(x) = Wx+ b and f̃(x) = W̃x+ b̃, and ωy′ is the (y′)th row of W .
Equality (up to a change of tuning parameter) of the penalty relies on the only nontrivial observation

of this exercise, which is that CTC is the diagonal matrix K
K−1IK−1. It then immediately follows that

K − 1

K
trace

(
W̃TW̃

)
=
K − 1

K
trace

(
WTCTCW

)
= trace

(
WTW

)
. (5)

In conclusion, we have

1

n

n∑
i=1

L(yi) · [Wxi + b− yi]+ +
λ

2
|||W |||

=
1

n

n∑
i=1

∑
y′ 6=y

[
1

K − 1
+
〈
c′y, W̃x+ b̃

〉]
+

+
λ(K − 1)

2K
|||W̃ |||, (6)

as desired.
We now prove the key linear algebra result. There are other ways (see remarks below) to prove

this result. In particular, a streamlined functional analysis proof can be given. However, it is desirable
to establish the equivalence between the more practical encoding and the more interpretable one in
an intuitive way.2 The geometric proof given below accomplishes this by establishing the equivalence
through a volume preservation argument.

Proposition

Let C ∈ RK×(K−1) be a simplex coding matrix. Then its columns are orthogonal and have norm√
K
K−1 .
Proof
The key observation (Gantmacher [5], vol. 1, p.251) is that

V =
√
G, (7)

2I would like to thank Lorenzo Rosasco for this motivation.
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where V = V (C) is the volume of the parallelipiped spanned by the columns of C, and G = G(C) is the
Grammian of C. The Grammian (defined below) extends the notion of volume to objects determined
by more vectors than the space they are embedded in has dimensions.

Let C·i denote the ith column of C, and recall that |||C||| denotes the sum of the squared entries
of C. Note that V ≤ ‖C·1‖ · · · · ·

∥∥C·(K−1)

∥∥, which holds with equality if and only if all columns are

mutually orthogonal. Further note that ‖C·1‖ · · · · ·
∥∥C·(K−1)

∥∥ ≤ (√ |||C|||K−1

)K−1

=
(

K
K−1

)K−1
2

, which

holds with equality if and only if ‖C·i‖ =
√

K
K−1 , i = 1, ...,K − 1. Hence, if G =

(
K
K−1

)K−1

, it must
be that the statement of the proposition is true.

We compute the Grammian. By Gantmacher (1959),

G(C) =

K∑
i=1

det2 (C−i·) , (8)

where C−i· is C with the ith row removed. Noting that C−i·CT−i· is a circulant matrix and using the
relevant determinant formula, we find that

∑K
i=1 det

(
C−i·C

T
−i·
)

= K · det


1 − 1

K−1

. . .

− 1
K−1 1


= K ·

∏K−2
j=0

(
1− 1

K−1

∑K−2
m=1

(
e

2πij
K−1

)m)
= K ·

(
1− K−2

K−1

)
·
∏K−2
j=1

(
1− 1

K−1

∑K−2
m=1

(
e

2πij
K−1

)m)
= K ·

(
1

K−1

)
·
∏K−2
j=1

(
1 + 1

K−1

)
= K ·

(
1

K−1

)
·
(

K
K−1

)K−2

=
(

K
K−1

)K−1

,

which proves the claim.
Note that we have used the orthogonality of the complex exponential basis,

n−1∑
m=0

e
2πijm
n =

{
n, j mod n = 0

0, o.w.
.

�
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Remark 1

The result of the proposition holds for a more general simplex matrix C ∈ RK×D, 0 < D < K, having
rows of equal norm and maximal equal angle between them.

Remark 2

A different argument of a more algebraic geometry flavor can be given, which suggests the choice of a
canonical C. GivenK, there exists a simplex coding matrix C such that pairwise coordinate projections
(i.e. projections on a plane spanned by two distinct standard basis vectors) yield equidistant points
around a circle (“a pie with equal sized slices”). This is trivial for K = 3, and geometrically obvious for
K = 4. Call such a simplex coding matrix a canonical coding matrix. From this geometric observation,
the orthogonality of the columns readily follows: for any two disctinct columns of C, say C·i, C·j , i 6= j,
we have that

〈C·i, C·j〉 =

K∑
t=1

cos

(
tπ

K/2

)
sin

(
tπ

K/2

)
=

1

2

K∑
t=1

sin

(
tπ

K/4

)
= 0.

The length of the columns can be established as in the proof of the Proposition. Furthermore, and
somewhat surprisingly, we can go the other way and construct C from the condition on its pairwise
coordinate projections (Chan (2013)).

Remark 3

The equivalence of MSVM and SC-SVM immediately generalizes to the infinite-dimensional kernel
case. The representer theorem yieds that fj(x) = bj +

∑n
i=1 aijK(xi, x) for j = 1, ...,K with sum-to-

zero constraint. Then (3) holds in the same notation. Letting A denote the matrix with (i, j) entry
aij and K the matrix with (i, j) entry K(xi, xj), the penalty equivalence follows from observing that

trace(ATKA) = trace(CÃTKÃCT ) = trace(CTCÃTKÃ) =
K

K − 1
trace(ÃTKÃ).

We then get, again, equality of the objective functions up to the tuning parameter.

3 Donsker Theorem

By considering MSVM as penalized M -estimator, one can in principle work out its asymptotic dis-
tribution. In (2), under simplex enconding, MSVM is phrased an unconstrained M -estimator, and
the asymptotic distribution for the estimated coefficients can be obtained using standard empirical
process theory (Van der Vaart, 2000). The expression for the covariance matrices presented below
are novel and of practical use. To the best of my knowledge, if a practitioner wants to compute the
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asymptotic covariance matrix of SVM or MSVM, this article is the only ressource displaying worked
out expressions with sample analogs.3

One readily obtains a standard central limit theorem result of the form

√
n
(

ˆ̃Θn − Θ̃∗
)

d→ N(0, H−1
MultiΩMultiH

−1
Multi), (9)

where Θ̃ = (vec(W̃ )T , b̃)T , the information matrix ΩMulti is

E

∑
y′ 6=y

cTy′1
{〈
cy′ , f̃

〉
≥ −ã

}∑
y′ 6=y

cy′1
{〈
cy′ , f̃

〉
≥ −ã

}⊗ ((xT , 1)T (xT , 1)
)
,

and the Hessian HMulti is

Ey

∑
y′ 6=y

((
cTy′cy′

)
p
(
−
〈
cy′ , b̃

〉
− ã
)
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣〈cy′ , f̃〉 = −ã, y
]) .

Both are evaluated at Θ̃∗, f̃ = f̃(x), and ã = 1
K−1 , and p = p 〈cy′ ,W̃x+b̃〉|y is the density of

〈
cy′ , f̃

〉
conditional on y. Derivations are deferred to the mathematical appendix.

SVM are most commonly used for classification and prediction tasks. Accordingly, the most im-
mediate practical use for standard errors for the separating hyperplane is to allow for the construction
of a better classification function.

Consider the One-vs-Rest method, for instance. The One-vs-Rest method fits K hyperplanes,
which in the linear case are defined by (ωi, bi) ∈ Rp+1, and categorizes a point by attributing it the
category in which it is the “deepest”. That is,

ŷnew = arg max
k

{
ω̂Tk xnew + b̂k

}
.

Pouliot (2015a) argues that studentized distances yield more sensible and reliable classifications
by accounting for the comparative uncertainty of the hyperplanes when categorizing a given point.
Accordingly, Pouliot (2015a) suggests the categorization rule

ŷ∗new = arg max
k

{
ω̂Tk xnew + b̂k√

(xTnew, 1)Σk(xTnew, 1)

}
,

where Σk is the asymptotic variance of (ω̂k, b̂k), or a consistent estimate. An analog modification can
be applied to make MSVM procedures more efficient.

3Koo et al. (2008) and Jiang et al. (2008) do not work them out.
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4 Efficiency of One-vs-Rest

Explaining the surprisingly competitive performance of the naive One-vs-Rest approach, comparatively
to the more sophisticated MSVM approach, is an important open question. The phenomenon is detailed
in Rifkin and Klautau (2004) and is well established in the machine learning folklore. However, there
are practically no theoretical results in the way of an explanation. In this section, I tackle this problem
by comparing asymptotic covariance matrices, and I display explicitly how one loss function using
more information impacts statistical efficiency.

The idea is to consider the full One-vs-Rest method as a single M -estimator and to artificially
impose a sum-to-zero constraint on the decision function. I can use the simplex encoding and obtain
the (joint) asymptotic variance of the K separating hyperplanes in the form H−1

1vsRΩ1vsRH
−1
1vsR.

Note that I pick the geometric margin to be 1
K−1 , rather than 1 in the standard form for binary

(and thus One-vs-Rest) SVM. The loss function for One-vs-Rest in simplex encoding is

K∑
k=1

(
1{y = k} ·

[
1

K − 1
−
〈
ck, W̃x+ b̃

〉]
+

+ 1{y 6= k} ·
[

1

K − 1
+
〈
ck, W̃x+ b̃

〉]
+

)
.

i = 1, ...,K, which is minimized in W̃ and b̃. The first summand penalizes classification for which the
point x is not sufficiently far from the hyperplane within the true category. This is where we speak
of using the information from a point’s “own category”. The second summand penalizes classifications
for which the point x is not sufficiently far from the hyperplane away from the wrong category. This
is where we speak of using the information from “other categories”.

The sum-to-zero constraint is added purely for analytical reasons -to make the covariance matrices
comparable- and it will be apparent that the analytical conclusion is entirely robust to this aiding
modification.

The information matrix Ω1vsR is

E
(
cTy · 1{ã−

〈
cy, f̃

〉
≥ 0}

)(
cy · 1{ã−

〈
cy, f̃

〉
≥ 0}

)
⊗ (xT , 1)T (xT , 1)

−2E
(
cTy · 1{ã−

〈
cy, f̃

〉
≥ 0}

)∑
y′ 6=y

cy′ · 1{ã+
〈
ck′ , f̃

〉
≥ 0}

⊗ (xT , 1)T (xT , 1)

+E

∑
y′ 6=y

cTy′ · 1{ã+
〈
ck, f̃

〉
≥ 0}

∑
y′ 6=y

cy′ · 1{ã+
〈
ck′ , f̃

〉
≥ 0}

⊗ (xT , 1)T (xT , 1),

and the Hessian H1vsR is
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Ey

K∑
k=1

(cTk ck)
(
1{y = k} · p

(〈
ck, b̃

〉
− ã
))
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣〈ck, f̃〉 = ã, y
]

+Ey

K∑
k=1

(cTk ck)
(
1{y 6= k} · p

(
−
〈
ck, b̃

〉
− ã
))
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣〈ck, f̃〉 = −ã, y
]
.

We get instructive comparisons. For instance, HMulti < H1vsR. That is, the one-vs-rest problem
has more “curvature” than the MSVM. This does not come from the artificial constraint. Indeed, it is
clear from inspection that this comes from the one-vs-rest procedure using information from the “own
category”, while MSVM doesn’t as it only uses information with respect to “other” categories.

In the special case of a separable data generating process (DGP), that is in the case in which
1{ã −

〈
cy, f̃

〉
≥ 0} = 0 a.s., we get that ΩMulti = Ω1vsR and both procedures have the same target

hyperplane. That is, One-vs-Rest is strictly more statistically efficient than multicategory when the
DGP is separable. In this specific case, this translates into smaller expected prediction error.

5. Discussion and conclusion

I established rigorously, and with a proof conveying geometric intuition, the equivalence of MSVM and
SC-SVM. I have argued that the unconstrained formulation of the MSVM problem thus obtained can
be a useful tool in the analytical study of multicategory classification schemes. I gave the first central
limit theorem for MSVM, along with an asymptotic covariance formula having a sample analog, which
is a new result even for binary SVM. These standard errors allow for the construction of studentized
decision functions for MSVM and One-vs-Rest procedures. These make for more reliable classification,
especially for extrapolation (Pouliot (2015a)). In separate work (Pouliot (2015b)), I develop a fast
bootstrap procedure which can be used when computation of the closed form covariance formulae is
problematic. I gave an analytical characterization of the surprisingly good performance of the One-vs-
Rest procedure, comparatively to MSVM methods, using the asymptotic distribution of the estimators.
I hope this line of inquiry will foster further research.

Appendix

A1 Support Vector Machines

The SVM story begins with supervised binary classification. The algorithm is best understood when
built incrementally: first for the separable case, then for the non-separable case, and finally rephrased
in its dual formulation to obtain a sparser set of constraints.
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The classification task undertaken with support vector machines can be described as follows. We are
given a training set {(x1, y1), ..., (xn, yn)} , where (xi, yi) ∈ Rp×{−1, 1} ∀ i, and we are trying to find
a hyperplane in Rp that separates the observations with yi = −1 from those with yi = 1. Furthermore,
we want a hyperplane that is optimal in that it maximizes the minimum distance between points and
the hyperplane (the motivation for this being that, intuitively, it should make for good out-of-sample
performance). If the hyperplane is given by ωTx + b = 0. You can check that ω must be the normal
to the hyperplane. If we require that ωTω = 1, then ωTx is the length of the projection of x onto w,
and b is the additive inverse of the distance from the origin to the hyperplane (along ω). The sum of
the two thus gives the distance from x to the hyperplane, which we call the geometric margin4,

f(x) = ωTx+ b.

Note that if x is on the correct side of the classifying hyperplane, we get f(x) > 0 and if x is on the
wrong side of the hyperplane, we get f(x) < 0. Thus sign(f(x)) is our classification rule. Furthermore,
yi(ω

Txi + b) will always be positive for correctly classified points.
Suppose, to begin with, that we have a data set which we know is separable by such a hyperplane.

This is the separable case. Then our optimization problem can be written as

max
γ,ω,β

γ

subject to

yi(ω
Tx+ b) ≥ γ, i = 1, ..., n

||ω|| = 1.

This immediately expresses the optimization we wish to carry out, but the normalizing constraint
||ω|| = 1 is non-convex (in particular, we shouldn’t plug the optimization problem as such in a “stan-
dard” optimization software).

We can instead maximize the minimum functional margin γ̂ = ωTx+b where we do not constrain
ω to have norm one. The magnitude of the functional margin is meaningless, but we can normalize it
in the objective function to get the geometric margin back, and obtain the reformulated optimization
problem

max
γ,ω,b

γ̂

||ω||

subject to
4Note that the minimal geometric margin, for a given data set, is also referred to as the geometric margin.
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yi(ω
Txi + b) ≥ γ̂, i = 1, ..., n.

This gets us rid of the non-convex constraint, but leaves us with a non-convex objective function
γ̂
||ω|| . A key observation allows us to play a little trick and circumvent this issue. Since the units of
the functional margins are arbitrary, we can fix γ̂ = 1, and minimize ||ω|| instead of maximizing 1

||ω|| ,
thus yielding a well-behaved convex optimization problem5

min
ω,b

1

2
||ω||

subject to

yi(ω
Txi + b) ≥ 1, i = 1, ..., n.

The dual of the problem will allow for an even simpler (and computationally easy) constraint, and
will inform the design of our algorithm for computing the solution.

The dual problem is

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαj 〈xi, xj〉

subject to

αi ≥ 0, i = 1, ..., n
n∑
i=1

αiyi = 0.

Three key points remain to be elucidated: the kernel, the feature map, and how to deal with the
non-separable case.

Note that in the dual in the dual formulation, the x’s come in only through their inner product. It
is thus sufficient to only know the inner products 〈xi, xj〉 , ∀ i, j.

As in the case of linear regression, we often want to allow for more flexibility for the fit than is
allowed by the attributes (the x’s) and would like instead to consider features φ(x) (e.g. products
and other nonlinear functions of variables). We call φ the feature map. We can then simply proceed
as detailed above replacing x with φ(x) everywhere.

Once again, only the inner products are necessary for the solution. We thus define the kernel
K(xi, xj) = 〈φ(xi), φ(xj)〉. In many cases of interest, the left-hand side is cheaper to compute directly
(with a closed form expression forK) than the right-hand side. As in the linear case, we can replace the

5The addition of the 1
2
coefficient to the objective function is to make the Lagrangian of the dual problem prettier.
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inner products φ(xi)
Tφ(xj) by the computationally cheaper K(xi, xj) everywhere in the optimization

problem. That is called the kernel trick.
We have presented the kernel trick as afforded by the dual representation, it is however a charac-

teristic of the solution which can be obtained directly through the representer theorem.
Furthermore, all φ give a kernel, but all positive definite kernels come from some φ. In fact, it will

often be convenient to work directly with a kernel (as an expression of closeness/angle between two
attribute xi and xj) without an explicit representation for the corresponding φ.

In general, even with a fairly flexible feature map φ, the data {(x1, y1), ..., (xn, yn)} may not be
perfectly separable6, i.e. there may not exist a hyperplane separating the observations with yi =

−1 from those with yi = 1. This is accommodated, in what is called the non-separable case, by
introducing slack variables on the functional margin, and regularizing those with an `-1 norm as
follows

min
ξ,ω,b

1

2
||ω||2 + C

n∑
i=1

ξi

subject to

yi(ω
Tφ(xi) + b) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n.

The dual problem is

max
α

W (α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjK(xi, xj)

subject to

0 ≤ αi ≤ C, i = 1, ..., n
n∑
i=1

αiyi = 0.

Note that the only difference in the dual problem from adding the regularization term in the primal
problem is the upper bound C on the Lagrange multipliers.

6Naturally, for a flexible enough φ, there will exist such a hyperplane. However, it may have very poor out-of-sample
performance.
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A2 Mathematical Appendix

I give the closed forms for HMulti and ΩMulti that have estimatable population analogues. ΩMulti is

E

[(
∂
∂ΘmMulti(Θ̃;x, y)

)(
∂
∂ΘmMulti(Θ̃;x, y)

)T]

= E
(∑

y′ 6=y
(
cy′ ⊗ (xT , 1)

)T
1
{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})(∑
y′ 6=y

(
cy′ ⊗ (xT , 1)

)T
1
{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})T
= E

((∑
y′ 6=y c

T
y′1
{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})
⊗ (xT , 1)T

)((∑
y′ 6=y c

T
y′1
{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})
⊗ (xT , 1)T

)T
= E

((∑
y′ 6=y c

T
y′1
{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})
⊗ (xT , 1)T

)((∑
y′ 6=y cy′1

{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})
⊗ (xT , 1)

)
= E

(∑
y′ 6=y c

T
y′1
{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})(∑
y′ 6=y cy′1

{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

})
⊗
(
(xT , 1)T (xT , 1)

)
,

evaluated at Θ̃∗.
HMulti is ∂2

∂Θ2EmMulti(Θ̃;x, y)

= δ
δθE

∑
y′ 6=y

δ
δθ

[〈
cy′ , W̃x+ b̃

〉
+ 1

K−1

]
+

= Ey

[
δ
δθE

[∑
y′ 6=y

(
cy′ ⊗ (xT , 1)

)T
1
{〈
cy′ , W̃x+ b̃

〉
≥ − 1

K−1

}
|y
]]

= Ey

[
E
[∑

y′ 6=y
(
cy′ ⊗ (xT , 1)

)T (
cy′ ⊗ (xT , 1)

)
δ
{〈
cy′ , W̃x+ b̃

〉
= − 1

K−1

}
|y
]]

= Ey

[
E〈cy′ ,W̃x+b̃〉

[∑
y′ 6=y δ

{〈
cy′ , W̃x+ b̃

〉
= − 1

K−1

}
E
[(
cy′ ⊗ (xT , 1)

)T (
cy′ ⊗ (xT , 1)

) ∣∣∣〈cy′ , W̃x+ b̃
〉]
|y
]]

= Ey

[´ ∑
y′ 6=y δ

{〈
cy′ , W̃x+ b̃

〉
= − 1

K−1

}
E
[(
cy′ ⊗ (xT , 1)

)T (
cy′ ⊗ (xT , 1)

) ∣∣∣〈cy′ , W̃x+ b̃
〉
, y
]
fd(
〈
cy′ , W̃x+ b̃

〉
)
]

= Ey

[∑
y′ 6=y E

[(
cy′ ⊗ (xT , 1)

)T (
cy′ ⊗ (xT , 1)

) ∣∣∣〈cy′ , W̃x+ b̃
〉

= − 1
K−1 , y

]
f
(
−
〈
cy′ , b̃

〉
− 1

K−1

)]
= Ey

[∑
y′ 6=y E

[(
cTy′cy′

)
⊗
(
(xT , 1)T (xT , 1)

) ∣∣∣〈cy′ , W̃x+ b̃
〉

= − 1
K−1 , y

]
f
(
−
〈
cy′ , b̃

〉
− 1

K−1

)]
= Ey

[∑
y′ 6=y

((
cTy′cy′

)
f
(
−
〈
cy′ , b̃

〉
− 1

K−1

)
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣〈cy′ , W̃x+ b̃
〉

= − 1
K−1 , y

])]
,

evaluated at Θ̃∗, where f = f 〈cy′ ,W̃x+b̃〉|y is the density of
〈
cy′ , W̃x+ b̃

〉
conditional on y.

To obtain the asymptotic distribution for the hyperplanes in the original encoding of Lee et al.
(2004), on needs the covariance matrix CH−1

MultiΩMultiH
−1
MultiC

T , which is readily obtained after ob-
serving that
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C

Ey
∑
y′ 6=y

(
cTy′cy′f

(
−
〈
cy′ , b̃

〉
− 1

K − 1

)
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣∣〈cy′ , W̃x+ b̃
〉

= − 1

K − 1
, y

])−1

= C

Ey
∑
y′ 6=y

(
cTy′cy′C

T
(
CCT

)−1
f

(
−
〈
cy′ , b̃

〉
− 1

K − 1

)
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣∣〈cy′ , W̃x+ b̃
〉

= − 1

K − 1
, y

])−1

=

Ey
∑
y′ 6=y

(
cTy′y

T
(
CCT

)−1
f

(
−
〈
cy′ , b̃

〉
− 1

K − 1

)
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣∣〈cy′ , W̃x+ b̃
〉

= − 1

K − 1
, y

])−1

=

Ey
∑
y′ 6=y

(
cTy′eyf

(
−
〈
cy′ , b̃

〉
− 1

K − 1

)
⊗ E

[
(xT , 1)T (xT , 1)

∣∣∣∣〈cy′ , W̃x+ b̃
〉

= − 1

K − 1
, y

])−1

,

where ei is the ith standard basis vector.
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