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The evolution of human cognition

Abstract

The evolution of human cognition presents a number of empirical puzzles. Why did
humans evolve cognitive biases, behaviors that cause systematic errors in judgement?
Why are humans the only animal species to cooperate in very large groups of non-
kin? And what accounts for the consistent emergence of egalitarian social norms in
evolutionarily relevant foragers and likely in most ancestral humans? In this disserta-
tion, I present three evolutionary models of human cognition that set out to explain
these and other puzzles from plausible first principles. An overarching theme of the
three studies is that integrating the social component of ancestral human decision-
making into traditional evolutionary models, which primarily focus on individual
decision-making, may be essential for successfully explaining the various evolutionary
puzzles posed by human cognition.
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0
Introduction

Human cognition poses a number of evolutionary puzzles:

1. Why did humans evolve cognitive biases, behaviors that cause systematic errors

in judgement?234

2. Why are humans the only animal species to cooperate in very large groups of

non-kin?29
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3. What accounts for the consistent emergence of egalitarian social norms in evo-

lutionarily relevant foragers, and likely, in most ancestral humans?19,63,127

In this dissertation, I present mathematical evolutionary models—constructed by my-

self and my collaborators—that set out to explain these behavioral patterns from

plausible first principles. I argue that incorporating the social element of ancestral hu-

mans’ decision-making—into traditional evolutionary models that are more centered

on individual decision-making—is crucial for causally explaining the aforementioned

empirical puzzles. This dissertation thereby represents an effort to understand the

evolutionary roots of human cognition, cooperation, and social norms in an intercon-

nected way.

0.1 First evolutionary puzzle of human behavior: Cognitive biases

The Cultural Brain Hypothesis posits that adaptive, socially exchanged, and inter-

generationally accumulated knowledge comprised the primary selection pressure on

ancestral human cognition10,90,103,126,160,163,193,223,237,244. In other words, the ancestral

humans who tended to survive were not those who were better at learning from their

individual observations; they were those who were better at learning knowledge from

their fellow group members. This was true because learning knowledge from group

members entailed learning from their ancestors’ knowledge: from the group’s inter-

generationally accumulated culture. Over time, this culture tends to become more

adaptive (at least in the local environment) because the best knowledge is more likely

to be obtained, retained, and passed on to the next generation. This overall stochastic

process is called cumulative cultural evolution.

At the moment, arguably the most influential paradigm for the evolution of human
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cognition is not the Cultural Brain Hypothesis, but a competing theory: the Machi-

avellian Intelligence Hypothesis35. This hypothesis posits that human cognition’s

unprecedented characteristics—its unusual complexity, adaptability, and propensity

to cooperate—evolved primarily due to selection pressures favoring better strategic

thinking, rather than those favoring the accumulation of adaptive knowledge.

However, the Machiavellian Intelligence Hypothesis cannot explain why humans

have evolved to make cognitively biased decisions even in fitness-relevant domains.

When learning from high-variance payoff data, unbiased Bayesian updating is evolu-

tionarily optimal151. In line with this, many non-human animal species’ foraging and

reproductive decisions are consistent with the predictions of Bayesian updating mod-

els236. But human learning systematically deviates from Bayesian updating in various

ways. These deviations are called cognitive biases234, and include:

1. persistent underinference from observations16 (e.g., overconfident beliefs that

do not meaningfully learn from past experience: as shown, for example, by non-

learning leaders who repeatedly underprepare for catastrophes like pandemics),

2. the hard-easy effect157 (overconfidence on difficult tasks, underconfidence on

easy tasks), and

3. non-monotonic confidence203 (task confidence is not monotonically increasing in

the experience level).

A rational strategy of individual learning would base its estimate of future task-

payoffs on an unbiased, Bayesian aggregation of the past payoff data: say, starting

from an initial prior ω that has not ruled out the true state φ ∈ Θ. Here, Θ denotes

the state space. With prior probability one, the learner’s estimate of their expected
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payoff-acquisition ability
∫

θ̂∈Θ
E[̂θ] dωs1,...,sn(θ̂), (1)

would converge to the true expected payoff E[φ] as the number of observations n goes

to infinity. (Here, ωs1,...,sn denotes the Bayesian-updated prior after observing the se-

quence of payoff data s1, . . . , sn.) While the true expected payoff E[φ] is unobservable,

it will with probability one coincide with the mean of the past payoff data

s1 + · · ·+ sn
n (2)

as n → ∞, due to the Law of Large Numbers. Thus, we should be skeptical of a

learner’s purported Bayesianness if their estimate of their expected payoff-acquisition

ability does not appear to converge to the mean of the past payoff data (2).

The fact that human learning is cognitively biased (rather than Bayesian-rational)

is evolutionarily puzzling when assuming the Machiavellian Intelligence Hypothesis,

since flawed learning from individual observations constitutes a strategic weakness.

On the other hand, the three aforementioned cognitive biases can be explained in

the framework of the Cultural Brain Hypothesis. In Chapter 1, I present the decision-

theoretic model of my Journal of Theoretical Biology paper, which represents how

ancestral humans might have learned various foraging tasks over time and over re-

peated attempts178. In this model, an ancestral human learner (the student) attempts

to learn task-specific knowledge from a role model (the teacher). However, the stu-

dent does not meaningfully retain their past payoff data, because doing so would re-

sult in onerous fitness costs from overcommitting attention (e.g., risks of ambushes

and accidental injuries due to a lack of situational awareness). Instead, the student’s

evolutionarily optimal estimate of their expected marginal payoff—their confidence—
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is a function of setting-specific sources of information: specific to the setting of social

learning, not individual learning. The evolutionary mismatch between (a) this esti-

mate of confidence that is specialized to ancestral social learning and (b) contempo-

rary settings of individual learning can manifest as all three of the aforementioned

cognitive biases.

Our evolutionary model of human cognitive biases has the following practical im-

plication. Cost-benefit analyses in public policy often assume that the highest price

a person is willing to pay for an item—their willingness to pay—reveals an unbiased

aggregate of their private payoff observations regarding it80. However, this may not

be true when these observations have high variance. In this case, when a person is

buying an item to use for a certain task, their willingness to pay for the item may

be a non-monotonic function of the true value acquirable from the item at the per-

son’s level of task experience. It follows that the person’s willingness to pay for an

item may not even be a sufficient statistic of the item’s true value to them; in gen-

eral, the latter cannot be predicted from the former. Cost-benefit analyses may thus

be improved by more directly estimating an item’s true value to each person (e.g., by

estimating their mean past payoff from the item), rather than by using the person’s

willingness to pay as a proxy. This implication casts doubt on several central dictums

of economics, such as the dictum that economic surplus (defined in terms of willing-

ness to pay) is the measure of success that public policy should pursue.

0.2 Second evolutionary puzzle: Cooperation in large groups of non-kin

Humans’ extensive cooperation with non-kin is unique among social animal species29.

In many realistic settings, this level of cooperation requires altruism: actions that
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benefit another individual at a cost to oneself. Trivers233 proposed direct reciprocity

as an evolutionary explanation of such altruism. In this framing, human cooperation

results from an evolutionarily stable strategy of bestowing altruism conditional on

the other player also bestowing altruism, which results in an equilibrium of a self-

sustaining quid pro quo. Such a strategy would need to be evolutionarily stable, be-

cause otherwise, a strategically rational player would eventually find another strategy

that can invade the self-cooperating strategy. It has been hypothesized that unprece-

dented intelligence is what allows humans to consistently evolve the desirable strategy

of reciprocal altruism, more consistently than other social animal species. This notion

is laid out in Hypothesis 2.1 of the study of Proto et al. 191 :

Higher-Intelligence subjects (i) find a better strategy—that is, with higher

payoff—and conceive a larger set of strategies in a given environment and

(ii) are more consistent in their implementation...[H]igher-Intelligence

subjects will achieve, in general, higher rates of cooperation.

Probing the veracity of the hypothesis of Proto et al. may be especially important,

given that increasingly intelligent AI models may become increasingly embedded in

society—consider, for example, OpenAI’s mission of creating “highly autonomous sys-

tems that outperform humans at most economically valuable work”177—and that re-

searchers have non-empirically posited in line with the hypothesis of Proto et al. that

these AI models will convergently evolve human-level cooperative tendencies252.

Suppose that humans’ unusually extensive cooperation with non-kin is indeed best

understood as a largely independent combination of dyadic reciprocal relationships:

of favor-sharing and goodwill between various pairs of people218. At first glance,

this favor-sharing does seem achievable by a stable cooperative strategy in a set-
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ting of direct reciprocity. This is because in the most commonly used model of di-

rect reciprocity—the repeated prisoner’s dilemma—there exist evolutionarily stable

strategies that are self-cooperative65, as long as we make the realistic assumption that

actions in the game are played erroneously with a positive probability ε.

However, several empirical findings cast doubt on this proposed explanation. First,

the simplest evolutionary stable strategy that can sustain cooperation, Win-Stay-

Lose-Shift, is rarely observed in human-subject experiments of the repeated prisoner’s

dilemma45,66. Second, non-cooperation (Always Defect) is also an evolutionarily sta-

ble strategy of the repeated prisoner’s dilemma137. Third, humans perform strategi-

cally worse than chimpanzees in some simple games144, which casts doubt on the hy-

pothesis that increased strategic ability was the mechanism by which unprecedented

human intelligence led to unprecedented cooperation. And finally, data from social

animal species generally do not identify frequent reciprocity opportunities to be a

strong predictor of cooperative behavior78,145,243.

Motivated by the inability of the traditional repeated prisoner’s dilemma to explain

the aforementioned findings, my coauthors Martin Nowak, Christian Hilbe, and I an-

alyzed a more biologically realistic variant of the repeated prisoner’s dilemma. The

traditionally considered variant of the repeated prisoner’s dilemma assumes that the

players’ interactions are simultaneous, an often non-realistic assumption. For exam-

ple, consider someone who incurs a cost to help another individual, in the hopes of

receiving a similar favor in the future. This more realistic setting of cooperation is

asynchronous rather than simultaneous.

In Chapter 2, I present my Nature Communications paper (coauthored with Martin

Nowak and Christian Hilbe) analyzing a more realistic variant of the repeated pris-

oner’s dilemma, in which interactions are alternating rather than simultaneous181.
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The key lemma for this paper was inspired by William Press and Freeman Dyson’s

pioneering result for the traditionally studied simultaneous game190. Their result was

that a player can generally afford to have the same memory size as their opponent’s

strategy, without any loss to their or their co-player’s payoff. Press and Dyson’s re-

sult is tight for the simultaneous game, but our key lemma improves on this result for

the alternating version of the game.

Lemma 0.1. Consider an alternating prisoner’s dilemma between two players with

strategies ppp and qqq, with memory sizes P and Q respectively. Without loss of generality,

suppose that Q ≥ P. Then, the player using strategy qqq can switch to a strategy of

memory size < P without changing either player’s payoff.

In particular, whenever a strategy has at least as high a memory size as the resi-

dent strategy, there exists a neutral mutation to the former which possesses a strictly

lower memory size than the latter.

Using this key lemma, Nowak, Hilbe, and I found that the assumption that interac-

tions are alternating makes cooperation more volatile and more difficult to evolve (as

long as we again assume a positive probability ε of implementation error). Our result

is that among the memory-1 strategies—strategies whose conditional probability of

cooperating solely depends on each player’s most recent action—there are no evolu-

tionarily stable strategies that can sustain cooperation. In fact, the only evolutionar-

ily stable memory-1 strategy is Always Defect, the strategy that never cooperates. In

other words, sustaining cooperation via direct reciprocity may be more volatile and

more difficult to evolve than was traditionally thought.

Moreover, Hilbe and I are in the process of generalizing this to a similar result for

all finite-memory strategies, rather than just memory-1 strategies179. Again using the
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key lemma, we proved the preliminary result that if higher-memory strategies require

a higher fitness cost than lower-memory ones, then Always Defect is the unique Nash-

equilibrium strategy. This result is true for agents of arbitrarily high memory sizes,

and also implies that Always Defect is the only evolutionarily stable strategy they can

use (since every evolutionarily stable strategy is also a Nash-equilibrium strategy).

The proof is as follows. Consider a population with an arbitrary resident strat-

egy. Our key lemma implies that unless the resident strategy has memory size 0 (i.e.,

action is always given by the same probability distribution), it can be strictly in-

vaded by a mutant with a strictly lower memory size. The reason that this mutant

strategy has a strictly higher payoff than the resident strategy is due to our assump-

tion that all else equal, higher-memory strategies require a higher fitness cost than

lower-memory ones. Moreover, among strategies with memory size 0—the only strate-

gies that are not vulnerable mutants of the aforementioned type—the only Nash-

equilibrium strategy is Always Defect. Indeed, a strategy that places any positive

probability mass on the action Cooperate will be strictly invaded by an Always De-

fect mutant. Thus, Always Defect is the only resident strategy that can emerge in the

long run. Any resident population will continue to be invaded by lower-memory mu-

tants until it becomes memory-0, whereupon it will be invaded by increasingly non-

cooperative strategies, the overall culmination of which is necessarily Always Defect.

The above argument works for a wide class of asynchronous interaction structures,

but a crucial assumption is that every probabilistic strategy of finite memory size—

and in particular, the lower-memory mutant strategy that can invade the resident

population—is achievable as a phenotype. This constitutes a formal demonstration of

Joe Henrich’s conjecture regarding the evolution of altruistic cooperation87. Specifi-

cally, Henrich conjectured that “all genetic evolutionary explanations to the altruism
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dilemma are successful to the degree that they allow natural selection to operate on

statistically reliable patterns or regularities in the environment,” and that cooperation

is difficult to evolve in the absence of “constraints that maintain this regularity.” Our

more realistic asynchronous variant of the repeated prisoner’s dilemma casts doubt on

the hypothesis of Proto et al. 191 in favor of Henrich’s conjecture. Higher-intelligence

subjects’ ability to access a larger set of strategies will—all else equal—select against

cooperative tendencies, rather than select for them. This is because an unconstrained

strategy space is precisely what allows for Always Defect to robustly dominate: for

cooperation to robustly be selected against.

It follows that humans’ unusually cooperative tendencies may not be best under-

stood as a largely independent combination of dyadic reciprocal relationships that

are enabled by humans’ purportedly unconstrained strategic ability. More sociality-

based mechanisms of cooperation, such as indirect reciprocity173,216 and group selec-

tion25,87,197,230,247, may play a pivotal causal role that direct reciprocity by itself may

not be able to play.

0.3 Third evolutionary puzzle: Egalitarianism

Despite its pivotal importance, cumulative cultural evolution is challenging to study.

This is because it involves so many different mechanisms, all of which interact to-

gether in complex and mysterious ways. How does each individual choose which group

member they will learn knowledge from? What exact knowledge will they learn? How

and when does new knowledge get discovered?

We would like to know the answers to these questions, as well as how they inter-

act to produce cumulative cultural evolution. A reasonable (albeit challenging) plan
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would be to construct a parsimonious model of the system that is based on correct

first principles, incorporates all of the relevant mechanisms, and is still analytically

tractable enough to make robust predictions.

In Chapter 3, I present my joint work with Slava Savitskiy and Joe Henrich182, a

model of cumulative cultural evolution that takes a first stab at incorporating all of

the relevant mechanisms (though it almost certainly misses some important ones).

Our model is inspired by Paul Krugman’s Nobel-prize-winning model of specializa-

tion, cooperative production, and exchange125. We added to Krugman’s model even

more mechanisms of cumulative cultural learning posited by the Cultural Brain Hy-

pothesis, such as knowledge discovery, intergenerational knowledge accumulation, and

social norms.

The resulting trade model yields ten scientific predictions about human societies’

specialization and trade, some of which are counterintuitive. Yet, we find preliminary

empirical corroboration for nine of the ten predictions, and we propose future empiri-

cal tests for the remaining prediction.

To illustrate, our model predicts that egalitarian societies robustly innovate the op-

timal number of specializations in the long run, a prediction that finds preliminary

empirical support in the Ethnographic Atlas12,22,76,118,121,158 and the Western North

American Indians112–114,118 ethnographic datasets. This helps explain the consistent

emergence of egalitarian social norms in contemporary evolutionarily relevant forager

societies, and likely in most ancestral human societies19,63,127. We propose that egal-

itarianism was evolutionarily adaptive in spite of its free-rider problem20, because

among ancestral humans whose primary selection pressure was the optimal social ac-

cumulation of specialized knowledge, egalitarianism robustly helped facilitate this.

Our model also predicts that the penalty to long-run innovation imposed by non-
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egalitarianism can be offset by an intermediate degree of overconfidence. This predic-

tion finds preliminary corroboration in the study of Cieślik et al. 40 of how countries’

GDP varies with their average level of entrepreneurial overconfidence. Our model

thus adds to the case that cognitive biases like overconfidence—which are evolution-

arily puzzling when viewed as systematic errors in how people learn from their indi-

vidual observations—may actually be behavioral byproducts of a selection pressure

towards the social learning of specialized knowledge178. Even if overconfidence is se-

lected against at the level of individual selection, it can be selected for at the level of

group selection due to its optimizing effects on human societies’ collective brains.

Our model also helps resolve the evolutionary puzzle of why humans cooperate in

large groups of non-kin. While direct reciprocity has traditionally been proposed as

an evolutionary explanation of altruism233, recall that reciprocal cooperation is much

more difficult to sustain when the repeated prisoner’s dilemma is modified to be more

biologically realistic181. Also, among social animals, a large amount of reciprocity

opportunities is not as strong of a predictor of altruism as proposed by the theory of

direct reciprocity78,145,243. This overall suggests that direct reciprocity, by itself, may

be insufficient to evolutionarily explain human ultrasocial cooperation.

Cultural group selection is a more viable evolutionary explanation25,87,197. This

differs from genetic group selection, which is likely inconsistent with the negligibility

of genetic differences between competing human groups39. Indeed, culturally trans-

missible phenotypes are characterized by far higher variation between groups than

genetically transmissible phenotypes14.

Our model helps explain why among groups, cultural variation is larger than ge-

netic variation. It does so by identifying a source of cultural variation other than ran-

dom mutations. Our model hypothesizes that when different groups begin to trade,
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their members’ pursuit of their own individual fitness result in the groups specializ-

ing away from each other. Intentional specialization at the level of individual deci-

sions is a more viable cause of large phenotypic variation than random changes like

genetic mutations, especially when the gene flow between groups is substantial. Cul-

tural group selection can act on this large phenotypic variation in a way where group-

cooperative phenotypes are selected, despite their sizeable negative effect on individ-

ual fitness in excess of what can be sufficiently explained by direct reciprocity.

Overall, preliminary empirical evidence suggests that complex specialization and

trade is not a modern outlier of Pleistocene human societies. It is an adaptation that

emerged in the likely egalitarian foraging societies of the Holocene which comprised

most of human evolutionary history30,32,133. This adaptation encompasses various se-

lection pressures towards the optimal social accumulation of specialized knowledge, in

ways that are crucial to resolving multiple puzzles in the evolution of human cogni-

tion. Such puzzles include the robustness of egalitarian sharing norms in evolutionary

relevant societies, the evolution of overconfidence, and altruistic cooperation in large

groups of non-kin.
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What would I eliminate if I had a magic wand? Overconfidence.214

Daniel Kahneman

1
The evolution of cognitive biases in

human learning

Abstract: Cognitive biases like underinference, the hard-easy effect, and
recurrently non-monotonic confidence are evolutionarily puzzling when
viewed as persistent flaws in how people learn from environmental feed-
back. To explain these empirically robust cognitive biases from an evo-
lutionary perspective, we propose a model of ancestral human learning

14



based on the cultural-evolutionary-theoretic hypothesis that the primary
selection pressure acting on ancestral human cognition pertained not to
learning individually from environmental feedback, but to socially learn-
ing task-specific knowledge. In our model—which is inspired by classical
Bayesian models—an ancestral human learner (the student) attempts
to learn task-specific knowledge from a role model, with the option of
switching between different tasks and role models. Suppose that the stu-
dent’s method of learning from their role model is a priori uncertain—in
that it can either be successful imitation learning or de facto innovation
learning—and the ecological fitness costs of meaningfully retaining en-
vironmental feedback are high. Then, the student’s fitness-maximizing
strategy does not retain their environmental feedback and—depending
on the choice of model parameters—can be characterized by all of the
aforementioned cognitive biases. Specifically, in order for the evolution-
arily optimal estimate of confidence in this learning environment to be
recurrently non-monotonic, it is necessary (as long as the environment’s
marginal payoff function satisfies a plausible quantitative condition) that
a positive proportion of ancestral humans’ attempted imitation learning
was unknowingly implemented as de facto innovation learning. Moreover,
an ecologically rational strategy of selective social learning can plausibly
cause the evolutionarily optimal estimate of confidence to be recurrently
non-monotonic in the empirically documented way: general increase with
an intermediate period of decrease.

1.1 Introduction

Humans have evolved to meaningfully incorporate into their beliefs the low-variance,

essentially deterministic environmental feedback they observe—the domain of causal

inference—so as to improve future decisions186. For example, people often learn to

pay credit card bills1 and return rented videos81 on time after first paying late fees.
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However, the same cannot be said when the variance is high. In the domain of high-

variance environmental feedback, unbiased Bayesian updating should in theory be

normatively rational43 and even evolutionarily optimal151 in many settings. In line

with this, a review of 11 empirical studies of animal foraging and reproductive decisions—

spanning eight species of birds, three of non-human mammals, one of fish, and one of

insects—found the behavior of all but one of the species to be consistent with the pre-

dictions of Bayesian updating models236. For humans, however, learning in settings

of high-variance environmental feedback deviates from Bayesian updating in various

ways234. These deviations, referred to in the literature as cognitive biases, result from

evolved tendencies by which humans systematically fail to learn meaningfully from

high-variance environmental feedback.

A myriad of cognitive biases are apparent from the insightful experiments of Sanchez

and Dunning203,204 on human learning. In each variant of their experiment, subjects

learned a new task possessing a payoff structure with fixed uncertainty: classifying

profiles with lists of properties (for example, symptoms) into categories (for example,

made-up diseases). The subjects attempted this task 60 times while simultaneously

reporting their confidence: their self-estimate of the probability that their answer is

correct. After each of their 60 answers, they received immediate feedback. Despite

this, the subjects did not learn from their environmental feedback in a Bayesian-

rational manner, as one can see from the following patterns in the data (see Fig-

ures 1–4 of Sanchez and Dunning, 2018203 and Figures 1–3 of Sanchez and Dunning,

2020204).

1. The subjects’ confidence graph—that of their average self-estimate as a func-

tion of trial number—was non-monotonic. Specifically, the confidence graph

was comprised of three phases: a beginning phase of increase, an intermedi-
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ate phase of decrease, and a final phase that returned to increase. This pattern

agrees with the finding of the well-known experiment of Kruger and Dunning124

on confidence as a function of true ability—as well as its replications—that the

former variable can be a non-monotonic function of the latter (see Figures 4–

6 of Burson et al., 200634; Figures 5–7 of Haun, 200085; and Figures 2–3 of

Kruger and Dunning, 1999124). This also agrees with the work of Hoffman and

Burks100 investigating truckers’ self-estimates of the number of miles driven

each week, which found their average to be non-monotonic with respect to the

level of experience and the average of the true value, monotonically increasing

in the level of experience (see Figure 1 of Hoffman and Burks, 2020100).

2. The average difference between confidence and the environmental feedback

eventually became positive—signifying overconfidence—and proceeded to in-

crease instead of decaying to zero. This pattern is consistent with the extensive

evidence on overconfidence in the cognitive bias literature: for example, as a

cause of wars51,109, stock market bubbles2,206, and underpreparation for catas-

trophes139,208. Consistently becoming overconfident compared to the environ-

mental feedback, by itself, likely suffices to contradict Bayesian rationality7.

3. The confidence graphs from all variants of the experiment were essentially in-

distinguishable from each other, even though the subjects of each experimental

variant on average performed differently and thus received different environ-

mental feedback. The confidence graph in essence only depended on the num-

ber of past observations, the level of experience. This pattern is consistent with

two well-documented cognitive biases: underinference16, the tendency to in-

sufficiently update one’s belief in the direction of new evidence compared to
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Bayesian inference; and the hard-easy effect131,157, the tendency to be over-

confident on difficult tasks and underconfident on easy tasks. Indeed, a pre-

determined confidence function—one that depends not on past environmental

feedback, but only on other types of information like one’s level of experience—

would generically differ from the Bayesian aggregate of the past environmental

feedback. The difference between the two would generically persist, manifesting

as both underinference and—depending on the hard-easy effect—either persis-

tent overconfidence or underconfidence.

These three non-Bayesian patterns robustly replicated in all six variants of the

Sanchez–Dunning experiment (2018, 2020), including the variant that used the incentive-

compatible Becker–DeGroot–Marschak method13 to monetarily incentivize accurate

answers. The non-Bayesian inaccuracy of subjects’ learning108 and the persistence of

this inaccuracy in the face of monetary incentivization56 have also been documented

in replications of the Kruger–Dunning experiment; these phenomena have been found

in the aforementioned work of Hoffman and Burks 100 on truckers’ self-estimates of

productivity, as well. Note that the Kruger–Dunning experiment is similar in objec-

tive and design to the Sanchez–Dunning experiment. A crucial difference, however, is

that accurate environmental feedback is immediately provided by the experimenter in

the latter, but not in the former. The Sanchez–Dunning experiment thus compellingly

raises the question of why humans have evolved to underinfer from freely available

environmental feedback, even when meaningfully learning from it is made easy and

monetarily advantageous.

How did our evolutionary past select for cognitive biases, traits that systemati-

cally cause errors in judgement? To solve this puzzle, we appeal to cultural evolu-

tionary theory’s extensive body of evidence that humans primarily rely on learning
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from their fellow group members, rather than from the environmental feedback it-

self26–28,38,129. This evidence informs and is informed by a central hypothesis of cul-

tural evolutionary theory: that adaptive, socially exchanged, and intergenerationally

accumulated knowledge—relevant to fitness-relevant tasks like foraging, reproduction,

and warfare—comprised the primary selection pressure acting on ancestral human

cognition10,90,103,126,160,163,193,223,237,244.

In this paper, we construct an evolutionary model of human learning based on this

cultural-evolutionary-theoretic hypothesis: one in which an ancestral human learns

primarily via knowledge learned from group members, rather than via environmen-

tal feedback. The model is constructed by modifying a classical Bayesian model of

repeated task-learning to veridically represent the hypothesized setting of social,

knowledge-based task-learning. Another key modification we add is our assumption

that the cognitively constrained agent of our model—representing an ancestral hu-

man learner—faces selection pressures against meaningful retention of high-variance

environmental feedback, due to onerous ecological fitness costs of overcommitting at-

tention (e.g., increased risks from ambushes and accidental injury caused by a lack of

situational awareness). It follows from this assumption that the confidence function

comprising the agent’s fitness-maximizing strategy is characterized by discrete con-

fidence levels and systematic deviations from classical Bayesian inference (i.e., from

unbiased incorporation of environmental feedback), consistent with the empirical find-

ing of Lisi et al. 134 . Specifically, this confidence function is characterized by various

cognitive biases like underinference, the hard-easy effect, and—depending on the pa-

rameters of our model—recurrent non-monotonicity.

We begin by describing in Subsection 1.2.1 a finite-outcome-space version of the

classical Bayesian decision-theoretic model. This general model serves both as an in-
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spiration for our evolutionary model and as a reductio ad absurdum argument that

humans may not learn from high-variance environmental feedback via classical Bayesian

inference. The contradiction is as follows. Classical Bayesian inference is effective be-

cause a Bayesian-updating prior (that has not a priori ruled out any possibility) is

almost surely guaranteed to eventually converge to the truth: the property of con-

sistency. However, this property is in contradiction with the aforementioned findings

from the cognitive biases literature: first, that a human learner’s prior (such as that of

their ability) can persistently deviate from their past observations; and second, that it

can be recurrently non-monotonic with respect to the number of observations, regard-

less of the actual observations themselves.

We then resolve these empirical contradictions by presenting in Subsection 1.2.2

our evolutionary model: a modification of the classical Bayesian model, adapted to

represent the knowledge-based learning environment of ancestral humans in the con-

text of high-variance payoff observations. In our modified Bayesian model, the agent

learns a task over repeated attempts, each of which generates a payoff. When the ex-

pected cost of retaining high-variance payoff observations—due to onerous ecological

fitness costs from overcommitting attention—is sufficiently high, the agent’s optimal

learning strategy does not update their prior of their payoff-acquisition ability in the

given task (confidence) with respect to the payoff observations. Instead, the agent up-

dates their confidence as a function of information in the complement of payoff obser-

vations: in our model, knowledge and the speed of learning. The consequent unavail-

ability of payoff data—the key departure from classical Bayesian decision theory—

generates our first desired conclusion: that evolved confidence generically deviates

from the past payoff observations in a recurrent manner. This conclusion is a special

case of a more general phenomenon: a given learning strategy’s systematic departure
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from classical Bayesian updating when the ancestral learning environment for which

it is ecologically rational differs from the contemporary learning environment in which

it actually operates71,72,150. Persistent underinference and the hard-easy effect follow

from the recurrent nature of this evolutionary optimal confidence function.

The second desired conclusion—that this recurrent, evolutionarily optimal con-

fidence function can be non-monotonic—follows from incorporating the cultural-

evolutionary-theoretic hypothesis that the agent’s learning occurs via attempted imi-

tation of a role model. This non-monotonicity can occur due to a dichotomy between

successful imitation learning and de facto innovation learning: two learning methods

whose classification is a priori uncertain to the agent.

The details of this dichotomy and of other aspects of our model are presented in

Section 1.2. The predictions of this model are then made mathematical precise in

the theorem statements presented in Section 1.3. The proofs of the theorems can be

found in the Appendix.

We thus find that several classes of cognitive biases can be parsimoniously ex-

plained as evolutionary byproducts of the idiosyncratically knowledge-based and so-

cial nature of ancestral humans’ hypothesized learning environment. Often thought

of as structural flaws in humans’ individual learning, cognitive biases may instead be

evolutionarily rooted in two hypothesized characteristics of our ancestral environment:

first, the primarily knowledge-based and social—not individual—nature of human

learning in natural settings, as theorized by cultural evolutionary theory; and sec-

ond, ecological fitness costs of meaningfully retaining environmental feedback—due to

cognitive constraints—and the consequent pressure to rely instead on setting-specific

sources of information, as theorized by the ecological rationality hypothesis71,72.
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1.2 The model

1.2.1 Classical Bayesian model

Suppose that an agent repeatedly attempts a task. Each yields a random payoff that

is contained in a finite set of values S ⊂ R. The finiteness of S constitutes the realis-

tic assumption that the agent, due to cognitive constraints, categorizes observations

into finitely many bins. The payoff from each task attempt is drawn i.i.d. from a fixed

probability distribution φ ∈ Φ ⊆ P(S), which would depend on the agent’s ability to

acquire payoffs, the abundance of the environment, and various other factors. Here,

P(S) denotes the set (which can be thought of as a state space) of all probability dis-

tributions on S, and Φ ⊆ P(S) denotes the subset of probability distributions that

may feasibly occur in a given setting.

For the purpose of maximizing payoff, the agent is incentivized to accurately pre-

dict the expected value of the future task attempt’s payoff. This was likely the case

for ancestral human foragers, who by default engaged repeatedly in a highly spe-

cialized foraging role102, but also faced incentives to be opportunistic: to accurately

appraise—and based on the result of said appraisal, possibly procure—additional for-

aging opportunities as they arise18. We model this dichotomy as follows. We assume

that before each task attempt, the agent has the choice of forgoing a fraction r of the

time spent on it (corresponding to the same fraction of the task attempt’s entire pay-

off) for a payoff whose value is observed beforehand. The opportunity-cost payoff is

rc, where c drawn from a fixed distribution ψ ∈ P(S) whose support is all of S. It fol-

lows that the agent maximizes the immediate payoff by taking the payoff from the

task attempt if its mean rE[φ] is greater than rc, take the opportunity cost if rE[φ] is
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less than rc, and take either option when rE[φ] is equal to rc.

The agent thus benefits from accurately estimating the task attempt’s expected

payoff E[φ]. This can likely be achieved by a small number of observations—even just

one—when φ has low variance. Under our assumption that payoffs are observationally

categorized by the agent into finitely many bins, assuming further that the payoffs

have low variance amounts to the condition that nearly all payoffs (i.e., close to prob-

ability one) fall in a single bin s ∈ S. Consequently, the agent can productively use

causal inference, in the sense that assuming every future task attempt will yield the

previously observed payoff of s will nearly always be correct. The payoff-maximizing

strategy is to choose the higher value between the task attempt’s expected payoff

rE[φ] ≈ rs; and the observed opportunity cost rc.

The discernment of the payoff distribution φ—and more specifically, its expected

value E[φ]—is more difficult when φ has high variance. In this domain, more than one

bin in S occurs with significant probability. Consequently, the agent will in general

need to learn from a large sample size of payoffs in order to asymptotically determine

the true state φ from the set of a priori possible states Φ.

Suppose that the true state φ is initially drawn from a probability distribution ξ ∈

P(Φ). Then, Bayes’ theorem states that the probability distribution of φ conditional

on the previous payoff observations being s1, s2, . . . , sn is given by

ξs1,...,sn = Bsn ◦ · · · ◦ Bs2 ◦ Bs1(ξ), (1.1)
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where Bx : P(Φ) → P(Φ) is the Bayes’-rule map

Bx(ω)(θ) =
θ(x)ω(θ)∫

θ̂∈Φ
θ̂(x)ω(θ̂)dθ̂

. (1.2)

Consequently, the payoff-maximizing choice of whether to forgo part of the task-

attempt payoff is to compare its expected value

r
∫

φ∈Φ
E[φ] dξs1,...,sn(φ) (1.3)

with the observed opportunity cost rc. In summary, the agent’s evolutionarily optimal

strategy overall is to begin with the prior ξ, update it via the Bayes’ rule map Bs in

terms of each task attempt’s observed payoff s, and decide whether to forgo part of

the nth task attempt for an observed opportunity cost by using the prior ξs1,...,sn−1 at

that point in time.

Bayesian inference can be effective even without explicit knowledge of the true dis-

tribution ξ from which the state φ is drawn. An obvious obstruction to this effec-

tiveness is Cromwell’s rule: if a state is not contained in the support of the prior ω,

then this will persist in ωs1,...,sn for any sequence of observations s1, . . . , sn. It turns out

that Cromwell’s rule is the only such obstruction when the outcome space S is finite.

Specifically, suppose that the true state φ is contained in the support of the prior ω.

Then, as n → ∞, the nth Bayesian update of ω

ωn = ωs1,...,sn (1.4)
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will converge to the one-point distribution

χφ(θ) =






1 if θ = φ

0 otherwise
(1.5)

with prior probability one: the property of consistency54,62. In other words, even an

agent with a misspecified initial prior—for example, one that evolved in a past envi-

ronment with a different distribution of φ—will in all likelihood eventually converge

to the true state φ, as long as the initial prior is not too restrictive.

The property of consistency yields a practical test to reject the null hypothesis that

a given learner is Bayesian in the classical sense. We can do so if the learner’s prior

does not converge to the (one-point distribution on the) true state as the number

of observations goes to infinity. A special case of this test is provided by checking

whether a learner’s estimate of their expected payoff-acquisition ability converges to

the true expected payoff. Indeed, suppose that the learner’s prior were updated via

classical Bayesian inference while starting from an initial prior ω that has not ruled

out the true state φ. Then, with prior probability one, the learner’s estimate of their

expected payoff-acquisition ability

∫

θ̂∈Θ
E[̂θ] dωn(θ̂), (1.6)

would converge to the true expected payoff

E[φ] (1.7)

as the number of observations n goes to infinity. While the true expected payoff (1.7)
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is unobservable, it will with probability one coincide with the mean of the past payoff

data
s1 + · · ·+ sn

n (1.8)

as n → ∞, due to the law of large numbers. We should thus be skeptical of a learner’s

Bayesianness if their estimate (1.6) of their expected payoff-acquisition ability does

not appear to converge to the mean of the past payoff data (1.8). Note that this prac-

tical test for falsifying a learner’s Bayesianness is not new; it is essentially a corollary

of standard Bayesian statistics.

To illustrate, consider a gambler who, over repeated attempts, continues to be

mistaken about the expected value of a fixed probabilistic lottery. They may per-

sistently believe that the expected payoff from betting their money on a negative-

expected-value lottery is positive, even after gambling on it a large number of times

while observing the resulting payoff data. Then, we can be reasonably certain that

the gambler is not, in the classical sense, Bayesian-updating with respect to their pay-

off data. We hypothesize that the persistent deviation of the gambler’s prior from the

true state is caused by the high variance of the payoff data. Other learners who may

fail our test for classical Bayesianness include professionals whose priors of their per-

formance persistently deviate from the true value100,183, traders and managers who

persistently overestimate future returns on their investments11,140, and gymgoers who

repeatedly overpay on membership fees based on persistently overoptimistic priors of

their attendance rate48. Such field evidence against the hypothesis that human learn-

ing from high-variance payoff data is classically Bayesian corroborates the extensive

lab evidence of the relevant cognitive biases.
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1.2.2 Evolutionary model of ancestral human learning

To resolve the predictive inadequacies of the classical Bayesian paradigm, we modify

it in the following way. We assume that the agent estimates their payoff-acquisition

ability as a function of task-specific knowledge, and not necessarily of the previously

observed payoff data. Our evolutionary model incorporates two veridical sources of

uncertainty which are sufficient to generate recurrent non-monotonicity. First, tasks

vary in difficulty, a value that represents the total amount of knowledge required to

completely learn the task. The agent’s marginal payoff is a bivariate function of the

difficulty value and their current level of knowledge: the subset of the total knowledge

they have learned so far.

Second, tasks vary in the method used to learn the relevant knowledge: imitation

and innovation. We incorporate into our model the cultural-evolutionary-theoretic

finding that the primary source of an ancestral human’s task-specific knowledge was

learning from role models who were ostensibly proficient in the task—imitation—

rather than learning individually from environmental feedback—innovation26,38. The

superior efficiency of imitation learning, especially in the context of intergenerational

knowledge accumulation, is hypothesized to have enabled humans’ unprecedented evo-

lutionary success.

The dichotomy between imitation learning and innovation learning is confusing at

first glance, given that in our model, the student always attempts to imitate a role

model. This dichotomy occurs because the helpfulness of role models in providing a

genuinely new path forward via imitation learning is not guaranteed. A student may

successfully learn via imitation of their role model, as planned. It is also possible that

the role model’s ostensible proficiency in the task does not translate to productive im-
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itation learning, in which case the student learns by de facto innovation. Specifically,

the role model may not actually be providing a new learning path that the student

would not have accessed if they were to instead learn by innovation. In the context

of direct teaching, for instance, this may be due either to the method of teaching (a

teacher may use an open-ended or ambiguous teaching method, such as the Socratic

method, without actually guiding students to think in a new way) or to the teacher’s

own limitations (which may not be discernible to students when their environmental

feedback has high variance). It would be difficult for the student to deduce from high-

variance environmental feedback whether their role model is meaningfully providing

them with a new learning path to imitate.

Throughout this paper, the term “task” will denote a student’s package comprised

of a repeated knowledge-intensive task that produces fitness-aiding payoffs (i.e., for-

aging for food), their choice of role model for it, and the learning method by which

the student obtains the relevant knowledge: classified into imitation learning and in-

novation learning. The student’s task package can be thought of as a pair (j, a) for

the type of learning method j ∈ {im, in} with which the student learns the task from

the teacher (where j = im denotes imitation and j = in denotes innovation) and the

difficulty value a ∈ (0,∞) ∪ {∞} of the task.

The difficulty value a ∈ (0,∞) ∪ {∞} of a task denotes the amount a of knowledge

the student needs to completely learn it, given the specifics of the task package (the

teacher, the learning method, and the task itself). A task with the difficulty value

a = ∞ represents an impossible one, in that the specifics of the task prevent the stu-

dent from learning it to completion. Suppose the student currently knows b ≤ a of

the total amount of knowledge required to completely learn the task. The values of

b and a determine the marginal payoff f(a, b), which we assume is strictly increasing
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in b, strictly decreasing in a, and continuously differentiable. By scaling the marginal

payoff values to have minimum 0 and maximum 1, we can suppose that the function

f(a, ·) maps the domain [0, a] to the range [0, 1]. We assume that completely learning a

task guarantees the maximum marginal payoff: f(a, a) = 1 for every a. Moreover, we

assume that impossible tasks—unable to be meaningfully learned—always yield the

minimum marginal payoff: f(∞, b) = 0 for all b.

One example of a marginal payoff function

f : {(a, b) ∈ ((0,∞) ∪ {∞})× [0,∞) : b ≤ a} → [0, 1] (1.9)

satisfying these conditions is

f(a, b) =
(
b
a

)λ
(1.10)

for λ > 0, which is extended to the point at infinity a = ∞ as

f(∞, b) = lim
a→∞

(
b
a

)λ
= 0. (1.11)

This family of functions is characterized by polynomial growth in b. Another example

of such a marginal payoff function is

f(a, b) = ζa−b (1.12)

for ζ ∈ (0, 1), which is also extended to the point at infinity a = ∞ as

f(∞, b) = lim
a→∞

ζa−b = 0. (1.13)

This family of functions is characterized by exponential growth in b.
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We assume that the risk of an infinitely difficult task a = ∞ only exists when

j = in. In the other case of j = im, the learnability of the given task is guaranteed by

the teacher already having learned it completely. However, when j = in, the teacher

may not have actually learned the task completely despite serving as the student’s

role model. The lack of guarantee of the given task’s learnability leads to a nontriv-

ial probability of an unfortunate setting: one in which the student squanders time

on attempting to learn an impossible task from a teacher, one or both of whom have

not yet realized the said impossibility. The exclusivity of unlearnability to innovation

learning can be seen by the comparison between solving an exam problem and solving

a research problem. The former—imitation learning—is guaranteed to complete in fi-

nite time, because the teacher has solved the problem before assigning it as an exam

question. However, the latter—innovation learning—is not guaranteed to complete

in finite time. Indeed, a research problem, by definition, is one that has not yet been

solved by anyone, so it may a priori be impossible to solve. Overall, we assume that

the difficulty values of tasks with learning method j = im are distributed as a regular

exponential distribution (i.e., with p.d.f. μim(a) = ηa log 1
η for finite a and μim(∞) = 0,

where 0 < η < 1), whereas the distribution of difficulty values of tasks with learning

method j = in is assumed instead to have a positive probability p on a = ∞ (i.e., with

p.d.f. μin(a) = (1 − p)ηa log 1
η for finite a and μin(∞) = p). The overall distribution of

tasks (j, a) on

U = {im, in}× ((0,∞) ∪ {∞}) , (1.14)

defined by the p.d.f.

μ(j, a) =






qμim(a), if j = im,

(1− q)μin(a) if j = in;
(1.15)
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places probability q on the task’s learning type being imitation and 1−q on that being

innovation.

Other than the risk of unlearnability, the second way in which tasks of learning

method j = im differ from those of learning method j = in is in the speed of learning.

Regardless of the learning method, the student learns knowledge in discrete jumps,

each following a task attempt. Let B(t) denote the knowledge level after the tth task

attempt, where B(0) = 0, meaning that the initially naive student has knowledge

b = B(0) = 0 of the task when starting out. The discrete knowledge levels 0 = B(0) <

B(1) < · · · are assumed to satisfy limt→∞ B(t) = ∞. The amount of time the tth task

attempt takes for the student is assumed to differ between the two learning types.

Let Δim(t) (respectively, Δin(t)) denote the amount of time the tth task attempt takes

when engaged in imitation learning (respectively, innovation learning); we require for

both j ∈ {im, in} that limk→∞
∑k

t=1 Δj(t) = ∞. Then, we assume that imitation is

(weakly) faster than innovation: that Δim(t) ≤ Δin(t) for all t ∈ N \ {0}. Moreover, we

denote by

Tj(i) =
i∑

n=1
Δj(n) (1.16)

the total amount of time that a task of learning type j occupies until the end of the

ith attempt.

With sufficient time in a fixed environment, natural selection is likely to maximize

the objective function (fitness) within the space of feasible policies (fitness landscape).

A policy is defined by a function π : H → A, where A denotes the space of feasible

actions;

H = {(O1,A1, . . . ,OT−1,AT−1,OT) : Oi ∈ O,Ai ∈ A, and the history is feasible}, (1.17)
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the space of feasible histories; O, the space of feasible observations; and a history

h = (O1,A1, . . . ,OT−1,AT−1,OT) (1.18)

is called feasible if its sequence of observations and actions can occur in the model. It

remains to specify the student’s action space A, observation space O, and the objec-

tive function V(π) on the space of policies π.

The student’s objective function V(π) is the expectation of the total payoff. Most

of it comes from the payoffs yielded by the student’s task attempts. Suppose that the

student finishes a task attempt of time length Δ while at level of knowledge b for a

task of difficulty value a. At time T that ends a learning period, the student obtains

an expected payoff proportional to f(a, b), scaling with the length Δ of the learning

period, and simultaneously accounting for exponential time-discounting. The marginal

payoff is obtained as a high-variance probabilistic lottery ϕ(a, b) ∈ P(S) with expected

value E[ϕ(a, b)] = f(a, b). Specifically, a payoff value s̄ is drawn independently from

ϕ(a, b) to determine the payoff of the task attempt

v(a, b,Δ,T) = s̄
∫ T

T−Δ
δtdt, (1.19)

where δ ∈ (0, 1) denotes the factor of exponential time-discounting. We see that the

expected payoff yielded by the task attempt is

E[v(a, b,Δ,T)] = f(a, b)
∫ T

T−Δ
δtdt =






f(a,B(i))
∫ T
T−Δ δtdt if b = B(i) < a,

∫ T
T−Δ δtdt if b = a,

(1.20)

Instantaneously after the acquisition of this payoff at time T, the student’s level of
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knowledge jumps to the next discrete level of knowledge B(·) or to the maximum level

of knowledge a for the task, whichever is smaller. The expected sum of the student’s

task-attempt payoffs over all time T ∈ [0,∞) is the main component of the student’s

objective function V(π).

There are three auxiliary components of the student’s objective function V(π).

The first such component is as follows. After obtaining the payoff of expected value

v(a, b,Δ,T), the student has the option of committing the observed payoff value to

memory. Doing so requires the student to pay an expected cost of −Cretain, which

represents various ecological fitness risks that result from overcommitting attention to

the retention of high-variance payoff data. Due to the exponential time-discounting,

the true value of the expected cost as applied to the student’s objective function V(π)

is

−δTCretain, (1.21)

where T denotes the ending time of the task attempt that has yielded the given pay-

off.

The second auxiliary component of the student’s objective function V(π) relates

to a choice (described in Subsection 1.2.1) that the student makes before every task

attempt: whether to allocate a fraction r of the task attempt’s time—and the corre-

sponding fraction of its payoff—to an alternative foraging opportunity unrelated to

the task. Like in the classical Bayesian model of Subsection 1.2.1, the marginal pay-

off s ∈ S of the alternative foraging opportunity is drawn i.i.d. from a distribution

ψ ∈ P(S) and known to the student prior to their decision. If the student chooses to

forgo a fraction of the task attempt’s time for this alternative foraging opportunity,

33



their payoff is changed from (1.19) to

rs
∫ T

T−Δ
δtdt+ (1− r)v(a, b,Δ,T) = (rs+ (1− r)̄s)

∫ T

T−Δ
δtdt. (1.22)

These unrelated foraging opportunities allow the student to increase their expected

payoff V(π) strictly above the baseline level provided by the sum of the task-attempt

payoffs v(a, b,Δ,T). Consequently, the student is incentivized to accurately estimate

each task-attempt’s payoff—as best as allowed by their informational constraints—

prior to deciding whether to exploit an unrelated foraging opportunity instead.

The third auxillary component of the student’s objective function V(π) relates to

the student’s other choice of action. In between task attempts, the student not only

chooses whether to exploit an unrelated foraging opportunity before each task at-

tempt, but also chooses whether to quit on their current task package for an alter-

native one. If the student chooses to cut their losses on a given foraging task and/or

their role model for it, they can choose a new task package (j, a). All of the student’s

task packages (j, a), including the initial one and any intermediate ones assigned after

quitting, are drawn i.i.d. from the probability distribution μ defined in (1.15).

In addition to the option of quitting the current task, the student is also assumed

to situationally possess the option of paying a fitness cost to ascertain their current

task package’s learning method j ∈ {im, in}, on which they can base their specific de-

cision. We propose that humans carry out this ascertainment via a mental experiment

to measure the length of time Δj(t), which may be sufficient to distinguish the speeds

of the two learning methods. Specifically, our assumption that Δim(t) ≤ Δin(t) can be

divided into two possibilities: Δim(t) < Δin(t) and Δim(t) = Δin(t). In the case of the

former, a time-measurement experiment can identify the learning type j. In the case
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of the latter, however, it cannot. Each mental time-measurement experiment requires

the student to pay an expected cost −Cidentify, again due to various ecological fitness

costs that can result from overloading a cognitively constrained forager’s decision-

making. Due to the exponential time-discounting, the true value of the expected cost

as applied to the student’s objective function V(π) is

−δTCidentify, (1.23)

where T denotes the ending time of the task attempt during which the time-measurement

experiment was performed.

We have introduced all components of the student’s objective function V(π), as

well as all components of the student’s action space A. Unlike the classical Bayesian

model of Subsection 1.2.1, our model is characterized by a potential tradeoff between

earlier and later payoffs. In the classical Bayesian model, each of the agent’s actions

was only relevant to maximizing the payoff of the corresponding task attempt, not to

any future ones. Thus, the relative weights of each task attempt’s payoff do not affect

the agent’s decision problem. In contrast, in our model, the student has two actions—

quitting the current task and identifying the learning type via a time-measurement

experiment—that reduces payoffs in the short-term for a potential gain in long-term

payoffs. Thus, specifying the relative weights of each task attempt’s payoff is essential

for the prescription of the optimal policy π. As is standard, we have set these rela-

tive weights to be exponentially decaying in time, which aids model tractability and

captures the evolutionary fact that earlier payoffs are likelier to be relevant to fitness

than later payoffs.

35



Formally, the student’s actions are of the form

At = (xforgo(t), xidentify(t), xretain(t), xquit(t)), (1.24)

where

xforgo(t) : S → {true, false} (1.25)

denotes the choice of whether to forgo a fraction of the tth task attempt’s time to

exploiting an alternative foraging opportunity of a known marginal payoff s ∈ S;

xidentify(t) : S → {true, false} (1.26)

denotes the choice of whether to pay an expected cost of −Cidentify to identify the

learning type j ∈ {im, in} during the tth task attempt via a time-measurement experi-

ment, given the alternating foraging opportunity’s previously drawn marginal payoff s;

xretain(t) : S× S → {true, false} (1.27)

denotes the choice of whether to retain the observation of the tth task attempt’s pay-

off given (s, s̄) ∈ S×S, where s is given as above and s̄ denotes the task-specific marginal

payoff; and

xquit(t) ∈{K(s, s̄, j, c) : S× (S ∪ {null})× {im, in, null}× {true, false} → {true, false}}

denotes the choice of whether to quit the current task after the tth task attempt.

When the student has not performed the identification of the learning type j during

the current task attempt, xidentify(t) = false, then the value xquit(t) takes the form
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of a boolean-valued function K(s, s̄, null, c): a function of the alternative foraging op-

portunity’s marginal payoff s; of the task’s yielded marginal payoff s̄ (which may be

unretained and thus given by s̄ = null); and whether or not the level of knowledge has

caught up to the task difficulty a, denoted by

c ∈ {true, false}. (1.28)

If c = true, then we say that learning has completed during this task attempt. In the

opposite case of xidentify(t) = true, xquit(t) takes the form of a boolean-valued func-

tion K(s, s̄, j, c) for j ∈ {im, in}, representing the decision whether to quit conditional

on the identified learning type being imitation or innovation, on the payoff observa-

tion, and on whether learning has completed during this task attempt. We also note

the feasibility constraint that the value xidentify(t) is required to satisfy the feasibil-

ity constraint that xidentify(t) = true is only possible if Δim(t) < Δin(t) rather than

Δim(t) = Δin(t).

The student’s observations are of the form

Ot = (b(t), xtype(t), xpayoff(t)), (1.29)

where

b(t) ∈ [0,∞) (1.30)

denotes the level of knowledge after the tth task attempt;

xpayoff(t) ∈ S ∪ {null} (1.31)
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denotes the student’s observed payoff value (if the payoff observation was not re-

tained, then we use the denotation “null”); and

xtype(t) ∈ {null, im, in} (1.32)

denotes whether the student has carried out a mental identification of the learning

type during the tth task attempt (if this is false, then we use the denotation “null”),

and if so, whether the result was imitation (“im”) or innovation (“in”).

In summary, Table 1.1 provides the list of parameters comprising our learning

model, and Table 1.2 presents a step-by-step algorithm for the model. The expected

payoff of the policy π (correcting for time-discounting) during the time remaining af-

ter a history h is given by

Vh(π) = E
[ ∞∑

k=0

((
rxforgo(k)s(k) + (1− rxforgo(k))̄s(k))

)∫ T(k+1)

T(k)
δtdt

− δT(k+1) (Cretainxretain(k) + Cidentifyxidentify(k)
)
)]

,

(1.33)

where we have abused notation by having s̄(k), s(k), and the choices x!(k) denote the

values of s̄, s, and the choices x! during the kth learning period from the present, let-

ting T(k) denote the ending time of the kth learning period from the present, and set-

ting the boolean values of the choices x!(k) to be 0 when false and 1 when true.

Given a choice of parameters, the corresponding model parametrization MMM can be

solved numerically with dynamic-programming-type methods. However, we instead

pursue an analytic study to demonstrate desired facts about the model that hold

more generally, regardless of the specific choice of parameters. The results of this
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Model parameters of the modified Bayesian model
1. the marginal payoff distribution ϕ(a, b) ∈ P(S) and its expected value

f(a, b), for every a ∈ (0,∞) ∪ {∞} and finite 0 ≤ b ≤ a,
2. the discrete knowledge jumps {B(i) : i ∈ N, i > 0},
3. the learning period lengths {Δj(i) : i ∈ N, i > 0} for j ∈ {im, in},
4. the exponential discount factor δ of time,
5. the proportion p of infinite-difficulty tasks among all innovation-learning

tasks,
6. the proportion q of imitation-learning tasks among all tasks,
7. the exponential discount factor η of the distribution of task difficulty val-

ues,
8. the fraction of time r of task attempts that can be devoted to alternative

foraging opportunities,
9. the distribution ψ ∈ P(S) of the marginal payoffs of alternative foraging

opportunities,
10. the expected cost −Cretain of retaining a payoff observation, and
11. the expected cost −Cidentify of a mental time-measurement experiment to

identify the learning type j.

Table 1.1. List of model parameters of the Bayesian model modified to represent ancestral
human learning, presented in Subsection 1.2.2. These model parameters are required to satisfy
the conditions discussed earlier in this subsection.
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Algorithmic description of the modified Bayesian model
1. The student draws from the distribution μ the task (j, a), the value of which is

unknown to them. The attempt number specific to the task, i, is set to zero,
and their level of knowledge b is set to zero. The time value T is set to zero.

2. The student carries out the ith attempt of the current task, which constitutes
the following.

• First, the student draws from the distribution ψ a random marginal pay-
off s ∈ S whose value is known to them, and decide whether to forgo a
fraction r of the task attempt for this alternative marginal payoff.

• Second, the student decide whether to pay an expected cost −Cidentify for
a time-measurement experiment to identify Δj(i), which is only possible if
Δim(i) < Δin(i) rather than Δim(i) = Δin(i).

• Third, they spend the time Δj(i) on the task attempt (T is incremented by
this amount), at the end of which they receive a payoff of
{
δT (rs+ (1− r)̄s)

∫ Δj(i)
0 δtdt if the student had decided to forgo,

δTs̄
∫ Δj(i)
0 δtdt otherwise,

(1.34)

where s̄ ∈ S is drawn from the distribution ϕ(a, b). The student chooses
whether to retain the observation s̄ of the payoff value.

• Fourth, if the student had performed a time-measurement experiment
during this learning attempt, then they learn the value Δj(i) and thereby,
the learning type j.

• Fifth, b discretely jumps to the next level—B(i + 1) or a, whichever is
smaller—and the index i is incremented by one.

• Finally, the student chooses whether to quit the current task. If so, they
draw a new task (j, a) from μ (independently with respect to the previ-
ously drawn tasks), b is set to zero, and i is set to zero. Otherwise, they
continue to learn the task attempt at the new level of experience i+ 1.

3. Step 2 is infinitely repeated.

Table 1.2. An algorithmic description of the Bayesian model modified to represent ancestral
human learning, presented in Subsection 1.2.2.
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investigation are documented in Section 1.3.

1.3 Results

We denote the space of feasible policies of the model described in Subsection 1.2.2 by

Π. A policy π is called optimal if it maximizes the expected payoff in the remaining

time at any feasible history h:

π ∈ argmax
π∈Π

Vh(π). (1.35)

In the following, we obtain results on properties necessarily possessed by any optimal

policy π, which can help simultaneously explain the various empirically documented

deviations of human confidence from a classically Bayesian estimate of past payoff

data.

First, if the magnitude Cretain of the expected cost of retaining payoff observations

is sufficiently large, then no optimal policy π ever retains payoff observations. This

can be seen, for example, by taking

Cretain >

∫ ∞

0
δtmax(S)dt, (1.36)

an upper bound—for any time T at which a task attempt ends—to the payoff (ac-

counting for time-discounting) that can be obtained during the remaining time. The

upper bound (1.36) is obtained when the student receives the maximal marginal pay-

off max(S) for every task, and does not pay any cost to retaining payoff observations

or identifying the task’s learning type. If Cretain were larger than this maximum pos-

sible expected payoff in the remaining time, then the information yielded by paying a
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cost of that magnitude would clearly never be worth it.

Throughout this paper, we assume that the magnitude Cretain of the expected cost

of “observing” (in the ecological setting, retaining in memory) payoff data is great

enough that the student does not ever do so: so that the optimal choice xretain(t) is

always given by

xretain(t) = false. (1.37)

This is functionally equivalent to assuming that the payoff data is unavailable to the

student.

The second characteristic that an optimal policy π must possess is the following.

Every action π(h) of an optimal policy in response to a history h might as well solely

depend on the information of h relevant to the current task (j, a), and not on the

other information (relevant to the previous tasks); this follows from the assump-

tion that the student’s tasks are statistically independent. Specifically, the choices

of xforgo(t), xidentify(t), and xquit(t) should only depend on the conditional distribution

μcond(h) of the current task’s value (j, a), conditional on the information contained in

the past history h. This information, which allows the student to rule out (via Bayes’

formula of conditional probability) certain task values (j, a) from the initial condi-

tional distribution of μ, includes two components. For one thing, if there has been a

time-measurement experiment on the current task, say with result j ∈ {im, in}, then

the student can rule out all task values (j′, a) with j′ -= j.

For another, the student’s past sequence of knowledge levels on the task, b(0), b(1), . . . , b(i−

1), allows the student to rule out task values. If the sequence ends in one or more in-

stances of b = a /∈ {B(i) : i ∈ N}, then the student knows that their level of knowledge

b has caught up to the maximum value a. In other words, all task values (j′, a′) with
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a′ -= a can be ruled out. However, if the sequence has been completely consistent with

the discrete knowledge values {B(i) : i ∈ N} of the model, then the only task values

(j′, a′) that can be ruled out are those with a′ ≤ b = B(i). (Without loss of general-

ity, we assume that the probability-zero event that the task difficulty a drawn from μ

precisely equals one of the model’s discrete knowledge levels B(i), rather than falling

between them, does not occur.)

Third, in an optimal policy π, every decision xforgo(t) whether to forgo a fraction

of a task attempt’s time for a known marginal payoff of s ∈ S must be of the form

described in Subsection 1.2.1: forgo if the task attempt’s expected marginal payoff

E(j,a)"μcond(h) [f(a, b)] (1.38)

is greater than the alternative marginal payoff s, and do not forgo if the latter is greater

than the former (when they are equal, both choices are optimal). In other words, the

student should choose the payoff that is greater in expectation. We call the quantity

(1.38) the expected marginal payoff function or the confidence function. We propose

that the evolutionary pressure to optimally exploit alternative foraging opportunities

shaped ancestral humans’ task-specific notion of confidence to track the task’s ex-

pected marginal payoff (1.38), conditional on both the information known so far and

the parameters of the ancestral environment.

The task’s expected marginal payoff (1.38) is a function of the student’s two rele-

vant pieces of information: their level of knowledge b and their information set on the

learning type j (whether they have ruled out the event {j = im}, the event {j = in}, or

neither). Specifically, the confidence function can be written as ĝ(Eb,Ej) mapping the
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domain

( {{b = B(i)} : i ∈ N} ∪ {b = a -= B(i)})

× {{j = im ruled out}, {j = in ruled out}, {neither j ruled out}} . (Eb,Ej)

to the range of marginal payoffs [0, 1], where Eb denotes the information set regarding

the student’s information on b and Ej, the information set regarding the student’s in-

formation on j. We compute that the confidence function (1.38) is generally given by

ĝ(Eb,Ej) =






1 if Eb = {b = a -= B(i)},

gim(B(i)) if Eb = {b = B(i) < a} and Ej = {j = in ruled out},

gin(B(i)) if Eb = {b = B(i) < a} and Ej = {j = im ruled out},

gu(B(i)) if Eb = {b = B(i) < a} and Ej = {neither j ruled out},

(1.39)

for

gim(b) =
∫
a>b f(a, b)dμim(a)∫

a>b dμim(a)
, (1.40)

gin(b) =
∫
a>b f(a, b)dμin(a)∫

a>b dμin(a)
, (1.41)

and

gu(b) =
∫
a>b f(a, b)dμ̄(a)∫

a>b dμ̄(a)
, (1.42)

where μ̄ denotes the probability distribution P ◦ μ : [0,∞) → [0, 1] for the projection

map P(j, a) = a. We call gim, gin, and gu the imitation-learning confidence function, the

innovation-learning confidence function, and the unconditional confidence function,
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respectively.

Let ρy be a distribution of the form ρy(a) = (1− y)ηa log 1
η for finite a and ρy(∞) = y,

where y ∈ [0, 1). Define the generalized confidence function gρy : [0,∞) → [0, 1] by

gρy(b) =

∫
a>b f(a, b)dρy(a)∫

a>b dρy(a)
. (1.43)

Then, we see that

μim = ρ0, μin = ρp, and μ̄ = ρ(1−q)p, (1.44)

and therefore,

gim(b) = gρ0(b), gin(b) = gρp(b), and gu(b) = gρ(1−q)p
(b). (1.45)

One can then verify the following fact.

Proposition 1.1. For any b > 0, the value of the generalized confidence function, gρy(b),

is strictly monotonically decreasing in y. In particular, the innovation-learning confi-

dence function gin(b) is at most the unconditional confidence function gu(b), which is

at most the imitation-learning confidence function gim(b). Specifically, we have

gin(b) ≤ gu(b) ≤ gim(b), (1.46)

where the first inequality occurs with equality if and only if q = 0 (or p = 0, if this is

allowed); and the second inequality, if and only if q = 1 (or p = 0, if this is allowed).

In other words, the evolutionarily optimal estimate of confidence at a level of knowl-

edge b (conditional on learning not yet having completed) is decreasing in the propor-

tion y of unlearnable tasks. This is due to the fact that the risk of unlearnability, of
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the task difficulty a = ∞, has a reduction effect on the expected marginal payoff.

This risk occurs with the highest probability within the distribution of task difficulties

a > b conditional on j = in, occurs with zero probability within the distribution con-

ditional on j = im, and occurs with an in-between probability value within the distri-

bution that is unconditional of the learning type j. Thus, the reduction effect on the

confidence function also falls in this order. This phenomenon is illustrated in the plots

of the three confidence functions for several model parametrizations in Figure 1.1.

Another consequence of the risk of unlearnability is non-monotonicity. Specifically,

we will show that gim(b) is monotonically increasing in b under a non-restrictive as-

sumption on the marginal payoff function f(a, b). Note that if all tasks were learned

by imitation rather than innovation (q = 1), then the confidence function (1.38) is of

the form

ĝ(Eb,Ej) =






1 if Eb = {b = a -= B(i)},

gim(B(i)) if Eb = {b = B(i)}.
(1.47)

and consequently, monotonically increasing in the level of experience i. In other words,

if human confidence evolved in an environment where all tasks were learned by imita-

tion, then we should expect it to be monotonically increasing in the level of knowl-

edge: and thereby, the level of experience. The empirically documented confidence is

non-monotonic in the level of experience, and thus unlikely to have evolved in such an

environment.

On the other hand, we will show that due to the nontrivial risk of unlearnability,

the confidence functions gin(b) and gu(b) each decay to zero as b → ∞. This opens up

the possibility for the confidence function (1.38) to be non-monotonic in the empiri-

cally documented way: general increase with an intermediate period of decrease
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(a) (b) (c)

Figure 1.1. The imitation-learning confidence function gim(b), the innovation-learning
confidence function gin(b), and the unconditional confidence function gu(b) for model
parameter choices p = 0.4, q = 0.5, η = 0.6, and varying payoff function f(a, b); note that the
other model parameters do not affect these confidence functions. Consistent with
Proposition 1.1, we have the inequalities gin(b) < gu(b) < gim(b). Also, consistent with
Proposition 1.2(a), when the payoff function f(a, b) satisfies Assumption 1—panels (a) and
(b)—the imitation-learning confidence function gim(b) is strictly increasing. The payoff
function of panel (c) does not satisfy Assumption 1. As a result, the corresponding
imitation-learning confidence function gim(b) is not necessarily strictly increasing (in fact, it is
constant). Finally, consistent with Proposition 1.2(b), the confidence functions gin(b) and gu(b)
are eventually decaying to zero.
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with respect to the level of experience. Whether this non-monotonicity evolves de-

pends on the two remaining actions prescribed by the student’s optimal policy π:

identifying the learning type, xidentify(t); and quitting, xquit(t).

1.3.1 Imitation learning alone cannot explain non-monotonic confidence

Under reasonable assumptions on the model parameters, whether each of the confi-

dence functions gim(b), gin(b), and gu(b) is monotonic is determined by the presence of

the risk of unlearnable tasks. Since the distribution μim has zero probability on the

event {a = ∞}, its associated confidence function gim(b) is monotonically increasing in

b, as long as the payoff function f(a, b) satisfies the following condition:

Assumption 1. For all m > 0 and a ≥ m, the payoff function f(a, b) satisfies

∂

∂af(a, a−m) > 0. (1.48)

We argue that Assumption 1 is plausible because a fixed amount m of knowledge

constitutes a larger fraction of the total knowledge of an easy task than a difficult

task; consequently, the argument goes, not knowing it should cause a harsher penalty

in the former case. However, whether this claim generally holds is a question that

should be studied empirically. Note that the assumption is satisfied by the exam-

ple family of payoff functions (1.10), but not by the example family of payoff func-

tions (1.12). Our aforementioned argument would then suggest that the former family

(polynomial growth) is plausible as the marginal payoff function of ancestral learning

environments, but not the latter family (exponential growth).

On the other hand, since the distributions μin and μ̄ have a positive probability on
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the event {a = ∞}, their associated confidence functions gin(b) and gu(b) are non-

monotonic. Specifically, both gin(b) and gu(b) decay to zero for all sufficiently large b.

In fact, the functions are strictly decreasing to zero for all sufficiently large b, as long

as the following condition holds.

Assumption 2. As b → ∞, the payoff function f(a, b) satisfies

∫

a>b

∂

∂bf(a, b)η
ada / ηb. (1.49)

Here, the notation F(b) / G(b) denotes the asymptotic condition that F(b)/G(b) →

0 as the input variable b → ∞. Note that Assumption 2 is satisfied by the family of

payoff functions (1.10) for any parameter η ∈ (0, 1).

We summarize the above discussion in the following theorem statement.

Proposition 1.2. The generalized confidence function gρy satisfies the following:

a) If y = 0, then we have d
dbgρy(b) > 0 for all b ≥ 0, as long as Assumption 1 holds.

b) If 0 < y < 1, then we unconditionally have gρy(b) → 0 as b → ∞.

c) If 0 < y < 1, then we have d
dbgρy(b) < 0 for all sufficiently large b, as long as

Assumption 2 holds.

The expected marginal payoff of a task is monotonically increasing when there is

no risk that the task is unlearnable, as is the case when it is learned by innovation.

In other words, since μim = ρ0, the function gim should be monotonically increasing.

However, there is a nontrivial probability y of unlearnability when the learning type of

the task is either uncertain or fully determined as innovation: μin = ρp and μ̄ = ρ(1−q)p.

In this case, the corresponding expected marginal payoffs (gin and gu, respectively)

both eventually monotonically decrease to zero.
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We have plotted in Figure 1.1 confidence functions of an example model parametriza-

tion with varying marginal payoff function f(a, b), which illustrate the conclusions of

Proposition 1.2. We note in particular that functions of the form f(a, b) = (b/a)λ—

detailed in (1.10)—satisfy Assumption 1. Thus, by Proposition 1.2(a), any model

parametrization with this choice of marginal payoff function will have a strictly in-

creasing imitation-learning confidence function gim(b). However, functions of the form

f(a, b) = ζa−b—detailed in (1.12)—do not satisfy Assumption 1, which opens up the

possibility that gim(b) will not be strictly increasing. In fact, we then can apply the

change of variables ā = a− b to see that the imitation-learning confidence function

gim(b) =

(
log 1

η

) ∫
a>b ζ

a−bηada
(
log 1

η

) ∫
a>b ηada

=

(
log 1

η

)∫

a>b
ζa−bηa−bda

=

(
log 1

η

)∫ ∞

0
ζāηādā (1.50)

is constant with respect to b. Thus, we see that Assumption 1 constitutes a nontrivial

necessary condition for gim(b) to be strictly increasing.

1.3.2 Analyzing a subfamily of model parametrizations via approximation

We have solved for the optimal choice of xforgo(t), the decision of when to forgo a pro-

portion of the task payoff for an alternative foraging opportunity. Assuming the pol-

icy π always uses this optimal choice, the only other components of π that can vary

are xidentify(t), the decision whether to perform a time-measurement experiment to

identify the learning type j; and xquit(t), the decision whether to quit. Recall that the

only information that is relevant for the optimal choice of these components is the

pair of information sets Eb and Ej regarding the student’s current task. We abuse no-
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tation by letting

π(Eb,Ej) = (xidentify, xquit) (1.51)

denote the action of the optimal policy π (omitting the components xretain and xforgo,

which have already been solved previously) at the pair of information sets (Eb,Ej).

We proceed to define a tractable subfamily of parametrizations of our model for

which the optimal estimate of confidence, as a function of the level of experience i,

displays the empirically documented non-monotonicity: general increase with an in-

termediate period of decrease. Whether this non-monotonicity occurs would depend,

in general, on the action components xretain(k) and xforgo(k) of the optimal policy π.

Our subfamily of model parametrizations will be constructed—via approximation—to

have the appropriate optimal action components xretain and xforgo that guarantee the

desired non-monotonicity.

Let us fix all choices of model parameters with the exception of the discrete knowl-

edge jumps {B(i, n) : i ∈ N, i > 0}, the learning period lengths {Δj(i, n) : i ∈ N, i > 0}—

and the corresponding cumulative learning period lengths {Tj(i, n) : i ∈ N, i > 0}—for

j ∈ {im, in}, the fraction of time r(n) of task attempts that can be devoted to alterna-

tive foraging opportunities, and the expected cost Cidentify(n) of a time-measurement

experiment to identify the learning type j. This gives a sequence of model parameter-

izations {MMM(n)}n∈N varying with n. We will construct {MMM(n)}n∈N so that as n → ∞,

the imitation-learning knowledge function and the innovation-learning knowledge

function, defined respectively by

Lim,n(t) = B (max{i : Tim(i, n) ≤ t}) (1.52)
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and

Lin,n(t) = B (max{i : Tin(i, n) ≤ t}) , (1.53)

can be well-approximated by the continuous imitation-learning knowledge function

Lim,∞(t) : [0,∞) → [0,∞), (1.54)

and the continuous innovation-learning knowledge function

Lin,∞(t) : [0,∞) → [0,∞), (1.55)

respectively. The knowledge functions Lim,∞(t) and Lin,∞(t) are required to be bijec-

tive, continuous, and piecewise continuously differentiable such that their respective

derivatives d
dtLim,∞(t) and d

dtLin,∞(t) are positive whenever they are well-defined. We

will describe the context of this continuous approximation in Subsection 1.3.4.

We now formally define the continuous learning model, a continuous approximation

of our discrete learning model defined in Subsection 1.2.2. Suppose that instead of

obtaining discrete payoffs at the end of discrete task attempts, the student obtains a

flow payoff

δtf(a(t), b(t))dt, (1.56)

based on the task difficulty a and the student’s level of knowledge b. The term a(t)

denotes the difficulty level of the task that is being learned at time t, and thus has

zero derivative everywhere except for the discrete set of points of time at which tasks

are quit. When a task is quit at time t, and at the starting time t = 0, a task is drawn

i.i.d. from the distribution μ as in the model of Subsection 1.2.2; and if t > 0, the
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term a(t) is updated to the newly drawn task difficulty.

The term b(t) denotes the student’s level of knowledge, and in the continuous learn-

ing model, updates continuously in the amount of time t. Specifically, we have

b(t) =






Lim,∞(̄t) if j = im and Lim,∞(̄t) < a,

a if j = im and Lim,∞(̄t) ≥ a,

Lin,∞(̄t) if j = in and Lin,∞(̄t) < a,

a if j = in and Lin,∞(̄t) ≥ a;

(1.57)

where

t̄ = t− Tstart(t) (1.58)

denotes the length of the time period [Tstart(t), t] spent learning the current task (at

time t) and

Tstart(t) (1.59)

denotes the time at which the current task has been drawn.

We further suppose that in the continuous learning model, there is no option to ex-

ploit alternative foraging opportunities. Similarly, we suppose that the learning type

of a task is not information that can be learned by paying a cost. The justification

for these assumptions is that these quantities—the payoff difference due to alternative

foraging opportunities and the costs of identifying the learning type—become negligi-

ble as n → ∞ in the continuous approximation.

Finally, we suppose that the option to quit for an opportunity-cost task satisfies

the following. For a positive constant β, the student can—when learning has not yet

completed—either quit all tasks (both j = im and j = in) at any level of experience b ∈
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(0,∞) without identifying the task type, or quit j = im tasks at a level of experience

bim ∈ [β,∞) ∪ {∞} and j = in tasks at a level of experience bin ≥ [β,∞) ∪ {∞}.

The student’s strategy space in the continuous learning model pertains entirely to

quitting, and is given by

A∞ = Q∞ =
(
((0,∞) ∪∞) ∪ ([β,∞) ∪ {∞})2

)∞
(1.60)

for

Q = ((0,∞) ∪∞) ∪ ([β,∞) ∪ {∞})2 . (1.61)

Here, the first subset (0,∞) denotes the set of quitting strategies b that quit all tasks

at any level of experience b > 0 without identifying the learning type, and the second

subset ([β,∞) ∪ {∞})2 denotes the set of quitting strategies (bim, bin) that quit j =

im tasks at a level of experience bim ∈ [β,∞) ∪ {∞} and j = in tasks at a level of

experience bin ≥ [β,∞) ∪ {∞}. The action

(bbb1, bbb2, . . .) ∈ A∞ (1.62)

denotes the overall strategy that quits the ith task using the strategy action bbbi for

i ∈ N. The total payoff in the continuous learning model is given by

∫ ∞

0
δtf(a(t), b(t))dt, (1.63)

where a(t) is the difficulty value of the task being learned at time t (which discretely

changes whenever a new task is drawn), and b(t) is the student’s level of knowledge of

this task.
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In summary, Table 1.3 provides the list of parameters comprising our continuous

learning model, and Table 1.4 provides a step-by-step algorithm for the model. The

student’s objective is to maximize the expected payoff, the expected value of (1.63):

V∞((bbb1, bbb2, . . .)) = E
[∫ ∞

0
δtf(a(t), b(t))dt

]
. (1.64)

Decision theory yields that the maximal expected payoff V∞ ((bbb1, bbb2, . . .)) is obtained

by a strategy that acts in the same way for every history sharing the same informa-

tion set. In particular, the maximal payoff is obtained by a strategy that uses the

same quitting strategy bbb ∈ Q for every drawn task, corresponding to the strategy

(bbb, bbb, . . .) ∈ A∞. (1.65)

The expected total payoff of such a quitting strategy bbb is given by the function

V∞(bbb) =






V∞,u(b) if bbb = b,

V∞,c(bim, bin) if bbb = (bim, bin).
(1.66)

Here, the value function V∞,u(b) is defined by

V∞,u(b) = qVim,∞,u(b) + (1− q)Vin,∞,u(b), (1.67)

where (Vim,∞,u(b),Vin,∞,u(b)) is the solution to the system of equations
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Model parameters of the continuous learning model
1. the marginal payoff function f(a, b),
2. the imitation-learning knowledge function Lim,∞(t),
3. the innovation-learning knowledge function Lin,∞(t),
4. the exponential discount factor δ of time,
5. the proportion p of infinite-difficulty tasks among all innovation-learning

tasks,
6. the proportion q of imitation-learning tasks among all tasks,
7. the exponential discount factor η of the distribution of task difficulty val-

ues,
8. the constant β constraining the student’s quitting.

Table 1.3. List of model parameters of the continuous learning model, which approximates our
modified Bayesian model of ancestral human learning. The continuous learning model is
presented in Subsection 1.3.2.
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Algorithmic description of the continuous learning model
1. Time is set to T = 0.
2. The student draws from the distribution μ the task (j, a), the value of

which is unknown to them.
3. If the student’s quitting strategy is bbb = b, then they receive a payoff of

∫ T+L−1
j,∞(b)

T
δtf(a,Lj,∞(t))dt, (1.68)

and T is incremented by L−1
j,∞(b). If the student’s quitting strategy is bbb =

(bim, bin), then they receive a payoff of
∫ T+L−1

j,∞(bj)

T
δtf(a,Lj,∞(t))dt. (1.69)

and time is incremented by L−1
j,∞(bj).

4. If T = ∞, the algorithm is complete. If T is finite, return to Step 2 and
repeat it along with the following steps.

Table 1.4. An algorithmic description of the continuous learning model, which approximates
our modified Bayesian model of ancestral human learning. The continuous learning model is
presented in Subsection 1.3.2.
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Vim =

∫ b

0

(∫ L−1
im,∞(a)

0
δtf(a,Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt
)
dμim(a)

+

∫

a>b

(∫ L−1
im,∞(b)

0
δtf(a,Lim,∞(t))dt+ δL

−1
im,∞(b)(qVim + (1− q)Vin)

)
dμim(a),

(1.70)

and

Vin =

∫ b

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμin(a)

+

∫

a>b

(∫ L−1
in,∞(b)

0
δtf(a,Lin,∞(t))dt+ δL

−1
in,∞(b)(qVim + (1− q)Vin)

)
dμin(a);

(1.71)

while the value function V∞,c(bim, bin) is defined by

V∞,c(bim, bin) = qVim,∞,c(bim, bin) + (1− q)Vin,∞,c(bim, bin), (1.72)

where (Vim,∞,c(bim, bin),Vin,∞,c(bim, bin)) is the solution to the system of equations

Vim =

∫ bim

0

(∫ L−1
im,∞(a)

0
δtf(a,Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt
)
dμim(a)

+

∫

a>bim

(∫ L−1
im,∞(bim)

0
δtf(a,Lim,∞(t))dt+ δL

−1
im,∞(bim)(qVim + (1− q)Vin)

)
dμim(a),

(1.73)
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and

Vin =

∫ bin

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμin(a)

+

∫

a>bin

(∫ L−1
in,∞(bin)

0
δtf(a,Lin,∞(t))dt+ δL

−1
in,∞(bin)(qVim + (1− q)Vin)

)
dμin(a).

(1.74)

In fact, we can explicitly solve for these value functions.

Lemma 1.3. The value functions Vim,∞,c,Vin,∞,c,Vim,∞,u, and Vin,∞,u are given by

((Vim,∞,c(bim, bin),Vin,∞,c(bim, bin)) =
(
V̂im(bim, bin), V̂in(bim, bin)

)
(1.75)

and

((Vim,∞,u(b),Vin,∞,u(b)) =
(
V̂im(b, b), V̂in(b, b)

)
. (1.76)

Here, the functions V̂im, V̂in : ((0,∞) ∪ {∞})2 → [0,∞) are defined by

V̂im(bim, bin) =
de− bf

g
(1.77)

and

V̂in(bim, bin) =
af− ce

g
(1.78)

for

a = 1− qδL
−1
im,∞(bim)ηbim (1.79)

b = −(1− q)δL
−1
im,∞(bim)ηbim , (1.80)
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c = −qδL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (1.81)

d = 1− (1− q)δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (1.82)

e =

∫ bim

0

(∫ L−1
im,∞(a)

0
δtf(a,Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt
)
dμim(a)

+

∫

a>bim

(∫ L−1
im,∞(bim)

0
δtf(a,Lim,∞(t))dt

)
dμim(a), (1.83)

f =

∫ bin

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμin(a)

+

∫

a>bin

(∫ L−1
in,∞(bin)

0
δtf(a,Lin,∞(t))dt

)
dμin(a), (1.84)

and

g = 1− δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
+ q

(
δL

−1
in,∞(bin)

(
p+ (1− p)ηbin

)
− δL

−1
im,∞(bim)ηbim

)
.

(1.85)

In particular, we have V∞(bim, bin) = V̂∞(bim, bin) and V∞(b) = V̂∞(b) for

V̂∞ = qV̂im + (1− q)V̂in. (1.86)

Note that it makes sense to view the space of quitting strategies Q as the domain

Q̄ = {(b, b) : b ∈ (0,∞) ∪ {∞}} ∪ {(bim, bin) : bim, bin ≥ β} ⊂ ([0,∞) ∪∞)2 , (1.87)
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representing the space of strategies that use the same quitting strategy for every task.

Note that the two subsets above nontrivially intersect. This has the meaning that the

strategy bbb = b ≥ β that quits without identifying the learning type obtains the same

payoff as the strategy bbb = (b, b) that identifies the learning type before quitting, due

to our assumption that the cost of identifying the learning type limits to zero in the

continuous approximation.

We formalize the aforementioned assumptions regarding the approximation of the

discrete learning models MMM(n) by the continuous learning model MMM(∞). A sequence

of model parametrizations {MMM(n)}n∈N is said to converge to the continuous model

parametrization MMM(∞) if:

1. The sequence of functions {Lj,n}n>0 monotonically converges (increasing with

respect to n) to Lj,∞ in a way such that Lj,∞(T(i, n)) = B(i, n) for all n and i.

2. The parameters δ, f(a, b), p, q, and η are shared by all {MMM(n)}n∈N and MMM(∞).

3. We have Δim(i, n) = Δin(i, n) for all i such that B(i, n) < β, and Δim(i, n) <

Δin(i, n) for all i such that B(i, n) ≥ β.

4. The parameters r(n) and Cidentify(n) are monotonically decreasing to zero such

that

r(n) / Cidentify(n) / 1. (1.88)

The first condition constitutes the assumption that the student’s accumulation of

knowledge is sufficiently fine, and thus can be approximated by a continuous knowl-

edge function. The second condition specifies the shared parameters between the

approximated model parametrizations and the approximating continuous learning

model. The third condition constitutes the assumption that the speeds of imitation
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and innovation are too similar to distinguish in the early stages of learning (b < β),

but branch off so that they become distinguishable in the later stages (b ≥ β). This

branch-off can occur, for example, if the respective speeds of learning increase over

time—as they did in the experimental variant of Sanchez and Dunning 204 that mea-

sured learning speeds—such that the rate of increase is faster for imitation than it is

for innovation. And finally, the fourth condition represents the assumption that the

additional payoffs from alternative foraging opportunities are negligible compared to

the ecological fitness cost of identifying a given task’s learning type, which is negligi-

ble compared to task payoffs.

This notion of convergence is key to our approach of continuous approximation.

Recall that the optimal payoff of our original discrete learning model is achieved by

a policy π whose choice of action π(h) is the same for all histories of the same pair of

information sets (Eb,Ej). For such a policy π, define

iidentify = min{i : π({b = B(i)}, {neither j ruled out yet}) = (true, xquit)}, (1.89)

the level of experience at which the learning type j is identified. If the policy π (con-

ditional on learning not having completed) quits earlier than iidentify, say at level of

experience

iquit,u = min{i < iidentify : π({b = B(i)}, {neither j ruled out yet}) = (false, true)},

(1.90)

then we say that the quitting strategy of π is representable by bbb = B(iquit,u). If the

policy π (conditional on learning not having completed) quits at or later than iidentify,
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then we define

iquit,im = min{i ≥ iidentify : π({b = B(i)}, {j = in ruled out}) = (false, true)}, (1.91)

and

iquit,in = min{i ≥ iidentify : π({b = B(i)}, {j = im ruled out}) = (false, true)}, (1.92)

which denote the earliest levels of experience i ≥ iidentify at which tasks of learning

type j are quit (conditional on learning not having completed). Then, we say that the

quitting strategy of π is representable by bbb = (B(iquit,im),B(iquit,in)).

Assuming these conditions hold, we have the following approximation result:

Proposition 1.4. Suppose we have a sequence of model parametrizations {MMM(n)}n∈N

that converges to the continuous learning model MMM(∞). Let Vn denote the payoff

function corresponding to MMM(n). For every ε > 0, there exists N sufficiently large that

for all n ≥ N, we have

|Vn(π)− V∞(bbb(π))| < ε (1.93)

whenever π is representable as bbb(π).

The intuition is that since the magnitude of the cost of identifying the learning

type Cidentify is negligible compare to the main term, and the additional payoffs from

alternative foraging opportunities are even more negligible, the main term of the pay-

off Vn(π)—comprised of payoffs obtained from the task—will asymptotically domi-

nate. In the proof of Proposition 1.4, we will construct a function V̂n(bim, bin) that can

represent this main term. A key step in the proof that the inequality (1.93) holds will

be that the constructed function with b placed in both inputs, V̂n(b, b), is continuous
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at b = 0, and that the same holds for V̂∞(b, b). This allows us to apply Dini’s theorem

that for a sequence of continuous functions on a compact space that monotonically

converges to another continuous function on the compact space, the convergence is

uniform. Dini’s theorem, a tool we will use several times in this paper, is the reason

we have defined the notion of convergence of model parametrizations MMM(n) in terms

of monotonic convergence of the knowledge functions Lj,n.

Through Proposition 1.4, we have essentially reduced the problem of studying

the action components xidentify and xquit in sufficiently fine model parametrizations

MMM(n) to looking at the analogous problem in the continuous approximation MMM(∞).

We proceed to analyze the latter in the following subsections to gain an insight on

the optimal choice of whether to quit the status-quo task in a sufficiently fine model

parametrization MMM(n), i.e., with n sufficiently large. The advantage of studying the

continuous learning model MMM(∞) is that it is significantly more tractable. For it,

we can obtain quite general results about the optimal quitting strategy bbb, which can

manifest in the evolutionarily optimal estimate of confidence in the approximated

model parametrizations MMM(n).

1.3.3 Dichotomy of quitting strategies based on the learning type

We begin by proving that tasks that are known to be learned by imitation are never

optimally quit in the continuous learning model, as long as Assumption 1 holds and

the knowledge function Lim,∞(t) is convex. The intuition is the following. First, the

optimal expected marginal payoff is increasing in the level of knowledge when the task

is known to be learned by imitation, due to Assumption 1. Second, tasks learned by

imitation are learned at least as fast at higher levels of knowledge, by the assumption

64



of the convexity of Lim,∞(t). Finally, tasks learned by innovation in expectation yield

less payoff than tasks learned by imitation. Thus, quitting at any level of knowledge

b > 0 has three negative effects on expected payoff—reducing the expected marginal

payoff, slowing down learning, and replacing the current imitation-learning task with

an on-expectation inferior innovation-learning task—and is thus suboptimal.

Proposition 1.5. In a continuous learning model, every bbb = (bim, bin) that maxi-

mizes the payoff V∞(bbb) must have bim = ∞, as long as Assumption 1 holds and the

imitation-learning knowledge function Lim,∞(t) is convex.

As a result, the problem of finding the quitting strategy bbb = (bim, bin) that maxi-

mizes the value function V∞,c(bim, bin) becomes a one-dimensional maximization prob-

lem

max
bin∈[β,∞)∪{∞}

V∞,c(∞, bin). (1.94)

Note that the convexity of a knowledge function Lj,∞(t) constitutes the assump-

tion that knowledge-learning is (weakly) faster in its later stages. If true, this may

reflect a dynamic where potential advances in task-specific knowledge are limited by

the amount of previously held knowledge, so that such advances are more likely to

arise from the substantial knowledge base in the late stages of learning than from the

lacking knowledge base in the early stages of learning. However, the opposite assump-

tion of a concave knowledge function Lj,∞(t), the assumption that knowledge-learning

is (weakly) faster in its earlier stages, is also plausible. If true, this may reflect a dy-

namic where there are more “low-hanging fruits” in the early stages of learning than

in the late stages. Empirical studies can help quantitatively investigate aspects of

knowledge accumulation as a function of time: in particular, which of the two afore-

mentioned dynamics dominates at any given stage of learning.
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Next, we prove an unconditional result: that tasks known to be either learned by

innovation or of ambiguous learning type are always optimally quit at an intermediate

level of knowledge.

Proposition 1.6. In a continuous learning model, every bbb = (bim, bin) that maximizes

the value function V∞(bbb) satisfies bin < ∞. Also, every bbb = b ∈ (0,∞) ∪ {∞} that

maximizes the value of the function V∞(bbb) satisfies b < ∞.

The intuition is that these tasks, in contrast to tasks known to be learned by imita-

tion, come with a risk of unlearnability that asymptotically dominates as the level of

knowledge becomes sufficiently high. As a result, conditional on learning not yet hav-

ing completed, the expected payoff from staying the course asymptotically decays to

the point of being overtaken by that yielded by switching to an opportunity-cost task.

1.3.4 Implications for the evolutionarily optimal estimate of confidence

Consider the evolutionarily optimal estimate of confidence ĝ(Eb,Ej), defined in (1.39),

for a model parametrization MMM(n) for a sufficiently large n. Unlike in the continuous

limit MMM(∞), the model parametrization MMM(n) is characterized by alternative foraging

opportunities, whose exploitation factors into the payoff function Vn(π). Thus, the

student in the model MMM(n) is predicted to evolve the optimal estimate of confidence

ĝ(Eb,Ej).

The possible values of confidence as a function of the level of knowledge b (condi-

tional on learning not having completed yet, b < a) are gim(b), gin(b), and gu(b). Under

Assumption 1 and the assumption that the imitation-learning knowledge function

Lim,∞(t) is convex, tasks learned by imitation are never quit. Consequently, there are
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two possibilities for how a payoff-maximizing strategy bbb in the approximating continu-

ous learning model MMM(∞) will learn tasks.

The first possibility, corresponding to the case that bbb = b′, is that tasks are learned

until a level of knowledge b′ and quit if learning has not completed by then. In this

case, the optimal estimate of confidence ĝ(Eb,Ej), conditional on b < a, is given by

gu(b) for b < b′, and tasks are never learned to a higher level of knowledge than b′.

This conclusion seems empirically untenable for two reasons. First, there are many in-

stances of human learning of tasks that continues on to high levels of experience and

knowledge without quitting. Second, the function gu(b) has been shown in Proposi-

tion 1.2 to eventually decay to zero for b sufficiently high, which contradicts the em-

pirical pattern that confidence is generally increasing in the level of experience (albeit

with an intermediate period of decrease).

The second possibility, corresponding to the case that bbb = (∞, bim) for bim ∈

[β,∞), is that tasks are learned until a level of knowledge bim, at which point tasks

of innovation-learning type are quit if learning has not completed by then and tasks of

imitation-learning type are learned to completion. Recall that we have assumed that

the additional payoff obtainable from alternative foraging opportunities, which scale

with r, is negligible compared to the cost of identifying the learning type −Cidentify.

A consequence of this assumption is that in the limit n → ∞, the only possible

upside of identifying the learning type is to enable differentiated choices pertain-

ing to quitting that differ between the two learning types. Moreover, the negligibil-

ity of the cost −Cidentify in comparison to payoffs from the task necessitate that this

cost is paid at the latest possible time which allows for the optimal such differenti-

ated quitting strategy to be played: specifically, during the task attempt iidentify for

which bim = B(iidentify, n) is payoff-maximizing among the possible quitting points
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{B(i, n)}n∈N,n>0.

Because of this, when the strategy of the form bbb = (∞, bim) is used, the optimal

estimate of confidence ĝ(Eb,Ej), conditional on b < a, is given by gu(b) for b < bim and

by gim(b) for b ≥ bim. Since gu(b) eventually decays to zero and gim(b) is monotoni-

cally increasing, their piecewise combination (conditional on learning not yet having

completed),

g(b) =






gu(b) if b ≤ bin,

gim(b) if b > bin,
(1.95)

can be non-monotonic in the empirically observed way: generally increasing with an

intermediate period of decrease.

In order for the evolutionarily optimal estimate of confidence ĝ(Eb,Ej) to be em-

pirically tenable, the payoff-maximizing strategy seems to need to be of the form

bbb = (∞, bim), and not bbb = b. To show the plausibility of the former possibility, we

construct model parameters p (the proportion of unlearnable tasks among all tasks

learned by innovation) and q (the proportion of tasks learned by imitation among all

tasks) for which this is true. We do this by showing that both p and q can be taken

sufficiently small in our continuous learning model MMM(∞) so that any strategy max-

imizing V∞(bbb) among the subset of strategies of the form bbb = b quits at an arbitrar-

ily late level of knowledge b. In particular, this can be done so that b is at least β, at

which point we can appeal to Proposition 1.5 to see that the best strategy of the form

bbb = b is suboptimal in the overall set of strategies Q̄. Depending on the choice of

model parameters (e.g., see Figure 1.2), the decreasing behavior at the tail end of the

component function gu(b) can be captured in the piecewise function g(b), where it is

followed by the monotonic increase of the component function gim(b). Thus, it is
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(b)

(c)
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Figure 1.2. Plots of quantities relevant to the family of model parametrizations {MMM(n)}n∈N
and the approximating continuous learning model MMM(∞), presented in Table 1.5. Panel (a)
plots the knowledge functions Lim,∞(t) and Lin,∞(t) of MMM(∞), panel (b) shows how Lim,∞(t)
approximates the imitation-learning knowledge functions Lim,n(t) of MMM(n) (n = 3 is pictured),
panel (c) shows how Lin,∞(t) approximates the imitation-learning knowledge functions Lin,n(t)
of MMM(n) (n = 3 is pictured), panel (d) plots the evolutionarily optimal estimate of confidence
g(b) (conditional on learning not yet having completed) in MMM(∞), panel (e) plots the payoff
V∞(bbb) of the quitting strategy bbb = (∞, b) for b ≥ β, and panel (f) increases the domain and
additionally plots the payoff V∞(bbb) of the quitting strategy bbb = b for b < β. The value of the
local-maximizing (in fact, ostensibly global-maximizing) value bin ≈ 5.32 is such that the
confidence function g(b) when using the quitting strategy bbb = (∞, bin) is non-monotonic in the
desired way: general increase with an intermediate period of decrease.
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theoretically plausible that the evolutionarily optimal estimate of confidence condi-

tional on learning not yet having completed, g(b), is generally increasing with an in-

termediate period of decrease.

Corollary 1.7. Suppose Assumption 1 holds and the imitation-learning knowledge

function Lim,∞(t) is convex. In the continuous learning model, fix all parameter choices

except those of p and q. For every γ ≥ 0, there exist choice of p and q such that the

following simultaneously hold.

a) Any quitting strategy bbb = (∞, bin) maximizing V∞ must satisfy

bin > γ. (1.96)

b) Any quitting strategy bbb = b maximizing V∞(b) (where we include the limiting

strategy bbb = b → 0 in the domain) must satisfy

b > γ. (1.97)

To prove this, we will use the following lemma, a comparative-statics result which

is also of independent interest. It is comprised of two intuitive facts. First, the payoff

value is decreasing in the proportion p of unlearnable tasks among those learned by

innovation, which makes sense because unlearnable tasks yield the minimum possible

payoff. Second, the payoff value is increasing in the proportion q of tasks learned by

imitation, which makes sense because these tasks on expectation yield higher payoffs

than those learned by innovation.

Lemma 1.8. For any fixed (bim, bin) ∈ Q̄ ∪ {(0, 0)}, the following are true.
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a) We have
∂

∂pV̂∞(bim, bin) ≤ 0, (1.98)

with equality if and only if q = 1.

b) If Assumption 1 holds and the imitation-learning knowledge function Lim,∞(t) is

convex, then we have
∂

∂qV̂∞(∞, bin) > 0. (1.99)

1.3.5 An example showing the plausibility of non-monotonic confidence

We conclude by constructing a family of model parametrizations {MMM(n)}n∈N whose

approximating continuous learning model MMM(∞) can be used to show that the con-

fidence function g(b) that evolves in a sufficiently fine model parametrization MMM(n)

can plausibly be non-monotonic in the desired way: general increase with an inter-

mediate period of decrease. The choice of parameters for MMM(n) is presented in Table

1.5. Then, the family of model parametrizations {MMM(n)}n∈N is approximable by the

continuous learning model MMM(∞), which has knowledge functions Lim,n(t) and Lin,n(t)

that are determined—by the values Δj(i, n) and B(i, n)—to be

Lim,∞(t) =






t if t < 2,

2(t− 1) if t ≥ 2,
(1.100)

which is convex; and

Lin,∞(t) = t. (1.101)
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Example family of model parametrizations MMM(n) of the modified Bayesian
model

1. The time-discount factor is δ = 0.9.
2. The marginal payoff function is f(a, b) = b/a.
3. The proportion of unlearnable tasks among those learned by innovation is p =

0.01.
4. The proportion of tasks that are learned by imitation is q = 0.01.
5. The decay factor of task difficulty values is η = 0.5.
6. The learning period lengths are given by

Δim(i, n) =
{

2
n+1 if i < n+ 1,
1

n+1 if i ≥ n+ 1,
(1.102)

and
Δin(i, n) =

2
n+ 1

. (1.103)

7. The knowledge jump values are given by B(i, n) = 2i
n+1 .

8. The expected cost of a time-measurement experiment to identify the learning
type is −Cidentify for Cidentify = 1

n+1 .
9. The fraction of time of task attempts that can be devoted to alternative forag-

ing opportunities is given by r = e−(n+1).
10. The distribution ψ of the marginal payoffs of alternative foraging opportunities

is arbitrary.
11. The distributions ϕ(a, b) can be arbitrarily chosen, as long as we have

E[ϕ(a, b)] = f(a, b).
12. As we have assumed throughout the paper, the expected cost of retaining a

payoff observation, −Cretain, has sufficiently high magnitude Cretain so that
payoff data are never retained: e.g., large enough so that the inequality (1.36)
holds.

Table 1.5. An example family of parametrizations MMM(n) of our modified Bayesian model of
ancestral human learning. The continuous learning model approximating this family, MMM(∞),
is characterized by a non-monotonic confidence function (see Figure 2). It follows that for
sufficiently large n, the evolutionarily optimal confidence function of the model
parametrization MMM(n) is also non-monotonic.
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Also, the threshold for learning-type identification is determined—by the values Δj(i, n)—

to be β = 2. Moreover, all other parameters are shared with the model parametriza-

tions MMM(n). Plots relevant to the family {MMM(n)}n∈N and its approximating continuous

learning model MMM(∞) are shown in Figure 1.2.

We use Mathematica 12.2’s NMaximize function to find a local-maximizing, poten-

tially global-maximizing quitting strategy bbb = (∞, bim) ∈ Q̄ for bim ≈ 5.32. That the

quitting strategy bbb = (∞, bim) is local-maximizing and ostensibly global-maximizing is

illustrated in Figure 1.2(f)’s plot of the global-maximum candidates V∞(b) for b < 2

and V∞(∞, b) for b ≥ 2, within the domain 0 ≤ b ≤ 100. Thus, it is plausible that

the quitting strategy bbb = (∞, bim) evolves, and consequently, that b = bim is the cut-

off point for the (limiting) piecewise-defined confidence function g(b) that is optimal

when using the quitting strategy bbb = (∞, bim). As shown in Figure 1.2(d), this cutoff

point makes the confidence function g(b) is non-monotonic in the desired way: gen-

eral increase with an intermediate period of decrease. By Proposition 1.4, this type

of non-monotonic pattern will manifest in the corresponding confidence functions g(b)

of the model parametrizations MMM(n) for sufficiently large n, thereby illustrating via

example the theoretical plausibility of this pattern’s evolution.

1.4 Discussion

Classical Bayesian models are often used to represent task-learning over repeated at-

tempts, each of which yields an observable payoff205. In this paper, we have described

a practical test for rejecting the null hypothesis that a learner is meaningfully learn-

ing from their environmental feedback in the sense of classical Bayesian updating.

The test—essentially a corollary of standard Bayesian statistics—is to check whether
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the learner’s estimate of their expected payoff-acquisition ability is converging to the

mean of the past payoff data.

However, there is extensive empirical evidence of people’s persistent failures to

meaningfully learn from high-variance environmental feedback. This manifests in cog-

nitive biases like underinference, the hard-easy effect, and recurrently non-monotonic

confidence. Our test thus suggests that we should consider rejecting the null hypoth-

esis that humans by default meaningfully learn (in the sense of classical Bayesian up-

dating) from high-variance payoff data. Indeed, the version of the classical Bayesian

model we have presented in Subsection 1.2.1 is specialized to repeated task-learning

and incorporates the realistic assumption that a cognitive biological agent bins obser-

vations into finitely many bins. Under this assumption, tasks that yield low-variance

payoff data are easily learned via deterministic causal inference, because it is likely

that nearly all payoff data will fall in a single observational bin. However, learning

tasks that yield high-variance payoff data requires a large number of observations for

classical Bayesian inference to reliably learn the true state. Overcommitting atten-

tion to meaningfully retain a large number of high-variance observations could result

in onerous ecological fitness costs, which we hypothesize is the causal mechanism be-

hind the proposed non-selection of classically Bayesian learning strategies in settings

of high-variance payoff data.

Next, we have modified the classical Bayesian model to represent ancestral humans’

learning environment in a way that can evolutionary explain the puzzling predictive

inadequacies of classical Bayesian updating models (when applied to humans). When

the ecological fitness cost of retaining payoff data is high, the optimal strategy does

not retain them, in contrast to the Bayesian principle that free information should al-

ways be taken. The optimal strategy then instead relies on setting-specific sources of
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information, as theorized by the ecological rationality hypothesis. The informational

setting of ancestral human learning is hypothesized by cultural evolutionary theory to

be one where social learning of task-specific knowledge is paramount.

Our modified Bayesian model seeks to represent this hypothesized learning envi-

ronment. In it, a student attempts to learn a fitness-relevant task via attempted im-

itation of a role model, with the option of switching between tasks and role models

(between task packages). The main term of the student’s payoff function is comprised

of payoffs yielded by task attempts, which are obtained in the form of high-variance

probabilistic lotteries and thus unfeasible to meaningfully retain. However, the payoff

function also has a secondary term comprised of the ecological fitness cost of identi-

fying the learning type (we hypothesize that this is accomplished via a mental time-

measurement experiment to distinguish learning speeds), as well as a tertiary term

comprised of additional payoffs obtained by devoting a fraction of a task attempt’s

time to opportunistically exploiting alternative foraging opportunities instead.

Optimal exploitation of alternative foraging opportunities requires an accurate es-

timate of the task’s expected marginal payoff conditional on the known information,

which—in our hypothesized domain of high-variance, difficult-to-retain payoff data—is

comprised of the task’s learning type, if known (successful imitation versus de facto

innovation); and their level of knowledge on the task. This evolutionarily optimal es-

timate of the expected marginal payoff—of the student’s confidence at the task—is a

piecewise function of their level of experience, whose piecewise cutoff point is deter-

mined by the optimal point at which tasks learned by de facto innovation are quit.

In order for this confidence function to not be always monotonically increasing, it is

necessary (as long as Assumption 1 holds) that not all attempted imitation learning is

successful: that a positive proportion of tasks are learned instead via de facto innova-
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tion.

Moreover, we demonstrate that this confidence function can be non-monotonic in

the specifically desired way: general increase with an intermediate period of decrease.

This specific non-monotonic pattern, which we have demonstrated for a tractable sub-

family of model parametrizations, arises because of the following interplay. Learning

via de facto innovation while attempting to imitate a role model is not guaranteed to

complete in finite time, because the task may be unlearnable. On the other hand, this

risk does not exist when the student learns from authentically imitating a role model,

since conditional on the imitation being authentic, the role model must have success-

fully learned the task beforehand. The student’s optimal estimate of the task’s ex-

pected marginal payoff (confidence) is monotonically increasing in the level of knowl-

edge when it is guaranteed to be learnable in finite time, but eventually decays to

zero when it may instead be impossibly difficult. We thus hypothesize that the evolu-

tionarily optimal estimate of the expected marginal payoff can be non-monotonic due

to its piecewise definition. The increasing, then decreasing portion of the expected

marginal payoff function is conditional on the fact that the task may be unlearnable.

The final increasing portion is conditional on having ruled out the risk of unlearnabil-

ity, because the tasks to which this risk is exclusive—those learned by innovation—

should optimally be quit at an intermediate level of knowledge.

In short, we hypothesize that the desired pattern of recurrent non-monotonicity

evolved due to a particular interplay between the ecologically rational estimate of

task-specific confidence and the ecologically rational strategy of task/role-model turnover.

A necessary condition for this interplay is the dichotomy between tasks learned by

imitation (for which the risk of unlearnability does not occur) and those learned by

innovation (for which it does).
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We emphasize that the aforementioned subfamily of model parametrizations was

specifically constructed to demonstrate the theoretical plausibility of the desired non-

monotonicity in an analytically tractable subset of the family of all parametrizations

of our model. We anticipate that the full subset of model parametrizations whose evo-

lutionary optimal estimate of confidence is recurrently non-monotonic in the desired

way will be larger.

We are agnostic about the precise combination of adaptive and biological mech-

anisms by which the ecologically rational strategy (of task-payoff estimation and

task/role-model turnover) in an environment of social task-specific learning was achieved.

Plausible adaptive mechanisms relevant to this strategy include genetic evolution

and contemporary, likely social learning. Given that people often fail to adapt their

decision-making to settings of unambiguous individual learning with zero ecological

fitness costs of retaining payoff data—such as those of the experiments of Sanchez and

Dunning 203,204—we propose that genetic evolution plays at least a partial role in the

sense of the ecological rationality hypothesis. On the other hand, cultural evolution-

ary theory implies that contemporary social learning may also play at least a partial

role, especially given the sheer variation of relevant parameters among the myriad

environments and groups humans have inhabited and moved between. The biologi-

cal mechanisms through which ecologically rational strategies of social task-learning

are implemented are likely neurological, but may also be partly hormonal. Future re-

search on both the adaptive and the biological mechanisms relevant to strategies of

task-payoff estimation, task/role-model turnover, and other aspects of social task-

learning would potentially be fruitful.
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1.4.1 Implications

Our model proposes to help explain in an interwoven way two related topics: the evo-

lutionary explanation of cognitive biases, and of why people underuse high-variance

environmental feedback in the selection of role models. It does so by incorporating—

into the general framework of Bayesian decision theory—the cultural-evolutionary-

theoretic hypothesis that the primary informational setting of ancestral human learn-

ing was the social learning of task-specific knowledge; as well as the insight of the eco-

logical rationality hypothesis that the method by which biological cognitive agents

learn from information is constrained in a setting-specific manner, such as by their

ancestral environments’ ecological fitness costs of overcomitting attention.

First, our model demonstrates the evolutionarily plausibility of empirically robust

cognitive biases regarding confidence, and informs us of potentially useful necessary

conditions and sufficient conditions for these patterns to evolve.

1. Task-specific confidence can persistently deviate from the environmental feed-

back, in a way that conforms to the hard-easy effect. This requires that the

ecological fitness cost of retaining payoff data is nonzero, and is guaranteed to

occur if the cost is sufficiently high.

2. Task-specific confidence can be recurrently non-monotonic in the desired way:

general increase with an intermediate period of decrease. This requires (as long

as Assumption 1 holds) that a positive proportion of attempted imitation learn-

ing is unknowingly implemented as de facto innovation learning, and is guaran-

teed to occur in our constructed subfamily of model parametrizations.

In the course of producing these desired conclusions while aiming to maintain model
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parsimony, our work has identified a relatively short list of environmental parameters

that are potentially key to predicting certain aspects (i.e., task-specific confidence

and strategies of task/role-model turnover) of descriptive human learning of a high-

variance-payoff task over repeated attempts.

Also, our model augments our understanding of how role-model-selection strate-

gies that persistently fail to meaningfully learn from certain environmental feedback

evolved. Cultural evolutionary theory hypothesizes that once some capacity for cul-

tural transmission evolved, natural selection would have favored increasingly effec-

tive strategies for cultural learning90. In this hypothesis, ancestral humans somehow

achieved the threshold level of cultural-learning capacity at which cumulative cultural

evolution becomes the primary selection pressure acting on cognition. After cross-

ing this threshold, ancestral humans with a better-than-average capacity for cultural

learning would have been favored by natural selection, which would then further am-

plify cumulative cultural evolution. Thus, gene-culture coevolution caused an autocat-

alytic cycle of more effective cultural-learning strategies and greater cumulative cul-

tural evolution. A hypothesized example of such an effective cultural-learning strategy

is selective social learning: the strategy of learning from preferentially chosen role

models who are likely to possess better-than-average knowledge26.

However, empirical studies have uncovered what at first appear to be surprising

suboptimalities for the role-model selection strategies that humans have actually

evolved. For example, students are substantially inaccurate in assessing the help pro-

vided by their teachers106,242. Also, people are persistently vulnerable to maladaptive

advice from role models47,73,235, such as that regarding female genital cutting110,240,

funerary cannibalism132, unfounded shamanistic predictions217, membership in an

exploitative cult67, and medical pseudoscience207. This body of evidence begs a ques-
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tion: why did ancestral humans evolve to not meaningfully learn from certain environ-

mental observations relevant to the accurate assessment of role-model quality? One

might presume that an informationally rational social learner would base their role-

model selection on the payoff data of potential role models, and on the learner’s own

payoff data in the process of imitating a given role model.

Our theory contributes to explaining this phenomenon by specializing the ecological-

rationality framework (in our setting, by incorporating high ecological fitness costs of

retaining environmental observations) to not only the estimation of task-specific pay-

offs, but also the selection of tasks/role models. Specifically, in our model, these eco-

logical fitness costs can cause role-model-selection strategies (in our model, task/role-

model turnover strategies which determine when to quit the status-quo task package

for a new one) based on retaining such observations to be informationally inefficient.

Classically Bayesian-rational strategies, such as those of role-model selection, are

much more likely to be suboptimal when environmental observations occur with high

variance. Also, our model proposes explicit mechanisms by which ancestral humans—

even in the absence of feasibly retainable environmental feedback—could still have

plausibly evolved on-average selective role-model-selection strategies which relied in-

stead on setting-specific sources of information (e.g., the student’s level of knowledge

and their speed of learning). By hypothesizing precisely how people’s ostensibly sub-

optimal role-model-selection strategies may actually be potentially ecologically ratio-

nal, our model adds to cultural evolutionary theory’s understanding of its hypothe-

sized on-average selective social learning.

To corroborate the hypothesis that humans achieved on-average selective social

learning even for high-variance-payoff tasks, our work highlights the importance of

identifying and investigating the relevant mechanisms of selective social learning,
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which would need to be robust in the face of high ecological fitness costs of overcom-

mitting attention. One such mechanism, hypothesized by our model, is the poten-

tial dependence of task/role-model turnover strategies on setting-specific informa-

tion, which can inform turnover even in the absence of retained environmental feed-

back. Another example of such a mechanism is the conformist or reputation-based na-

ture of human role-model-selection strategies26,38,89. To illustrate, descriptive human

role-model-selections rely at least partially on granting prestige status to role models

based on popularity rather than on the relevant environmental feedback92.

These two mechanisms—reliance on setting-specific information and conformist

role-model-selection strategies—are not competing explanations for on-average selec-

tive social learning in settings of high-variance environmental feedback. In fact, the

latter mechanism may require the former, because in order for conformist role-model-

selection strategies to facilitate selective social learning in the absence of environmen-

tal feedback, the prestige status granted to a popular role model may need to have

had incorporated other helpful information at some point in the past. If this infor-

mation could not feasibly have been environmental feedback, then it must have been

setting-specific information in the complement of environmental feedback. Our theory

proposes that the student’s level of knowledge and their speed of learning can pro-

vide such setting-specific information to achieve an on-average selective strategy of

task/role-model choice, even when retaining environmental feedback is unfeasible.

Regardless of whether our model is a good model of ancestral humans’ learning

environment, our test for verifying whether a learner is meaningfully incorporating

their environmental observations into their decision-making—in the sense of classical

Bayesian inference—may be general enough to have various potential applications. To

illustrate, public-policy plans are often aimed at least partially at improving societal
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well-being. Arguably, the dominant paradigm with which this goal is approached is

the assumption that each person’s decisions (e.g., the price they are willing to pay or

take for an item) reveal an informationally rational aggregate of their private observa-

tions relevant to their well-being80. Policymakers thus aim to economize on the cost

of gathering copious, potentially idiosyncratic information by relying on each person’s

purported aggregate of their individual observations encapsulated by their decisions.

The reliability of this information-gathering strategy is determined by whether each

person is actually aggregating their observations in an informationally rational way.

However, as we have seen above, an extensive body of empirical evidence suggests

that this assumption of informational rationality may not hold true when the relevant

observations occur with high variance. Moreover, we have demonstrated the plau-

sible ecological rationality of empirically robust cognitive biases by constructing an

evolutionary model of social learning of task-specific knowledge, hypothesized by cul-

tural evolutionary theory to be the primary mode of ancestral human learning. Our

work thus contributes to raising the following research question: in which situations

do public-policy plans aimed at improving societal well-being under the assumption

of people’s informational rationality actually succeed in doing so? It also begs a po-

tentially important follow-up question: can public-policy plans be improved by re-

placing the assumption of informational rationality with the more empirically tenable

assumption of ecological rationality? Domains of high-variance payoff data, such as

gambling, may potentially be better served by the latter assumption over the former.

Another preliminary point is that informational rationality may not be an unattain-

able goal for human cognition. The decision-making of a person who is both trained

in statistical methods and has the habit of applying this training to their own obser-

vations may be informationally rational. It may thus be fruitful not only to question
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the default assumption of people’s informational rationality, but also to explore the

potential upside of practical statistics training: such as the habit of keeping track of

the mean past payoff data, as implied by our test for informational rationality. This

statistical skill can be both a possible remedy to the potentially detrimental misas-

sumption of informational rationality, and a facilitator of improved judgement and

role-model selection at the individual level. One potential such benefit is dissuading

people from socially learning the practice of repeated gambling on negative-expected-

value lotteries.

1.4.2 Model limitations and directions for generalization

Our model is almost certainly an oversimplification of descriptive social task-learning,

which in general involves extremely complex social dynamics. We non-exhaustively

list several ways in which this is the case. We also note potential remedies, in the

form of potential directions for generalization. Thereby generalizing our model may

potentially enable it to better represent descriptive social task-learning and thereby

better explain the relevant empirical data. We thus propose our model as a barebones

representation of social, knowledge-based task learning, on which more sophisticated

variants can potentially be built in the future (assuming, of course, that the thrust of

the model’s story is essentially correct).

First, our model’s conclusion that the student retains no information from payoff

data is oversimplified. Realistically, people can plausibly retain easy-to-remember as-

pects of their past payoff data, which may include the maximum and minimum payoff

values observed so far. People may also temporarily retain a small number of recent

payoff data, even when they fail to draw on more distant past data that a Bayesian-
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updating belief would incorporate. The realistic assumption that a small number of

recent payoff observations may inform decision-making can account for additional em-

pirically documented patterns in descriptive human learning, such as reinforcement

learning165.

Also, our model’s assumption that knowledge affects decision-making through a

unidimensional quantification—the level of knowledge b—is an oversimplification.

There is no reason to believe that knowledge is unidimensional, an assumption we

have used for the sole sake of tractably showing the evolutionary plausibility of re-

currently non-monotonic confidence. In fact, given the sheer multifaceted nature of

knowledge, we hypothesize that knowledge in general should affect decision-making

through a more faithful, multidimensional quantification.

Moreover, our model’s two-dimensional spectrum of task packages—assumed in our

model to be comprised of a unidimensional knowledge-based difficulty level and a bi-

nary learning type—is an oversimplification. First, as we have noted above, knowledge

is likely experienced as a multidimensional quantity, which makes it likely that a uni-

dimensional knowledge-based classification of tasks is an oversimplification. Second,

when a student attempts to learn from a role model, their method of learning would

in general be placed somewhere on the spectrum between full imitation and full in-

novation. Third, our two-dimensional spectrum is unlikely to capture all the relevant

variations in the task-learning process; idiosyncrasies of the task itself, of how the stu-

dent learns, of how the teacher imparts (or ostensibly imparts) knowledge, and of the

degree to which learning is student-directed as opposed to role-model-directed (for ex-

ample, whether the student seeks out the role model for a task they already had in

mind) may also influence the learning process. In particular, potentially consequential

quantities like the speed of learning may vary with respect to characteristics of the

84



task package that are not captured by this two-dimensional parametrization.

Finally, our model’s assumption that task packages are drawn i.i.d. from a fixed

probability distribution is an oversimplification. For one thing, the i.i.d. assumption

on our model—added for the sake of tractability—ignores the likely correlations be-

tween different task packages due to similarities in either the teachers or the underly-

ing tasks. For another, descriptive selection of tasks/role models is not well-modeled

by an i.i.d. draw from a fixed distribution; it is better described as an intrinsically so-

cial process that involves dynamically occurring interactions between other students

and other potential role models, such as via conformist role-model selection strate-

gies (e.g., prestige status). Such a multi-agent interaction would need to be modeled

by a complex game-theoretic model, rather than a comparatively tractable Bayesian

decision-theoretic model (which can be solved by dynamic-programming-type methods

under quite non-restrictive conditions). Regardless, only a model in the former formu-

lation could veridically represent the relevant social dynamics, such as coordination

and punishment.

1.4.3 Empirical tests

We sketch an empirical program to study descriptive human learning in the formula-

tion of our theory. One of the primary goals of such a program would be the eventual

corroboration or falsification of the theory itself. However, the program—by pursuing

theoretical formulation—may also potentially yield other advances in the psychologi-

cal sciences’ understanding of descriptive human learning and decision-making, espe-

cially since the field is arguably held back by a shortage of theoretical formulation at

the moment161.
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First, we propose the empirical estimation of the true parameters of various social

task-learning environments. Several parameters which we have proposed to be evo-

lutionarily relevant include the proportion of attempted imitation that is successful,

the proportion of unlearnable tasks among those that are learned by unsuccessful im-

itation (de facto innovation learning), the speed of each type of learning, ecological

fitness costs of various action choices, and the situation-specific marginal payoff from

a task. Empirical studies of how these parameters varied across both ancestral and

contemporary human learning environments, as well as studies of whether they can

predict the respective evolution of task-specific confidence and strategies of task/role-

model turnover, would potentially contribute to a more robust and granular under-

standing of human cognition. Such studies would also allow us to test whether our

model can veridically represent ancestral and contemporary human learning environ-

ments.

Estimates of such model parameters in ancestral environments would often be nec-

essarily crude, given the general lack of archaeological and other relevant forms of

evidence. As a start, one may feasibly expect ancestral humans who lived in areas

where food is complicated to obtain (e.g., tundra)—when compared to those who

lived in areas with easy food availability (e.g., rainforests)—to either have a gener-

ally lower-valued payoff function, a task difficulty distribution biased towards higher

difficulty values, or a greater probability of unlearnable tasks. Empirical studies can

then test whether these hypothesized parameter differences in the ancestral environ-

ments affect strategies of task-payoff estimation and task/role-model turnover in the

ways predicted by our model, such as Proposition 1.1’s prediction that task-specific

confidence (conditional on learning not yet having completed) decreases in the propor-

tion of unlearnable tasks. Such efforts, however, may be inevitably limited, due to the
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multitude and granular variation of the model parameters, the difficulty of measuring

many of them for ancestral environments, and the uncertainty in whether ecologically

rational social task-learning strategies were selected via genetic evolution.

More immediately promising would be applying such efforts to investigating the

social task-learning of evolutionarily relevant foragers whose lifestyles are hypothe-

sized to be faithful continuations of their ancestors’, such as the Hadza people130,143.

Such efforts will not be confounded by our current uncertainty in whether the adap-

tive mechanism by which ecologically rational social task-learning strategies were se-

lected was genetic evolution or contemporary learning. We propose empirical studies

of the social task-learning of such peoples as a potentially fruitful first step in testing

whether our model (or a sufficient generalization) is a good model of descriptive hu-

man learning. If the answer to this question is affirmative, empirical researchers can

proceed to study learning environments with granular variations in model parame-

ters, genetic-evolutionary background, and cultural-evolutionary background. Doing

so may further corroborate or potentially falsify our model, determine the role of ge-

netic evolution and contemporary learning in the selection of its ecological rational

strategies, and investigate the scientific consequences of any such findings.

For instance, suppose that our model is a good model of descriptive human learn-

ing, and that the adaptive mechanism by which its ecologically rational strategies

were selected was at least partially genetic evolution. Then, our model may provide

a way in which otherwise mysterious aspects of ancestral human learning environ-

ments can be studied indirectly: via empirical studies (of task-specific confidence and

task/role-model turnover) investigating people living today. Specifically, empirical

data of these psychological aspects—which are comparatively easy to obtain—can

narrow down the feasible region of model parametrizations that can evolutionarily
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explain the data of such studies. This would then potentially inform us of character-

istics of the respective ancestral human learning environments that would otherwise

be difficult to discern. On the other hand, suppose that the adaptive mechanism by

which the model’s ecologically rational strategies were selected was at least partially

contemporary cultural learning. Then, our model may similarly enable certain aspects

of a cultural group’s social task-learning environment to yield consequences about cer-

tain aspects of their decision-making, and vice versa. Such a bridge between different

objects of study can increase the number of ways we can study each, and thereby con-

tribute to a more comprehensive literature on human cognition.

It is evident that in all lines of inquiry described above, empirical data from con-

temporary people’s learning (including, but not limited to social task-specific learn-

ing) could be crucial. Such data can be obtained from lab studies and field studies

of the relevant psychological aspects. A prediction of our theory is that these psy-

chological aspects may be evolutionarily affected by independent variables that are

specific to social, knowledge-based learning and not to individual learning: even when

in ostensibly unambiguous settings of individual learning with costless environmen-

tal feedback. Therefore, it may be potentially beneficial for empirical studies of these

psychological aspects—even in domains of individual learning—to keep track of po-

tentially social-learning-specific independent variables like the level of knowledge, the

speed of learning, and whether the method of learning is imitation or innovation.

Another prediction is that two psychological aspects in particular—task-specific

confidence and task/role-model turnover—are evolutionarily related. We thus propose

that they should be studied concurrently. In particular, empirical studies should look

for our theory’s hypothesized, potentially discernable piecewise cutoff point (a “phase

transition”) in the student’s task-specific confidence, which should exist and coincide
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with the identification of the learning type. They should then investigate precisely

when this cutoff point—as well as task/role-model turnover—occurs, which should

vary with respect to whether the student’s learning method is authentic imitation or

de facto innovation in ways that are elucidated by our model.

Lab studies would do well to incorporate the excellent experimental design of Sanchez

and Dunning 203,204 , which is effective at studying task-specific confidence over the

course of learning a high-variance-outcome task over repeated attempts. To arrive at

the setting of our model, the Sanchez–Dunning experimental design could be modi-

fied to represent an unambiguous setting of task-specific learning via attempted im-

itation. Ideally, this modified design would achieve a dichotomy between successful

imitation and de facto innovation (e.g., by having some role models teach via the So-

cratic method, and other role models provide actually helpful knowledge: but not to

the point of trivializing task learning), include unlearnable tasks (e.g., by having pay-

offs of unlearnable tasks occur with full randomness that cannot ever be predicted),

grant the option of drawing a new task and/or role model, and—just as in the orig-

inal experiment—offer an incentive-compatible reward. Such an experimental design

could then essentially be a parametrization of our learning environment, albeit an ar-

tificial one and not an ancestral one. These artificial model parameters, the genetic

and cultural-evolutionary background of the experimental subjects, and other po-

tentially relevant treatment effects (independent variables) can then be varied across

studies to test the quantitative predictions of our theory regarding task-specific confi-

dence and task/role-model turnover.

Also, on top of such an artificial model parametrization, empirical researchers could

add other hypothesized cultural-evolutionary-theoretic mechanisms that would endow

its learning environment with an unambiguously social context. Key examples of such
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mechanisms include a nontrivial amount of choice in the selection of new tasks and/or

role models, the ability to observe the number of other students that have chosen each

task/role model, and the ability to exchange information with other students and role

models. The inclusion and veridical representation of such mechanisms could be key

to investigating cultural-evolutionary-theoretic dynamics that are not fully captured

in a decision-theoretic setting such as that of our model.

In addition, empirical researchers could pursue field research of social task-specific

learning, especially pertaining to tasks with high-variance payoffs. In contrast to the

lab research proposed above, field research would allow for a more veridical represen-

tation of social task-specific learning, at the potential expense of experimental con-

trols and granular variation of the independent variables. Doing such field studies in

a manner that comprehensively measures all data relevant to our model would be un-

doubtedly challenging, given that it may need to keep track of every student and role

model’s interactions, respective levels of experience, respective speeds of learning, re-

spective payoff data, and—if technologically feasible—informative measurements of

knowledge. Even if all such data were collected, there may additionally need to be

some degree of nontrivial inference from the data to discern certain model parame-

ters: for example, which packages of tasks and role models were learned via success-

ful imitation rather than de facto innovation. Future advances towards improving

and widening the collected data in such field studies would potentially help on these

fronts.

In both field studies and lab studies investigating descriptive social learning of

high-variance-payoff tasks, empirical researchers would do well to take into account

the sheer diversity in potential subjects’ psychological profiles and treatment effects,

which should ideally be recorded as comprehensively as possible in order to keep track

90



of all potential independent variables251. In fact, consider the following two hypothe-

ses. First, subjects who are most likely to be studied by lab research—individuals of

Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies—are in

important ways psychological outliers relative to the rest of the human population94.

Second, much of the genus homo’s two-million-year existence was spent in the non-

WEIRD lifestyle of mobile foragers231. A consequence is that a comprehensive under-

standing of descriptive human learning may require studying the social task-learning

of mobile foragers whose lifestyles are faithful continuations of their ancestors’: and

studying that of non-WEIRD peoples in general. To their credit, field studies are al-

ready doing so extensively120,128–130,201,202,210. It may potentially be fruitful to have

more of the relevant lab studies, such as the Sanchez–Dunning experimental design

(2018, 2020), to also be targeted at individuals of non-WEIRD societies.

Empirical tests of our model’s assumptions themselves would be potentially valu-

able for the purpose of assessing whether it is a good model of ancestral learning envi-

ronments. The program to investigate whether social task-learning comprised the pri-

mary selection pressure of ancestral human learning is not new. It is a vibrant line of

inquiry that constitutes the center of the debate between cultural evolutionary theory

and its competing hypotheses10, whose resolution has potential implications for other

debates: like that regarding the hypothesized evolution of moral, norm-based pref-

erences36. Our model contributes new insights that can add to this program. Most

notably, it demonstrates that cultural evolutionary theory can explain otherwise puz-

zling cognitive biases like recurrently non-monotonic confidence. The fact that de-

scriptive human learning is thereby cognitively biased—even in unambiguous settings

of individual learning with costless environmental feedback—grants plausibility to cul-

tural evolutionary theory’s hypothesis that the primary selection pressure on ancestral
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human cognition was social, knowledge-based task-learning.

Also, our model identifies several potentially relevant mechanisms in a hypothe-

sized learning environment of social, knowledge-based task-learning: for example, the

classification of attempted imitation learning into successful imitation and de facto

imitation learning, as well as the risk of an unlearnable task in the case of the latter.

In particular, it explicitly posits the predictive importance of ecological fitness costs of

overcommitting attention, which determine whether the evolutionarily optimal strat-

egy of selective role-model selection meaningfully learns from the relevant payoff data.

Our model’s formalization of these parameters can augment empirical assessments of

cultural evolutionary theory by informing a potentially fruitful avenue of research:

specifically, the estimation of these parameters for various, potentially ancestral learn-

ing environments; combined with an investigation of cultural evolutionary theory’s

relevant predictions and of the degree to which these predictions hold. One such pre-

diction from our model (and suitable generalizations of it) would be that when the

ecological fitness cost of retaining payoff data is sufficiently high, the optimal strategy

of task/role-model turnover would not retain it, and instead rely on other sources of

information that are specific to the hypothesized setting of social, knowledge-based

task-learning.

A stronger claim of our theory is that the costly cognitive mechanism by which

ancestral humans distinguished successful imitation from de facto innovation was a

mental time-measurement experiment, to distinguish their respective learning speeds.

Our hypothesized existence of such mental time-measurement experiments is a special

case of the generally theorized mental evidence-sampling process preceding a deci-

sion187. Empirical tests of our assumption that the speed of imitation is faster than

that of innovation, as well as of our assumption that human learners can and do dif-
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ferentiate between the two speeds via mental time-measurement, could help probe the

plausibility of our theory.

Other plausible hypotheses for the cognitive mechanism by which the student dif-

ferentiates between imitation and innovation include a costly-to-observe signal effused

by the teacher, or one effused by the accumulated task-specific knowledge at any

given point of time. Our model can be suitably modified to use such an alternative

hypothesis for this cognitive mechanism. In fact, incorporating such an alternative

hypothesis would make the model considerably simpler, since it would not need to

consider variation in learning speeds. However, a disadvantage of such an alternative

hypothesis is that empirically testing it may be less straightforward, at least without

relying on neuroscientific methods. We have thus not pursued these alternatively hy-

pothesized mechanisms in the present paper, although we do not rule their veracity

out and hope that they may be feasibly testable in the future.

More generally, it may be plausible that future developments in our neuroscien-

tific knowledge will enable a detailed mechanistic understanding of descriptive hu-

man learning. While remarkable empirical advances have been made on this front,

our current level of neuroscientific understanding has a long way to go, given the

extreme complexity of human cognition and the relative adolescence of the field of

neuroscience. However, our sketches of potential empirical studies demonstrate that

even at our currently limited level of understanding of descriptive human learning,

substantive progress—towards testing our theory and in general—may be plausible.

Moreover, evolutionary-theoretic hypotheses like those of our model can inform the

design, data collection, and analyses of such empirical studies, and thereby partially

compensate for the preliminary nature of the current neuroscientific literature. Given

the immediate and far-reaching upside of a comprehensive understanding of descrip-

93



tive human decision-making, we propose that the eventual benefits of a cumulative

program of research working towards this goal (even prior to a full neuroscientific un-

derstanding) may outweigh the costs.
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1.5 Appendix

1.5.1 Proof of Proposition 1.1

Note that

gρy(b) =
(1− y)

(
log 1

η

) ∫∞
b f(a, b)ηada

y+ (1− y)
(
log 1

η

) ∫∞
b ηada

(1.104)

=

(
log 1

η

) ∫∞
b f(a, b)ηada

y
1−y +

(
log 1

η

) ∫∞
b ηada

. (1.105)

Recall that η ∈ (0, 1), and that f(·, b) is a continuous, non-negative function satisfy-

ing f(b, b) = 1. It follows that the integral

w =

(
log 1

η

)∫ ∞

b
f(a, b)ηada (1.106)

is strictly positive, since we can find a positive-measure subset [b, b + ε] ⊂ [b,∞) on

which the integrand (
log 1

η

)
f(a, b)ηa (1.107)

is lower-bounded by a positive constant close to f(b, b)ηb = ηb. Also, the integral

z =

(
log 1

η

)∫ ∞

b
ηada (1.108)

is strictly positive.
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Check that

∂

∂ygρy(b) =
∂

∂y
w

y
1−y + z

=
−w 1

(1−y)2
(

y
1−y + z

)2 = − w

(y+ z(1− y))2
< 0, (1.109)

as desired. In particular, gρy(b) is strictly monotonically decreasing in y, which yields

the inequalities (1.46) as a corollary.

1.5.2 Proof of Proposition 1.2

To show part (a), we check that
d
dbgρ0(b) (1.110)

is positive. First, we apply a change of variables to obtain

gρ0(b) =

(
log 1

η

) ∫∞
b f(a, b)ηada

(
log 1

η

) ∫∞
b ηada

=

(
log 1

η

) ∫∞
b f(a, b)ηada

ηb

=

(
log 1

η

)∫ ∞

b
f(a, b)ηa−bda

=

(
log 1

η

)∫ ∞

0
f(b+m, b)ηmdm. (1.111)

This equality can also be deduced from the memorylessness property of the exponen-

tial distribution ρ0,

ρ0(a) =
(
log 1

η

)
ηa. (1.112)

Then, we differentiate the expression (1.111) with respect to b by Leibniz’s integral
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rule, which yields

d
dbgρ0(b) =

d
db

((
log 1

η

)∫ ∞

0
f(b+m, b)ηmdm

)

=

(
log 1

η

)∫ ∞

0

(
∂

∂bf(b+m, b)
)
ηmdm. (1.113)

Recall that η ∈ (0, 1), and that ∂
∂b f(b + m, b) > 0 by Assumption 1. Thus, the expres-

sion (1.113) is an integral of a positive and continuous function

(
log 1

η

)(
∂

∂bf(b+m, b)
)
ηm (1.114)

over [0,∞). Just as in Appendix 1.5.1, we can find a positive-measure subset of [0,∞)

on which the integrand is lower-bounded by a positive constant. Thus, the integral

(1.113) is positive, as desired.

To show part (b), observe that

gρy(b) =
∫

a
f(a, b)dρcond,a>b

y (a), (1.115)

where ρcond,a>b
y (a) denotes the conditional distribution of ρy conditional on a > b. Its

p.d.f. is given by

ρcond,a>b
y (a) =

ρy(a)∫
a>b dρy(a)

for a > b. (1.116)

Observe that the conditional distribution ρcond,a>b
y places probability

ρcond,a>b
y (∞) =

ρcond,a>b
y (∞)

∫
a>b dρcond,a>b

y (a)
=

y
y+

(
log 1

η

)
ηb

→ 1 (1.117)

on a = ∞ as b → ∞. Equivalently, ρcond,a>b
y places probability converging to zero on
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the subset of finite difficulty values, (b,∞), as b → ∞. Since f(∞, b) = 0, we can apply

the dominated convergence theorem to conclude that

0 ≤ lim
b→∞

gρy(b) = lim
b→∞

(∫

a∈(0,∞)
f(a, b)dρcond,a>b

y (a) + 0 · ρcond,a>b
y (∞)

)

≤ lim
b→∞

∫

a∈(0,∞)
dρcond,a>b

y (a)

=

∫

a∈(0,∞)
lim
b→∞

dρcond,a>b
y (a) =

∫

a∈(0,∞)
0 da = 0,

where we have set ρcond,a>b
y (a) = 0 for a ≤ b. Thus, we have the desired equality

lim
b→∞

gρy(b) = 0. (1.118)

To show part (c), we use the quotient rule and Leibniz’s integral rule:

d
dbgρy(b) =

d
db

(1− y)
(
log 1

η

) ∫∞
b f(a, b)ηada

y+ (1− y)ηb

=
1

(
y+ (1− y)ηb

)2

·
((

y+ (1− y)ηb
)
(1− y)

(
log 1

η

)(
−ηb +

∫ ∞

b

∂

∂bf(a, b)η
ada
)

− (1− y)
(
log 1

η

)
ηb(1− y)

(
log 1

η

)∫ ∞

b
f(a, b)ηada

)
.

(1.119)

Assumption 2 implies that that

−ηb +
∫ ∞

b

∂

∂bf(a, b)η
ada, (1.120)
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and thereby the entire expression (1.119) for d
dbgρy(b), is negative for all sufficiently

large b, as desired.

1.5.3 Proof of Lemma 1.3

The proof of this lemma solely uses the fact that the unique solution




V̂im(bim, bin)

V̂in(bim, bin)



 (1.121)

to a nondegenerate system of equations




a b

c d








V̂im(bim, bin)

V̂in(bim, bin)



 =




e

f



 . (1.122)

is given by 


de−bf
ad−bc

af−ce
ad−bc



 . (1.123)

Substituting the suitable expressions for the quantities a, b, c, d, e, and f completes our

proof. Note that

g = ad− bc. (1.124)

1.5.4 Proof of Proposition 1.4

Choose N large enough that the expected payoff deviation due to the procurement

of alternative foraging opportunities in the model parametrization MMM(n) is less than

ε/3 for all n ≥ N. By possibly making N larger, the expected payoff deviation due to
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time-measurement experiments in the model parametrization MMM(n) is also less than

ε/3.

Furthermore, by possibly making N even larger, the difference between the ex-

pected total payoff Vn(π) in the model parametrization MMM(n)—henceforward exclud-

ing deviations due to side opportunities and time-measurement costs—and that of

its approximating continuous learning model MMM(∞), given by V∞(bbb(π)), is less than

ε/3 for all n ≥ N. To show this, we may as well assume that the task payoff of each

learning period (say, the kth one) of the model parametrization MMM(n), given by

f(a(k), b(k))
∫ T(k+1)

T(k)
δtdt, (1.125)

is obtained as a flow payoff of

δtf(a(k), b(k))dt. (1.126)

We then define the function

V̂n(bim, bin) = qV̂im,n + (1− q)V̂in,n (1.127)

in terms of the function V̂im,n, V̂in,n : ((0,∞) ∪ {∞})2 → [0,∞), defined by

V̂im,n(bim, bin) =
dnen − bnfn

gn
(1.128)

and

V̂in,n(bim, bin) =
anfn − cnen

gn
(1.129)

for

an = 1− qδL
−1
im,∞(bim)ηbim (1.130)

102



bn = −(1− q)δL
−1
im,∞(bim)ηbim , (1.131)

cn = −qδL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (1.132)

dn = 1− (1− q)δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (1.133)

en =

∫ bim

0

(∫ L−1
im,∞(a)

0
δtf(a,Lim,n(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt
)
dμim(a)

+

∫

a>bim

(∫ L−1
im,∞(bim)

0
δtf(a,Lim,n(t))dt

)
dμim(a), (1.134)

fn =

∫ bin

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,n(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμin(a)

+

∫

a>bin

(∫ L−1
in,∞(bin)

0
δtf(a,Lin,n(t))dt

)
dμin(a), (1.135)

and

gn = 1− δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
+ q

(
δL

−1
in,∞(bin)

(
p+ (1− p)ηbin

)
− δL

−1
im,∞(bim)ηbim

)
.

(1.136)

By construction, the functions V̂n have the property that

Vn(π) = V̂n(b, b) (1.137)
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for a policy π represented by bbb = b, and

Vn(π) = V̂n(bim, bin) (1.138)

for a policy π represented by bbb = (bim, bin).

Under the assumption that V̂∞ and all functions V̂n are continuous at b = 0, we

will complete our proof. We have that {V̂n}n∈N is a sequence of continuous functions

on the compact space

Q̄ ∪ {(0, 0)} = {(b, b) : b ∈ [0, β]} ∪ {(bim, bin) : bim, bin ∈ [β,∞) ∪ {∞}} (1.139)

that is monotonically converging to V̂∞, which is also continuous. Thus, this conver-

gence is uniform by Dini’s theorem. In particular, we have

sup
π∈Π

|Vn(π)− V∞(bbb(π))| ≤ sup
(bim,bin)∈Q̄∪{(0,0)}

|V̂n(bim, bin)− V̂n(bim, bin)| <
ε

3
(1.140)

for sufficiently large n as desired, where we have used the fact that the set of all strate-

gies bbb of the continuous learning model that represent policies π ∈ Π of MMM(n) is a

subset of Q̄. Our overall theorem statement then follows from the triangle inequality.

It remains to show that V̂∞ (respectively, all functions V̂n), which are only defined

for b > 0, can be continuously extended to b = 0. For this, it suffices to show that

the constituent functions V̂im,∞ and V̂in,∞ (respectively, V̂im,n and V̂im,n) can be con-

tinuously extended to b = 0. Observe that the numerator and denominator of each

constituent function are both equal to zero at b = 0, which creates the a priori pos-

sible obstruction to continuity. However, by L’Hôspital’s rule, if both the numerator

and the denominator are differentiable at b = 0 and the derivative of the denominator
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has nonzero value at b = 0, then the limit of the function as b → 0 is well-defined, as

desired.

The derivative of the denominator g = gn at zero is computed by the product rule

and chain rule:

d
dbg(b, b)|b=0 = (1− q)

((
log 1

δ
)
δL

−1
in,∞(0)

d
dtLin,∞(0)

(
p+ (1− p)η0

)
+ δL

−1
in,∞(0)(1− p)

(
log 1

η

)
η0
)

+ q
((

log 1
δ
)
δL

−1
im,∞(0)

d
dtLin,∞(0)

η0 + δL
−1
im,∞(0)

(
log 1

η

)
η0
)

(1.141)

= (1− q)
( (

log 1
δ
)

d
dtLin,∞(0)

(p+ (1− p)) + (1− p)
(
log 1

η

))

+ q
( (

log 1
δ
)

d
dtLin,∞(0)

+

(
log 1

η

))
> 0. (1.142)

To conclude via the product rule that the derivatives of the numerators of each of

the functions V̂im,∞ and V̂in,∞ (respectively, V̂im,n, and V̂im,n) is well-defined at b = 0,

it suffices to check whether the derivatives of e (respectively, en) and f (respectively,

fn) are well-defined at b = 0; this is because

a = an, (1.143)

b = bn, (1.144)

c = cn, (1.145)

and

d = dn, (1.146)
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are clearly differentiable via the chain rule. Indeed, Leibniz’s integral rule yields that

the derivatives of en and fn are well-defined and given at b = 0 by

d
dben|b=0 = μim(0)

(∫ L−1
im,∞(0)

0
δtf(a,Lim,n(t))dt+

∫ ∞

L−1
im,∞(0)

δtdt
)

− μim(0)
∫ L−1

im,∞(0)

0
δtf(a,Lim,n(t))dt+

∫

a>0

δL
−1
im,∞(0)f(a, 0)
d
dtLim,∞(0)

dμim

=

(
log 1

η

)
1

log 1
δ
+

∫

a>0

δL
−1
im,∞(0)f(a, 0)
d
dtLim,∞(0)

dμim (1.147)

and

d
db fn|b=0 = μin(0)

(∫ L−1
in,∞(0)

0
δtf(a,Lin,n(t))dt+

∫ ∞

L−1
in,∞(0)

δtdt
)

− μin(0)
∫ L−1

in,∞(0)

0
δtf(a,Lin,n(t))dt+

∫

a>0

δL
−1
in,∞(0)f(a, 0)
d
dtLin,∞(0)

dμin

= (1− p)
(
log 1

η

)
1

log 1
δ
+

∫

a>0

δL
−1
in,∞(0)f(a, 0)
d
dtLin,∞(0)

dμin. (1.148)

The calculations for e and f are analogous—the only difference being that the function

Lj,n(t) in the integrand is replaced with Lj,∞(t)—and give the identical answers for the

derivative at b = 0. The product rule thus yields the derivative of the numerators at

b = 0, as needed.

1.5.5 Proof of Proposition 1.5

For every strategy bbb = (bim, bin) such that bim < ∞, we construct another strategy bbb′

that achieves a strictly higher value V∞(bbb′). This shows that a necessary condition for

bbb = (bim, bin) to maximize V∞ is that bim = ∞. Note that the constructed strategy bbb′
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will not be of the form bbb′ = (b′im, b′in), i.e., will not repeat the same quitting strategy

for every drawn task.

Consider the probability measure μ∞ on the sample space of sequences of tasks

drawn i.i.d. from μ (some of which may not be drawn if the student quits finitely

many times),

Ω = U∞. (1.149)

The distribution is defined as follows. Let F denote the σ-algebra generated by the

algebra

F0 =
∞⋃

n=1
Fn, (1.150)

where Fn denotes the collection of events whose occurrence can be determined by the

results of the first n draws. The probability distribution μ on U canonically endows

F with a probability measure μ∞, which is used to defined the compute the expected

value of the payoff.

Let V∞(bbb′′, ω) denote the total payoff when the student uses a strategy bbb′′ and the

sequence of task types is ω ∈ Ω. Then, the total payoff V∞(bbb′′) is given by

V∞(bbb′′) =
∫

Ω
V∞(bbb′′)dμ∞(ω). (1.151)

We modify bbb = (bim, bin) to obtain the alternative strategy

bbb′ =
(
([q, b′im; (1− q)p, b′in], bin), (bim, bin), (bim, bin), . . .

)
, (1.152)

where the first factor

[q, b′im; (1− q), b′in] (1.153)
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denote the probabilistic quitting strategy of, assuming learning has not completed by

then, quitting with probability q at

b′im = Lim,∞
(
2L−1

im,∞(bim)
)

(1.154)

and quitting with probability (1− q) at

b′in = Lim,∞
(
L−1
im,∞(bim) + L−1

im,∞(bin)
)
. (1.155)

The probabilistic strategy bbb′ can be written as a combination of two deterministic

strategies:

bbb′im =
(
(b′im, bin), (bim, bin), (bim, bin, . . .

)
(1.156)

with probability q and

bbb′im =
(
(b′in, bin), (bim, bin), (bim, bin, . . .

)
(1.157)

with probability 1− q.

We will show that

V∞(bbb) =
∫

Ω
V∞(bbb)dμ∞(ω) (1.158)

is strictly less than

V∞(bbb′) =
∫

Ω
V∞(bbb′)dμ∞(ω), (1.159)

thus showing that bbb′ strictly outperforms bbb.

First, we partition the sample space Ω into subsets

Ω = Ω1 ∪Ω2, (1.160)
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defined by

Ω1 = {ω = ((j1, a1), . . .) : j1 = in or a1 ≤ bim} (1.161)

Ω2 = {ω = ((j1, a1), . . .) : j1 = im and a1 > bim}. (1.162)

Note that
∫

Ω1

V∞(bbb, ω)dμ∞(ω) =
∫

Ω1

V∞(bbb′, ω)dμ∞(ω). (1.163)

Indeed, if j1 = im and a1 ≤ bim for ω ∈ Ω1, then both bbb and bbb′ learn the first task until

completion and stick with it forever; and if j1 = in, the strategies bbb and bbb′ play in the

same way for such a task sequence ω.

It thus suffices to show that

∫

ω∈Ω2

V∞(bbb, ω)dμ∞ <

∫

ω∈Ω2

V∞(bbb′, ω)dμ∞. (1.164)

Partition Ω2 into subsets

Ω2 = Ω3 ∪Ω4 ∪Ω5 (1.165)

defined by

Ω3 = {ω = ((j1, a1), (j2, a2), . . .) : j1 = im, a1 > bim, and j2 = im} (1.166)

Ω4 = {ω = ((j1, a1), (j2, a2), . . .) : j1 = im, a1 > bim, j2 = in, and a2 < ∞} (1.167)
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and

Ω5 = {ω = ((j1, a1), (j2, a2), . . .) : j2 = in, a2 = ∞, j2 = in, and a2 = ∞}. (1.168)

It suffices to show that

∫

ω∈Ω3

V∞(bbb, ω)dμ∞ < q
∫

ω∈Ω2

V∞(bbb′im, ω)dμ∞, (1.169)

∫

ω∈Ω4

V∞(bbb, ω)dμ∞ < (1− q)(1− p)
∫

ω∈Ω2

V∞(bbb′in, ω)dμ∞, (1.170)

and
∫

ω∈Ω5

V∞(bbb, ω)dμ∞ < (1− q)p
∫

ω∈Ω2

V∞(bbb′in, ω)dμ∞, (1.171)

since bbb′ plays as the strategy bbb′im with probability q (the proportion of Ω3 in Ω2) and

as the strategy bbb′in with probability (the proportion of Ω4 and Ω5 combined in Ω2).

We first show inequality (1.169). Check that the left-hand side is given by

∫

ω∈Ω3

V∞(bbb, ω)dμ∞ =

∫

ω̄∈Ω′
3

V∞(bbb, ((im, bim + ε), ω̄)))
(∫

{(im,a1):a1>bim}
dμ
)
dμ∞

= qηbim
∫

ω̄∈Ω′
3

V∞(bbb, ((im, bim + ε), ω̄))dμ∞, (1.172)

where ω̄ ∈ Ω′
3 parametrizes the task subsequence of ω ∈ Ω3 given by

ω̄ = ((j2, a2), (j3, a3), . . .), (1.173)
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bim + ε is an arbitrary task difficulty level greater than bim,

V∞(bbb, ((im, bim + ε), ω̄))) (1.174)

does not depend on the choice of bim + ε, and we have an isomorphism of probability

spaces

Ω′
3
∼= {(im, a) : a > 0}× U∞. (1.175)

Next, check that the right-hand side can be written as

q
∫

ω∈Ω2

V∞(bbb′im, ω)dμ∞ = q
∫

{(im,a1):a1>bim}

(∫

ω̂∈Ω′
2

V∞
(
bbb′, ((j1, a1), ω̂)

)
dμ∞

)
dμ

= qηbim
∫

{(im,a):a>0}

(∫

ω̂∈Ω′
2

V∞
(
bbb′, ((j1, a+ bim), ω̂)

)
dμ∞

)
dμ,

(1.176)

where ω̂ ∈ Ω′
2 parametrizes the task subsequence of ω ∈ Ω2 given by

ω̂ = ((j2, a2), (j3, a3), . . .), (1.177)

and we have an isomorphism of probability spaces

Ω′
2
∼= U∞. (1.178)

Using the isomorphisms, we reduce our inequality (1.169) to the following:

∫

((j2,a),(j3,a3),...)∈{(im,a′) :a′>0}×U∞
V∞(bbb, ((im, bim + ε), (j2, a), (j3, a3) . . .))dμ∞

<

∫

((j1,a),(j2,a2),...)∈{(im,a′) :a′>0}×U∞
V∞(bbb′, ((j1, a+ bim), (j2, a2) . . .))dμ∞. (1.179)
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There is a clear isomorphism of the probability space of task sequences

((j2, a), (j3, a3), . . .) ∈ {(im, a′) : a′ > 0}× U∞ (1.180)

and the probability space

((j1, a), (j2, a2), . . .) ∈ {(im, a′) : a′ > 0}× U∞. (1.181)

It suffices to show that the strict inequality holds for the one-to-one-corresponding

integrands in this isomorphism, which we will refer to as the left-hand-side value func-

tion

V∞(bbb, ((im, bim + ε), (j2, a), (j3, a3) . . .)) (1.182)

and the right-hand-side value function

V∞(bbb′, ((j1, a+ bim), (j2, a2) . . .)) (1.183)

We need to show that

V∞(bbb, ((im, bim + ε), (im, a), (j′3, a′3), . . .)) < V∞(bbb′, ((im, a+ bim), (j′2, a′2), (j′3, a′3), . . .))

(1.184)

Note that the sub-payoff values in the subinterval of time

[0,L−1
im,∞(bim)) (1.185)

for both value functions are identical. This is because the first task is of type j = im

and is learned to the point of time L−1
im,∞(bim) for both value functions.

112



Also, conditional on the assumption that the task that is learned at time t = L−1
im,∞(bim)

(second task and first task, respectively) does not learn to completion—that a1 < bim

and a1 + bim < b′im, respectively—the sub-payoff values in the subinterval of time

[2L−1
im,∞(bim),∞) (1.186)

are also identical for both value functions. This is because conditional on this as-

sumption, the aforementioned task is quit at time t = 2L−1
im,∞(bim), after which the

payoff in the remaining time is the same.

Next, we show that if the task that is learned at time t = L−1
im,∞(bim) learns to

completion for the left-hand-side value function in that a1 < bim, then it also learns

to completion for the right hand-side value function in that a1 + bim < b′im. This

is a consequence of the assumption that Lim,∞(t) is convex. It follows that at time

t = L−1
im,∞(bim), the difference a in knowledge that is required to complete the task

learning requires less (or equal) time for the right-hand-side value function, spanning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim + a); (1.187)

than the time required to complete the task learning for the left-hand-side value func-

tion, spanning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim) + L−1
im,∞(a). (1.188)

Indeed, our assumption that Lim,∞(t) is convex yields the fact that L−1
im,∞(b) is con-

cave, which yields

L−1
im,∞(bim + a) ≤ L−1

im,∞(bim) + L−1
im,∞(a). (1.189)
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If learning of this task completes for the left-hand-side, then it also completes for the

right-hand-side; consequently, no future tasks are drawn, and the sub-payoff values

for the subperiod of time (1.186) are equal. On the other hand, if learning of this task

completes for the right-hand-side value function, then no future tasks are drawn for it

(but may be drawn for the left-hand-side value function); consequently, the sub-payoff

values for the subperiod of time (1.186) automatically satisfy the desired direction of

inequality.

Moreover, the respective sub-payoff values in the remaining subperiod of time

[L−1
im,∞(bim), 2L−1

im,∞(bim)) (1.190)

are given by

∫ 2L−1
im,∞(bim)

L−1
im,∞(bim)

δt






f(a,Lim,∞(t− L−1
im,∞(bim))) for t < L−1

im,∞(bim) + L−1
im,∞(a)

1 for t ≥ L−1
im,∞(bim) + L−1

im,∞(a)





dt

(1.191)

for the left-hand-side value function and

∫ 2L−1
im,∞(bim)

L−1
im,∞(bim)

δt






f(bim + a,Lim,∞(t)) for t < L−1
im,∞(bim + a)

1 for t ≥ L−1
im,∞(bim + a)





dt (1.192)

for the right-hand-side value function. It follows from the inequalities (1.189),

f(a,Lim,∞(t− L−1
im,∞(bim))) < f(bim + a, bim + Lim,∞(t− L−1

im,∞(bim)))

≤ f(bim + a,Lim,∞(t)), (1.193)
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and

f(a, b) ≤ 1 (1.194)

that the sub-payoff value (1.191) of the left-hand-side value function is strictly less

than that (1.192) of the right-hand-side value function.

We have overall shown the inequality of integrands (1.184), which implies the in-

equality (1.176), and thereby, the inequality (1.169).

The second of our desired inequality (1.170) will be shown analogously. Check that

the left-hand side is given by

∫

ω∈Ω4

V∞(bbb, ω)dμ∞

=

∫

((in,a2),ω̄)∈{(in,a2):a2∈(0,∞)}×Ω′
4

V∞(bbb, ((im, bim + ε), (in, a2), ω̄))
(∫

{(im,a1):a1>bim
dμ
)
dμ∞

= qηbim
∫

((in,a2),ω̄)∈{(in,a2):a2∈(0,∞)}×Ω′
4

V∞(bbb, ((im, bim + ε), (in, a2), ω̄))dμ∞

= qηbim(1− q)(1− p)
∫

a2∈(0,∞)

(
log 1

η

)
ηa2
(∫

ω̄∈Ω′
4

V∞(bbb, ((im, bim + ε), (in, a2), ω̄))dμ∞
)
da2,

(1.195)

where ω̄ ∈ Ω′
4 parametrizes the task subsequence of ω ∈ Ω4,

ω̄ = ((j3, a3), (j4, a4), . . .), (1.196)

bim + ε is an arbitrary task difficulty level greater than bim,

V∞(bbb, ((im, bim + ε), (in, a2), ω̄)) (1.197)

does not depend on the choice of bim + ε, and we have an isomorphism of probability
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spaces

Ω′
4
∼= U∞. (1.198)

Next, check that the right-hand-side inequality can be written as

(1− q)(1− p)
∫

ω∈Ω2

V∞(bbb′in, ω)dμ∞

= (1− q)(1− p)
∫

{(im,a1):a1>bim}

(∫

ω̂∈Ω′
2

V∞(bbb′in, ((im, a1), ω̂))dμ∞
)
dμ

= (1− q)(1− p)qηbim
∫

a∈(0,∞)

(
log 1

η

)
ηa
(∫

ω̂∈Ω′
2

V∞(bbb′in, ((im, a+ bim), ω̂))dμ∞
)
da

(1.199)

Using the isomorphisms (1.219) and (1.175), we reduce our inequality (1.170) to

∫

(a,(j3,a3),...)∈(0,∞)×U∞
V∞(bbb, ((im, bim + ε), (in, a), (j3, a3) . . .))dμ∞dμη

<

∫

(a,(j2,a2),...)∈(0,∞)×U∞
V∞(bbb′, ((im, a+ bim), (j2, a2) . . .))dμ∞dμη, (1.200)

where μη = μim = μin|a<∞ denotes the exponential distribution of decay factor η on

(0,∞).

There is a clear isomorphism of the probability space of task sequences

(a, (j3, a3), . . .) ∈ (0,∞)× U∞ (1.201)

and the probability space

(a, (j2, a2), . . .) ∈ (0,∞)× U∞. (1.202)
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It suffices to show that the strict inequality holds for the one-to-one-corresponding

integrands in this isomorphism, which we will refer to as the left-hand-side value func-

tion

V∞(bbb, ((im, bim + ε), (in, a), (j3, a3) . . .)) (1.203)

and the right-hand-side value function

V∞(bbb′, ((im, a+ bim), (j2, a2) . . .)). (1.204)

We need to show that

V∞(bbb, ((im, bim + ε), (in, a), (j3, a3) . . .)) < V∞(bbb′, ((im, a+ bim), (j2, a2) . . .)). (1.205)

Just as before, the sub-payoff-values in the subinterval of time

[0,L−1
im,∞(bim)) (1.206)

for both value functions are identical.

Also, similarly to before, conditional on the assumption that task that is learned

at time t = L−1
im,∞(bim) (second task and first task, respectively) does not learn to

completion—that a1 < bin and a1 + bim < b′in, respectively—the sub-payoff values in the

subinterval of time

[L−1
im,∞(bim) + L−1

in,∞(bin),∞) (1.207)

are identical for both value functions.

Next, we show that if the task that is learned at time t = L−1
im,∞(∞) learns to com-

pletion for the left-hand sidevaue function in that a1 < bin, then it also learns to com-
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pletion for the right-hand-side value function in that a1 + bim < b′in. This is a con-

sequence of two assumptions: the assumption that Lim,∞(t) is convex (equivalently,

that L−1
im,∞(b) is concave) and the assumption that Lin,∞(t) ≤ Lim,∞(t) (equivalently,

that L−1
im,∞(b) ≤ L−1

in,∞(b)). It follows that at time t = L−1
im,∞(bim), the difference a in

knowledge that is required to complete the task learning requires less (or equal) time

for the right-hand-side value function, spanning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim + a), (1.208)

than the time required to complete the task learning for the left-hand-side value func-

tion, spanning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim) + L−1
in,∞(a), (1.209)

Indeed, our two aforementioned assumptions together yield

L−1
im,∞(bim + a) ≤ L−1

im,∞(bim) + L−1
im,∞(a) ≤ L−1

im,∞(bim) + L−1
in,∞(a). (1.210)

If learning of this task completes for the left-hand-side, then it also completes for the

right-hand-side; consequently, no future tasks are drawn, and the sub-payoff values

for the subperiod of time (1.207) are equal. On the other hand, if learning of this task

completes for the right-hand-side value function, then no future tasks are draw for it

(but may be drawn for the left-hand-side value function); consequently, the sub-payoff

values for the subperiod of time (1.207) automatically satisfy the desired direction of

inequality.
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Finally, the respective sub-payoff values in the remaining subperiod of time

[L−1
im,∞(bim),L−1

im,∞(bim) + L−1
in,∞(bin)) (1.211)

are given by

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δt






f(a,Lin,∞(t− L−1
im,∞(bim))) for t < L−1

im,∞(bim) + L−1
in,∞(a)

1 for t ≥ L−1
im,∞(bim) + L−1

in,∞(a)





dt

(1.212)

for the left-hand-side value function and

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δt






f(bim + a,Lim,∞(t)) for t < L−1
im,∞(bim + a)

1 for t ≥ L−1
im,∞(bim + a)





dt (1.213)

for the right-hand-side value function. It follows from the inequalities (1.210),

f(a,Lin,∞(t− L−1
im,∞(bim))) ≤ f(a,Lim,∞(t− L−1

im,∞(bim)))

< f(bim + a, bim + Lim,∞(t− L−1
im,∞(bim)))

≤ f(a,Lim,∞(t)), (1.214)

and f(a, b) ≤ 1 that the sub-payoff value (1.212) of the left-hand-side value function is

strictly less than that (1.213) of the right-hand-side value function.

Overall, we have shown the inequality of integrands (1.205), which implies the in-

equality (1.200) and thereby, the inequality (1.170).

It remains to show the inequality (1.171). Check that the left-hand side is given by

∫

ω∈Ω5

V∞(bbb, ω)dμ∞
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=

∫

((in,a2),ω̄)∈{(in,∞)}×Ω′
5

V∞(bbb, ((im, bim + ε), (in, a2), ω̄)))
(∫

{(im,a1):a1>bim
dμ
)
dμ∞

= qηbim
∫

((in,a2),ω̄)∈{(in,∞)}×Ω′
5

V∞(bbb, ((im, bim + ε), (in, a2), ω̄))dμ∞

= qηbim(1− q)p
(∫

ω̄∈Ω′
5

V∞(bbb, ((im, bim + ε), (in,∞), ω̄))dμ∞
)

(1.215)

= qηbim(1− q)p
∫

ā∈(0,∞)

(∫

ω̄∈Ω′
5

V∞(bbb, ((im, bim + ε), (in,∞), ω̄))dμ∞
)
dμη, (1.216)

where ω̄ ∈ Ω′
5 parametrizes the task subsequence of ω ∈ Ω5,

ω̄ = ((j3, a3), (j4, a4), . . .), (1.217)

bim + ε is an arbitrary task difficulty level greater than bim,

V∞(bbb, ((im, bim + ε), (in,∞), ω̄)) (1.218)

does not depend on the choice of bim+ε, we have an isomorphism of probability spaces

Ω′
5
∼= U∞, (1.219)

and ā, distributed as μη, is a dummy variable. Next, check that the right-hand side of

the inequality

(1− q)p
∫

ω∈Ω2

V∞(bbb′in, ω)dμ∞

= (1− q)p
∫

{(im,a1):a1>bim}

(∫

ω̂∈Ω′
2

V∞(bbb′in, ((im, a1), ω̂))dμ∞
)
dμ

= (1− q)pqηbim
∫

a∈(0,∞)

(∫

ω̂∈Ω′
2

V∞(bbb′in, ((im, a+ bim), ω̂))dμ∞
)
dμη. (1.220)
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There is a clear isomorphism of the probability space of task sequences

(a, (j3, a3), . . .) ∈ (0,∞)× U∞ (1.221)

and the probability space

(a, (j2, a2), . . .) ∈ (0,∞)× U∞. (1.222)

It suffices to show that the strict inequality holds for the one-to-one-corresponding

integrands in this isomorphism, which we will refer to as the left-hand-side value func-

tion

V∞(bbb, ((im, bim + ε), (in,∞), (j3, a3) . . .)) (1.223)

and the right-hand-side value function

V∞(bbb′, ((im, a+ bim), (j2, a2) . . .)). (1.224)

We need to show that

V∞(bbb, ((im, bim + ε), (in,∞), (j3, a3) . . .)) < V∞(bbb′, ((im, a+ bim), (j2, a2) . . .)). (1.225)

Just as before, the sub-payoff-values in the subinterval of time

[0,L−1
im,∞(bim)) (1.226)

for both value functions are identical.

Also, similarly to before, conditional on the assumption that task that is learned
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at time t = L−1
im,∞(bim) (second task and first task, respectively) does not learn to

completion—that a1 < bin and a1 + bim < b′in, respectively—the sub-payoff values in the

subinterval of time

[L−1
im,∞(bim) + L−1

in,∞(bin),∞) (1.227)

are identical for both value functions.

Next, we show that if the task that is learned at time t = L−1
im,∞(∞) learns to com-

pletion for the left-hand sidevaue function in that a1 < bin, then it also learns to com-

pletion for the right-hand-side value function in that a1 + bim < b′in. In fact, note that

learning for this task can never complete for the left-hand-side value function, since

the task difficulty is a = ∞. Thus, this step is trivially satisfied. consequently, the

sub-payoff values for the subperiod of time (1.227) automatically satisfy the desired

direction of inequality.

Finally, the respective sub-payoff values in the remaining subperiod of time

[L−1
im,∞(bim),L−1

im,∞(bim) + L−1
in,∞(bin), ] (1.228)

are given by

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δtf(∞,Lin,∞(t− L−1
im,∞(bim)))dt = 0 (1.229)

for the left-hand-side value function and

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δt






f(bim + a,Lim,∞(t)) for t < L−1
im,∞(bim + a)

1 for t ≥ L−1
im,∞(bim + a)





dt (1.230)

for the right-hand-side value function. It follows that the sub-payoff value (1.229) of
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the left-hand-side value function is strictly less than that (1.230) of the right-hand-

side value function.

We have overall shown (1.225). This shows the inequality (1.220), and thereby, the

desired inequality (1.171). This completes our proof.

1.5.6 Proof of Proposition 1.6

We use a similar proof strategy as that of the proof of Proposition 1.5. For every

strategy bbb = (bim,∞), we construct another strategy bbb′, not of the form bbb′ = (b′im, b′in),

that achieves a strictly higher value V∞(bbb′). This shows that a necessary condition for

bbb = (bim, bin) to maximize V∞ is that bin = ∞.

The modification bbb′ is defined by

bbb′ =
(
(bim, b′), (bim,∞), (bim,∞), . . .

)
, (1.231)

for a value b′ that will be specified later.

We partition the sample space Ω into subsets

Ω = Ω6 ∪Ω7 (1.232)

defined by

Ω6 = {ω = ((j1, a1), . . .) : j1 = im or a1 ≤ b′} (1.233)

and

Ω7 = {ω = ((j1, a1), . . .) : j1 = in and a1 > b′}. (1.234)
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Note that
∫

Ω6

V∞(bbb, ω)dμ∞ =

∫

Ω6

V∞(bbb′, ω)dμ∞ (1.235)

Indeed, if j1 = in and a1 ≤ b′ for ω ∈ Ω1, then both bbb and bbb′ learn the first task until

completion and stick with it forever; and if j1 = im, the strategies bbb and bbb′ play in the

same way for such a task sequence ω.

It thus suffices to show that

∫

ω∈Ω7

V∞(bbb, ω)dμ∞ <

∫

ω∈Ω7

V∞(bbb′, ω)dμ∞. (1.236)

Observe that for each ω ∈ Ω7, the sub-payoff value of the value function V∞(bbb, ω) and

that of the value function V∞(bbb′, ω) for the subperiod of time

[0,L−1
in,∞(b′)) (1.237)

are identical, since both strategies learn the first task during this subperiod.

The key insight is that the sub-payoff value of the value function V∞(bbb′, ω) in the

remaining subperiod of time

[L−1
in,∞(b′),∞) (1.238)

is always given by

δL
−1
in,∞(b′)V∞(bbb′′, ω̄), (1.239)

where

bbb′′ = ((bim,∞), (bim,∞), . . .) (1.240)

and

ω̄ = ((j2, a2), . . .) (1.241)
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are obtained from bbb′ and ω, respectively, by truncating the leftmost term. It follows

that the integral of this sub-payoff value over Ω7 is

∫

ω∈Ω7

δL
−1
in,∞(b′)V∞(bbb′′, ω̄)dμ∞ = δL

−1
in,∞(b′)

∫

{(in,a1):a1>b′}

∫

ω̄∈U∞
V∞(bbb′′, ω̄)dμ∞dμ

= δL
−1
in,∞(b′)

(
p+ (1− p)ηb′

)
V∞(bbb′′). (1.242)

In contrast, the integral of the sub-payoff value of the value function V∞(bbb, ω) in

the subperiod (1.238) is given by

∫

ω∈Ω7

(∫ ∞

L−1
in,∞(b′)

f(a1,Lin,∞(t))dt
)
dμ∞

=

∫

{ω∈Ω7:a1=∞}

(∫ ∞

L−1
in,∞(b′)

f(a1,Lin,∞(t))dt
)
dμ∞

+

∫

{ω∈Ω7:a1<∞}

(∫ ∞

L−1
in,∞(b′)

f(a1,Lin,∞(t))dt
)
dμ∞

=

∫

{ω∈Ω7:a1<∞}

(∫ ∞

L−1
in,∞(b′)

f(a1,Lin,∞(t))dt
)
dμ∞

≤
∫

{ω∈Ω7:a1<∞}
dμ∞

(∫ ∞

L−1
in,∞(b′)

1dt
)

=
(
(1− p)ηb′

)
δL

−1
in,∞(b′) 1

log 1
δ
. (1.243)

Note that as b′ → ∞, the expression (3.102) divided by δL
−1
in,∞(b′) converges to

pV∞(bbb′′) > 0, (1.244)

whereas the upper bound (1.243) divided by δL
−1
in,∞(b′) converges to 0. This shows that

for b′ sufficiently large, the inequality (1.236) holds.
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For bbb = b = ∞, since V∞(b) = V∞(b, b), we can modify the strategy (b, b) =

(∞,∞) in the same way as above (for a sufficiently large b′) to find a strategy that

outperforms bbb.

1.5.7 Proof of Corollary 1.7

Let V̂p̄,q̄
∞ (bim, bin) denote the expression V̂∞(bim, bin) when the parameter choices p =

p̄ and q = q̄ are made. Similarly, let V̂p̄,q̄,L̄im,∞,L̄in,∞
∞ (bim, bin) denote the expression

V̂∞(bim, bin) when the parameter choices p = p̄, q = q̄, Lim,∞ = L̄im,∞ and Lin,∞ = L̄in,∞

are made. When parameters Lim,∞ and Lin,∞ are omitted from the superscript, the

meaning is that they are assumed to be the original fixed ones.

For each of part (a) and part (b), we will show a stronger statement than the the-

orem statement. Specifically, we will show that for any pair of decreasing sequences

{pn}n∈N and {qm}m∈N converging to zero, there exists N such that for any n ≥ N, we

can find Mn such that the quitting point of innovation-learning tasks bin of any strat-

egy bbb = (∞, bin) maximizing Vpn,qm
∞ is greater than γ for all m ≥ Mn.

We note that the sequence of continuous functions {V̂pn,0
∞ }n∈N pointwise converge to

the continuous function V̂0,0
∞ . By part (a) of Lemma 1.8, this sequence of continuous

functions in fact monotonically converges (increasing with respect to n) to V̂0,0
∞ . An

application of Dini’s theorem thus shows that the convergence of {V̂pn,0
∞ }n∈N to V̂0,0

∞ on

the compact space Q̄ ∪ {(0, 0)} is uniform.

The proof of Proposition 1.5 implies that the maximum of V̂0,0
∞ on Q̄ ∪ {(0, 0)} is

attained at (bim, bin) = (barbitrary,∞); note that the subscript “arbitrary” means the
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choice of that parameter has no effect. Indeed, check that

V̂0,0
∞ (barbitrary, b) = V̂parbitrary,1,Lin,∞,Lin,∞

∞ (b, b′arbitrary), (1.245)

since when p = 0, we have the equality of distributions μin = μim; and we have set the

learning function of imitation-learning tasks to be Lin,∞ as well. The proof of Proposi-

tion 1.5 shows that we have

V̂parbitrary,1,Lin,∞,Lin,∞
∞ (b, b) < V̂parbitrary,1,Lin,∞,Lin,∞

∞ (∞, b), (1.246)

where we have set b′arbitrary = b. This shows that (∞, b′arbitrary) maximizes the function

V̂parbitrary,1,Lin,∞,Lin,∞
∞ ; equivalently, (barbitrary,∞) maximizes the function V̂0,0

∞ .

We will now avoid the use of the term barbitrary, and instead define

Ṽ(b) = V̂0,0
∞ (barbitrary, b). (1.247)

Let γ ≥ 0. Consider the positive number

ε = Ṽ(∞)−max
b≤γ

Ṽ(b). (1.248)

By uniform convergence, there exists N such that for all n ≥ N, we simultaneously

have

|V̂pn,0
∞ (b1,∞)− V̂0,0

∞ (b1,∞)| < ε

2
(1.249)

and

|V̂pn,0
∞ (b2, b)− V̂0,0

∞ (b2, b)| <
ε

2
(1.250)
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for all b ≤ γ. Since

V̂0,0
∞ (b1, b) = Ṽ(b) < Ṽ(∞) < V̂0,0

∞ (b2,∞) (1.251)

for every b ≤ γ with a difference of at least ε, it follows from the triangle inequality

that for any n ≥ N, we have

V̂pn,0
∞ (b2, b) < V̂pn,0

∞ (b1,∞) (1.252)

for all b ≤ γ. Note that the choice of b1 and b2 has no effect on the values V̂pn,0
∞ (b2, b)

and V̂pn,0
∞ (b1,∞).

Fix n ≥ N. By part (b) of Lemma 1.8, the continuous functions {V̂pn,qm
∞ }m∈N mono-

tonically converge (decreasing with respect to m) to V̂pn,0
∞ , which is also continuous. It

thus follows from Dini’s theorem that the convergence of {V̂pn,qm
∞ }m∈N to V̂pn,0

∞ on the

compact space Q̄ ∪ {(0, 0)} is uniform. Let

ε = V̂pn,0
∞ (b1,∞)− sup

b≤γ
V̂pn,0
∞ (b2, b), (1.253)

which is positive by our choice of n. By uniform convergence, there exists Mn such

that for all m ≥ Mn, we simultaneously have the inequality

|V̂pn,qm
∞ (∞,∞)− V̂pn,0

∞ (∞,∞)| < ε

2
, (1.254)

where we have set b1 = ∞; and the inequality

|V̂pn,qm
∞ (b2, b)− V̂pn,0

∞ (b2, b)| <
ε

2
(1.255)
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for any (b2, b) ∈ Q̄. Since

V̂pn,0
∞ (b2, b) < V̂pn,0

∞ (∞,∞) (1.256)

for all b ≤ γ with a difference of at least ε, it follows from the triangle inequality that

for any m ≥ Mn, we have

V̂pn,qm
∞ (b2, b) < V̂pn,qm

∞ (∞,∞) (1.257)

for all b ≤ γ. Setting b2 = ∞ yields part (b), while setting b2 = b yields part (a).

In this proof, we have applied the proof of Proposition 1.5 to show a necessary

lemma that can be described as the following. In the continuous learning model with

parameters q = 1 and Lim,∞(t) = L(t), the unique strategy to maximize V∞(bbb) is

bbb = ∞, where the single entry denotes that there is no ambiguity in learning types.

Strictly speaking, the proof of Proposition 1.5 applied to this continuous learning

game only shows that bbb = ∞ outperforms bbb′ = b ∈ (0,∞), and not necessarily b → 0.

This leaves the possibility that V∞(b) is also maximized at b → 0, with the same

function value as b = ∞. This implies that V∞ is decreasing near b = 0. However, a

quick application of the proof of Proposition 1.5 shows that this possibility does not

arise. Specifically, this proof shows that for small b > 0, the strategy bbb′ = b is strictly

outperformed by

bbb′′ =
(
L
(
2L−1(b)

)
, b, b, . . .

)
, (1.258)

which—as a subsequent application of this proof shows—is strictly outperformed by

bbb′′′ =
(
L
(
2L−1(b)

)
,L
(
2L−1(b)

)
, b, b, . . .

)
. (1.259)

129



Continuing iteratively, we obtain that bbb′ is strictly outperformed by the strategy

b̂bb = L
(
2L−1(b)

)
. (1.260)

Taking b to be small, we see that Ṽ(0) = limb→0 V(b) cannot be decreasing near b = 0,

and thus it is impossible that the maximum is attained at the two endpoints b = 0

and b = ∞.

1.5.8 Proof of Lemma 1.8

Recall that

V̂∞(bim, bin) = qV̂im(bim, bin) + (1− q)V̂in(bim, bin) (1.261)

for

V̂im(bim, bin) =
de− bf

g
(1.262)

and

V̂in(bim, bin) =
af− ce

g
. (1.263)

First, we show that
∂

∂pV̂∞(bim, bin) ≤ 0, (1.264)

with equality if and only if q = 1. Note that the only one of a, b, c, d, e, f, and g that is

not constant with respect to p is fff. We thus have

∂

∂pV̂∞(bim, bin) =
∂

∂pV̂∞(bim, bin) =
−qb+ (1− q)a

g

(
∂

∂p f
)
. (1.265)
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Check that

−qb+ (1− q)a = q(1− q)δL
−1
in,∞(bin)ηbim + 1− q− q(1− q)δL

−1
im,∞(bim)ηbim

≥ 1− q− q(1− q)δL
−1
im,∞(bim)ηbim

≥ 1− q− q(1− q) = (1− q)2, (1.266)

which is nonnegative, and positive if and only if q < 1. Check also that

ggg = 1− q− (1− q)δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
+ q− qδL

−1
im,∞(bim)ηbim ≥ 0. (1.267)

with equality if and only if (bim, bin) = (0, 0), since

δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, δL

−1
im,∞(bim)ηbim ≤ 1. (1.268)

Then, check that

∂

∂p f =
∂

∂p

(
p · 0+ (1− p)

(∫ bin

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμη(a)

+

∫

a>bin

(∫ L−1
in,∞(bin)

0
δtf(a,Lin,∞(t))dt

)
dμη(a)

))

= −
(∫ bin

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμη(a)

+

∫

a>bin

(∫ L−1
in,∞(bin)

0
δtf(a,Lin,∞(t))dt

)
dμη(a)

)
≤ 0, (1.269)

with equality if and only if bin = 0, which is equivalent to (bim, bin) = (0, 0) in our

domain Q̄ ∪ {(0, 0)}. Finally, it follows from the calculation via L’Hôspital’s rule in

131



the proof of Proposition 1.4 that

∂
∂p f

g
→

log 1
η(

log 1
δ
) d

dbg(b, b)|b=0
> 0 (1.270)

as b → 0 for (bim, bin) = (b, b). The condition (bim, bin) = (0, 0) does not make (1.265)

zero.

We thus have shown (1.264), where equality holds if and only if q = 1.

Next, suppose that Assumption 1 holds and the imitation-learning knowledge func-

tion Lim,∞(t) is convex. We need to show that

∂

∂qV̂∞(∞, bin) > 0. (1.271)

Note that e and f are constant in q, while a, b, c, d, and g are not. Check that at (bim, bin) =

(∞, bin), we have

a = 1, (1.272)

b = 0, (1.273)

c = −qδL
−1
in,∞(bin)(p+ (1− p)ηbin), (1.274)

and

d = 1− (1− q)δL
−1
in,∞(bin)(p+ (1− p)ηbin). (1.275)

Let

h = δL
−1
in,∞(bin)(p+ (1− p)ηbin). (1.276)
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We next apply the quotient rule to obtain

∂

∂qV̂∞(∞, bin)

=
1
g2

(
g
∂

∂q (qde+ (1− q)f− (1− q)ce)− (qde+ (1− q)f− (1− q)ce) ∂g
∂q

)

=
(1− (1− q)h)(e− f)− h(f+ q(e− f))

(1− (1− q)h)2

=
e− f− eh

(1− (1− q)h)2 .

If bim = ∞ so that h = 0, then we have

∂

∂qV̂∞(∞, bin) = e− f, (1.277)

which is positive; indeed, check that

e =

∫ ∞

0

(∫ L−1
im,∞(a)

0
δtf(a,Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt
)
dμη(a), (1.278)

while

f = (1− p)
∫ ∞

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμη(a). (1.279)

We see that

(1− p)
∫ ∞

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμη(a)

<

∫ ∞

0

(∫ L−1
in,∞(a)

0
δtf(a,Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt
)
dμη(a)
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≤
∫ ∞

0

(∫ L−1
im,∞(a)

0
δtf(a,Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt
)
dμη(a), (1.280)

as needed, since Lin,∞(t) ≤ Lim,∞(t).

Now, suppose that bim < ∞, so that h > 0. Then, we can write

∂

∂qV̂∞(∞, bin) =
e− f− eh

(1− (1− q)h)2 =
V̂im(∞, bin)− V̂in(∞, bin)

1− (1− q)h , (1.281)

since

V̂im(∞, bin)− V̂in(∞, bin) =
de− bf− (af− ce)

g
=

e− f− eh

1− (1− q)h . (1.282)

Thus, we need to show that

V̂im(∞, bin) > V̂in(∞, bin). (1.283)

This inequality is proven by showing that

V̂im(∞, bin) > V̂im(bbb) > V̂in(∞, bin), (1.284)

for

bbb =
(
(Lim,∞(L−1

in,∞(bin)), bin), (∞, bin), (∞, bin), . . .
)
. (1.285)

The comprising inequality

V̂im(bbb) < V̂im(∞, bin) (1.286)

follows from the optimality of never quitting tasks of type j = im, demonstrated in the
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proof of Proposition 1.5. Indeed, conditional on the current task being of type j = im,

the strategy (∞, bin) is equivalent to never quitting this curren task.

Only the comprising inequality

V̂in(∞, bin) < V̂im(bbb). (1.287)

remains to be shown. The sample space of task sequences for the left-hand-side value

function V̂im(bbb, bin) is

(0,∞)× U∞ (1.288)

with the probability measure

μim ⊗ μ∞ = μη ⊗ μ∞, (1.289)

and the sample space of task sequences of the right-hand-side value function V̂in(bim, bin)

is

((0,∞) ∪ {∞})× U∞ (1.290)

with the probability measure

μin ⊗ μ∞, (1.291)

where we recall that μin places probability p on a = ∞ and distributes the remaining

probability 1− p as the exponential distribution μη. It suffices to show that

∫

a1∈(0,∞)

(∫

(j2,a2),...)∈U∞
Vin((∞, bin), ((in, a1), (j2, a2), . . .)dμ∞

)
dμη

≤
∫

a1∈(0,∞)

(∫

((j2,a2),...)∈U∞
Vim(bbb, ((im, a1), (j2, a2), . . .))dμ∞

)
dμη (1.292)
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and

∫

a1∈{∞}

(∫

(j2,a2),...)∈U∞
Vin((∞, bin), ((in, a1), (j2, a2), . . .)dμ∞

)
dχ

<

∫

a1∈(0,∞)

(∫

((j2,a2),...)∈U∞
Vim(bbb, ((im, a1), (j2, a2), . . .))dμ∞

)
dμη (1.293)

for χ the one-point distribution on {∞}. Indeed, adding the product of the inequality

(1.292) with (1− p) with the product of the inequality (1.293) with p yields the desired

inequality (1.287).

The second inequality (1.293) holds immediately because it simplifies to

0 <

∫

a1∈(0,∞)

(∫

((j2,a2),...)∈U∞
Vim(bbb, ((im, a1), (j2, a2), . . .))dμ∞

)
dμη. (1.294)

The first inequality (1.292) holds because for every sample

(a1, (j2, a2), . . .), (1.295)

the payoff of the left-hand-side value function

Vin((∞, bin), ((in, a1), (j2, a2), . . .)) (1.296)

is at most the payoff of the right-hand-side value function

Vim(bbb, ((im, a1), (j2, a2), . . .)). (1.297)

This is demonstrated by partitioning [0,∞) into various subintervals and looking at

the respective sub-payoff values corresponding to each subinterval.

136



In the subinterval

[0,L−1
in,∞(bin)), (1.298)

the sub-payoff value of the left-hand-side value function is at most that of the right-

hand-side value function, because the learning of the first task is faster for the latter

than the former: Lin,∞(t) ≤ Lim,∞(t).

In the subinterval

[L−1
in,∞(bin),∞), (1.299)

the sub-payoff value of the left-hand-side value function is equal to that of the right-

hand-side value function conditional on the first task being quit at time t = L−1
in,∞(bin)

for both, i.e., conditional on learning not yet having completed. And conditional on

the opposite—that learning of the first task completes for at least one of the value

functions by time t = L−1
in,∞(bin)—we have the following. If this occurs for the left-

hand-side value function, then it also occurs for the right-hand side value function,

since Lin,∞(t) ≤ Lim,∞(t). Thus, we have the desired inequality for the sub-payoff val-

ues corresponding to the subinterval (1.299). If this occurs for the right-hand-side

value function, then its sub-payoff value corresponding to the subinterval (1.299)

is maximal, so the inequality holds anyway. Thus, we have obtained (1.293), and

thereby the desired inequality (1.287).

This concludes our proof of (1.271).
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The police admit they don’t have enough evidence to convict the pair on the principal

charge. They plan to sentence both to two years in prison on a lesser charge. Simultane-

ously, the police offer each prisoner a Faustian bargain.188

William Poundstone

2
Cooperation in alternating interactions

with memory constraints

Abstract: In repeated social interactions, individuals often employ re-
ciprocal strategies to maintain cooperation. To explore the emergence
of reciprocity, many theoretical models assume synchronized decision
making. In each round, individuals decide simultaneously whether to
cooperate or not. Yet many manifestations of reciprocity in nature are
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asynchronous. Individuals provide help at one time and receive help
at another. Here, we explore such alternating games in which players
take turns. We mathematically characterize all Nash equilibria among
memory-one strategies. Moreover, we use evolutionary simulations to ex-
plore various model extensions, exploring the effect of discounted games,
irregular alternation patterns, and higher memory. In all cases, we ob-
serve that mutual cooperation still evolves for a wide range of parameter
values. However, compared to simultaneous games, alternating games re-
quire different strategies to maintain cooperation in noisy environments.
Moreover, none of the respective strategies are evolutionarily stable.

2.1 Introduction

Cooperation can be maintained by direct reciprocity, where individuals help others

in repeated interactions166,215,233. Traditionally, researchers capture the logic of direct

reciprocity with the repeated prisoner’s dilemma8,52,68,75,77,97,116,169,174,192,195,209,225,228.

According to that model, two individuals – usually referred to as players – interact

with each other over several rounds. In each round, both players can either cooper-

ate or defect. Mutual cooperation yields a better payoff than mutual defection, but

each individual has an incentive to defect. Theoretical and experimental work sug-

gests that cooperation can evolve if there are sufficiently many interactions between

the individuals99. This work has been used to explain a wide variety of behaviors,

including why humans are more likely to cooperate in stable groups152, why certain

animal species share food246, and why firms are able to achieve higher market prices

when they engage in collusion17.

A standard assumption that underlies much of this research is that individuals

make their decisions simultaneously (or at least in ignorance of the co-player’s cur-
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rent decision). We refer to this kind of repeated interaction as a simultaneous game;

see Figure 2.1a. For many natural manifestations of reciprocity, however, simultane-

ous cooperative exchanges are unlikely or even impossible, such as when people ask

for favors107, vampire bats donate blood to their conspecifics246, sticklebacks engage

in predator inspection155, or ibis take turns when leading their flock239. Such interac-

tions are better captured by alternating games, in which players consecutively decide

whether to cooperate61,148,171,253. When individuals decide asynchronously, they make

their decisions based on different histories. The most recent events one player has in

memory differ from the most recent events that the next player takes into account;

see Figure 2.1b. Such asymmetries in turn make it more difficult to successfully co-

ordinate on cooperation. As a result, many well-known strategies like Tit-for-Tat or

Win-Stay Lose-Shift fail to evolve when players move alternatingly61,171. Instead, pre-

vious computational61,171,253 and experimental studies241 suggest that individuals

need to be more forgiving. However, a full understanding of optimal play in alternat-

ing games is lacking, even though optimal behavior in the simultaneous game is by

now well-analyzed3–5,53,74,96,149,220,221.

Here, we propose an analytical approach to describe when cooperation evolves in

the alternating game. In line with the previous literature, we typically focus on indi-

viduals with so-called memory-one strategies215. Memory-one strategies depend on

each player’s most recent move. Our analysis involves two steps. First, we show that

successful play in alternating games does not require a sophisticated cognitive appara-

tus. More specifically, when interacting with a given memory-one opponent, it suffices

to respond with a reactive strategy that only depends on the co-player’s most recent

move. This result is reminiscent of a previous finding of Press and Dyson for the si-

multaneous game190. They showed that against a memory-one strategy, there is
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Figure 2.1: Game dynamics for the simultaneous and the alternating game. In both the si-
multaneous and the alternating game, two players interact repeatedly. In each turn, they
decide whether to cooperate (C) or to defect (D). In the simultaneous game (a), they make
their decision at the same time (or at least not knowing the other player’s decision). In the
alternating game (b), one player decides before the other player does. In both cases, we study
memory-1 strategies. That is, an individual’s next action only depends on each individual’s
previous action. We illustrate the information each individual takes into account for its last
decision with colored ellipses. In the simultaneous game, individuals take into account the
same information. In the alternating game, decisions are based on different sets of informa-
tion.
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nothing to gain from having a larger memory than the opponent. Our result for the

alternating game goes one step further. Against a memory-one strategy, players can

afford to have a strictly lower memory, without any loss to their or their co-player’s

payoff. As we show, this result crucially depends on the alternating move structure;

it is not true when players move simultaneously. In a second step, we show that in

order to identify a best response to a given memory-one player, we only need to check

the four most extreme reactive strategies: unconditional defection, unconditional co-

operation, Tit-for-Tat and Anti-Tit-for-Tat. Using this approach, we identify all Nash

equilibria among the memory-one strategies.

In the absence of errors, we find an unexpected equivalence. The very same memory-

1 strategies that can be used to enforce cooperation in the simultaneous game also

enforce cooperation in the alternating game. However, once we take into account

errors, the predictions for the two models diverge. In the simultaneous game, Win-

Stay Lose-Shift is evolutionarily stable when the benefit to cost ratio is sufficiently

large and when errors are sufficiently rare98,137. In that case, there is a simple rule

for how to sustain full cooperation: individuals should repeat their previous action if

it yielded a sufficiently large payoff, and switch to the opposite action otherwise. In

contrast, in the alternating game, all stable cooperative strategies require players to

randomize. After mutual defection, they need to cooperate with some well-defined

probability that depends on the game parameters and the error rate. Although the

respective strategies in the alternating game are Nash equilibria, we show that none of

them is evolutionarily stable. As a result, evolving cooperation rates in the alternat-

ing game often tend to be lower than in the simultaneous game, although this differ-

ence is smaller than perhaps expected from static stability considerations alone. We

summarize our analytical findings in Figure 2.2.
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• We characterize partner strategies here, Eq. (2).

• Partner strategies exist for all b > c.
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• None of these strategies is evolutionarily stable. 

• The full set of partner strategies is known. 

• Partner strategies exist for all b > c.
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• None of these strategies is evolutionarily stable.

• The full set of partner strategies is not known. 

• Two examples are known:

GTFT if b > c and * < &
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WSLS if b ≥ 2c and * ≤ &
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$%# #

• WSLS is evolutionarily stable if the respective 
inequalities are strict. 

a b

c d

Figure 2.2: A characterization of partners among the memory-1 strategies. Within the class of
memory-1 strategies, we provide an overview of the strategies that sustain full cooperation in
a Nash equilibrium. The respective strategies are called partner strategies, or partners99. a,
For the simultaneous game without errors, partners have been first described by Akin3,4 (he
calls them ‘good strategies’). Akin’s approach has been extended by Stewart and Plotkin221

to describe all memory-1 Nash equilibria of the simultaneous game. In the absence of errors,
none of these strategies is evolutionarily stable24,136. Instead, one can always find neutral mu-
tant strategies which act as a stepping stone out of equilibrium69. b, For the alternating game
without errors, Eq. (2.30) provides a full characterization of all partner strategies. Cooper-
ation is maintained by the same strategies as in the simultaneous game. c, Despite decades
of research, the exact set of partner strategies for the simultaneous game with errors is not
known. However, there are at least two instances of partner strategies, GTFT156,169, and
Win-Stay Lose-Shift, WSLS122,170. For repeated games with errors, evolutionary stability is
generally feasible23. In particular, WSLS is evolutionarily stable if the benefit to cost ratio is
sufficiently large and if errors are sufficiently rare137. d, For the alternating game with errors,
we characterize all partner strategies in Eq. (2.46). None of them is deterministic. As a result,
none of them is evolutionarily stable (see Supplementary Information for details).
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Our work suggests that in most realistic scenarios, successful play in alternating

games requires different kinds of behaviors than predicted by the earlier theory on

simultaneous games. In this way, we corroborate earlier experimental work on human

cooperation241, and provide theoretical methods to further analyze repeated games

in the future. Overall, we find that cooperation is still feasible in alternating games.

However, the strategies that enforce cooperation can be neutrally invaded, and hence

cooperation tends to be more short-lived than in the simultaneous game.

2.2 Results

Model description

In the following, we formulate a simple baseline scenario, which we use to derive our

main analytical results (see also Supplementary Note 1). More general scenarios are

discussed in a later section, and in full detail in the Supplementary Note 3. We con-

sider interactions between two players, player 1 and player 2. Both players repeatedly

decide whether to cooperate (C) or defect (D). These repeated interactions can take

place in two different ways. In the simultaneous game, there is a discrete number of

rounds. In each round, both players make their decision at the same time, not know-

ing their co-player’s decision; see Figure 2.1a. In contrast, in the alternating game,

the players move consecutively. We consider the strictly alternating game: Player 1

moves first, and then player 2 learns about player 1’s decision and moves next; see

Figure 2.1b. We note that there are also variants of the alternating game in which the

order of moves is random148,171. In particular, one player may by chance make two or

more consecutive moves before it is the other player’s turn again. The effect of such
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irregular alternation patterns will be discussed later.

For the simultaneous game, the possible payoffs in each round can be represented

by four parameters. Players receive the reward R in rounds in which they both co-

operate; they receive the temptation payoff T and the sucker’s payoff S, respectively,

if only one player cooperates; and they receive the punishment payoff P in case they

both defect. For T> R> P> S, we obtain the prisoner’s dilemma. In the alternating

game, however, it is useful to assume that payoffs can be assigned to each player’s in-

dividual action171. In that case, the value of one player’s cooperation is independent

of the co-player’s previous or subsequent decision (or equivalently, payoffs are inde-

pendent of how the two players’ decisions are grouped into rounds). As a result, we

obtain the donation game215. Here, cooperation means to pay a cost c > 0 in order

to provide a benefit b > c to the co-player. The donation game is a special case of a

prisoner’s dilemma for which

R=b−c, S=−c, T=b, P=0. (2.1)

To compare the alternating game with the simultaneous game, we assume payoffs sat-

isfy (2.1) throughout.

In the baseline scenario, we consider infinitely repeated games, and we study play-

ers who make their decisions based on each player’s most recent move. In the simulta-

neous game, the respective strategies are called memory-1 strategies170; they take into

account the outcome of one previous round; see Figure 2.1a. Such strategies can be

represented as a 4-tuple, p=(pCC, pCD, pDC, pDD). The entry pij denotes the probability

to cooperate in the next round. This probability depends on the player’s action i and

the co-player’s action j in the previous round. The equivalent strategy class also exists
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in alternating games171. In alternating games, however, there is no longer a unique

previous round to which both players refer. Instead, the last round that is taken into

account depends on the perspective of each player. It consists of the respective last

moves of the two players; see Figure 2.1b. An important subset of memory-1 strate-

gies are the so-called reactive strategies. Here, players ignore their own previous ac-

tion, and only condition their behavior on what the co-player previously did. Reactive

strategies are therefore those memory-1 strategies for which pCC=pDC and pCD=pDD.

Some well-known examples of memory-1 strategies for the simultaneous game in-

clude Always Defect, ALLD= (0, 0, 0, 0), Tit-for-Tat, TFT= (1, 0, 1, 0), and Win-Stay

Lose-Shift, WSLS = (1, 0, 0, 1). In the alternating game, a strategy called Firm-but-

Fair215, defined by FBF = (1, 0, 1, 1) and also referred to as Forgiver253, has been

successful in evolutionary competitions. Out of these examples, ALLD and TFT

are reactive, whereas WSLS and FBF are not. We say a strategy is deterministic if

each conditional cooperation probability is either zero or one. In particular, all of the

above examples are deterministic. Otherwise, we call the strategy stochastic.

Note that our analysis includes the possibility that players sometimes make er-

rors. That is, when a player decides to cooperate, there is some probability ε that the

player defects by mistake. Conversely, a player who intends to defect may cooperate

with the same probability. We refer to the case of ε = 0 as the game without errors,

and to ε> 0 as the game with errors. We note that even a strategy that is determin-

istic becomes fully stochastic in the game with errors, because in that case a player’s

effective cooperation probability is always between ε and 1−ε.

Considering memory-1 strategies is useful for two reasons. First, such strategies

are straightforward to interpret, and the respective conditional probabilities can be

easily inferred from experiments241. Second, when both players use memory-1 strate-
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gies, their average payoffs are simple to compute (see also Methods). To this end,

suppose player 1 uses the strategy p and player 2 adopts strategy q. By represent-

ing the game as a Markov chain, we can compute the stationary distribution v =

(vCC, vCD, vDC, vDD). The entries of this stationary distribution give the probabilities

of observing each of the four possible combinations of the players’ actions over the

course of the game. Based on this stationary distribution, we define player 1’s payoff

as π(p,q) = (vCC+vDC)b − (vCC+vCD)c, and similarly for player 2. While the baseline

scenario focuses on memory-1 strategies, our results are more general. For example,

when we describe which memory-1 strategies are Nash equilibria in the following, co-

players are allowed to deviate to strategies with arbitrarily long (but finite) memory.

Moreover, similar approaches can also be used to explore the evolutionary dynamics

of memory-2 strategies, as we will discuss later.

A recipe for identifying Nash equilibria for alternating games

To predict which memory-1 strategies evolve in the alternating game, we first charac-

terize which of them are Nash equilibria. In the following, we refer to a strategy q as

a Nash equilibrium if π(q,q)≥ π(p,q) for all alternative memory-1 strategies p (for

stronger results, see Supplementary Note 2). That is, against a co-player who adopts

the Nash equilibrium strategy q, a player has no incentive to choose any different

memory-1 strategy. The notion of Nash equilibrium is closely related to evolutionary

robustness220. In a population of size N, a resident strategy q is called evolutionary

robust if no mutant strategy p has a fixation probability larger than neutral, 1/N.

When selection is sufficiently strong, strategies are evolutionary robust if and only if

they are Nash equilibria221.

Verifying that a given strategy q is a Nash equilibrium is not straightforward. In
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principle, this requires us to compare its payoff to the payoff of all possible mutant

strategies p, taken from the uncountable set of all memory-1 strategies. However, for

alternating games, it is possible to simplify the task in two steps (see Supplementary

Note 2 for details). The first step is to show that it is sufficient to compare q to all

reactive strategies, a strategy set of lower dimension. The intuition for this result is

as follows. Even if player 1 starts out with an arbitrary memory-1 strategy p, it is

always possible to find an associated reactive strategy p̃ that yields the same station-

ary distribution and the same payoff against q (Figure 2.3). That is, to find a best

response to a strategy that remembers both players’ last moves, it is sufficient to ex-

plore all strategies that only remember the co-player’s last move. In particular, not

only is there no advantage of having a strictly larger memory than the opponent, as

shown by Press and Dyson for simultaneous games190. A player can afford to remem-

ber strictly less in the alternating game.

The second step is to show that we do not need to consider all reactive strategies to

find a best response against q. Instead, it suffices to consider all deterministic reactive

strategies. By combining these two steps, it becomes straightforward to check whether

a given memory-1 strategy is a Nash equilibrium. We only need to compare its payoff

against itself to the four payoffs that can be achieved by deviating to Always Defect

(ALLD), Always Cooperate (ALLC), Tit-for-Tat (TFT), or Anti-Tit-for-Tat (ATFT).

Equilibria in alternating games without errors

Using the above recipe, we first explore which memory-1 strategies can sustain full

cooperation in games without errors (see Supplementary Note 2 for all derivations).

To this end, we call a memory-1 strategy a partner53,96 if (i) it is fully cooperative

against itself, and (ii) if it is a Nash equilibrium (such strategies are referred to as
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Figure 2.3: In alternating games, individuals can afford to remember less than their oppo-
nent. We prove the following result: if two memory-1 players interact, any of the players can
switch to a simpler reactive strategy (that only depends on the co-player’s previous action)
without changing the resulting payoffs. Here, we illustrate this result for player 1. a, Initially,
both players use memory-1 strategies. That is, a player’s cooperation probability depends on
the most recent decision of each player. There are four conditional cooperation probabilities.
b, The strategies determine how players interact in the alternating game. c, Based on the
strategies, we can compute how often we are to observe each pairwise outcome over the course
of the game by calculating the game’s stationary distribution. d, Based on the stationary dis-
tribution, and on player 1’s memory-1 strategy, we can compute an associated reactive strat-
egy. This reactive strategy only consists of two conditional cooperation probabilities. They
determine what to do if the co-player cooperated (or defected) in the previous round. The
cooperation probabilities can be calculated as a weighted average of the respective memory-
1 strategy’s cooperation probabilities. The resulting reactive strategy for player 1 yields the
same outcome distribution against player 2 as the original memory-1 strategy. We note that
for this result, the assumption of alternating moves is crucial. In the simultaneous game, the
respectively defined reactive strategy does not yield the same outcome distribution against
player 2 as the original memory-1 strategy (see Supplementary Information).
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‘good’ by Akin3–5). We find that partners are exactly those memory-1 strategies q for

which the following three conditions hold,

qCC = 1, qCD ≤ 1− c
b−cqDD, qCD ≤ 1− c

bqDC. (2.2)

The first condition is needed to ensure that the strategy is fully cooperative against

itself. The other two conditions restrict how cooperative a player is allowed to be af-

ter having been exploited by the co-player. If these last two conditions are violated,

the strategy q can either be invaded by ALLD or ATFT. Together, the three require-

ments in (2.30) define a three-dimensional polyhedron within the space of all memory-

1 strategies (Figure 2.4a). The volume of this polyhedron increases with the benefit

to cost ratio b/c. While the polyhedron never contains ALLC, it always contains the

conditionally cooperative strategies TFT and GRIM (for these two strategies, we ad-

ditionally require the respective players to cooperate in the very first round to ensure

payoffs are well-defined, see Supplementary Information). Moreover, for b ≥ 2c, the

polyhedron contains WSLS and FBF (independent of the outcome of the first round).

Similarly, we can also identify all Nash equilibria where the players mutually defect.

We refer to the respective strategies as defectors. We obtain the following necessary

and sufficient condition,

qDD = 0, qDC ≤ c
b(1−qCD), qDC ≤ c

b−c(1−qCC). (2.3)

Again, the first equation ensures that two players with the respective strategy end up

mutually defecting against each other. The other two conditions ensure that the strat-

egy is comparably unresponsive towards a co-player who tries to initiate cooperation.
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Figure 2.4: Partner strategies in alternating games with and without errors. Partner strategies
sustain cooperation in a Nash equilibrium. All such strategies are required to cooperate after
mutual cooperation, such that the respective cooperation probability qCC is equal to one. a, In
the absence of errors, the remaining three cooperation probabilities can be chosen arbitrarily,
subject to the constraints in Eq. (2.30). The resulting set of partner strategies takes the shape
of a polyhedron. b, In the presence of errors, this polyhedron degenerates to a single line seg-
ment. This line segment comprises all strategies between Generous Tit-for-Tat (GTFT) and
Stochastic Firm-but-Fair (SFBF). c,d, We compare these equilibrium results to evolutionary
simulations. To this end, we record all strategies that emerge over the course of the simu-
lation. Here, we plot the probability distribution of those strategies that yield at least 80%
cooperation against themselves. Without errors, the probability distributions for qCD, qDC, qDD
are comparably flat. With errors, players tend to cooperate if they exploited their opponent in
the previous round, qDC ≈ 1. Moreover, they cooperate with some intermediate probability af-
ter mutual defection, qDD≈2/3. Both effects are in line with previous simulation studies61,171,
and they confirm the theory. Simulations are run for b/c = 3, and ε = 0 or ε = 0.02. For the
other parameter values and further details on the simulations, see Methods. Source data are
provided as a Source Data file.
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Similar to before, the three conditions define a three-dimensional polyhedron (Figure

2.8a). The set of defectors is non-empty for all parameter values, and it always con-

tains the strategy ALLD.

Finally, we identify a third class of Nash equilibria, referred to as equalizers21. As

in the simultaneous game190, equalizers are strategies that unilaterally control the

co-player’s payoff. If one player adopts an equalizer strategy, the co-player’s payoff is

fixed, independent of the co-player’s strategy79,95,104,141,147. In the alternating game,

these strategies are characterized by

qCD =
b qCC − c (1+qDD)

b− c , qDC =
b qDD + c(1−qCC)

b− c . (2.4)

When both players adopt an equalizer strategy, neither player has anything to gain

from deviating; the resulting outcome is a Nash equilibrium.

We also show a converse result: If a memory-1 strategy for the alternating game

is a Nash equilibrium, then it either needs to be a partner, a defector, or an equal-

izer. Remarkably, the same three strategy classes also arise as Nash equilibria of the

simultaneous game221. Even the algebraic conditions for being a partner, defector, or

equalizer coincide (however, the existing proof for the simultaneous game221 is some-

what more intricate than the proof for the alternating game that we provide in Sup-

plementary Note 4). There is, however, one difference. In the simultaneous game,

there is a fourth class of Nash equilibria, referred to as ‘alternators’221. Alternators

cooperate in one round, only to defect in the next. In the Supplementary Note 2, we

show that such patterns of behavior cannot emerge among memory-1 players in the

alternating game.
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Equilibria in alternating games with errors

Next, we explore how the Nash equilibria change when we introduce errors. In the fol-

lowing, we discuss the case of partner strategies; the analogous results for defectors

and equalizers are derived in the Supplementary Note 2. For partner strategies, we

find that errors impose additional constraints. First, partners only exist when errors

are sufficiently rare, ε< 1
2
(
1− c

b
)
. Second, the respective conditions are now consider-

ably more restrictive,

qCC = qDC = 1, qCD ≤ 1− c
(1−2ε)b , qDD =

(1−2ε) (b+εc qCD)− c
(1−2ε) (b+εc) . (2.5)

In particular, if the co-player cooperated in the previous round, partners are strictly

required to cooperate in the next round, independent of their own previous action

(because now pDC = 1). If the co-player defected, partners need to cooperate with a

well-defined probability, as defined by the last two conditions in (2.46). The last con-

dition guarantees that neither ALLC nor TFT has a selective advantage against q. In

the game without errors, this requirement is satisfied automatically. There, all strate-

gies with qCC= 1 yield the full cooperation payoff b−c against each other. In the game

with errors, however, such strategies are no longer neutral. Instead, they differ in how

quickly they are able to restore cooperation after an error, and to which extent they

are able to capitalize on their co-players’ mistakes. Noisy environments thus impose

additional constraints on self-cooperative strategies to be stable.

As a result of these additional constraints, the three-dimensional polyhedron degen-

erates to a one-dimensional line segment (Figure 2.4b). On one end of this line seg-

ment, there is Generous Tit-for-Tat, which also arises in the simultaneous game156,169,
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GTFT =

(
1 , 1− c

(1−2ε)b , 1 , 1− c
(1−2ε)b

)
(2.6)

On the other end of this line segment, we find a strategy that resembles the main

characteristics of Firm-but-Fair215; we thus refer to this strategy as Stochastic Firm

But Fair,

SFBF =

(
1, 0, 1, (1−2ε)b−c

(1−2ε)(b+εc)

)
(2.7)

Behaviors similar to SFBF have been observed in early simulations of alternating

games61,171. There, it was found that evolutionary trajectories often lead to strate-

gies that are deterministic, except that they randomize after mutual defection. Our

results provide an analytical justification: SFBF is the only such strategy that is a

Nash equilibrium.

The above conditions in (2.46) provide a complete characterization of all partner

strategies in the alternating game with errors. Despite decades of research, an anal-

ogous characterization for the simultaneous game is not yet available (Figure 2.2).

However, it is known that particular strategies, most importantly WSLS, can be evo-

lutionarily stable in the presence of noise137. That is, in the simultaneous game, co-

operation can be sustained with a simple deterministic strategy if b> 2c. In contrast,

conditions (2.46) imply that no such deterministic strategy is available in the alter-

nating game. Moreover, while the partner strategies characterized by (2.46) are Nash

equilibria, we show in the Supplementary Information that they all are vulnerable to

neutral invasion by either ALLC or TFT (in fact by all strategies with qCC= qDC= 1).

These results suggest that cooperation can still evolve in alternating games, but it

may be less robust than in the simultaneous game.
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Evolutionary dynamics of alternating games

In order to test these equilibrium predictions, we next explore which behaviors emerge

when the players’ strategies are subject to evolution. To this end, we consider a pop-

ulation of N players. Each member of the population is equipped with a memory-1

strategy. They obtain payoffs by interacting with all other population members. To

model the spread of successful strategies, we assume individuals with high payoffs are

imitated more often232 (or equivalently, such individuals produce more offspring249).

In addition, new strategies are introduced through random exploration (or equiva-

lently, through mutations). These random strategies are uniformly taken from the

space of all memory-1 strategies. We capture the resulting dynamics with computer

simulations. For details, see Methods.

First, we explore the evolutionary dynamics for fixed game parameters. We record

which strategies the players use over the course of evolution to sustain cooperation. In

Figure 2.4, we represent those strategies that yield a cooperation rate against them-

selves of at least 80%; other threshold values lead to similar conclusions. We call these

strategies ‘self-cooperative’. By definition, players with these strategies are likely to

cooperate after mutual cooperation. Here we are thus interested in how they react

when either one or both players defected. Without errors, the respective conditional

cooperation probabilities show quite some variation. As a result, the distributions

in Figure 2.4c are comparably flat. Overall, players act in such a way that the part-

ner conditions (2.30) are satisfied, but they show no preference for a particular part-

ner strategy. Once we allow for errors, the evolving strategies change (Figure 2.4d).

Players tend to always cooperate if the co-player did so in the previous round, with

qCC ≈ qDC ≈ 1. Moreover, after mutual defection, they cooperate with some strictly

155



positive probability. Both patterns are predicted by our equilibrium conditions (2.46).

We find a similar match between static theory and evolutionary simulations for defec-

tors, or when we explore evolution in the simultaneous game (Figures 2.7–2.9).

In a next step, we compare the dynamics of the alternating and the simultane-

ous game across different parameter values. To this end, we systematically vary the

benefit of cooperation, the population size, the selection strength, and the mutation

rate (Figure 2.5). In games without errors, we observe hardly any difference between

the alternating and the repeated game. Both games yield almost identical coopera-

tion rates over time, and these cooperation rates are similarly affected by parameter

changes. A difference between the two games only becomes apparent when players

need to cope with errors. Here, the simultaneous game leads to systematically higher

cooperation rates than the alternating game. This difference is most visible for inter-

mediate benefit-to-cost ratios and intermediate error rates, as one may expect: For

small benefits and frequent errors, cooperation evolves in neither game, whereas for

large benefits and rare errors, cooperation evolves in both games (Figure 2.10).

Evolutionary results beyond the baseline scenario

Our baseline scenario represents an idealized model of alternating interactions. It

assumes (i) the game is infinitely repeated, (ii) players move in a strictly alternat-

ing fashion, (iii) games take place in a well-mixed population, and (iv) players use

memory-1 strategies. In the following, we use simulations to explore the effect of each

of these assumptions in turn. Here, we briefly summarize the respective results. For

an exact description of the models, and for a more detailed discussion of the results,

we refer to the Supplementary Note 3.
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Figure 2.5: Comparing evolution in the alternating and the simultaneous game. To compare
the two game versions, we have run additional evolutionary simulations. We systematically
vary the benefit of cooperation, the population size, the selection strength, and the mutation
rate. In addition, we vary how likely players make errors. Either they make no errors at all
(ε = 0), or they make errors at some intermediate rate (ε = 0.02). a, In the absence of er-
rors, there is virtually no difference between the simultaneous and the alternating game. Both
games yield the same cooperation rates, and they respond to parameter changes in the same
way. For the given baseline parameters, cooperation is favored for large benefits of cooper-
ation, population sizes, and selection strengths. It is disfavored for intermediate and large
mutation rates. b, With errors, the cooperation rates in the alternating game are systemati-
cally below the simultaneous game. The lower cooperation rates are related to our analytical
result that no cooperative memory-1 strategy in the alternating game is evolutionarily stable.
In contrast, in the simultaneous game with errors, WSLS can maintain cooperation122,170, it
is evolutionarily stable98, and it readily evolves in evolutionary simulations (Figure 2.4IPD).
As baseline parameters we use a benefit of cooperation b = 3, population size N = 100, selec-
tion strength β= 1, and the limit of rare mutations μ→ 064,105. Source data are provided as a
Source Data file.
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We start by considering games with finitely many rounds. To incorporate a finite

game length, we assume that each time both players have made a decision, the game

continues with a constant probability δ. Figure 2.6a-c shows the respective evolution-

ary results for δ = 0.96 (such that games last for 25 rounds on average). We observe

similar results as in the infinitely repeated game: The simultaneous game leads to

more cooperation (Figure 2.6a); moreover, if players cooperate, their strategies exhibit

the main characteristics of WSLS in the simultaneous game, and of SFBF and GTFT

in the alternating game (Figure 2.6b). Further simulations suggest that these quali-

tative results hold when players interact for at least 10 rounds (Figure 2.11). When

interactions are shorter, cooperation is unlikely to evolve at all (Figure 2.6c).

In a next step, we explore irregular alternation patterns. To this end, we assume

that every time a player has made a decision, with probability s it is the other player

who moves next. We refer to s as the game’s switching probability. For s = 1, we re-

cover the baseline scenario, in which players strictly alternate. For s= 1/2, the player

to move next is determined randomly. Simulations suggest that in both cases, players

again use strategies akin to GTFT and SFBF to sustain cooperation (Figure 2.6e).

However, the robustness of the strategies depends on the switching probability. In

particular, mutual cooperation is most likely to evolve when players alternate regu-

larly (Figure 2.6f, Figure 2.12).

To explore the effect of population structure, we follow the framework of Brauchli

et al31. Instead of well-mixed populations, players are now arranged on a two-dimensional

lattice. They use memory-1 strategies to engage in pairwise interactions with each of

their neighbors. For the simultaneous game, we recover the main results of Brauchli

et al.31: population structure can further enhance cooperation, and it makes it more

likely that strategies similar to WSLS evolve (Figure 2.6g–i). For the alternating
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Figure 2.6: Robustness of evolutionary results. We have explored the robustness of our re-
sults with various model extensions. Here, we display results for three of them, illustrating the
impact of finitely repeated games, of irregular alternating patterns, and of population struc-
ture. a–c, The baseline model assumes infinitely repeated games; here we show simulations for
games with a finite expected length. If there are sufficiently many rounds, the simultaneous
game again leads to more cooperation than the alternating game, and the evolving strate-
gies are largely similar to the ones observed in the baseline model. d–f, The baseline model
assumes that players move in a strictly alternating fashion. Instead, here we assume that af-
ter each player’s move, the other player moves with some switching probability s. The case
s = 1 corresponds to strict alternation, whereas s = 1/2 represents a case in which the next
player to move is completely random. We observe that irregular alternation patterns hardly
affect which strategies players use to cooperate. However, it affects the robustness of these
strategies. Overall, cooperation is most likely to evolve under strict alternation. g–i, Finally,
instead of well-mixed populations, we consider games on a lattice. For the given parameter
values, we observe that simultaneous games eventually lead to homogeneous cooperative pop-
ulations. While this outcome is also possible for alternating games, some simulations also lead
to the coexistence of cooperators and defectors (shown here in panel h). The evolving self-
cooperative strategies are similar to the strategies that evolve in the baseline model. For a
detailed description of these simulations, see Methods and Supplementary Information. Source
data for panels a–f, i are provided as a Source Data file.

159



game, we observe that cooperation remains the most abundant outcome, but spatial

structure does not necessarily result in homogeneous populations any longer. Instead,

in some simulations we find cooperative and non-cooperative strategies to stably coex-

ist (one particular instance is shown in Figure 2.6h).

Finally, we also analyzed the impact of larger memory. Exploring the dynamics

among general memory-k strategies is not straightforward, as the strategy space in-

creases rapidly. For instance, while there are only 16 pure memory-1 strategies, there

are 65,536 memory-2 strategies and more than 1019 memory-3 strategies98. We thus

confine ourselves to pure memory-2 strategies in the following. In a first step, we ex-

plored which of these strategies are evolutionarily stable, see Figure 2.13a. For the

simultaneous game, we find many such strategies, including several strategies with

high cooperation rates. In the alternating game, we only find one strategy that is evo-

lutionarily stable for a wide range of parameters, ALLD. Nevertheless, with respect

to the evolving cooperation rates, stochastic evolutionary trajectories hardly show

any difference between alternating and simultaneous games. The two games differ,

however, in terms of the strategies that evolve, and in how robust these strategies are

(Figure 2.13b-e).

2.3 Discussion

An overwhelming majority of past research on reciprocity deals with repeated games

where individuals simultaneously decide whether to cooperate99,215. In contrast, most

natural occurrences of reciprocity require asynchronous acts of giving. Cooperation

routinely takes the form of assisting a peer, providing a gift, or taking the lead in a

joint endeavor107,155,239. In such examples, simultaneous cooperation can be unfeasi-
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ble, undesirable, or unnecessary. Herein, we have thus explored which strategies arise

in alternating games where individuals make their decisions in turns. In such games,

one individual’s cooperation is reciprocated not immediately, but at some point in the

future.

To explore the dynamics of cooperation in alternating games, we first describe all

Nash equilibria among the memory-1 strategies. Memory-1 strategies are classical

tools that have been used to describe the evolutionary dynamics of repeated games

for several decades122,170,171. However, most of the early work on memory-1 strategies

was restricted to evolutionary simulations. Only with the pioneering work of Press

and Dyson190 and others3–5,53,74,96,149,220,221, better mathematical techniques have

become available. Using these techniques, it has become possible to describe all Nash

equilibria of the infinitely repeated simultaneous game without errors221. Herein, we

make similar progress for the alternating game, both for the case with and without

errors (for the simultaneous game with errors, a complete characterization of the Nash

equilibria remains an open problem, see Figure 2.2).

Our results suggest that there are both unexpected parallels and important differ-

ences between simultaneous and alternating games. The parallels arise when individu-

als do not make errors. Here, the two models of reciprocity make the same predictions

about the feasibility of cooperation. Cooperation evolves in the same environments,

and it can be maintained using the same strategies. However, once individuals make

mistakes, the predictions of the two models diverge. First, the two models require

different kinds of strategies to maintain cooperation. In the simultaneous game, co-

operation can be sustained with the deterministic memory-1 strategy Win-Stay Lose-

Shift122,170. Individuals with that strategy simply reiterate their previous behavior if

it was successful, and they switch their behavior otherwise. In contrast, in the alter-
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nating game, no simple deterministic rules for cooperation exist. Although there are

still infinitely many memory-1 strategies that can maintain cooperation, all of them

require individuals to randomize occasionally. One example of such a strategy for al-

ternating games is Stochastic Firm-But-Fair (SFBF). Individuals with this strategy

always reciprocate a co-player’s cooperation, never tolerate exploitation, and coop-

erate with some intermediate probability if both players defected. Similar behaviors

have been observed in earlier simulations61,171. Our results provide a theoretical un-

derpinning: SFBF is the unique memory-1 strategy that can sustain cooperation while

retaliating against unconditional defectors in the strongest possible way.

The simultaneous game and the alternating game also differ in how stable cooper-

ation is in evolving populations. In the simultaneous game, the evolution of coopera-

tion is hardly affected by errors, provided the error rate is below a certain threshold

(Figure 2.5, Figure 2.10). In some instances, errors can even enhance cooperation254.

This body of work is based on the insight that evolutionarily stable cooperation is

impossible in simultaneous games without errors23,24,69,70,136. For any cooperative res-

ident, it is always possible to find neutral mutant strategies that eventually lead to

the demise of cooperation. However, once individuals occasionally commit errors, a

strategy like WSLS is no longer neutral with respect to other cooperative strategies;

it becomes evolutionarily stable23,137. The situation is different in alternating games.

Even in the presence of rare errors, strategies like SFBF remain vulnerable. They can

be invaded by unconditional cooperators or by any other strategy that fully recipro-

cates a co-player’s cooperation.

Despite these differences in the stability of their main strategies, evolving cooper-

ation rates in the simultaneous and the alternating game are often surprisingly sim-

ilar. To interpret these results, we note that when evolution is stochastic and takes
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place in finite populations, no strategy persists indefinitely. Even evolutionarily stable

strategies are invaded eventually. As a result, the overall abundance of cooperation

is not only determined by the stability of any given strategy. Instead, it depends on

additional aspects, such as the time it takes cooperative strategies to reappear when

they are invaded. The relative importance of these different aspects depends on the

details of the considered evolutionary process. To further illustrate these observations,

we have run additional simulations for memory-1 players with local mutations222 (see

Supplementary Note 3). Because evolutionary stability considerations are less relevant

when mutations are local, we observe that the cooperation rates of the alternating and

the simultaneous game become more similar (Figure 2.14).

Cooperation is defined as a behavior where individuals pay a cost in order to in-

crease the payoff or fitness of someone else166. When individuals interact repeatedly,

such cooperative interactions can be maintained by reciprocity. Here we have argued

that in many examples, reciprocity arises as a series of asynchronous acts of cooper-

ation. Most often, people do favors not to be rewarded immediately, but to request

similar favors in future. Such consecutive acts of cooperation also appear to be at

work when vampire bats246, sticklebacks155, ibis239, tree swallows135, or macaques159

engage in reciprocity. We have shown that mutual cooperation is still possible in such

alternating exchanges. But compared to the predominant model of reciprocity in si-

multaneous games, cooperation requires different kinds of strategies, and it is more

volatile.

2.4 Methods
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Calculation of payoffs

When two players with memory-1 strategies interact, their expected payoffs can be

computed by representing the game as a Markov chain215. To this end, suppose the

first player’s strategy is p=(pCC, pCD, pDC, pDD), and the second player’s strategy is q=

(qCC, qCD, qDC, qDD). Depending on the most recent actions of the two players (which

can be either CC, CD, DC, or DD), we can compute how likely we are to observe each

of the four outcomes in the following round. For the alternating game, we obtain the

following transition matrix171,

MA =





pCCqCC pCC(1−qCC) (1−pCC)qCD (1−pCC)(1−qCD)

pCDqDC pCD(1−qDC) (1−pCD)qDD (1−pCD)(1−qDD)

pDCqCC pDC(1−qCC) (1−pDC)qCD (1−pDC)(1−qCD)

pDDqDC pDD(1−qDC) (1−pDD)qDD (1−pDD)(1−qDD)





. (2.8)

Based on this transition matrix, we compute how often players observe each of the

four outcomes. To this end, we solve the equation for the stationary distribution,

v = vMA. In most cases, the solution of this equation is unique. Uniqueness is guar-

anteed, for example, when the players’ strategies p and q are fully stochastic, or when

the error rate is positive. In exceptional cases, however, the transition matrix can al-

low for two or more stationary distributions. In that case, the outcome of the game is

still well-defined, after specifying how players act in the very first round.

Given the stationary distribution v=(vCC, vCD, vDC, vDD), we define the players’ payoffs

as
π1 = (vCC+vDC)b− (vCC+vCD)c,

π2 = (vCC+vCD)b− (vCC+vDC)c.
(2.9)
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This definition implicitly assumes that the game is indefinitely repeated and that fu-

ture payoffs are not discounted. However, analogous formulas can be given in case

there is a constant continuation probability δ, or equivalently, if future payoffs are

discounted by δ (see Supplementary Note 3).

We compare our results for the alternating game with the corresponding results

for the standard repeated prisoner’s dilemma, where players decide simultaneously.

Payoffs for the simultaneous game can be calculated in the same way as before. Only

the transition matrix needs to be replaced by215

MS =





pCCqCC pCC(1−qCC) (1−pCC)qCC (1−pCC)(1−qCC)

pCDqDC pCD(1−qDC) (1−pCD)qDC (1−pCD)(1−qDC)

pDCqCD pDC(1−qCD) (1−pDC)qCD (1−pDC)(1−qCD)

pDDqDD pDD(1−qDD) (1−pDD)qDD (1−pDD)(1−qDD)





. (2.10)

Although the two matrices share many similarities, the resulting dynamics can be

very different. For example, if the two players use TFT, then the matrix MS allows

for three invariant sets (corresponding to mutual cooperation, mutual defection, and

alternating cooperation). However, the respective matrix MA only allows for the first

two invariant sets171. More generally, MS allows for equilibria where players cooper-

ate in one round but defect in the next round. Such equilibria are impossible for MA

(see Supplementary Note 2).

We sometimes assume players commit errors. We incorporate errors by assuming

that with probability ε, a player who intends to cooperate defects by mistake. Anal-

ogously, a player who wishes to defect cooperates instead with the same probability.

Such errors are straightforward to incorporate into the model. For ε > 0, a player’s

strategy p translates into an effective strategy pε := (1 − ε)p+ε(1 − p). To compute
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the payoffs of strategy p against strategy q in the presence of errors, we apply the

formulas (2.8) – (2.10) to the strategies pε and qε.

Evolutionary dynamics

In the following, we describe the evolutionary process for the baseline scenario. For

the various model extensions (Figure 2.6, Figure 2.11 – Figure 2.14), we use appropri-

ately adapted versions of this process, as described in more detail in the Supplemen-

tary Note 3. To model how successful strategies spread in well-mixed populations, we

use a pairwise comparison process232. This process considers a population of constant

size N. Initially, all population members are unconditional defectors. Each player

derives a payoff by interacting with all other population members; for each pairwise

interaction, payoffs are given by Eq. (2.9).

To model how strategies with a high payoff spread within a population, we consider

a model in discrete time. In each time step, one player is chosen from the population

at random. This player is then given an opportunity to revise its strategy. The player

can do so in two ways. First, with probability μ (the mutation rate), the player may

engage in random strategy exploration. In this case, the player discards its strategy,

and samples a new strategy uniformly at random from the set of all memory-1 strate-

gies. Second, with probability 1−μ, the player considers imitating one of its peers.

In this case, the player selects a random role model from the population. If the role

model’s payoff is πR and the focal player’s payoff is πF, then imitation occurs with a

probability given by the Fermi function224

ρ = 1
1+ exp

[
− β(πR − πF)

] . (2.11)
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If imitation occurs, the focal player discards its previous strategy and adopts the role

model’s strategy instead. In the formula for the imitation probability, the parame-

ter β ≥ 0 is called the strength of selection. It measures the extent to which players

are guided by payoff differences between the players’ strategies. For β= 0, any payoff

differences are irrelevant. The focal player adopts the role model’s strategy with prob-

ability 1/2. As β becomes larger, payoff differences become increasingly important.

In the limiting case β → ∞, imitation only occurs if the role model’s payoff at least

matches the focal player’s payoff.

Overall, the two mechanisms of random strategy exploration and directed strategy

imitation give rise to a stochastic process on the space of all population compositions.

For positive mutation rates, this process is ergodic. In particular, the average cooper-

ation rate (as a function of the number of time steps) converges, and it is independent

of the considered initial population. Herein, we have explored this process with com-

puter simulations. We have recorded which strategies the players adopt over time and

how often they cooperate on average. For most of these simulations, we assume that

mutations are sufficiently rare248. For those simulations, we require mutant strategies

to either fix in the population or to go extinct before the next mutation occurs. Un-

der this regime, the mutant’s fixation probability can be computed explicitly174. This

in turn allows us to simulate the evolutionary dynamics more efficiently64,105.
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Parameters and specific procedures used for the figures

For the simulations in well-mixed populations, we used the following baseline parame-

ters:

Benefit of cooperation: b=3

Cost of cooperation: c=1

Population size: N=100

Selection strength: β=5 (Figure 2.4, Figures 2.7–2.9) and β=1 (all other figures)

Error rate: ε=0 (without errors), or ε=0.02 (with errors)

Mutation rate: μ → 0.
(2.12)

Changes in these parameters are systematically explored in Figure 2.5 and Figure

2.10. For Figure 2.4, Figure 2.5, and Figure 2.4IPD – Figure 2.12, the respective sim-

ulations are run for at least 107 time steps each (measured in number of introduced

mutant strategies over the course of a simulation). For Figure 2.6, Figure 2.13, and

Figure 2.14, simulations are run for a shorter time (as illustrated in the respective

panels that illustrate the resulting dynamics). However, here all results are obtained

by averaging over 50 – 200 independent simulations.

To report which strategies the players use to sustain cooperation (or defection),

we record all strategies that arise during a simulation that have a cooperation rate

against themselves of at least 80% (in the case of self-cooperators), or a cooperation

rate of less than 20% (in the case of self-defectors). In Figure 2.4, Figure 2.4IPD –

Figure 2.8IPD, and Figure 2.11, we show the marginal distributions of all strategies

that we have obtained in this way. For these distributions, each strategy is weighted

by how long the strategy has been present in the population. In Figure 2.6, Figure
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2.13, and Figure 2.14, we represent the self-cooperative strategies by computing the

average of the respective marginal distributions. In some cases (Figure 2.6e, Figure

2.13, Figure 2.14), we also report how robust self-cooperative strategies are on av-

erage. To this end, we record for each self-cooperative resident strategy how many

mutants need to be introduced into the population until a mutant strategy reaches

fixation. We consider self-cooperative strategies that resist invasion by many mutant

strategies as more robust.

Finally, for the simulations for spatial populations (Figure 2.6g–i), we closely fol-

low the setup of Brauchli et al31. Here, we consider a population of size N = 2, 500.

Players are arranged on a 50×50 lattice with periodic boundary conditions. Players

use memory-1 strategies (initially they adopt the strategy ALLD). In every genera-

tion, every player interacts in a pairwise game with each of its eight immediate neigh-

bors. After these interactions, all players are independently given an opportunity to

update their strategies. With probability μ= 0.002, an updating player chooses a ran-

dom strategy, uniformly taken from all memory-1 strategies (global mutations). With

probability 1− μ, the updating player adopts the strategy of the neighbor with the

highest payoff (but only if this neighbor’s payoff is better than the focal player’s pay-

off). This elementary process is then repeated for 20,000 generations. Panels Figure

2.6g,i show averages across 50 independent simulations of the process. Panel Figure

2.6(h) illustrates two particular realizations.

Code availability. All simulations were performed with Matlab_R2019b. The respec-

tive code is available online180, at osf.io: http://dx.doi.org/10.17605/osf.io/v5hgd.

Data availability. Source data for Figures 2.4, Figure 2.5, Figure 2.6a-f and Figure
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2.6i are provided with this paper. Moreover, the raw data generated with the com-

puter simulations, including the data that is necessary to create all figures is available

online180, at osf.io:

http://dx.doi.org/10.17605/osf.io/v5hgd.
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Supplementary Information

We note that in the following, all references to equations refer to the respective equa-

tion in the Supplementary Information document; we do not refer to main text equa-

tions herein.

2.5 Supplementary Note 1: Baseline model

Game setup. In the following, we introduce the model in slightly more general terms

than in the main text. We consider two players who interact repeatedly. Each turn,

they either decide at the same time whether or not to cooperate (simultaneous game),

or they decide consecutively, one after the other (alternating game). In the former

case, players do not know of the other player’s decision when making their own deci-

sion. In the latter case, player 1 moves first and player 2 learns the outcome before

making its own decision. To ensure payoffs are well-defined in both cases, we assume

the payoff of an action can be defined based on that particular action alone (that is,

the payoff consequences of one player’s cooperation does not depend on the co-player’s

action). This implies that payoffs take the form of the donation game171. That is, co-

operation (C) implies a cost of c> 0 to the cooperating player, and it yields a benefit

b> c to the co-player. Defection (D) comes with no cost and yields no benefit.

Here we assume the game proceeds indefinitely and future payoffs are not dis-

counted. For such repeated games, we can define the players’ payoffs as follows. Let

va1,a2(t) denote the probability that the t-th actions of player 1 and player 2 are a1 and

a2, respectively, with a1, a2 ∈ {C,D}. Throughout this paper, we assume that for all
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Figure 2.7: Partners in the simultaneous game. Here, we present results analogous to those of
Figure 2.4, but illustrating the outcome of simultaneous games. a,c, Without errors, the two
models make the same predictions, and also the evolving cooperative strategies are similar. b,
With errors, there is no theory yet that characterizes all partner strategies of the simultaneous
game. It is only known that particular cooperative strategies are stable under certain condi-
tions. For example, WSLS is a partner strategy if b> 2c, provided the error rate is sufficiently
small98. Another example of a partner strategy is GTFT (defined in the same way as in the
alternating game; for reactive strategies, the two games are equivalent171). d, For simulta-
neous games with errors, our evolutionary simulations confirm that players predominantly
maintain cooperation with WSLS. Parameters are the same as in Figure 2.4.
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a1, a2 the respective limiting averages are well-defined,

va1,a2 := lim
T→∞

1
T

T∑

t=1
va1,a2(t). (2.13)

These limits are guaranteed to exist, for example, when the two players have finite

recall. We collect the four limiting averages defined by Eq. (2.13) in a vector,

v=(vCC, vCD, vDC, vDD). (2.14)

Each entry corresponds to the probability to observe the respective outcome at a ran-

domly picked time t. Based on these four probabilities, we define the players’ payoffs

by
π1 = b·(vCC+vDC)− c·(vCC+vCD)

π2 = b·(vCC+vCD)− c·(vCC+vDC).
(2.15)

These formulas apply to both the alternating and the simultaneous game (however,

the respective limiting averages v will generally differ, see below).

Memory-1 strategies. We assume players use memory-1 strategies. That is, to decide

whether to cooperate in a given round, a player only takes into account each player’s

most recent decision. Such strategies can be written as a 4-tuple

p = (pCC, pCD, pDC, pDD). (2.16)

An entry paã is the probability the focal player cooperates, given that the focal player’s

last decision was a∈{C,D} and that the opponent’s last decision was ã∈{C,D}. Such

a strategy is deterministic if all entries are either zero or one; it is semi-stochastic if

some but not all entries are between zero and one; and it is fully stochastic if all en-
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tries are between zero and one.

When both players use memory-1 strategies, the payoffs according to Eq. (2.15)

can be calculated explicitly. To this end, let us consider two players with strategies

p = (pCC, pCD, pDC, pDD) and q = (qCC, qCD, qDC, qDD), respectively. The game can be

represented as a Markov chain, where the states are the possible combinations of the

two players’ actions at a given point in time, {CC,CD,DC,DD}. For the alternating

game, the Markov chain’s transition matrix is

MA(p,q) :=





pCCqCC pCC(1−qCC) (1−pCC)qCD (1−pCC)(1−qCD)

pCDqDC pCD(1−qDC) (1−pCD)qDD (1−pCD)(1−qDD)

pDCqCC pDC(1−qCC) (1−pDC)qCD (1−pDC)(1−qCD)

pDDqDC pDD(1−qDC) (1−pDD)qDD (1−pDD)(1−qDD)





. (2.17)

By the Perron-Frobenius Theorem, the vector v defined by Eq. (2.14) is an invariant

distribution of MA(p,q). That is, to compute how often players visit each of the four

states, we only need to solve the following linear equation in the unknown v(p,q),

v(p,q) = v(p,q) ·MA(p,q). (2.18)

Based on this invariant distribution, one can then compute payoffs based on Eq. (2.15),

π(p,q) = b·
(
vCC(p,q)+vDC(p,q)

)
− c·

(
vCC(p,q)+vCD(p,q)

)

π(q,p) = b·
(
vCC(p,q)+vCD(p,q)

)
− c·

(
vCC(p,q)+vDC(p,q)

)
.

(2.19)

For the simultaneous game, payoffs can be computed analogously, but using a differ-
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ent transition matrix215,

MS(p,q) :=





pCCqCC pCC(1−qCC) (1−pCC)qCC (1−pCC)(1−qCC)

pCDqDC pCD(1−qDC) (1−pCD)qDC (1−pCD)(1−qDC)

pDCqCD pDC(1−qCD) (1−pDC)qCD (1−pDC)(1−qCD)

pDDqDD pDD(1−qDD) (1−pDD)qDD (1−pDD)(1−qDD)





. (2.20)

In cases in which it is clear which game and which strategies p and q are considered

(or in case the game and the exact strategies do not matter), we will sometimes write

v and M instead of v(p,q), MA(p,q), and MS(p,q).

We note that in degenerate cases, the solution of v = vM does not need to be

unique. In that case, the correct invariant distribution v needs to be derived from

the players’ actions in the very first round. As an example, consider an alternating

game in which both players adopt the strategy TFT. The corresponding transition

matrix MA has two absorbing states. The first absorbing state corresponds to indef-

inite mutual cooperation, and the other corresponds to indefinite mutual defection.

Which of these absorbing states is reached (and hence which of the invariant distri-

butions is relevant for the calculation of the players’ payoffs) depends on player 1’s

action in the very first round (when no previous history of actions is yet available). If

player 1 cooperates, both players continue to cooperate, and the appropriate invariant

distribution is v = (1, 0, 0, 0). Otherwise, if player 1 defects, the appropriate invari-

ant distribution is v = (0, 0, 0, 1). We note that if the two TFT players interact in a

simultaneous game, the respective transition matrix MS has a third absorbing state.

According to that state, players switch between cooperation and defection. In the al-

ternating game this state is no longer absorbing171, because players now condition

their behavior on different past events (as illustrated in Figure 2.1).
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Reactive strategies. An important subset of memory-1 strategies are the so-called re-

active strategies. While the behavior of a reactive strategy still depends on the oppo-

nent’s previous decision, it is independent of the player’s own previous decision. Such

strategies correspond to those 4-tuples p = (pCC, pCD, pDC, pDD) for which pCC = pDC

and pCD = pDD. Slightly abusing notation, we denote reactive strategies as 2-tuples

p=(pC, pD). The first entry pC :=pCC=pDC is the player’s cooperation probability given

that the opponent’s last decision was to cooperate. The second entry pD := pCD = pDD

is the player’s cooperation probability given that the opponent’s last decision was

to defect. Examples of reactive strategies include ALLD = (0, 0), ALLC = (1, 1),

TFT=(1, 0) and ATFT=(0, 1).

2.6 Supplementary Note 2: Equilibrium analysis for alternating games

In the following, we aim to characterize all symmetric Nash equilibria of the alternat-

ing game in the space of memory-1 strategies. In a Nash equilibrium, no player can

increase her payoff by unilaterally deviating. To do so, we use an approach that is dif-

ferent from previous approaches for the simultaneous game3,4,96,220,221. Our approach

involves two steps. First, we show that for any game between two memory-1 play-

ers, one can replace one player’s strategy by an appropriately chosen reactive strategy

without affecting the resulting payoffs. This step is somewhat reminiscent of a re-

sult by Press and Dyson190. They showed for the simultaneous game that there is no

advantage of having a longer memory than the opponent. For alternating games, a

stronger result holds. Against a memory-1 opponent, a player can even afford to have

a lower memory. It suffices to only remember the opponent’s last move and to forget

one’s own. Second, we show that to find a best response to a given memory-1 strat-
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egy, it is sufficient to check it against those reactive strategies that are deterministic.

This result implies that one needs to explore only four possible deviations, ALLD,

ALLC, TFT, and ATFT, as defined above.

Based on these two results, we show that the alternating game allows for three

qualitatively different classes of memory-1 equilibria. According to the first two classes,

players either mutually cooperate or mutually defect. We refer to the respective strate-

gies as partners and defectors, respectively. In the last class, players act in such a way

that the opponent’s payoff is guaranteed to be fixed, irrespective of the opponent’s

strategy. These strategies have been called equalizers in the context of the simultane-

ous game21,190.

2.6.1 Sufficiency of reactive strategies

As our first result, we show that when two memory-1 players interact, one player’s

strategy can be replaced by an appropriate reactive strategy without affecting the

game’s outcome (all proofs are presented as an appendix in Supplementary Note 4).

For simplicity, we show this result for the first player. However, because payoffs are

independent of the position of the players171, an analogous result holds for the second

player.

Proposition 2.1 (Sufficiency of reactive strategies when both players use memory-1

strategies). Consider two memory-1 players with strategies p=(pCC, pCD, pDC, pDD) and

q= (qCC, qCD, qDC, qDD), and suppose v(p,q) = (vCC, vCD, vDC, vDD) is an invariant dis-

tribution of the resulting alternating game. We define a reactive strategy p̃ = (p̃C, p̃D)
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for player 1 as a solution of

(vCC+vDC) p̃C = vCC pCC + vDC pDC

(vCD+vDD) p̃D = vCD pCD + vDD pDD.
(2.21)

Then v(p̃,q)=v(p,q). We call such a strategy p̃ a reactive marginalization of p with

respect to q.

Several remarks are in order.

a Intuition for the result. To gain some intuition for Proposition 2.1, let us assume

that the strategies p and q are such that player 2 both cooperates and defects

with positive probability. In that case, vCC+vDC > 0 and vCD+vDD > 0, and the

reactive marginalization of p with respect to q is unique,

p̃C =
vCC

vCC+vDC
pCC +

vDC
vCC+vDC

pDC

p̃D =
vCD

vCD+vDD
pCD +

vDD
vCD+vDD

pDD.

(2.22)

That is, to obtain the value of p̃C, we only need to consider how often the first

player cooperates in response to the opponent’s cooperation on average. To this

end, all outcomes in which the first player cooperates are weighted according to

how often these outcomes occur in the first place. Figure 3 provides an illustra-

tion for two particular examples of strategies p and q.

b Proposition 2.1 only applies to alternating games. To illustrate that the statement

is not true for simultaneous games, consider the strategies used in Figure 3,

with p = (0.9, 0.1, 0.5, 0.3) and q = (0.8, 0.25, 0.75, 0.2). By computing the

respective transition matrix MS according to Eq. (2.20), and by solving for
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v = vMS, we obtain the invariant distribution v(p,q) ≈ (0.23, 0.21, 0.24, 0.32).

If we use this expression and formula (2.22) to compute the unique reactive

marginalization of p with respect to q, we obtain p̃≈ (0.698, 0.220). However,

the respective invariant distribution of a simultaneous game between p̃ and q

is v(p̃,q) ≈ (0.22, 0.23, 0.25, 0.30), which is different from v(p,q). Hence the

simultaneous game between the two memory-1 strategies p̃ and q induces a dy-

namics that is different from the simultaneous game between p and q.

c Non-uniqueness of reactive marginalizations. In some cases of alternating games, a

strategy’s reactive marginalization is not unique. This happens, for example,

if player 1 uses the strategy p = (0, 0, 1, 0) and the opponent uses GRIM =

(1, 0, 0, 0). The respective transition matrix MA according to Eq. (2.17) has a

unique invariant distribution according to which everyone defects, v=(0, 0, 0, 1).

By Proposition 2.1 it follows that for any reactive strategy p̃ = (p̃C, 0) with

p̃C ∈ [0, 1], again v is an invariant distribution of the game against q. We note

however, that one of these reactive strategies, p̃ = (1, 0), allows for a second

invariant distribution, v = (1, 0, 0, 0). When this reactive marginalization is

chosen, we additionally need to require that player 1 defects in the very first

round, such that the correct invariant distribution is selected.

The above Proposition 2.1 suggests that against a given memory-1 opponent, there

is no advantage of choosing a memory-1 strategy instead of a reactive strategy: any

payoff a player can achieve with a memory-1 strategy can also be achieved with a re-

active strategy. This result holds more generally, even if player 1 has access to more

complex strategies.
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Proposition 2.2 (Sufficiency of reactive strategies when only the second player uses a

memory-1 strategy). Consider an alternating game in which the second player uses

the memory-1 strategy q = (qCC, qCD, qDC, qDD) whereas the first player uses an arbi-

trary strategy. Denote by pa1,a2(t) the first player’s expected probability to cooperate

at time t conditional on the players’ previous decisions a1 and a2. Suppose the limit-

ing distribution v according to Eq. (2.14) and the following limits on the right hand

side exist, such that we can define p̃C and p̃D implicitly as a solution of

(vCC+vDC) p̃C = lim
T→∞

1
T

T∑

t=1
vCC(t) pCC(t) + vDC(t) pDC(t)

(vCD+vDD) p̃D = lim
T→∞

1
T

T∑

t=1
vCD(t) pCD(t) + vDD(t) pDD(t).

(2.23)

The reactive strategy p̃=(p̃C, p̃D) so defined satisfies v(p̃,q)=v.

The requirements imposed by Proposition 2.2 are comparably mild. The existence

of the respective limits is guaranteed, for example, if player 1 adopts an arbitrary

strategy with finite recall (in some cases, this may again require players to specify

their initial actions to make sure the invariant distribution is well-defined). In the

following, we say that those strategies that satisfy the conditions in Proposition 2.2

are generic with respect to q. That is, generic strategies are those for which one can

compute how likely a player is to cooperate on average, conditional on the co-player’s

previous action. In particular, all memory-1 strategies are generic (given their initial

actions are defined). In that special case, the respective definition of p̃ according to

Eqs. (2.21) and (2.23) coincide, as one may expect.

We can summarize the results in this section as follows. Given a fixed memory-1

strategy q for the second player, we can define the following three sets. These sets
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describe both players’ feasible payoffs, given the first player either adopts a reactive

strategy, a memory-1 strategy, or a generic strategy, respectively,

ΠR(q) :=
{(

π(p,q), π(q,p)
)
∈ R2

∣∣∣ p is a reactive strategy
}

ΠM(q) :=
{(

π(p,q), π(q,p)
)
∈ R2

∣∣∣ p is a memory-1 strategy
}

ΠG(q) :=
{(

π(p,q), π(q,p)
)
∈ R2

∣∣∣ p is a generic strategy
}

(2.24)

Then Propositions 2.1 and 2.2 imply the following.

Corollary 2.3. If q is a memory-1 strategy, then ΠR(q) = ΠM(q) = ΠG(q).

That is, against a memory-1 opponent, all payoffs that can either be achieved with

a generic strategy, or a memory-1 strategy, can already be achieved with a reactive

strategy.

2.6.2 Best responses to memory-1 strategies

In this section, we aim to identify best responses to a given memory-1 strategy. We

restrict ourselves to generic best responses. A strategy p is a generic best response to

strategy q if it is generic, and if

π(p,q) ≥ π(p′,q) for all generic strategies p′. (2.25)

By Proposition 2.2, there is always a generic best response in the space of reactive

strategies. The following two results simplify the search for a generic best response

even further.
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Lemma 2.4. Consider a reactive player with strategy p= (pC, pD) who interacts with

a memory-1 opponent with strategy q = (qCC, qCD, qDC, qDD). Then, the payoff of the

reactive player is given by

π(p,q) =
bqDD − cqDD ·pC +

(
(qDC−qDD)b−(1−qCD)c

)
·pD + c(qCC−qCD−qDC+qDD)·pCpD

1−qCD+qDD − (qCC−qCD)·pC − (qDD−qDC)·pD
.

(2.26)

In particular, the payoff of the reactive player depends monotonically on each of its

inputs pC and pD.

The first part of the Lemma gives an explicit formula to compute payoffs. The mono-

tonicity property mentioned in the second part is useful because it allows us to derive

the following result.

Proposition 2.5 (Optimality of deterministic reactive strategies). Let q be some given

memory-1 strategy and let p∈ [0, 1]2 be an arbitrary reactive strategy. Then there is a

deterministic reactive strategy p′∈{0, 1}2 for which π(p′,q) ≥ π(p,q).

In particular, if p is a best response to q, then there is at least one deterministic and

reactive strategy p′ that yields the same payoff (that is, p′ is also a best response).

By combining Propositions 2.2 and 2.5, we can thus conclude that to find a generic

best response to an arbitrary memory-1 strategy, it suffices to consider the four deter-

ministic reactive strategies ALLD=(0, 0), ATFT=(0, 1), TFT=(1, 0), ALLC=(1, 1).

We can use this observation to characterize all generic Nash equilibria among the

memory-1 strategies. We say a strategy q is a generic Nash equilibrium if q is a generic

best reply to itself. By Eq. (2.19), the payoff of a memory-1 strategy q against itself

is
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π(q,q) = (1−qCC+qDC)qDD
(1−qCC)(1−qCD+qDD)+ (1−qCC+qDC)qDD

· (b−c). (2.27)

Because of Propositions 2.2 and 2.5, we only need to compare this self-payoff to the

payoffs of the four deterministic reactive strategies. By Eq. (2.26), the respective pay-

offs are
π(ALLD,q) =

qDD
1−qCD+qDD

· b

π(ATFT,q) = qDC
1−qCD + qDC

· b− 1−qCD
1−qCD+qDC

· c

π(TFT,q) = qDD
1−qCC+qDD

· (b−c)

π(ALLC,q) = qDC
1−qCC+qDC

· b− c,

(2.28)

Overall, we obtain the following result.

Theorem 2.6 (Characterization of generic Nash equilibria). Let q be an arbitrary

memory-1 strategy such that the payoffs (2.27) and (2.28) are well-defined. Then q

is a generic Nash equilibrium if and only if

π(q,q) ≥ max
(
π(ALLD,q), π(ATFT,q), π(TFT,q), π(ALLC,q)

)
(2.29)

The assumption on the payoffs (2.27) and (2.28) to be well-defined is not a major re-

striction. Those cases in which some of the expressions in Eqs. (2.27) and (2.28) can-

not be evaluated (for example, when qCC = 1 and qDD = 0), correspond to those cases

in which the invariant distribution v according to Eq. (2.18) is not unique. In that

case, one can resolve the ambiguity by defining an initial cooperation probability for
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the very first round. In this way, all relevant payoffs become well-defined, and condi-

tion (2.29) remains valid.

2.6.3 Classification of memory-1 Nash equilibria

In the following, we use the general characterization provided in Theorem 2.6 to give

a qualitative classification of all generic memory-1 Nash equilibria. To this end, we

first describe three distinct behaviors that can be sustained in equilibrium. These

three behaviors correspond to players who mutually cooperate, players who mutually

defect, and players who unilaterally fix the co-player’s payoff to a fixed level. In line

with the previous literature on simultaneous games, we refer to the respective equilib-

rium strategies as partners96, defectors53, and equalizers21. Then we show that these

three classes of behaviors comprise in fact all Nash equilibria of the alternating game.

Partners. We say a strategy is self-cooperative if two players with that strategy ob-

tain the mutual cooperation payoff b−c against each other. For a memory-1 strategy q

to be self-cooperative, Eq. (2.27) implies that qCC needs to be set to one (if qDD = 0,

the strategy is additionally required to cooperate in the first round). We call a strat-

egy a partner if it is self-cooperative and if it satisfies the Nash condition (2.29). To

check whether the Nash condition holds, we note that for any self-cooperative strat-

egy q, the equality π(q,q)=π(TFT,q)=π(ALLC,q)=b−c holds. Thus, we only need

to verify the two remaining inequalities, π(ALLD,q)≤ b − c and π(ATFT,q)≤ b − c.

Based on the respective expressions in Eqs. (2.28), we conclude that q is a partner if
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and only if the following three conditions are satisfied,

qCC = 1

(b−c)(1−qCD) ≥ c qDD

b(1−qCD) ≥ c qDC.

(2.30)

These conditions define a 3-dimensional subspace of the memory-1 strategies (see Fig-

ure 2.4). This subspace is non-empty: since b> c, all conditions can be met by choos-

ing sufficiently small cooperation probabilities qCD, qDC, qDD. The subspace of partner

strategies increases with b and it decreases with c. That is, the more profitable coop-

eration is, the easier it becomes to satisfy the conditions for being a partner.

Defectors. We call a strategy self-defective if two players with that strategy end up

with the mutual defection payoff when playing against each other. In particular,

a self-defective memory-1 strategy q needs to set qDD to zero (in case payoffs are

not well-defined otherwise, it additionally needs to defect in the first round). We

say a self-defective strategy is a defector if it additionally satisfies the Nash condi-

tion (2.29). Similar to before, two of the four conditions in Eq. (2.29) are automati-

cally met because a self-defective strategy satisfies π(q,q)=π(ALLD,q)=π(TFT,q)=

0. Thus, we only need to verify π(ATFT,q) ≤ 0 and π(ALLC,q) ≤ 0. Overall, we

obtain the following characterization of defectors,

qDD = 0

b qDC ≤ c (1−qCD)

(b−c) qDC ≤ c (1−qCC).

(2.31)

Again, these conditions define a 3-dimensional non-empty subspace of memory-1

185



strategies (Figure 2.8). The volume of this subspace increases if we either reduce b

or increase c.

Equalizers. For simultaneous games, it has been noted that the memory-1 strategies

contain a subset of so-called equalizers21,190. If player 2 adopts such a strategy q,

player 1’s payoff π(p,q) is a constant, independent of player 1’s strategy. Obviously,

if both players choose an equalizer strategy, the resulting strategy profile is a Nash

equilibrium. In that case, no player can get a different payoff – let alone a larger pay-

off – by unilaterally deviating.

In the following we aim to identify equalizers in the context of alternating games.

That is, we ask which strategies player 2 can use to make sure that player 1’s payoff

is independent of player 1’s strategy. As a minimum requirement, player 2’s strategy

q needs to enforce the same payoff upon all co-players with reactive and deterministic

strategies, such that

π(ALLD,q) = π(ATFT,q) = π(TFT,q) = π(ALLC,q). (2.32)

This yields three equations in the four unknown entries of q. By using Eqs. (2.28) to

solve π(ALLD,q)= π(TFT,q) for qCD and π(ALLC,q)= π(TFT,q) for qDC, we obtain

qCD =
b qCC − c (1+qDD)

b− c

qDC =
b qDD + c(1−qCC)

b− c .

(2.33)

Given these two relations hold, one can verify that the last relation π(ATFT,q) =

π(TFT,q) holds automatically. Conversely, suppose a memory-1 strategy q satisfies

these two conditions. Because these conditions imply Eq. (2.32) and because
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Figure 2.8: Defectors in the alternating prisoner’s dilemma. As we have done for partners, we
have also characterized all defectors among the memory-1 strategies for the alternating game.
a,b, We provide explicit conditions for the case without errors and the case with errors, see
Supplementary Note 2. With errors, there are two classes of defector strategies. First, there
is the atomic class of unconditional defection (ALLD). Second, there is a line segment that
connects a stochastic version of GRIM to the strategy EXT; the latter is a limiting version
of the previously described extortionate strategies97,190,226,227,250. c,d, For the evolutionary
simulations, we use the same parameters as in Figure 2.4.
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the payoffs of a reactive player p = (pC, pD) are monotonic in pC and in pD (due to

Lemma 2.4), it follows that any reactive strategy obtains the same payoff against q.

Moreover, because generic strategies can be replaced by reactive strategies (Proposi-

tion 2.1), it follows that any generic strategy obtains the same payoff against q. We

conclude that equalizers are exactly those strategies that satisfy Eq. (2.33). In partic-

ular, equalizers correspond to a 2-dimensional subspace of memory-1 strategies.

The following technical result allows us to show that the three above classes of part-

ners, defectors, and equalizers are in fact all generic Nash equilibria within the space

of memory-1 strategies.

Lemma 2.7. Consider a memory-1 strategy q = (qCC, qCD, qDC, qDD) that is a generic

Nash equilibrium, and let q̃=(q̃C, q̃D) denote its reactive marginalization with respect

to itself.

1. If q̃ is fully stochastic, then q is an equalizer.

2. If q̃ is semi-stochastic or deterministic, then q is either a partner or a defector.

We can summarize the previous results as follows.

Theorem 2.8 (Classification of generic Nash equilibria). A memory-1 strategy q =

(qCC, qCD, qDC, qDD) is a generic Nash equilibrium if and only if it is either a partner, a

defector, or an equalizer: that is, if and only if it meets the conditions (2.30), (2.31),

or (2.33).

Comparing Theorem 2.8 for the alternating game with the respective classification

of equilibrium outcomes in the simultaneous game4,96,221 yields the following two in-

sights:
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Figure 2.9: Defectors in the simultaneous game. a,b, The figure is analogous to Figure 2.8,
but for the case of the simultaneous game instead of the alternating game. For the simulta-
neous game with errors, there is no complete characterization of defector strategies as of yet.
However, it is known that ALLD is a Nash equilibrium for all parameter values, because it
simply reiterates the Nash equilibrium of the one-shot game. c,d, For the evolutionary simula-
tions, we use the same parameters as in Figure 2.4.
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1. The three classes that we have identified, partners, defectors, and equalizers,

also exist in the simultaneous game. In fact, even the respective equilibrium

conditions are identical: a memory-1 strategy q= (qCC, qCD, qDC, qDD) is a part-

ner, a defector, or an equalizer in the alternating game if and only if it is a a

partner, defector, or equalizer in the simultaneous game (assuming that the

game parameters b and c are the same).

2. However, the simultaneous game allows for one additional class of equilibrium

strategies, called self-alternators221. When two self-alternators interact, they

cooperate in turns: one player unilaterally cooperates in one round, and the

other player unilaterally cooperates in the next. To be a Nash equilibrium for

the simultaneous game, self-alternators need to have the form221

qCC ≤ 2c
b+c , qCD=0, qDC=1, qDD ≤ b−c

b+c . (2.34)

However, according to Theorem 2.8, strategies that satisfy the conditions in (2.34)

do not give rise to a Nash equilibrium in the alternating game.

The intuition is easy to convey with an example. To this end, let us consider

the memory-1 strategy q = (0, 0, 1, 1/3) which satisfies conditions (2.34) for

all games with b > 2c. In the simultaneous game, two players with strategy q

reliably learn to cooperate in turns irrespective of their first-round behavior.

This is illustrated by the following sample path (an asterisk indicates a decision

that is partly due to chance). In this path, players reliably alternate from the

fourth round onwards,
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Figure 2.10: Comparing the alternating and the simultaneous game across different error rates
and benefit values. We have run further simulations to explore the joint effect of the error
rate and the benefit of cooperation, for both the alternating game (a) and the simultaneous
game (b). In both cases, we observe high cooperation rates for high benefit values and suf-
ficiently small error rates. c, Here, we plot the difference in cooperation rates between the
simultaneous and the alternating game. This difference is small for small benefit values (where
defection evolves in both settings). It is also small for large benefits when the error rate is
small (for which nearly full cooperation evolves in both settings). In between, for intermediate
benefit values and intermediate error rates, the simultaneous game yields systematically more
cooperation than the alternating game. Baseline parameters are the same as in Figure 2.5.
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Player 1 C D D∗ C∗ D C D C D …

Player 2 C D D∗ D∗ C D C D C …

In the alternating game, the same first-round behavior gives rise to a more ir-

regular trajectory,

Player 1 C D D∗ C∗ D D∗ C D D∗ …

Player 2 C D D∗ C D C∗ D D∗ C∗ …

Here, there are always two consecutive instances of cooperation, which leads

both players to defect on their next turn (because qCC = qCD = 0). Once both

players have defected, it may take several turns for one player to re-start co-

operation (because qDD = 1/3). As a result, the limiting average payoff in the

alternating game is only (b−c)/3. If one of the players were to switch to ATFT,

the resulting payoff is π(ATFT,q) = (b− c)/2> (b− c)/3. Hence, q is unstable.

We conclude that strategies of the form (2.34) are no longer a Nash equilibrium

in the alternating game because they no longer induce a stable pattern of alter-

nating cooperation.

2.6.4 Alternating games with implementation errors

In the following, we explore how equilibrium behavior is affected by noise. To this

end, we assume the players’ actions are subject to implementation errors or trembling

hand errors,213. That is, each time a player wishes to cooperate, there is some prob-

ability ε that the player defects by mistake, with 0 < ε < 1/2. Conversely, each time

a player wishes to defect, she may cooperate with the same probability. Under this
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assumption, a player with strategy p employs an effective strategy pε, with

pε = ϕε(p) := (1−ε)p+ ε(1−p) = ε+ (1−2ε)p. (2.35)

This transformation maps memory-1 strategies p ∈ [0, 1]4 to noisy memory-1 strate-

gies pε ∈ [ε, 1−ε]4. It has two useful properties. First, it is bijective, with the inverse

function being defined by
(
ϕε(pε)

)−1
=

pε − ε

1−2ε
. (2.36)

Second, the transformation is monotonic: For any previous round’s outcome (a, ã) ∈

{C,D}2 and for any two memory-1 strategies p and q, we have paã < qaã if and only if

pεaã < qεaã. That is, if player 1’s nominal strategy is more cooperative than player 2’s,

then the same is true for the respective effective strategies. A few examples of effec-

tive strategies are

ALLDε = (ε, ε) ATFT ε = (ε, 1−ε) GRIM ε = (1−ε, ε, ε ε)

ALLC ε = (1−ε, 1−ε) TFT ε = (1−ε, ε) FBF ε = (1−ε, ε, 1−ε, 1−ε).

(2.37)

In particular, even if the nominal strategy is deterministic, the corresponding effective

strategy is fully stochastic. For an alternating game with errors between two memory-

1 strategies p and q we can define the resulting transition matrix, the invariant dis-

tribution, and the payoffs based on the respective quantities for the game without

errors, given by Eqs. (2.17) – (2.19). This yields

Mε
A(p,q) := MA(p

ε,qε), vε(p,q) := v(pε,qε), πε(p,q) := π(pε,qε). (2.38)
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Since ε>0, each entry of MA(pε,qε) is positive. Hence, the unique invariant distribu-

tion and the resulting payoffs are now well-defined irrespective of the players’ actions

in the first round.

In the following, we aim to characterize all equilibria among the memory-1 strategies

for the alternating game with errors. We follow the same approach as before. In anal-

ogy to Propositions 2.1 and 2.2, the following shows that games between a generic

player and a memory-1 player can be reduced to a game between a reactive player

and a memory-1 player.

Proposition 2.9 (Sufficiency of reactive strategies in games with errors). Consider an

alternating game with a positive error rate 0< ε< 1/2, and suppose the second player

uses the memory-1 strategy q.

1. Suppose the first player uses the memory-1 strategy p=(pCC, pCD, pDC, pDD) and

the resulting invariant distribution is given by vε(p,q) = (vεCC, vεCD, vεDC, vεDD).

Define the reactive marginalization of p with respect to q as the unique reac-

tive strategy p̃ = (p̃C, p̃D) for which

p̃C =
1

1−2ε

(
vεCC pεCC + vεDC pεDC

vεCC+vεDC
− ε

)

p̃D =
1

1−2ε

(
vεCD pεCD + vεDD pεDD

vεCD+vεDD
− ε

)
.

(2.39)

Then, the reactive marginalization satisfies vε(p̃,q)=vε(p,q).

2. Suppose the first player uses an arbitrary strategy such that pεa1,a2(t) ∈ [ε, 1−

ε] is the player’s conditional probability to cooperate at time t if the previous

outcome is (a, ã) ∈ {CC,CD,DC,DD}. Let v(t) =
(
vCC(t), vCD(t), vDC(t), vDD(t)

)

be the resulting probability distribution for the player’s actions at time t. We
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assume the following limiting averages to exist,

vaã := lim
T→∞

1
T

T∑

t=1
vaã(t) for all a ∈ {C,D}, ã ∈ {C,D}.

p̃εã := lim
T→∞

1
T

T∑

t=1

vCã(t) pεCã(t) + vDã(t) pεDã(t)
vCã + vDã

for all ã ∈ {C,D}.

(2.40)

We define the reactive marginalization p̃ = (p̃C, p̃D) of player 1’s strategy with

respect to q by

p̃C =
1

1−2ε
(p̃εC − ε) and p̃D =

1
1−2ε

(p̃εD − ε) . (2.41)

Then, this reactive marginalization satisfies vε(p̃,q) = v.

Both results follow in a straightforward manner from the respective results on alter-

nating games without errors, by applying Propositions 2.1 and 2.2 to the players’

effective strategies. In a similar way, we can also generalize Proposition 2.5. To this

end, we say a strategy is generic with respect to the opponent strategy and the error

rate if the respective limits in Eq. (2.40) exist. In particular, all strategies with finite

recall are generic. In addition, we say a strategy p is a generic best response to q if it

is generic, and if

πε(p,q) ≥ πε(p′,q) for all generic strategies p′. (2.42)

Then we can again show that one can always find a generic best response to a memory-

1 strategy among the deterministic reactive strategies.

Proposition 2.10 (Optimality of deterministic reactive strategies in games with er-
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rors). Let q be some given memory-1 strategy and let p ∈ [0, 1]2 be an arbitrary re-

active strategy. Then, there is a deterministic reactive strategy p′ ∈ {0, 1}2 for which

πε(p′,q) ≥ πε(p,q).

Similar to before, we say a memory-1 strategy q is a Nash equilibrium if πε(q,q) ≥

πε(q′,q) for any generic deviation strategy q′. Proposition 2.10 then again allows us

to identify memory-1 Nash equilibria more effectively. It suffices to compare the pay-

off of the strategy q against itself to the payoffs one could achieve with deterministic

reactive strategies. However, now the payoff expressions are more complex. Using

Eq. (2.38), we calculate the self-payoff as

πε(q,q) = (1−qεCC+qεDC)qεDD
(1−qεCC)(1−qεCD+qεDD)+ (1−qεCC+qεDC)qεDD

· (b−c). (2.43)

For the possible deviations towards deterministic reactive strategies, we obtain

πε(ALLD,q) =
εqεDC + (1−ε)qεDD

1− ε(qεCC−qεDC)− (1−ε) (qεCD−qεDD)
· b− ε · c

πε(ATFT,q) =
(1−ε)qεDC + εqεDD

1−ε(qεCC−qεDD)−(1−ε) (qεCD−qεDC)
· b

− 1−ε−ε(1−ε)qεCC−(1−ε)2qεCD+ε(1−ε)qεDC+ε2qεDD
1−ε(qεCC−qεDD)−(1−ε) (qεCD−qεDC)

· c

πε(TFT,q) =
εqεDC + (1−ε)qεDD

1−(1−ε)(qεCC−qεDD)−ε(qεCD−qεDC)
· b

− ε−ε(1−ε)qεCC−ε2qεCD+ε(1−ε)qεDC+(1−ε)2qεDD
1−(1−ε)(qεCC−qεDD)−ε(qεCD−qεDC)

· c

πε(ALLC,q) =
(1−ε)qεDC+εqεDD

1− (1−ε)(qεCC−qεDC)−ε(qεCD−qεDD)
· b− (1−ε) · c

(2.44)
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We define partners, defectors, and equalizers analogously to the case without errors.

We call a memory-1 strategy q self-cooperative if it yields the mutual cooperation

payoff against itself as errors become rare, ε→0 (in particular, it must satisfy qCC= 1).

Similarly, q is self-defective if it yields the self-defection payoff against itself in the

limit of rare errors (in particular, qDD = 0). Partners are again those Nash equilibria

that are self-cooperative, and defectors as those Nash equilibria that are self-defective.

As before, a strategy is an equalizer for a given error probability ε if any generic co-

player yields the same payoff against that strategy. The following then generalizes the

results of Theorems 2.6 and 2.8 to the case of alternating games with errors.

Theorem 2.11 (Classification of Nash equilibria in alternating games with errors).

Consider a memory-1 strategy q = (qCC, qCD, qDC, qDD) for an alternating game with

error probability 0< ε< 1
2
(
1− c

b
)
. Then, the following are equivalent.

1. The strategy q is a generic Nash equilibrium.

2. The strategy q satisfies

πε(q,q) ≥ max
(
πε(ALLD,q), πε(ATFT,q), πε(TFT,q), πε(ALLC,q)

)
.

(2.45)

3. The strategy q is either a partner, a defector, or an equalizer. It is a partner if

and only If
qCC = qDC = 1,

qCD ≤ 1− c
(1−2ε)b ,

qDD =
(1−2ε) (b+εc qCD)− c

(1−2ε) (b+εc) .

(2.46)
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It is a defector if and only if it is either ALLD or

qDD = qCD = 0,

qDC ≤ c
(1−2ε)b ,

qCC =
ε(1−2ε)c qDC + c
(1−2ε)(b+εc) .

(2.47)

It is an equalizer if and only if

qCD =
(1−2ε)(b qCC−c qDD)−c

(1−2ε) (b−c)

qDC =
(1−2ε)(b qDD−c qCC) + c

(1−2ε) (b−c) .

(2.48)

Several remarks are in order:

a Dimension of the Nash equilibrium classes. Errors lead to a discontinuous reduction

in the number of Nash equilibria. For example, for any arbitrarily small (but

positive) error probability the set of partners is now one-dimensional instead of

three-dimensional. The proof of Theorem 2.11 suggests there are two reasons

for this reduction.

First, in games without errors, pCC = 1 is sufficient to ensure that the reac-

tive marginalization of q with respect to itself satisfies q̃C = 1, see Eq. (2.22).

Game outcomes different from mutual cooperation are (almost) never visited,

and hence vDC = 0. For games with errors, this is no longer true. Independent
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of the players’ strategies, each game outcome occurs at least when both play-

ers choose the respective action by mistake, such that vaã ≥ ε2 for all (a, ã) ∈

{CC,CD,DC,DD}. To guarantee that the reactive marginalization still satisfies

q̃C=1, we therefore additionally need to require that qDC=1.

Second, in alternating games without errors, a partner q cannot be invaded by

the two boundary strategies ALLC and TFT. Instead, all three strategies yield

the same payoff b−c against q. In contrast, in games with errors, the payoffs of

the three strategies are generally different. Moreover, by Lemma 2.4 the payoff

πε(q,q) is either strictly in between πε(TFT,q) and πε(ALLC,q), or all three

payoffs are the same. For q to be a Nash equilibrium, we thus need to require

πε(TFT,q)=πε(q,q)=πε(ALLC,q). (2.49)

This equality is equivalent to the last equality in condition (2.46). Finally, the

upper bound on qCD ensures that neither a deviation to ALLD nor to ATFT is

profitable.

As a consequence of these observations, we conclude that many of the well-

known self-cooperative memory-1 strategies fail to be partners in alternating

games with errors. In particular, TFT, WSLS, GRIM and FBF are either no

longer self-cooperative, or they are no longer Nash equilibria. Similar considera-

tions also explain why the class of defectors is now one-dimensional.

b Evolutionary stability. While all partner strategies for the alternating game are

Nash equilibria by definition, we note that none of them are evolutionarily

stable in the sense of Maynard-Smith146. Instead, by (2.49), mutants who ei-
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ther adopt TFT or ALLC can invade through neutral drift – in fact, due to the

monotonicity property in Lemma 2.4, any mutant strategy q′ with qCC=qDC= 1

yields the same payoff against q as q does against itself.

Thus, as a corollary of Theorem 2.11, we conclude that in alternating games

with errors, there are no evolutionarily stable memory-1 strategies that sustain

cooperation. Note that this result is different from previous work suggesting

that no strategy in the simultaneous game is stable24,69,70,238. This previous

work considers games without errors. Only in that case does it show that for

each Nash equilibrium one can identify neutral mutant strategies that even-

tually lead out of that equilibrium. These arguments do not apply to games

with errors, where evolutionary stability is generally feasible23. For example,

for games with b > 2c, one can show that WSLS is evolutionarily stable in the

simultaneous game, provided the error probability is positive but sufficiently

small98,137.

c Existence of the Nash equilibrium classes and comparative statics. Partners do not

exist for all parameter values. Because qCD and qDD need to be values in the

unit interval, condition (2.46) implies that partners exist if and only if

ε <
1
2

(
1− c

b

)
. (2.50)

In particular, the conditions for partners to exist are easiest to satisfy if either

implementation errors are sufficiently rare, or if the benefit of cooperation is

large compared to its costs. The same condition (2.50) also determines whether

or not equalizer strategies exist.
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In contrast, defectors exist for all parameter values b> c and 0≤ε≤ 1/2, because

ALLD is always a Nash equilibrium. When condition (2.50) does not hold, mu-

tual defection is in fact the only behavior that can be sustained in equilibrium.

d Examples of partner strategies. Provided condition (2.50) holds, the set of partners

is given by the line segment connecting the two strategies

q′ =

(
1, 0, 1, (1−2ε)b−c

(1−2ε)(b+εc)

)
(2.51)

q′′ =

(
1, (1−2ε)b−c

(1−2ε)b , 1, (1−2ε)b−c
(1−2ε)b

)
(2.52)

In particular, we note that while qCD may be chosen to be zero, qDD always

needs to be strictly in between zero and one. The first example above, q′ can

be considered as a stochastic version of Firm-but-Fair, and hence we refer to it

as SFBF. Strategies resembling SFBF have been described previously. For ex-

ample, Nowak and Sigmund171 observe that the simulations in their Figure 3

converge to the strategy (1, 0, 1, 2/3). Using their parameters b = 3, c = 1 and

ε = 0.001, this is exactly what is predicted by expression (2.51). The second

example above, q′′ corresponds to the well-known Generous Tit-for-Tat strat-

egy156,169 (GTFT) which has been previously described for the simultaneous

game. According to Eqs. (2.51) and (2.52), GTFT is the only partner among

the reactive strategies. For reactive strategies, the simultaneous and the alter-

nating game coincide with respect to their dynamics171. In this light, the fact

that GTFT also makes an appearance in the alternating game is somewhat less

surprising.
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In the limit of rare errors, ε → 0, the above expressions simplify further. We

obtain

q′ =
(
1, 0, 1, 1− c

b

)
and q′′ =

(
1, 1− c

b , 1, 1− c
b

)
(2.53)

e Alternative specification of errors. Throughout this section we have assumed that

errors originate from players who misimplement their intended actions with a

constant probability ε. In this case, a player’s effective strategy qε is a linear

function of the player’s actual strategy q, as described by Eq. (2.35). However,

analogous results can be derived for more general error mappings. Our main

results only require that the effect of errors on a player’s strategy can be de-

scribed by a strictly monotonic and bijective transformation ϕε : [0, 1]4→ [ε, 1−ε]4

and that ALLD, ATFT, TFT, ALLC are mapped to the values in Eq. (2.37).

Under that more general assumption, condition (2.45) continues to character-

ize which memory-1 strategies q are equilibria. Only the exact description of

partners, defectors, and equalizers needs to be adapted correspondingly. In ad-

dition, one can also extend our results to cases where the error rate depends on

the previous outcome, or where it depends on the player’s intended action. In

this way, one could model cases in which a player who intends to cooperate is

more likely to make a mistake than a player who intends to defect.
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2.7 Supplementary Note 3: Extensions of the baseline model

The baseline model makes a number of simplifying assumptions: (i) the game is in-

finitely repeated; (ii) the players move in a strictly alternating fashion; (iii) the sim-

ulations only take into account memory-1 strategies; (iv) interactions take place in

a well-mixed population; and (v) mutations are global. In the following, we study

the impact of each of these assumptions in more detail. In each case, we explore how

the respective assumption affects emerging cooperation rates and the strategies that

evolve.

2.7.1 Finitely repeated games

Motivation. Our baseline model considers an infinitely repeated game with no dis-

counting of the future. There are two major reasons why the analysis of such games

is useful. First, from a mathematical perspective, infinitely repeated games are more

convenient to work with because their results tend to be independent of the players’

behavior in the early rounds of the game. This in turn allows researchers to consider

a simpler strategy space; the players’ first-round behavior no longer needs to be speci-

fied215. Second, such games often serve as a good approximation for games where the

number of rounds is large but finite172. In many cases, results for finitely repeated

games resemble the results of infinitely repeated games already for a moderate num-

ber of rounds209. To elaborate on the above two points, and to extend the results of

the baseline model, in the following we study a model in which players only engage in

finitely many interactions.

Game setup. We assume the game proceeds in rounds. In the simultaneous game, the
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two players move simultaneously in each round. In the alternating game, one player

moves first and the other player moves second. Here, the player who moves first is

determined randomly, but kept constant during the game. After each round, the game

continues for another round with a constant continuation probability δ. As a result,

the expected number of rounds follows a geometric distribution with mean 1/(1−δ).

Let va1,a2(t) denote the conditional probability that the two players choose actions a1

and a2 in round t, given that round t is reached. Then we can calculate the average

probability to observe the respective outcome over the course of the entire game as

va1,a2 := (1−δ)
∞∑

t=0
δt · va1,a2(t). (2.54)

In the limiting case that there is always another round, δ → 1, this weighted aver-

age converges to the time average (2.13) of the baseline model, provided the limit in

Eq. (2.13) exists. As before, we collect these four averages in a vector v=(vCC, vCD, vDC, vDD).

Based on this vector, we can compute the players’ payoffs in the same way as in the

baseline model, using Eq. (2.15).

Memory-1 strategies. To introduce memory-1 strategies for finitely repeated games,

we distinguish between the simultaneous and the alternating game. In the simultane-

ous game, memory-1 strategies take the form96

p = (p00; pCC, pCD, pDC, pDD). (2.55)

The first entry p00 is the player’s probability to cooperate in the initial round. The

other entries pij are the respective conditional cooperation probabilities in all subse-

quent rounds, as defined in the baseline model. In the alternating game, memory-1
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strategies take the form

p = (p00; p0C, p0D; pCC, pCD, pDC, pDD). (2.56)

Here, p00 is the probability to cooperate in the first round if the focal player moves

first. The next two probabilities p0C and p0D are the player’s probability to cooperate

in the first round if the player moves second. In that case, the focal player may condi-

tion its decision on the co-player’s first round behavior (C or D). The other entries pij

are again the conditional cooperation probabilities that the focal player applies in all

subsequent rounds. In particular, we note that while strategies in the baseline model

are 4-dimensional, they are now 5-dimensional in the case of simultaneous games, and

7-dimensional in the case of alternating games.

Explicit formulas for the players’ payoffs. When two memory-1 players interact, their

payoffs can be computed in a similar way as in the baseline model172. To this end, we

consider first the simultaneous game. Suppose the strategies of the two players are

p = (p00; pCC, pCD, pDC, pDD)

q = (q00; qCC, qCD, qDC, qDD),
(2.57)

respectively. Then the outcome distribution in the initial round is

v0 :=
(
vCC(0), vCD(0), vDC(0), vDD(0)

)

=
(
p00 ·q00, p00 ·(1−q00), (1−p00)·q00, (1−p00)·(1−q00)

)
.

(2.58)

Given this initial outcome distribution, we can iteratively compute all subsequent

distributions as

v(t) = v0 ·Mt
S. (2.59)
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Here, MS = MS(p,q) is the standard transition matrix for the simultaneous game,

as defined by Eq. (2.20). For the average distribution v according to Eq. (2.54), we

therefore obtain

v = (1−δ)
∞∑

t=0
δt · v(t) = (1−δ)v0

∞∑

t=0
(δMS)

t = (1−δ)v0(I− δMS)
−1. (2.60)

Here, I denotes the 4×4 identity matrix, and (I−δMS)−1 refers to the respective inverse

matrix. Based on v, we compute player’s payoffs using Eq. (2.15). That is,

π1 = b·(vCC+vDC)− c·(vCC+vCD)

π2 = b·(vCC+vCD)− c·(vCC+vDC).
(2.61)

The payoffs of the alternating game can be computed analogously. However, here we

have to distinguish two cases, depending on which of the two players moves first. Sup-

pose the two players’ strategies are given by

p = (p00; p0C, p0D; pCC, pCD, pDC, pDD)

q = (q00; q0C, q0D; qCC, qCD, qDC, qDD).
(2.62)

If it is player 1 who moves first, the initial outcome distribution is

v(1)
0 =

(
p00 ·q0C, p00 ·(1−q0C), (1−p00)·q0D, (1−p00)·(1−q0D)

)
. (2.63)

The respective average distribution over the entire game can then be calculated as

v(1) = (1−δ)v(1)
0
(
I− δMA(p,q)

)−1
, (2.64)
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where MA(p,q) is the standard transition matrix (2.17) of the alternating game. Sim-

ilarly, if it is player 2 who moves first, the initial distribution is

v(2)
0 =

(
q00 ·p0C, q00 ·(1−p0C), (1−q00)·p0D, (1−q00)·(1−p0D)

)
. (2.65)

The average distribution becomes

v(2) = (1−δ)v(2)
0
(
I− δMA(q,p)

)−1
. (2.66)

Because each of the two players is equally likely to move first, average payoffs are now

π1 = b·
(

1
2
(
v(1)CC+v(1)DC

)
+ 1

2
(
v(2)CC+v(2)CD

))
− c·
(

1
2
(
v(1)CC+v(1)CD

)
+ 1

2
(
v(2)CC+v(2)DC

))

π2 = b·
(

1
2
(
v(1)CC+v(1)CD

)
+ 1

2
(
v(2)CC+v(2)DC

))
− c·
(

1
2
(
v(1)CC+v(1)DC

)
+ 1

2
(
v(2)CC+v(2)CD

))
.

(2.67)

Evolutionary dynamics. Given the payoffs (2.61) and (2.67), we can explore the evolu-

tionary dynamics of the finitely repeated game with the same process we used for the

infinitely repeated game. That is, again we consider a finite and well-mixed popula-

tion in which players adopt new strategies by imitation and mutation, as described in

the main text.

Figure 2.6a,b shows the corresponding results for a continuation probability of

δ= 0.96, such that individuals interact on average for 25 rounds. The figure suggests

that the main evolutionary findings are in qualitative agreement with the findings

of the baseline model. First, and as in the baseline model, the simultaneous game is

slightly more conducive to the evolution of cooperation compared to the alternating

207



game (Figure 2.6a). Second, the self-cooperative strategies that evolve in the simul-

taneous game are markedly different from the self-cooperative strategies that evolve

in the alternating game (Figure 2.6b). In the simultaneous game, the average self-

cooperative strategy shares the main characteristics of win-stay lose-shift170. Play-

ers are most likely to cooperate after mutual cooperation or mutual defection. In the

alternating game, evolving strategies rather resemble a mixture of Generous Tit-for-

Tat and Stochastic Firm-but-Fair. Here, players are most likely to cooperate if the

co-player cooperated in the previous round. In addition, players exhibit a positive

probability to cooperate after both players defected. In either game, the payoff de-

rived in the first round only has a modest impact on the player’s overall fitness, given

the game length. As a result, the values of q00, q0C, q0D are close to 1/2, as one would

expect from traits that are almost neutral.

We explore the dynamics for other continuation probabilities in Figure 2.6c and

Figure 2.11. If the continuation probability exceeds some moderate threshold, δ ≈ 0.8

(which corresponds to games with five rounds in expectation), the qualitative results

are largely comparable to the results of the baseline model. Below this threshold, co-

operation is rare in both the simultaneous and the alternating game.

Discussion of the model. We note that by structuring the game into rounds, we im-

plicitly assume that the two players always make the same number of decisions in the

alternating game, independent of the realized length of the game. In particular, every

time the first player makes a decision, this player can be sure that the second player

will have an opportunity to reciprocate. We have made this assumption to make it

easier to compare the alternating game to the simultaneous game. By making sure

that both players make the same number of decisions, the continuation probability δ

has an analogous interpretation in both games. Alternatively, we could have assumed
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Figure 2.11: Self-cooperative strategies in the finitely repeated alternating game. We ex-
plore which strategies the players use to maintain cooperation in finitely repeated alternating
games. To this end, we consider two different error scenarios (a-c: ε = 0 and d-f: ε = 0.02),
and three expected game lengths (5, 10, or 100 rounds, corresponding to a continuation prob-
ability of δ = 0.8, δ = 0.9, and δ = 0.99). In each case, we run simulations and record those
strategies that have a self-cooperation rate of at least 80%. Here, we show the distribution of
these strategies. We observe the following regularities: (i) The players’ first round behavior
is only under selection when players interact for a few rounds. For δ > 0.9, the distribution
of the respective cooperation probabilities q00, q0C, q0D is comparably flat. (ii) The conditional
cooperation probabilities for all subsequent rounds generally resemble the evolving strategies
of the baseline model. Apart from the parameters varied explicitly, parameters are the same
as in Figure 2.4.
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that after each player’s decision, the game stops with a certain probability. That al-

ternative scenario is a special case of the model that we consider in the following.

2.7.2 Irregular alternation patterns

Motivation. For both the finitely and the infinitely repeated alternating game, we as-

sumed in the baseline model that players move in a strictly alternating fashion. That

is, every time player 1 makes a decision, it is player 2 who makes the next decision.

Conversely, every time, player 2 makes a decision, it is player 1 who makes the next

decision (provided there is another round). Instead, here we explore what happens

when the alternation pattern can be more irregular, such that players may have to

make a decision two times in a row before it’s the other player’s turn to move.

Game setup. To allow for such irregular patterns, we structure the alternating game

into a sequence of moves. The player who makes the initial move is determined ran-

domly, with each player having the same chance to move first. After a player has

made a move (by deciding whether or not to cooperate), there is a constant proba-

bility λ that the game continues. If the game continues, the player who makes the

next move is determined randomly. With probability s (the ‘switching probability’), it

is the other player who makes the next move. With the converse probability s̄ := 1− s,

it is the same player. In the special case s = 1, we recover a setup in which the two

players move in a strictly alternating fashion. If s = 1/2, the next move is assigned

completely randomly, independent of who moved before. Finally, if s = 0, there is no

alternation at all; the player who moves first is guaranteed to move in all subsequent

interactions. The payoffs of each player are defined analogously to the previous cases,

by averaging the received benefits and paid costs over all moves of the two players
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(for more detail, see further below).

Memory-1 strategies. Similar to the baseline model, we assume that players condition

their behavior only on the respective last move of either player (that is, they remem-

ber one move per player). In the case of irregular interaction patterns, such strategies

take the form of a nine-dimensional vector,

p = (p00; pC0, pD0; p0C, p0D; pCC, pCD, pDC, pDD). (2.68)

Here, p00 is the player’s cooperation probability if no player has moved before. The

next two entries, pC0 and pD0 are the player’s cooperation probability if only the focal

player has moved before (but not the co-player). The other two entries, p0C and p0D

are the player’s cooperation probability if only the co-player has moved before (but

not the focal player). And finally, the entries pij with i, j∈ {C,D} are the usual condi-

tional cooperation probabilities in all subsequent rounds.

Explicit formulas for the players’ payoffs. Again assuming that both players use memory-

1 strategies, we can compute their payoffs explicitly. To this end, suppose the strate-

gies of player 1 and player 2 are

p = (p00; pC0, pD0; p0C, p0D; pCC, pCD, pDC, pDD)

q = (q00; qC0, qD0; q0C, q0D; qCC, qCD, qDC, qDD)
(2.69)

respectively. We describe the dynamics among the two players by a Markov chain

with twelve possible states. The twelve states are (in this order):

(1,C, ∅), (1,D, ∅), (2, ∅,C), (2, ∅,D),

(1,C,C), (1,C,D), (1,D,C), (1,D,D), (2,C,C), (2,C,D), (2,D,C), (2,D,D).
(2.70)
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Here, the state (i, a1, a2) refers to the case that the previous move was made by player

i∈ {1, 2}, and that after this move, the last move by either player is a1, a2 ∈ {C,D, ∅};

the empty set symbol indicates that the respective player did not make a move yet.

We obtain the following distribution for the state of the Markov chain after the first

move:

v0 =

(
p00
2
,
p̄00
2
,
q00
2
,
q̄00
2
, 0, 0, 0, 0, 0, 0, 0, 0

)
. (2.71)

For this initial distribution, we have used the shortcut notation p̄00 :=1−p00 and q̄00 :=

1−q00. The transition matrix of the Markov chain is given by

MI(p,q) =





s̄pC0 s̄p̄C0 0 0 0 0 0 0 sq0C sq̄0C 0 0
s̄pD0 s̄p̄D0 0 0 0 0 0 0 0 0 sq0D sq̄0D
0 0 s̄qC0 s̄q̄C0 sp0C 0 sp̄0C 0 0 0 0 0
0 0 s̄qD0 s̄q̄D0 0 sp0D 0 sp̄0D 0 0 0 0
0 0 0 0 s̄pCC 0 s̄p̄CC 0 sqCC sq̄CC 0 0
0 0 0 0 0 s̄pCD 0 s̄p̄CD sqDC sq̄DC 0 0
0 0 0 0 s̄pDC 0 s̄p̄DC 0 0 0 sqCD sq̄CD
0 0 0 0 0 s̄pDD 0 s̄p̄DD 0 0 sqDD sq̄DD

0 0 0 0 spCC 0 sp̄CC 0 s̄qCC s̄q̄CC 0 0
0 0 0 0 0 spCD 0 sp̄CD s̄qDC s̄q̄DC 0 0
0 0 0 0 spDC 0 sp̄DC 0 0 0 s̄qCD s̄q̄CD
0 0 0 0 0 spDD 0 sp̄DD 0 0 s̄qDD s̄q̄DD





.

(2.72)

Based on the initial distribution v0 and on the transition matrix MI(p,q), we can

again compute the average distribution to observe any of the twelve states over the

course of the game as

v = (1−λ)v0
(
I− λMI(p,q)

)−1
. (2.73)
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The payoffs of the two players are then given by the formula

π1 = 2v · (−c, 0, b, 0,−c,−c, 0, 0, b, 0, b, 0)*

π2 = 2v · (b, 0,−c, 0, b, b, 0, 0,−c, 0,−c, 0)*.
(2.74)

Here, the factor of two is a normalization constant to take into account that in half

of the rounds it’s the focal player who moves, whereas in the other half it’s the co-

player. This constant ensures that two unconditional cooperators obtain an expected

payoff of (1−ε)(b−c), as one would expect.

Evolutionary dynamics. We explore the evolutionary dynamics of the game with ir-

regular alternation patterns using the same process we used for the baseline model.

In Figure 2.6d we compare two scenarios. In the first scenario, we assume that play-

ers strictly alternate (s = 1). In the other scenario, it is randomly determined which

player moves next (s = 1/2). In both cases, we consider the dynamics of a game that

is infinitely repeated (λ → 1), with a moderate error rate (ε = 0.02) and rare muta-

tions (μ→ 1). We observe that a strictly alternating game leads to higher cooperation

rates. To explore this result in more detail, we also recorded which self-cooperative

strategies the players are most likely to adopt over the course of time. Surprisingly,

both the strictly alternating and the randomly alternating game lead to overall simi-

lar strategies (Figure 2.6e). In each case, the average strategy reflects the basic pat-

terns of Stochastic Firm-but-Fair. However, in the strictly alternating case, these

self-cooperative strategies tend to be more robust. When players are strictly alter-

nating, it takes on average 1,600 mutants until a resident self-cooperative strategy is

successfully invaded. In contrast, for randomly alternating games, this number drops
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to 980 mutants. More generally, we observe that cooperation is most likely to evolve

the more likely players alternate in a regular manner (Figure 2.6f). In the extreme

case that players do not alternate at all (s = 0), cooperation does not evolve, as one

may expect.

In addition to these simulation results for infinitely repeated games, we have also

explored the dynamics when the number of rounds is finite (Figure 2.12). There we

show the outcome of two sets of simulations, one in the absence of errors (ε= 0) and

one with a moderate error rate (ε= 0.02). In both cases, we vary the expected num-

ber of rounds (between 1 and 100), and the switching probability (between 0 and 1).

These simulations confirm the previously observed regularities for alternating games:

Cooperation is most likely to evolve when (i) errors are rare, (ii) players interact for

many rounds, and (iii) players alternate in a regular fashion.

2.7.3 Memory-2 strategies

Motivation. For all evolutionary results so far, we have assumed that players only

take into account each player’s last action. While it has been argued that memory-1

strategies are good approximations for human behavior in laboratory experiments in

simultaneous games46, it is natural to ask which of our qualitative results depend on

the one-round memory assumption. Exploring the evolutionary dynamics among more

complex strategies is not straightforward because the number of available strategies

increases super-exponentially in the players’ memory capacity.

In the baseline case of an infinitely repeated game, there are 16 pure memory-1

strategies, 65,536 pure memory-2 strategies, and 1.84·1019 pure memory-3 strategies98.

In the following, we thus confine ourselves to pure memory-2 strategies. Those are all
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Figure 2.12: Cooperation in the finitely repeated game with irregular alternation patterns. Us-
ing the same basic setup as in Figure 2.6, we have explored how likely players are to cooperate
in finitely repeated alternating games with irregular alternation patterns. To this end, we
vary (i) the expected number of rounds, and (ii) the switching rate that measures how strictly
players are to alternate. In addition, we consider two scenarios, depending on whether or not
players commit implementation errors (a,b). As already indicated by Figure 2.6, players are
most likely to cooperate when there are no errors, when the number of rounds is large, and
when players move in a strictly alternating fashion.
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strategies that consider the last two moves of each player, and for which the corre-

sponding cooperation probability (in the absence of errors) is either zero or one.

Memory-2 strategies. For simplicity, we shall only consider the case of infinitely re-

peated games here (although the case of finitely games can be treated similarly, as

discussed in the previous sections). In infinitely repeated games, memory-2 strategies

can be represented by a 16-dimensional vector,

p=
(
p
CC
CC

, p
CC
CD

, p
CD
CC

, p
CD
CD

, p
CC
DC

, p
CC
DD

, p
CD
DC

, p
CD
DD

, p
DC
CC

, p
DC
CD

, p
DD
CC

, p
DD
CD

, p
DC
DC

, p
DC
DD

, p
DD
DC

, p
DD
DD

)
. (2.75)

The entries again reflect the player’s conditional cooperation probabilities. The upper

two indices of an entry represent the last two moves of the focal player (with the very

last move coming first and the second-to last move coming second). Analogously, the

lower two indices represent the last two moves of the co-player. The space of memory-

2 strategies trivially contains the set of all memory-1 strategies as a subset. For exam-

ple, within the space of memory-2 strategies, Tit-for-Tat takes the form

p = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0). (2.76)

Because each pure memory-2 strategy is a 16-dimensional vector, and each entry is

either zero or one, there are indeed 216=65, 536 such strategies in total.

Explicit formulas for the players’ payoffs. The payoffs of two memory-2 players can

again be computed with a Markov chain approach. To this end, suppose the strategies

of player 1 and player 2 are p and q, respectively, and each of these strategies is of

the form (2.75). Then, the respective Markov chain has sixteen possible states, sum-

marizing the last two moves of either player, CC
CC

,
CC
CD

,
CD
CC

, . . . ,
DD
DD

. Slightly abusing
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notation, here the upper indices refer to the past two actions of player 1 and the lower

two indices refer to the past two actions of player 2. Given this ordering of the states,

the transition matrix MA of the alternating game takes the following form (The tran-

sition matrix for the simultaneous game takes a similar form, and has been derived

elsewhere98):





pCC
CC

qCC
CC

0 0 0 pCC
CC

q̄CC
CC

0 0 0 p̄CC
CC

qCC
DC

0 0 0 p̄CC
CC

q̄CC
DC

0 0 0

pCC
CD

qCD
CC

0 0 0 pCC
CD

q̄CD
CC

0 0 0 p̄CC
CD

qCD
DC

0 0 0 p̄CC
CD

q̄CD
CC

0 0 0

pCD
CC

qCC
CC

0 0 0 pCD
CC

q̄CC
CC

0 0 0 p̄CD
CC

qCC
DC

0 0 0 p̄CD
CC

q̄CC
DC

0 0 0

pCD
CD

qCD
CC

0 0 0 pCD
CD

q̄CD
CC

0 0 0 p̄CD
CD

qCD
DC

0 0 0 p̄CD
CD

q̄CD
DC

0 0 0

0 pCC
DC

qDC
CC

0 0 0 pCC
DC

q̄DC
CC

0 0 0 p̄CC
DC

qDC
DC

0 0 0 p̄CC
DC

q̄DC
DC

0 0

0 pCC
DD

qDD
CC

0 0 0 pCC
DD

q̄DD
CC

0 0 0 p̄CC
DD

qDD
DC

0 0 0 p̄CC
DD

q̄DD
DC

0 0

0 pCD
DC

qDC
CC

0 0 0 pCD
DC

q̄DC
CC

0 0 0 p̄CD
DC

qDC
DC

0 0 0 p̄CD
DC

q̄DC
DC

0 0

0 pCD
DD

qDD
CC

0 0 0 pCD
DD

q̄DD
CC

0 0 0 p̄CD
DD

qDD
DC

0 0 0 p̄CD
DD

q̄DD
DC

0 0

0 0 pDC
CC

qCC
CC

0 0 0 pDC
CC

q̄CC
CC

0 0 0 p̄DC
CC

qCC
DC

0 0 0 p̄DC
CC

q̄CC
DC

0

0 0 pDC
CD

qCD
CD

0 0 0 pDC
CD

q̄CD
CD

0 0 0 p̄DC
CD

qCD
DD

0 0 0 p̄DC
CD

q̄CD
DD

0

0 0 pDD
CC

qCC
CD

0 0 0 pDD
CC

q̄CC
CD

0 0 0 p̄DD
CC

qCC
DD

0 0 0 p̄DD
CC

q̄CC
DD

0

0 0 pDD
CD

qCD
CD

0 0 0 pDD
CD

q̄CD
CD

0 0 0 p̄DD
CD

qCD
DD

0 0 0 p̄DD
CD

q̄CD
DD

0

0 0 0 pDC
DC

qDC
CD

0 0 0 pDC
DC

q̄DC
CD

0 0 0 p̄DC
DC

qDC
DD

0 0 0 p̄DC
DC

q̄DC
DD

0 0 0 pDC
DD

qDD
CD

0 0 0 pDC
DD

q̄DD
CD

0 0 0 p̄DC
DD

qDD
DD

0 0 0 p̄DC
DD

q̄DD
DD

0 0 0 pDD
DC

qDC
CD

0 0 0 pDD
DC

q̄DC
CD

0 0 0 p̄DD
DC

qDC
DD

0 0 0 p̄DD
DC

q̄DC
DD

0 0 0 pDD
DD

qDD
CD

0 0 0 pDD
DD

q̄DD
CD

0 0 0 p̄DD
DD

qDD
DD

0 0 0 p̄DD
DD

q̄DD
DD





.

(2.77)

Given the transition matrix, we compute the invariant distribution of the respective

Markov chain by solving v = vMA. This invariant distribution is now a 16-dimensional
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vector,

v=
(
v
CC
CC

, v
CC
CD

, v
CD
CC

, v
CD
CD

, v
CC
DC

, v
CC
DD

, v
CD
DC

, v
CD
DD

, v
DC
CC

, v
DC
CD

, v
DD
CC

, v
DD
CD

, v
DC
DC

, v
DC
DD

, v
DD
DC

, v
DD
DD

)
. (2.78)

Using this invariant distribution, we calculate how often each player cooperates on

average. To this end, we sum up over all outcomes in which the player cooperates in

the last round,
ρ1 = v

CC
CC

+v
CC
CD

+v
CD
CC

+v
CD
CD

+v
CC
DC

+v
CC
DD

+v
CD
DC

+v
CD
DD

,

ρ2 = v
CC
CC

+v
CC
CD

+v
CD
CC

+v
CD
CD

+v
DC
CC

+v
DC
CD

+v
DD
CC

+v
DD
CD

.
(2.79)

Given these average cooperation rates, the players’ payoffs are

π1 = bρ2 − cρ1 and π2 = bρ1 − cρ2. (2.80)

Stability of pure memory-2 strategies. In Hilbe et al98, the authors introduce an al-

gorithm to describe the Nash equilibria of the simultaneous game among all pure

memory-2 strategies. In addition, this algorithm outputs the range for the benefit-

to-cost ratio b/c for which the respective strategy is an equilibrium. In the following,

we briefly recapitulate that algorithm and apply it to the alternating game.

To test whether a given pure strategy p is stable, we first compute the average

probability ρ with which the strategy cooperates against itself, using Eq. (2.79). In

particular, the payoff of two players who both use strategy p is π = bρ− cρ. Now, if

one player instead switches to some other pure strategy q, the payoff of the deviating

player is π̃q = bρ̃p−cρ̃q. Here, ρ̃p is the average cooperation probability of the p-player,
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and ρ̃q is the cooperation probability of the q-player. For (p,p) to be a Nash equilib-

rium, it needs to be the case that π ≥ π̃q. This condition simplifies to

b · xp,q ≥ c · yq,p, (2.81)

with xp,q := ρ− ρ̃p and yq,p := ρ− ρ̃q. Depending on xp,q and yq,p, there are four

possible cases.

1. If xp,q > 0 and yq,p > 0, condition (2.81) is satisfied if and only if b/c ≥

yq,p/xp,q.

2. If xp,q < 0 and yq,p ≤ 0, condition (2.81) is satisfied if and only if b/c ≤

yq,p/xp,q.

3. If xp,q≤0 and yq,p>0, condition (2.81) is never satisfied.

4. If xp,q≥0 and yq,p≤0, condition (2.81) is always satisfied.

Based on these considerations, we define the following three subsets of memory-2

strategies with respect to the focal strategy p,

Q1(p) =
{
q
∣∣ xp,q>0 and yq,p>0

}
,

Q2(p) =
{
q
∣∣ xp,q<0 and yq,p≤0

}
,

Q3(p) =
{
q
∣∣ xp,q≤0 and yq,p>0

}
.

(2.82)

Taking into account the four cases described above, the first set Q1(p) contains all

memory-2 strategies against which p is only stable if b/c is sufficiently large. The sec-

ond set Q2(p) contains all memory-2 strategies against which p is only stable if b/c is

sufficiently small. The last set contains the strategies against which p is never stable,

219



for no b/c. In particular, we can use these sets to define lower und upper bounds for

the benefit-to-cost ratio for p to be a Nash equilibrium,

(b/c)LB = max
{
yq,p/xp,q

∣∣ q∈Q1(p)
}

and (b/c)UB = min
{
yq,p/xp,q

∣∣ q∈Q2(p)
}
.

(2.83)

Using these thresholds, it follows that p can only be a Nash equilibrium if

(b/c)LB ≤ b/c ≤ (b/c)UB and Q3(p) = ∅. (2.84)

For a given strategy p, these conditions can be checked by computing xp,q and yq,p

for all 216 pure memory-2 strategies q. In Figure 2.13a, we illustrate the result of this

algorithm for both the simultaneous game and the alternating game. For that fig-

ure, we call a Nash equilibrium locally robust if it is an equilibrium for a substantial

portion of the parameter space; specifically, we require (b/c)UB − (b/c)LB > 0.2. The

figure then displays all locally robust Nash equilibria for b/c≤ 5. We find that in the

simultaneous game, there are 34 such equilibria. Out of those, there are several equi-

libria that yield very little cooperation (colored in red). These equilibrium strategies

include, for example, ALLD. On the other hand, for b/c > 3/2, there are also several

equilibria that yield almost full cooperation. These strategies display so-called all-or-

none behavior98,185. Players with these AONk strategies tend to cooperate if in each of

the past k rounds, either both players cooperated or no one did.

For the alternating game, we find that the only locally robust Nash equilibrium

among the pure memory-2 strategies is ALLD. There are two additional strategies

that are Nash equilibria without being locally robust. These are:
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Figure 2.13: Stability and evolutionary dynamics of pure memory-2 strategies. We have also
run simulations for (infinitely repeated) simultaneous and alternating games when players
have access to all 65,536 memory-2 strategies. These strategies are 16-dimensional vectors
that take each player’s last two actions into account. a, In a first step, we have computed
which of these strategies are evolutionarily stable for an error rate of ε = 0.02. Here, we dis-
play the respective strategies (encoded by the 16 integers on the right hand side), the range
of b/c values for which these strategies are stable (indicated by the length of the lines), and
the self-cooperation rates of these strategies (indicated by the color of the respective line).
In the simultaneous game, there are many evolutionarily stable strategies, including strate-
gies that yield almost full cooperation. In contrast, in the alternating game, ALLD is the only
strategy that is evolutionarily stable for a positive range of b/c values. b,c Although only the
simultaneous game allows for evolutionarily stable cooperation, simulations suggest that alter-
nating games yield similar average cooperation rates. d, In a next step, have recorded which
strategies the players use to cooperate among themselves (for this simulation we again call a
strategy self-cooperative if it yields a cooperation rate of at least 80% against itself). In the
simultaneous game, the self-cooperative strategies resemble the previously reported all-or-none
strategies98. Here, the two players are most likely to cooperate if they both cooperated in the
last two rounds, if none of them cooperated in the last two rounds, or if they both cooperated
in the last round but defected in the second-to-last round. In the alternating game, the play-
ers’ conditional cooperation probabilities seem more irregular. e, We have also computed how
robust self-cooperative strategies are, by recording how many mutant strategies it takes on
average to successfully invade into a resident population of self-cooperators. As expected from
our evolutionary stability analysis, self-cooperative strategies are more robust in simultaneous
games. For details, see Supplementary Note 3.
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p1 = (0, 0, 0, 0, 1 , 0, 1 , 0, 1, 0, 0, 1, 0, 1, 0, 1)

p2 = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0)
(2.85)

Both of these strategies are only stable for a single value of b/c. For the given error

rate of ε = 0.02, this value is b/c = 4.1464 for the first strategy and b/c = 1.04166 for

the second. Moreover, none of the two strategies is self-cooperative. The cooperation

rate of the first strategy against itself is 64.9%; the self-cooperation rate of the second

strategy is 50.0%.

These results show that there is no Nash equilibrium among the pure memory-2

strategies that can sustain full cooperation in the alternating game. Since any evolu-

tionarily stable strategy needs to be a pure strategy, we conclude that evolutionarily

stable cooperation in the alternating game is infeasible (as in the case of the memory-

1 strategies).

Evolutionary dynamics. In addition to these static results, we have also explored the

evolutionary dynamics among pure memory-2 strategies with simulations. For these

simulations we consider the case of an infinitely repeated game with a positive error

rate (ε=0.02) in the limit of rare mutations. Figure 2.13b shows the evolving average

cooperation rate for both the simultaneous and the alternating game (averaged over

100 independent simulation runs for b= 3). Although only the simultaneous game has

fully cooperative Nash equilibria, the two scenarios lead to largely comparable overall

cooperation rates. We obtain similar results for other benefit values (Figure 2.13c).

To explore this result in more detail, Figure 2.13d analyzes the players’ average

cooperation probabilities when players adopt a self-cooperative strategy. In the si-

multaneous game, the player’s average cooperation probabilities resemble the typi-

cal behavior of AON2 strategies: players have a high cooperation probability if either
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(i) both players mutually cooperated for two rounds, (ii) if both players mutually de-

fected for two rounds, or (iii) if both players cooperated in the last round but defected

in the second-to-last round. In all other cases, the conditional cooperation probabil-

ity is below 50%. In contrast, in the alternating game, players seem to be prepared to

cooperate as long as the co-player did not defect more often than the focal player did.

However, Figure 2.13e shows that in line with the equilibrium analysis, the self-

cooperative strategies in the simultaneous game tend to be more robust. For this

panel, we have recorded for each self-cooperative strategy adopted by the resident

population how many mutant strategies it takes on average until the first mutant

reaches fixation. We find that in the simultaneous game, it takes on average almost

3,000 mutant strategies to invade a self-cooperative resident. In the alternating game,

this number is considerably lower; on average it takes less than 800 random mutant

strategies until the resident strategy is successfully invaded. Overall, these results sug-

gest that cooperation in the simultaneous game is generally more robust. However,

also in the alternating game, individuals adopt self-cooperative strategies for a sub-

stantial amount of time.

2.7.4 Games in spatial populations

Motivation. The simulation results for the baseline model and the previous model

extensions are based on the assumption that the population is well-mixed. This as-

sumption has two consequences. First, when playing games, all members of the pop-

ulation are equally likely to interact with everyone else. Second, for the evolutionary

updating, all population members are equally likely to act as a role model for any

given focal player. The assumption of well-mixed populations has a long tradition
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in evolutionary game theory (see, for instance, the text books in Refs.167,215). How-

ever, there is also a rich literature asking how strategies spread in structured popu-

lations83,115,168,184. In the following, we thus explore the strategies that evolve when

both interactions and imitation events are local.

To explore the dynamics of spatial games, we closely follow the approach of Brauchli

et al31. They study the simultaneous game on a square lattice with periodic bound-

ary conditions. The set of available strategies consists of all (stochastic) memory-1

strategies. With extensive computer simulations, the study shows that spatial games

are generally more conducive to the evolution of cooperation. Moreover, evolutionary

trajectories are less chaotic, and more likely to result in eventual behavior that is con-

sistent with the strategy Win-Stay Lose-Shift. In the following, we use their setup to

(i) repeat their simulations for the simultaneous game, and (ii) extend these simula-

tions to the case of alternating games.

Model setup. For our exploration of games in structured populations, we consider a

population with 2,500 individuals placed on a 50×50 square lattice. Individuals use

memory-1 strategies to engage in a repeated game with each of their eight immediate

neighbors (we use a Moore neighborhood with periodic boundary conditions). We

consider two independent scenarios. These scenarios differ in whether the game being

played is the simultaneous game or the alternating game. In both cases we use the

baseline versions of these games (in which there is no discounting of the future). A

player’s payoff at any point in time is defined as the player’s average payoff against

its eight neighbors (taking the sum of the eight pairwise payoffs would yield the same

result).

Initially, we assume that all population members adopt the strategy ALLD. In each

generation of the simulation, all population members update their strategies. With
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probability 1−μ, an individual who is to update its strategy adopts the strategy of

the neighbor with the highest payoff. With the converse probability μ, the individ-

ual adopts a random memory-1 strategy, by drawing four numbers (pCC, pCD, pDC, pDD)

from the hypercube [0, 1]4 uniformly at random. This elementary process is then re-

peated for 20, 000 generations. For each generation, we record the strategy that is

adopted by each individual, and the average cooperation rate across all interactions

taking place in the population.

This overall setup agrees with the setup considered by Brauchli et al31, with a

few minor exceptions. First, we use a different initial population, ALLD, to bet-

ter visualize the emergence of cooperation in a population of defectors. In contrast,

Brauchli et al31 assume that all players initially use the perfectly random strategy

p= (0.5, 0.5, 0.5, 0.5). Second, because we are also interested in the outcome of alter-

nating game, we use one-shot payoffs based on the infinitely repeated donation game,

as defined by Eq. (2.19). Brauchli et al31 instead use the payoff values of Axelrod9,

and they consider games that last on average between 100 and 200 rounds. Despite

these differences, our simulation results for the simultaneous game are comparable to

theirs (as described in more detail below).

Evolutionary dynamics. For our evolutionary simulations, we used parameters that

are comparably hostile to cooperation: the benefit of cooperation is smaller than in

previous simulations (now b= 2 instead of b= 3), and errors occur at an appreciable

rate, ε = 0.02. Figure 2.6g shows the resulting cooperation dynamics (averaged over

50 independent simulations). Despite the hostile conditions, we observe that spatial

games lead to predominantly cooperative populations rather quickly. When we com-

pare the simultaneous game to the alternating game, we observe that the simultane-

ous game leads to more (and to more robust) cooperation. To explore these results in
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more detail, Figure 2.6i shows snapshots of the population at different points in time.

In the simultaneous game, we observe that populations almost always converge to a

largely homogeneous configuration of cooperative players. In contrast, in the alter-

nating game, different simulation runs can exhibit very different behaviors. In some

simulations, we observe a similar dynamics towards almost uniform cooperation as in

the simultaneous game. Other simulation runs, however, result in stable mixtures of

cooperating and defecting players (this latter case is displayed in the bottom panel of

Figure 2.6(h)).

In a next step, we explored which stratetgies the players use to maintain cooper-

ation in the two scenarios. To this end, we recorded all used strategies that yield a

cooperation rate of at least 80% against themselves; then we computed the respective

average cooperation probabilities across all these strategies (Figure 2.6(i)). For the si-

multaneous game, this average strategy exhibits the characteristics of Win-Stay Lose-

Shift (as already reported by Brauchli et al31). Players are most likely to cooperate

after mutual cooperation and mutual defection; after all other outcomes, they tend to

defect. For the alternating game, the average strategy reflects some of the character-

istics of Stochastic Firm-but-Fair. Here again, players are most likely to cooperate if

the opponent’s last move was to cooperate.

Overall, our results are in line with the main conclusions of the baseline model:

Cooperation in alternating games is slightly less robust, and it requires different kinds

of strategies. At the same time, the simulations also highlight the intriguing spatial

patterns that can arise in structured populations.
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2.7.5 The effect of local mutations

Motivation. For our simulations so far, we assumed that when a mutation occurs, the

player’s new strategy can be arbitrarily different from the player’s present strategy. In

that case we speak of ‘global mutations’. The assumption of global mutations is fairly

common in the evolutionary game theory literature84,95,170,221. However, there is also

important work on the effects of local mutations105,222. When mutations are local,

they only lead to a slight modification of the players’ strategies. Which of the two

mutation schemes is more relevant depends on the type of evolution considered. Bio-

logical evolution is perhaps better described by local mutations, whereas for cultural

processes global mutations may be more reasonable.

Compared to global mutations, local mutations can affect the dynamics in three ways:

1. It can introduce additional (local) equilibria. The corresponding strategies are

robust with respect to local mutants, although they can be invaded by strate-

gies further away in the strategy space;

2. It affects how likely any given equilibrium is reached;

3. It affects the robustness of any given equilibrium: When mutations have a suf-

ficiently short range, any mutant strategy has approximately the same payoff

as the resident strategy (since payoffs are continuous in the players’ strategies).

As a result, even a strategy that is evolutionarily stable can be invaded by a

strategy that is sufficiently close-by with an approximate probability of 1/N

(the neutral fixation probability)245. As a result, the concept of evolutionary

stability becomes overall less relevant to describe the stochastic evolutionary

dynamics in finite populations with local mutations.
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To explore these effects in the context of alternating games, we have implemented

additional simulations.

Model setup. We use the same basic framework that we used to describe the evolu-

tionary dynamics of the baseline model. However, this time, when a player with strat-

egy p undergoes a mutation, the new strategy is uniformly chosen among all memory-

1 strategies p′ that satisfy

∣∣p′ij−pij
∣∣ ≤ m, for all i, j ∈ {C,D}. (2.86)

We refer to the parameter m as the mutation range; it describes how far apart the

mutant strategy can be from the parent strategy. For m ≥ 1, we recover the case of

global mutations. For smaller m, mutations are restricted to generate strategies in a

local neighborhood of the parent strategy.

Evolutionary dynamics. In Figure 2.14a,b, we compare the results for global muta-

tions with the corresponding results for local mutations (using m= 0.05). We observe

that for both the simultaneous and the alternating game, overall cooperation rates un-

der local mutations tend to be lower on average. However, the magnitude of the effect

differs: While local mutations strongly reduce cooperation in the simultaneous game,

it has a much smaller negative effect on the alternating game.

To analyze this effect in more detail, we again compute an average over all self-

cooperative strategies used by the players (Figure 2.14c,d). The resulting average

strategies resemble Win-Stay Lose-Shift (in the simultaneous game) and Stochastic

Firm-but-Fair (in the alternating game), largely independent of whether mutations

are local or global. However, local mutations have a substantial effect on the robust-

ness of these self-cooperative strategies. For local mutations, the number of mutants
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it takes to invade a resident self-cooperative strategy is of the order of N (which is

100 in these simulations), as expected. In contrast, under global mutations, resident

strategies typically resist ∼ 6, 300 mutant strategies in the simultaneous game, and

∼1, 600 mutant strategies in the alternating game.

In Figure 2.14e,f, we systematically explore the effect of different mutation ranges

between m = 0.05 (local mutations) and m = 0.95 (almost global mutations). The

alternating game yields slightly more cooperation than the simultaneous game when

mutations are local. However, once the mutation range exceeds m ≈ 0.4, it is the

simultaneous game that is more conducive to cooperation.

229



S
im

u
lta

n
e

o
u

s 
g

a
m

e
A

lte
rn

a
tin

g
 g

a
m

e

a

b

Evolutionary dynamics
c

Evolving self-cooperative strategies

C
o

o
p

e
ra

tio
n

p
ro

b
a

b
ili

ty

d

C
o

o
p

e
ra

tio
n

p
ro

b
a

b
ili

ty

e
Impact of

mutation range

f

0.0

0.5

1.0

C
o

o
p

e
ra

tio
n

 r
a

te global mutations

local mutations

0 2 4 6 8 10

Time 105

0.0

0.5

1.0

C
o

o
p

e
ra

tio
n

 r
a

te

global mutations

local mutations

0

1

0

1

0

1

0

1

After
CC

After
CD

After
DC

After
DD

0

4000

8000

M
u

ta
n

ts
 r

e
si

st
e

d

0

4000

8000

M
u

ta
n

ts
 r

e
si

st
e

d

global local
mutations

0.0

0.5

1.0

C
o

o
p

e
ra

tio
n

 r
a

te

local
mutations

global
mutations

0.0 0.2 0.4 0.6 0.8 1.0

Mutation range

0.0

0.5

1.0

C
o

o
p

e
ra

tio
n

 r
a

te

local
mutations

global
mutations

Figure 2.14: Evolutionary dynamics under local mutations. The previous simulations as-
sume that mutations are global: mutant strategies can be arbitrarily far away from the res-
ident strategy. Here we compare this scenario with the case of local mutations, where mutant
strategies are required to be in a small neighborhood of the resident strategy. We measure
the size of this neighborhood by the mutation range m. The mutation range reflects by how
much the mutant’s conditional cooperation probabilities are allowed to differ from the resident
strategy. Unless noted otherwise, we use m= 0.05. a,b, In both the simultaneous and the al-
ternating game, local mutations lead to less cooperation. However, the effect is more notable
in the simultaneous game. c,d, Local mutations do not affect which strategies the players use
on average to maintain cooperation. However, they affect how robust these strategies are. Un-
der local mutations, all mutants have approximately the same fitness as the resident. As a
result, the evolutionary competition is almost neutral; on average, it thus takes an order of N
mutants to invade any given resident population (here, the population size is N = 100). e,f,
We have repeated these simulations for different mutation ranges. The mutation range has a
strong effect on cooperation in the simultaneous game (where evolutionarily stable cooperation
is possible). It has a comparably weak effect in the alternating game (in which no evolutionar-
ily stable strategy exists that leads to full cooperation).
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Figure 2.15: A characterization of partners among the reactive strategies. Here, we describe
the set of partner strategies within the class of reactive strategies. Reactive strategies are a
subset of memory-1 strategies. They consist of two conditional cooperation probabilities, qC
and qD. The two probabilities describe how a player responds to a co-player’s cooperation
and defection, respectively. a,b, For reactive strategies, the alternating and the simultaneous
game lead to the same payoffs171. As a result, also the partner strategies coincide in each
case. c,d, With errors, GTFT is the only partner strategy. It can be neutrally invaded by
ALLC, and hence it is not evolutionarily stable.
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2.8 Supplementary Note 4: Proofs of the analytical results

Proof of Proposition 2.1. Let v(p,q) be an invariant distribution of the game be-

tween strategies p and q. Then v(p,q) is a solution of the equation v = vMA(p,q),

with MA(p,q) being the transition matrix of the game as defined by Eq. (2.17). More

explicitly, v(p,q) solves the following system of linear equations,

vCC = vCC pCC qCC + vCD pCD qDC + vDC pDC qCC + vDD pDD qDC

vCD = vCC pCC (1−qCC) + vCD pCD (1−qDC) + vDC pDC (1−qCC) + vDD pDD (1−qDD)

vDC = vCC (1−pCC) qCD + vCD (1−pCD) qDD + vDC (1−pDC) qCD + vDD (1−pDD) qDD

vDD = vCC (1−pCC) (1−qCD) + vCD (1−pCD) (1−qDD) + vDC (1−pDC) (1−qCD) + vDD (1−pDD) (1−qDD).

(2.87)

By simplifying the right hand’s side, we can write Eq. (2.87) as

vCC = (vCC pCC + vDC pDC) qCC + (vCD pCD + vDD pDD) qDC

vCD = (vCC pCC + vDC pDC) (1−qCC) + (vCD pCD + vDD pDD) (1−qDC)

vDC =
(
vCC (1−pCC) + vDC (1−pDC)

)
qCD +

(
vCD (1−pCD) + vDD (1−pDD)

)
qDD

vDD =
(
vCC (1−pCC) + vDC (1−pDC)

)
(1−qCD) +

(
vCD (1−pCD) + vDD (1−pDD)

)
(1−qDD).

(2.88)

Now by using assumption (2.21)

(vCC+vDC) p̃C = vCC pCC + vDC pDC

(vCD+vDD) p̃D = vCD pCD + vDD pDD,
(2.89)

and its equivalent formulation

(vCC+vDC) (1−p̃C) = vCC (1−pCC) + vDC (1−pDC)

(vCD+vDD) (1−p̃D) = vCD (1−pCD) + vDD (1−pDD),
(2.90)
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we can write Eq. (2.88) as

vCC = (vCC+vDC) p̃C qCC + (vCD+vDD) p̃D qDC

vCD = (vCC+vDC) p̃C (1−qCC) + (vCD+vDD) p̃D (1−qDC)

vDC = (vCC+vDC) (1−p̃C) qCD + (vCD+vDD) (1−p̃D) qDD

vDD = (vCC+vDC) (1−p̃C) (1−qCD) + (vCD+vDD) (1−p̃D) (1−qDD).

(2.91)

This equation can be rewritten as v = vMA(p̃,q), where MA(p̃,q) is now the transi-

tion matrix of the game between p̃=(p̃C, p̃D) and q. If v solves v=vMA(p,q), it thus

also solves v=vMA(p̃,q).

Proof of Proposition 2.2. Consider an alternating game in which both players’ strate-

gies are fixed and player 2 adopts a memory-1 strategy q. Let va1,a2(t) denote the

probability that the players choose the actions (a1, a2) ∈ {CC,CD,DC,DD} at time t

in the resulting game. By assumption, the following limiting averages are well-defined,

vCC= lim
T→∞

1
T

T∑

t=1
vCC(t), vCD= lim

T→∞

1
T

T∑

t=1
vCD(t), vDC= lim

T→∞

1
T

T∑

t=1
vDC(t), vDD= lim

T→∞

1
T

T∑

t=1
vDD(t).

(2.92)

We write these four limits as a vector v = (vCC, vCD, vDC, vDD). Moreover, let pa1,a2(t)

denote the conditional probability that player 1 cooperates at time t+ 1, given the

history of the game is such that the players’ actions at time t are (a1, a2). Again, by

assumption we can define a reactive strategy p̃=(p̃C, p̃D) as an implicit solution of two
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equations

(vCC+vDC) p̃C = lim
T→∞

1
T

T∑

t=1
vCC(t) pCC(t) + vDC(t) pDC(t)

(vCD+vDD) p̃D = lim
T→∞

1
T

T∑

t=1
vCD(t) pCD(t) + vDD(t) pDD(t).

(2.93)

We need to show that the vector v satisfies the linear system v = vMA(p̃,q), where

MA(p̃,q) is the transition matrix defined by Eq. (2.17). We show this for the first

equation of the system; all other equations are verified analogously. By the definition

of va1,a2(t) and pa1,a2(t), we can write vCC(t+1) as follows,

vCC(t+1) = vCC(t) pCC(t) qCC + vCD(t) pCD(t) qDC + vDC(t) pDC(t) qCC + vDD(t) pDD(t) qDC

(2.94)

By summing up this equation for the first T time steps and collecting terms on the

right hand side, we obtain
T∑

t=1
vCC(t+1)=

( T∑

t=1
vCC(t) pCC(t) + vDC(t) pDC(t)

)
qCC+

( T∑

t=1
vCD(t) pCD(t) + vDD(t) pDD(t)

)
qDC

(2.95)

Dividing both sides by T, taking the limit T → ∞, and replacing the limits by the

respective expressions in Eqs. (2.92) and (2.93), we obtain

vCC = (vCC+vDC) p̃C qCC + (vCD+vDD) p̃D qDC. (2.96)

This is exactly the first equation of the linear system v = vMA(p̃,q).

Proof of Lemma 2.4. The payoff equation (2.26) follows immediately from the formula
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in Eq. (2.19) when using the strategies p and q as input. To show the monotonicity

property in pC, we keep q and pD fixed and consider the function pC 3→ fC(pC) :=

π(p,q). By Eq. (2.26), this function can be written as

fC(pC) =
a1 + a2 pC
a3 + a4 pC

, (2.97)

where a1, a2, a3, a4 are constants that are independent of pC. Calculating the derivative

yields
∂fC
∂pC

=
a2a3 − a1a4
(a3 + a4 pC)2

. (2.98)

In particular, the sign of the derivative is independent of pC. That is, fC(pC) = π(p,q)

is either strictly increasing (if a2a3 > a1a4), strictly decreasing (if a2a3 < a1a4), or

constant in pC (if a2a3 = a1a4). A similar argument shows that also the map pD 3→

fD(pD) := π(p,q) is monotonic in pD.

Proof of Proposition 2.5. The proof is by iterated application of Lemma 2.4. Let q

and p be arbitrary but fixed. We iteratively define p0 = (p0C, p0D) := (pC, pD),

p1 =






(1, p0D) if π
(
(1, p0D),q

)
≥ π(p,q)

(0, p0D) otherwise,
(2.99)

and

p2 =






(p1C, 1) if π
(
(p1C, 1),q

)
≥ π(p,q)

(p1C, 0) otherwise
(2.100)

Because we only change one component in each step, it follows by the monotonicity
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property in Lemma 2.4 that π(p2,q)≥ π(p1,q)≥ π(p0,q). Moreover, p2 ∈ {0, 1}2 by

construction. Therefore, defining p′ :=p2 yields the desired result.

Proof of Lemma 2.7.

1. Suppose q is a generic Nash equilibrium and q̃= (q̃C, q̃D)∈ (0, 1)2 is its reactive

marginalization with respect to itself. In particular, q̃ is a generic best response

to q, since q is a best response to itself. It follows that the map q̃C 3→ π(q̃,q)

needs to be constant (otherwise Lemma 2.4 implies that it is either strictly in-

creasing or decreasing, which both contradicts the best reply property). As a

consequence, both respective boundary strategies q̃′ := (0, q̃D) and q̃′′ := (1, q̃D)

are also generic best responses to q. With the same argument, one can now

show that the maps q̃D 3→ π(q̃′,q) and q̃D 3→ π(q̃′′,q) are also constant. There-

fore all respective boundary strategies – ALLD, ATFT, TFT, ALLC – are

generic best responses to q. In particular, all four boundary strategies yield the

same payoff against q. That is, we have shown Eq. (2.32). Because Eq. (2.32)

implies Eq. (2.33), we conclude that q is an equalizer.

2. Using Eqs. (2.18) and (2.22), we can compute the reactive marginalization q̃ of

q with respect to itself explicitly. This yields

q̃ = (q̃C, q̃D) =
(

qDC
1− qCC + qDC

,
qDD

1− qCD + qDD

)
(2.101)

By assumption, this reactive marginalization is either semi-stochastic or deter-

ministic, and therefore either q̃C∈{0, 1}, q̃D∈{0, 1}, or both. This gives rise to
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four possible cases,

q̃C∈{0, 1} ⇔ q = (1, qCD, qDC, qDD) or q = (qCC, qCD, 0, qDD)

q̃D∈{0, 1} ⇔ q = (qCC, 1, qDC, qDD) or q = (qCC, qCD, qDC, 0).
(2.102)

The first and the last case, q = (1, qCD, qDC, qDD) and q = (qCC, qCD, qDC, 0)

correspond to the self-cooperating and self-defecting players, respectively. They

give rise to a generic Nash equilibrium if and only if the respective conditions

for being a partner, or for being a defector are satisfied, as given by Eqs. (2.30)

and (2.31). In the following, we discuss the remaining two cases. For those we

can assume without loss of generality that qCC<1 and qDD>0.

First, suppose that q = (qCC, qCD, 0, qDD). Then by Eq. (2.27), the payoff of q

against itself is

π(q,q) = qDD
1− qCD + 2qDD

(b−c). (2.103)

If a player deviates to ALLD instead, its payoff according to Eq. (2.28) becomes

π(ALLD,q) =
qDD

1− qCD + qDD
· b. (2.104)

In particular, π(ALLD,q)>π(q,q).

Second, suppose q = (qCC, 1, qDC, qDD). Again we use Eq. (2.27) to compute the

payoff of q against itself, which yields

π(q,q) = 1− qCC + qDC
2(1− qCC) + qDC

(b−c). (2.105)

However, if a player deviates to ALLD, its payoff becomes π(ALLD,q) = b >

π(q,q).
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Proof of Proposition 2.9.

Both results follow from a straightforward application of our earlier results for the

case without errors. For (1), we note that

vε(p̃,q)
Eq. (2.38)

= v(p̃ε,qε)

Eq. (2.35)
= v

(( vεCC(p,q) pεCC+vεDC(p,q) pεDC
vεCC(p,q)+vεDC(p,q)

,
vεCD(p,q) pεCD+vεDD(p,q) pεDD

vεCD(p,q)+vεDD(p,q)

)
, qε

)

Eq. (2.38)
= v

(( vCC(pε,qε) pεCC+vDC(pε,qε) pεDC
vCC(pε,qε)+vDC(pε,qε) ,

vCD(pε,qε) pεCD+vDD(pε,qε) pεDD
vCD(pε,qε)+vDD(pε,qε)

)
, qε

)

Prop. 2.1
= v

(
pε,qε

)

Eq. (2.38)
= vε(p,q).

(2.106)

For (2), we note that by their definition in Eq. (2.41), p̃εC and p̃εD satisfy the condi-

tions (2.23) in Proposition 2.2. Therefore we can conclude

vε(p̃,q)
Eq. (2.38)

= v(p̃ε,qε)
Proposition 2.2

= v. (2.107)

Proof of Proposition 2.10.
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Because the error transformation p 3→ pε = ϕε(p) is strictly monotonically increas-

ing and defined on each component separately, it follows from Lemma 2.4 that also

the maps

pC → πε(p,q) = π
(
ϕε
(
(pC, pD)

)
, q
)

and pD → πε(p,q) = π
(
ϕε
(
(pC, pD)

)
,q
)

(2.108)

are either strictly monotonically increasing, decreasing, or constant. The result then

follows with the same argument as in the proof of Proposition 2.5, by replacing π(p,q)

with πε(p,q).

Proof of Theorem 2.11.

(1) ⇒ (2). Because q is a generic Nash equilibrium, πε(q,q)≥ πε(p,q) for all generic

strategies p, which includes all reactive strategies.

(2) ⇒ (3). By Proposition 2.9, we can compute the payoff πε(q,q) of a memory-1

strategy q against itself by computing the payoff of its reactive marginalization

q̃ against itself, πε(q̃,q). To this end, we use Eq. (2.39) to compute the entries

of q̃=(q̃C, q̃D), yielding

q̃C =
εqCC + (1−ε)qDC

1−(1−2ε)(qCC−qDC)
,

q̃D =
εqCD + (1−ε)qDD

1−(1−2ε)(qCD−qDD)
.

(2.109)

Similar to Lemma 2.7, we distinguish two cases, depending on whether or not

this reactive marginalization is fully stochastic, that is whether or not q̃ ∈

(0, 1)2.
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(i) q̃ is fully stochastic. Because for reactive strategies p= (pC, pD) the maps

pC → πε(p,q) and pD → πε(p,q) are either strictly monotonically increas-

ing, decreasing, or constant (previous proof), it follows from q̃ ∈ (0, 1)2

and the assumption (2.45) that πε(p,q) is constant for all reactive strate-

gies p. That is, ϕε(q) needs to satisfy Eq. (2.33). By applying the back-

transformation (2.36), it follows that q needs to satisfy the conditions in

Eq. (2.48).

(ii) q̃ is semi-stochastic or deterministic. In this case, either q̃C ∈ {0, 1} or

q̃D∈{0, 1}. By Eq. (2.109) this implies

q̃C∈{0, 1} ⇔ q = (1, qCD, 1, qDD) or q = (0, qCD, 0, qDD)

q̃D∈{0, 1} ⇔ q = (qCC, 1, qDC, 1) or q = (qCC, 0, qDC, 0).
(2.110)

We discuss each of these four cases in turn:

• q = (1, qCD, 1, qDD). In this case, we can use the payoff formulas (2.43)

and (2.44) to verify that πε(q,q)≥πε(TFT,q) if and only if

qDD ≤ (1−2ε) (b+εc qCD)− c
(1−2ε) (b+εc) . (2.111)

On the other hand, an analogous computation shows that πε(q,q)≥

πε(ALLC,q) if and only if the inequality in Eq. (2.111) is reversed.

Together these two requirements imply the last condition in the char-

acterization of partners (2.46). Finally, for strategies that satisfy

qCC = qDC = 1 and the last condition in (2.46), both additional re-

quirements πε(q,q) ≥ πε(ALLD,q) and πε(q,q) ≥ πε(ATFT,q) are
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met if and only if

qCD ≤ 1− c
(1−2ε)b . (2.112)

Overall, we conclude that such a strategy q = (1, qCD, 1, qDD) is robust

with respect to deviations towards the four deterministic reactive

strategies if and only if the additional conditions in (2.46) hold. In

particular, such strategies are generic Nash equilibria, because robust-

ness against all deterministic reactive strategies implies robustness

against all generic strategies by Propositions 2.9 and 2.10.

• q = (0, qCD, 0, qDD). Using the payoff formulas (2.43) and (2.44) one

can show that πε(q,q) < πε(ALLD,q) unless qCD = qDD = 0, that is

q=ALLD. We discuss the case of q=ALLD further below.

• q = (qCC, 1, qDC, 1). It is easy to show that πε(q,q)< πε(ALLD,q) for

all such q.

• q = (qCC, 0, qDC, 0). If q is ALLD, then it is a Nash equilibrium (be-

cause defection is an equilibrium of the one-shot game). In the follow-

ing let us thus assume that qCC> 0 or qDC > 0. In this case we obtain

πε(q,q)≥πε(TFT,q) if and only if

qCC ≤ ε(1−2ε)c qDC + c
(1−2ε)(b+εc) . (2.113)

On the other hand, the requirement πε(q,q) ≥ πε(ALLD,q) is met

if and only if the inequality in (2.113) is reversed. Together these

two requirements imply the last condition in (2.47). Given this last

condition and qDD = qCD = 0, it follows that πε(q,q) ≥ πε(ALLC,q)
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and πε(q,q)≥πε(ATFT,q) if and only if

qDC ≤ c
(1−2ε)b . (2.114)

We conclude that for strategies q that satisfy all conditions in (2.47)

there are no profitable deviations among the deterministic reactive

strategies. Because of Propositions 2.9 and 2.10, this implies that

there are no profitable deviations among the generic strategies, and

hence q is a generic Nash equilibrium.

(3) ⇒ (1) Follows immediately because partners and defectors are generic Nash equi-

libria by definition. Equalizers are generic Nash equilibria because any deviat-

ing player yields exactly the same payoff against an equalizer as the equalizer

strategy yields against itself.
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Trade has been going on for as long as humans have needed or wanted something that others

had and they did not.37

Mark Cartwright

3
A theory of specialization, exchange, and

innovation in human groups

Abstract: To study how key aspects of cumulative cultural evolution in-
teract, we model the coevolution of occupational specialization, exchange,
and innovation. This allows for the study of which group conditions favor
the innovation of occupational diversity in the long run. For example, our
model predicts that human groups will innovate more occupational spe-
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cializations in the long run when the population size is large, egalitarian
norms enforce equal sharing, there is low noncomplementarity of special-
izations in the environment, junior people are moderately overconfident,
and groups with redundant specializations begin to trade. Existing evi-
dence from small-scale societies, large-scale societies, and the archaeolog-
ical record provides preliminary corroboration of nine out of the model’s
ten predictions, and we propose future empirical tests for the remaining
tenth prediction. Contemporary human societies’ propensity for complex
specialization and trade may thus not be a modern outlier, but an adap-
tation rooted in our ancestral past. This theory can help explain multiple
evolutionary puzzles of human cognition, such as the prevalence of egali-
tarian sharing norms in evolutionarily relevant societies, the evolution of
overconfidence, and cooperation in large groups of non-kin.

3.1 Introduction

Unlike other mammals, humans have long been characterized by flexible occupational

specializations, extensive exchanges of goods/services, and cumulative cultural innova-

tion. Examples include the cultural evolution of knowledge pertaining to fire-making,

cooking, stone tools, adhesives, projectiles, ornamentation and novel food sources.

However, specialization, exchange, and innovation have all varied in their breadth and

intensity across time and space for hundreds of thousands of years90,101,154. Here, we

develop an analytical model for the coemergence and coevolution of these key features

of our species. We do so by integrating the fitness-maximizing decisions of individuals

with the intergenerational transmission of specialized knowledge.

The theory of culture-gene coevolution offers an interconnected framework capable

of rigorously explaining how innovation, specialization, and exchange have emerged

and varied throughout the two-million-year history of our genus15,91,160,162. Under
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suitable initial conditions, cumulative cultural evolution can generate an autocat-

alytically expanding body of adaptive knowledge—tools, techniques, and practices—

capable of driving the genetic-evolutionary expansion of brains to acquire, store, and

organize this knowledge. Then, as brain expansion became too evolutionarily costly,

cultural evolution began shaping the distribution of accumulated knowledge across

individuals217 and over the course of a lifetime211. Knowledge was first partitioned

into a sex-based division of labor, and then into broader specializations, including

those related to midwifery, medicinal plants, shamanism, storytelling, fishing, littoral

gathering, big-game hunting, honey collecting, and making specialized tools such as

watercraft. Parallel to this process, cumulative cultural evolution also generated social

norms, a category of knowledge that has particularly important implications93. Social

norms influence the dynamics by which the group maintains and innovates occupa-

tional specializations as a collective brain. This occurs via the effect of social norms

on cooperation, apprenticeship, exchange, and other relevant interactions.

We develop a theoretical framework for this overall process of cumulative cultural

specialization. Mathematically, our model is inspired by the international-trade model

of Krugman 125 , lauded for identifying the interrelatedness of scale exchange economies

and specialization in an analytically tractable manner. We adapt and modify Krug-

man’s model so that these scale exchange economies are characterized by cumulative

cultural specialization. First, we incorporate into the model several mechanisms cen-

tral to the process of cumulative cultural specialization, such as apprenticeship, spe-

cialized expertise, and social norms. Second, we modify Krugman’s static, unigenera-

tional model into a dynamic, multigenerational process. The number of specializations

accumulated in the group evolves over generations to an equilibrium number, which

varies predictably with respect to factors like population size, egalitarianism, cogni-
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tive biases, environmental parameters, and trade. We then deduce from our analytical

model a number of predictions about cumulative cultural specialization. For example,

our model predicts that human groups will innovate more specializations in the long

run when they have a larger population size, when the diversity of an individual’s

resources results in higher fitness returns, and when groups with redundant specializa-

tions begin to trade.

In total, we deduce ten predictions, nine of which find preliminary empirical sup-

port in small-scale societies, large-scale societies, and the archaeological record. To

illustrate, our model predicts that societies with larger population size will, over time,

give rise to an increased variety of specialized activities. This prediction finds sup-

port in various sources of evidence, such as the Tasmanian archaeological record88,111,

ancient DNA evidence elucidating the emergence of modern-level toolkit complex-

ity189, research examining early-European-contact-era toolkit intricacy across Oceanic

islands119, and an analysis of the toolkit sophistication in 40 nonindustrial agricul-

tural and pastoralist societies41. Our model also predicts that larger societies will, as

a result of their increased variety of specialized activities, tend to achieve higher av-

erage fitness. On this front, the contemporary studies of Redding and Venables 194 as

well as of Head and Mayer 86 have shown that contemporary countries’ income lev-

els rise in correlation with a metric of “market potential”—a proxy for average group

fitness—and that this metric itself exhibits a positive relationship with country size.

Moreover, our model predicts that (all else equal) egalitarian societies innovate

more occupational specializations than their non-egalitarian counterparts. This coun-

terintuitive prediction is corroborated by our analyses of the ethnographic data pro-

vided by the Ethnographic Atlas, abbreviated as the EA dataset12,22,76,118,121,158; and

the Western North American Indians, abbreviated as the WNAI dataset112–114,118.
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Another counterintuitive prediction of our model is that the average fitness of a

non-egalitarian society is an inverse-U-shaped function of the confidence level of its

juniors. This function is maximized not at the point of rational calibration, but at an

intermediate level of overconfidence. A non-egalitarian group comprised of moderately

overconfident innovators enjoys an equally optimal average fitness as that robustly

enjoyed by egalitarian groups. This counterintuitive prediction finds support in the

contemporary-society literature. Specifically, it is corroborated by the finding of Cieś-

lik et al. 40 that countries’ Gross Domestic Product (GDP), a proxy for average group

fitness, is predicted by an inverse-U-shaped function of their level of entrepreneurial

overconfidence; and that this function is maximized at an intermediate level of over-

confidence. Thus, our model may contribute to explaining why the degree to which

people are overconfident about their task abilities varies substantially around the

world164.

Our model yields a number of counterintuitive, but empirically corroborated pre-

dictions about societal specialization and trade. This strengthens the case that spe-

cialization and trade can be productively studied via the theory of cumulative cultural

evolution. In it, human cognition influences and is influenced by a causal interplay

between specialized knowledge, apprenticeship, cooperative production, social norms,

cognitive biases, the pursuit of individual fitness, and the environment.

3.2 The model

Our model represents human groups as amalgamations of two overlapping genera-

tions: seniors and juniors. These group members assort themselves into specialized

guilds (e.g., hunting, fishing, gathering), each of which cooperatively produce the cor-
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responding specialized good or service. While we call these cooperative production

units “guilds,” they may not precisely map on to the cooperative units in traditional

cultural groups that have historically been called guilds under various definitions.

Our notion of “guild” is an abstraction that aims to capture the notion of coopera-

tive production in an analytically tractable manner. As is standard for tractability,

we approximate the number of potentially discoverable guilds with a continuum; let

i ∈ [0,∞) index the set of potentially discoverable specializations.

There are two types of guilds: traditional guilds and emergent guilds. A tradi-

tional guild is led by experienced seniors who have the option of taking on junior

apprentices. Seniors stipulate what share of the guild’s production juniors receive.

An emerging guild is founded by juniors who have decided not to apprentice with any

traditional guilds. Seniors offer apprenticeships, and juniors either decide whether to

join or innovate a new guild. We consider new guilds to involve innovations.

After all juniors make their decisions, guild members produce their specialized

goods or services. To produce an amount x of its good/service, an emerging guild is

assumed to need # = α + βx members. Here, α > 0 denotes the fixed cost and β > 0

denotes the per-unit cost. On the other hand, each traditional guild benefits from an

intergenerationally accumulated body of knowledge that has been optimized for its

specialization. So, a traditional guild only needs # = α̂ + β̂x members to produce x, for

a lower fixed cost 0 < α̂ < α and a lower per-unit cost 0 < β̂ < β. This incorporates

into the model, admittedly in an abstracted form, the effect of cumulative cultural

evolution among guilds.

After production, each guild divides the fruits of its labors and expertise among its

members in one of two ways. In egalitarian groups, every guild shares its production

equally among all its members19. Here, we assume guilds simply apply egalitarian
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social norms already common in their communities, such as those found among mo-

bile foragers63,127. In non-egalitarian groups, apprentices receive shares determined by

seniors, who determine allocations so as to maximize their fitness, paying apprentice-

ships based on their initial promise. Here, we assume that some normative mechanism

enforces promises within communities, but otherwise allocations are determined to

maximize seniors’ payoffs. Another aspect of the social norm we consider pertains to

groupwide cognitive biases (or lack thereof). Specifically, we allow variation in the de-

gree to which juniors are overconfident, underconfident, or rationally calibrated about

their prospects of innovating versus apprenticing.

Finally, all group members partake in a system of exchange. Goods are exchanged

back-and-forth until no mutually beneficial exchange is possible anymore. Each indi-

vidual is assumed to maximize fitness as defined by the utility function

U(c) =
∫

i∈[0,∞)
c(i)θdi for 0 < θ < 1. (3.1)

Originally developed by Dixit and Stiglitz 50 , this utility function represents a prefer-

ence for diverse bundles of goods c when all else is equal. This diversity benefit can

occur due to decreasing marginal utility of goods and due to complementarity. The

degree of the diversity benefit is represented by the exponent parameter 0 < θ < 1,

which represents the noncomplementarity of specializations. A decrease in θ consti-

tutes an increase in the fitness returns to the diversity of an individual’s resources.

For example, consider an environment where available sources of food required a spe-

cialized guild’s cooperation to forage. If each of these food sources provided all of the

necessary nutrients and thus were interchangeable with one another, then the degree

of specialization noncomplementarity θ would be high. But if the food sources pro-
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vided different subsets of nutrients and thus were ideally consumed as a bundle, then

the degree of specialization noncomplementarity θ would be low.

In its original economic formulation, the utility function U represents an individ-

ual’s preference for which bundle of goods to prefer over another given bundle of

goods. In economics, no assumptions are generally made about the causal determi-

nation of the preference. In our culture-gene coevolutionary formulation, we propose

that the preference underlying the utility function U is caused by some combination

of an individual’s adaptive preference—the degree to which their preference is self-

perceived as successful and adaptive in the local environment—the individual’s cul-

tural fitness—the degree to which their preference is outwardly perceived as successful

and thereby likely to be emulated—and the individual’s genetic fitness—the degree to

which their preference is genetically evolved to prefer certain bundles of goods over

others for robust benefits to survival and reproduction. Specifying how these causal

factors precisely combine is unnecessarily for predicting the outcome of our model,

which only requires that their combination robustly causes surviving group members

to adhere to the ecologically optimal utility function U.

The final outcome of the current time step is uniquely determined by the following

two assumptions.

Assumption 1: Each individual exchanges to maximize fitness.

Thus, after an individual’s net exchange, their terminal bundle of goods c∗ is as-

sumed to solve the fitness maximization program

max
c

U (c) subject to
∫

i∈[0,∞)
p(i)c(i)di = W. (3.2)
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Here, W denotes the trade value of the goods with which the individual starts the

exchanging phase and p(i) denotes the price of good i (relative to other goods, so that

the choice of unit is arbitrary).

Assumption 2: Each guild aims to achieve its optimal size by either taking on co-

founders or apprentices.

To illustrate for egalitarian groups, consider the decision of seniors in traditional

guilds on how many apprentices to take on. They are assumed to solve the optimal

guild-size program for traditional guilds that are forced to share equally:

maximize px(p)
α̂ + β̂x(p)

subject to p > 0 (3.3)

The optimal guild size for the maximization problem (3.3) is

#∗ =
α̂

1− θ . (3.4)

Similarly, when seniors of traditional guilds in non-egalitarian groups decide how

many apprentices to take on, they are assumed to solve the optimal guild-size pro-

gram for traditional guilds that promise apprentices the exact share of goods that

would make them indifferent between apprenticing and innovating:

maximize px(p)− winn(α̂ + β̂x(p)− #trad(i))
#trad(i) subject to p > 0. (3.5)

Here, #trad(i) denotes the number of guild i’s seniors who have survived from the pre-

vious time step, and winn denotes the trade value of an equal share of an emerging
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guild’s produced goods.

The optimal guild size for the maximization problem (3.5) is

#∗ = α̂ + αθ
1− θ

(
β
β̂

) 1
1−θ−1

. (3.6)

In summary, each individual’s net exchange maximizes their fitness, and in anticipa-

tion of this, each guild achieves (either via taking on apprentices or co-founders) the

precise size that optimizes the trade value of each current guild member’s share of

produced goods. The resulting allocation of goods is called the equilibrium outcome of

the time step.

The time steps occur sequentially. At the end of each time step, the senior indi-

viduals pass away. Some fortunate junior individuals survive to become the senior

individuals of the next time step. A proportion qtrad ∈ [0, 1] of traditional builds and

a proportion qemer ∈ [0, 1] of emergent guilds lose all of their members and thereby

disappear; these specializations are lost would need to be rediscovered in the future.

Guilds with any survivors remaining all become traditional guilds. The next time step

is then carried out just like the previous time step, and the overall process is repeated

a countably infinite number of times.

The above model represents a single group as a closed system. Another version

of our model represents a two-group closed system, in which members of each of the

two groups have the option of exchanging with the other group. Such inter-group ex-

changes may be subject to an inefficiency. We assume that τ ≥ 1 units of a good must

be sent by one group for the other group to receive one unit of that good. The pa-

rameter τ denotes the trade barrier, where τ = 1 represents a setting where no goods

are lost after passing the trade barrier, and τ > 1 represents a setting where a pro-
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portion of goods is lost after passing it. The notion of a trade barrier can represent

various forms of trade inefficiency, such as a linguistic trade barrier between neighbor-

ing ethnolinguistic groups or subcultures, as well as geographic distance and obstacles.

See Figure 1 for a diagram representing the model step-by-step.

3.3 Results

For the sake of presentation, we will initially suppress three features of the model.

First, we will assume—unless otherwise stated—that no specializations are forgotten

at the end of each time step due to all members passing away. This assumption be-

comes tenable when guilds are comprised of many members and the probability of

each member’s death in each time step is low and sufficiently uncorrelated with other

members’ probability of death. The assumption becomes less tenable, however, when

guilds are comprised of few members, when the probability of each member’s death

in each time step is high, and when members’ death events are correlated15. We in-

troduce the possibility of specializations being forgotten (due to all guild members

dying) in Subsection 3.3.4.

Second, we assume that the population size of the group converges to a limit of L

as the number of time steps approaches infinity. For brevity of exposition, we will

treat the limit of the population size L as an exogenous parameter throughout the

main text, in that we do not assume that other mechanisms of the model affect L.

However, endogenous models of population growth are more realistic123,199. To il-

lustrate, if the group’s average fitness at time step t represents the absolute average

number of surviving offspring—not relative to a carrying capacity—then this average

fitness value would affect the change in population size at that time step. Our model
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Traditional guilds Emergent guilds

Seniors Apprentices Innovators

Traditional guilds Emergent guilds

Forgotten guilds Next time step’s traditional guilds
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previous time step

Newly born

Innovate

Equal sharePromised share
(depends on social norm)
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Death of members

Figure 3.1. Life cycle diagram of the model. It is comprised of two overlapping generations:
seniors and juniors. Guilds can be traditional, led by experienced seniors; or emergent,
innovated by juniors who have decided not to apprentice with any traditional guilds. On the
other hand, a junior can join a traditional guild as an apprentice after being promised a share
of its future production. After production and sharing within each guild, individuals exchange
goods to maximize their fitness. Afterwards, the transition to the next time step occurs, in
which all seniors and some juniors die, the surviving juniors become the next time step’s
seniors, and their specializations survive onto the next time step in the form of traditional
guilds. The specializations of the guilds in which all members die are forgotten.
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can also be modified so that the population size L(t) at each time step t is causally

affected by not only the average fitness, but also by other parameters and mechanisms

of the model. However, we presently do not assume or specify the functional form of

this complex effect, and propose that it be investigated empirically. In the meantime,

we abstract all endogenous demographic effects into the long-run limit of population

size L, and deduce predictions based on a general, unspecified value of L.

Third, we will assume that descriptive parameters are shared across individuals,

across emerging guilds, and across traditional guilds. We assume all individuals share

the same fitness-utility function U. We also assume that all discoverable guilds share

the same cost structure in the emerging phase, as well as share the same cost struc-

ture in the traditional phase. In principle, we can modify our model so that differ-

ent types of individuals have different fitness-utility functions. We can also modify

it so that different types are predisposed to work in different types of guilds, each

with a different cost structure in the emerging phase, traditional phase, or both. Such

modifications would allow our model to precisely represent—albeit potentially via

overfitting—societies with heterogeneous guild sizes (among emerging guilds and

among traditional guilds) as well as heterogeneous amounts of goods exchanged and

consumed by each individual. In the present paper, we focus on the simple variant of

the model without these heterogeneities, with the goal of deducing parsimonious, po-

tentially generalizable causal relationships in an analytically tractable manner at the

potential cost of model precision.

In the following, we derive from our model ten causal predictions that can help

explain various evolutionary puzzles surrounding the emergence, development, and

adaptive strategies of ancestral human societies, as well as analogous empirical puzzles

pertaining to contemporary human societies. For brevity of exposition, we present
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some mathematical predictions in the SI rather than in the main text. We note that

our list of predictions is not meant to be exhaustive. It is very possible that other

mathematical predictions we did not deduce or specify in the present paper may turn

out to be explanatorily valuable and empirically corroborated.

3.3.1 Number of specializations

In the limit of the time step t → ∞, the proportion of guilds that are traditional

rather than innovated approaches 1. It follows that as t → ∞, the limiting num-

ber of traditional guilds—which is equal to the limiting number of specialized guilds

overall—is given by the population size divided by the equilibrium size of traditional

guilds #∗,

n =
L
#∗
. (3.7)

Moreover, the Dixit–Stiglitz utility function U has the nice property that the tra-

ditional guild size #∗ does not depend on the population size L. It can be shown that

the traditional guild size #∗ of egalitarian groups is given by

#∗ =
α̂

1− θ , (3.8)

a formula that is unaffected by the population size L. Similarly, the traditional guild

size #∗ of non-egalitarian groups is given by

#∗ = α̂ + αθ
1− θ

(
β
β̂

) 1
1−θ−1

, (3.9)

which is also unaffected by the population size L.
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While the equilibrium size of traditional guilds #∗ does not depend on the popu-

lation size L, it does depend on the allocation of payoffs made by senior to juniors.

Here, we explore two possible allocations by comparing the long-run number of spe-

cializations in egalitarian groups versus in non-egalitarian groups.

For non-egalitarian groups, where seniors are maximizing their fitness, the number

n of specializations in the long run is given by

n =
L
#∗

=
L

α̂ + αθ
1−θ

(
β
β̂

) 1
1−θ−1

(3.10)

In egalitarian groups, where seniors are constrained by social norms, the number n

of specializations in the long run is given by

n =
L
#∗

=
L(1− θ)

α̂ (3.11)

Observe that the long-run number of specializations n scales linearly in the popu-

lation size L. This is because as we have stated before, the denominator #∗ of the for-

mula n = L
#∗ does not have any dependence on L; it is essentially a positive constant.

We can thus deduce the following corollary.

Prediction 1: Groups with a larger population size L have a higher number n of inno-

vated specializations in the long run.

Moreover, observe that the traditional guild size #∗ of egalitarian groups (3.8) and

that of non-egalitarian groups (3.9) increase with θ, the parameter presenting the non-

complementarity of specializations in the environment. Intuitively, guilds choose to
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be at the size at which the benefit from efficient economies-of-scale and the benefit

from uncovering new specializations are at equilibrium. The latter benefit becomes

larger relative to the former when a diverse bundle of specialized goods yields large

benefits to fitness-utility. This explains why having non-complementary specializa-

tions causes the equilibrium size of traditional guilds (in both egalitarian and non-

egalitarian groups) to increase; and thereby causes the long-run number of specializa-

tions in the group, n = L/#∗, to decrease. We thus have the following result.

Prediction 2: The long-run number n of specializations is higher when the degree θ of

specialization noncomplementarity in the environment is low.

Predictions 1 and 2 are illustrated in the plots of Figure 3.2, which detail the comparative-

static effects of several model parameters on the long-run number of innovations.

3.3.2 Group members’ average fitness-utility in the long run

Egalitarian norms foster greater innovation and specialization. To see this, consider

that as t → ∞, group members converge towards achieving an equidistributed bundle

c∗ of goods that is comprised of an equal amount of each specialized good produced

by a traditional guild. In other words, the limit of the average group member’s equi-

librium bundle c∗ can be computed in the following way. First, all group members

first produce in traditional guilds of size # = #∗. Second, all group members achieve an

equidistributed bundle of goods c∗ during the exchanging phase. The group members’

average utility is then given by U(c∗) for this equidistributed bundle c∗ of goods.

Note that the above calculation of the limiting average bundle can be done for any
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Figure 3.2. The number of innovations (n) as a function of population size (L). The cost
parameters are α = 10, β = 10, α̂ = 4, and β̂ = 2, while the degree of specialization
noncomplementarity θ is varied among θ = 0.1, 0.2, and 0.6.
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choice of guild size #, meaning that we can study the average limiting fitness U(c∗) as

a function of an arbitrary guild size #. Studying this, we find that the average limiting

fitness U(c∗) is an increasing function for # < α̂
1−θ , a decreasing function for # > α̂

1−θ ,

and is maximized at # = α̂
1−θ .

But recall that #∗ = α̂
1−θ is the equilibrium size of traditional guilds in egalitarian

groups. This yields a counterintuitive result that egalitarian groups robustly innovate

the optimal number of specializations in the long run. In non-egalitarian groups, the

equilibrium size

#∗ = α̂ + αθ
1− θ

(
β
β̂

) 1
1−θ−1

>
α̂

1− θ (3.12)

of traditional guilds is too large compared to the optimal level. Intuitively, this is

because non-egalitarian social norms permit seniors to underpay their apprentices.

In equilibrium, apprentices are underpaid to the precise point where juniors would

be indifferent between apprenticing and innovating. In order to maximize their self-

interest, seniors in non-egalitarian groups are incentivized to take on many underpaid

apprentices, which allows them to optimally take advantage of economies-of-scale.

This is in contrast to egalitarian groups, where the comparatively large equal share

that would need to be paid to each apprentice incentivizes seniors to make do with

only a few apprentices. All else equal, more juniors are left to innovate (due to less

apprenticing opportunities) in egalitarian groups, resulting in more groupwide innova-

tion in the long run.

Prediction 3: Egalitarian groups robustly innovate the optimal number of specializa-

tions n in the long run. Non-egalitarian groups innovate a suboptimally low number

of specializations n in the long run..
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The contrast between the optimal innovation of egalitarian groups and the subop-

timally low innovation of non-egalitarian groups is qualitatively illustrated in Figure

3.3(a).

3.3.3 The effect of groupwide overconfidence on innovation

Non-egalitarian groups are subject to a permanent penalty to the equilibrium amount

of innovated specialization, which is suboptimally low compared to that of egalitar-

ian groups. But counterintuitively, a social norm of overconfidence can offset non-

egalitarian groups’ long-term penalty to groupwide innovation and thereby, to group

fitness.

Specifically, let us modify our model so that the group’s juniors believe that the

fixed cost and the per-unit cost of an emerging guild are not necessarily equal to their

true respective values. In this interpretation, αperceived and βperceived denote the per-

ceived fixed cost and per-unit cost, in the perception of juniors. We distinguish this

from α = αtrue and β = βtrue, the true values of these respective parameters.

The size #∗ of traditional guilds in non-egalitarian groups changes when changing

either αperceived or βperceived. It changes from

α̂ + αθ
1− θ

(
β
β̂

) 1
1−θ−1

(3.13)

to

#∗ = α̂ +
αperceivedθ

1− θ

(
βperceived

β̂

) 1
1−θ−1

. (3.14)

On the other hand, the size of traditional guilds in egalitarian groups is situation-
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Figure 3.3. Plots pertaining to the effects of overconfidence on group innovation and fitness.
For a non-egalitarian group with environmental parameters θ = 0.3, α̂ = 4, and β̂ = 2, we
present (a) group members’ average long-run fitness as a function of the group’s long-run
number of innovations and (b) as a function of the confidence norm of the group’s junior
innovators. The fitness of the group is maximized at an intermediate level of overconfidence
(dark green curve). Rational confidence (green curve) cause the group to innovate a
suboptimally low number of specializations, and this is made even more suboptimally low by a
social norm of underconfidence (blue curve). Excessive overconfidence (orange curve) begins
to cause decreasing group fitness, due to an overpayment of the per-guild fixed cost. In
contrast, the fitness of an egalitarian group (purple point) is robustly maximal, because the
group robustly innovates the optimal number of specializations regardless of small changes in
confidence norms.
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ally determined. Apprenticing is strictly better than innovating for juniors if and only

if

α̂1−θβ̂θ < α1−θ
perceivedβ

θ
perceived. (3.15)

If this inequality holds, then the equilibrium size #∗ is unchanged; it is given by

#∗ =
α̂

1− θ . (3.16)

If this inequality holds in the other direction, however, traditional guilds must pay

strictly higher than an equal share to incentivize juniors to apprentice. They must

pay the precise share at which juniors are indifferent between apprenticing and in-

novating, just like the traditional guilds of non-egalitarian groups, In this case, the

equilibrium size #∗ of traditional guilds in egalitarian groups is given by (3.14), just

like that of non-egalitarian groups.

Recall that in the limit, the proportion of guilds that are traditional rather than

innovated increases to 1. Thus, the group’s limiting average fitness is a function of the

equilibrium size #∗ of traditional guilds.

In non-egalitarian groups, the equilibrium size #∗ of traditional guilds granularly

changes with respect to αperceived and βperceived. This means that the group’s long-

term limiting average fitness changes as well. As either αperceived or βperceived increases,

the equilibrium size #∗ of traditional guilds increases, because apprentices are less ex-

pensive to hire. Thus, the amount of innovated specialization that happens in the

long run decreases, making it more suboptimally low than before.

On the other hand, as either αperceived or βperceived decreases, the equilibrium size #∗

of traditional guilds decreases, because apprentices are more expensive to hire. Thus,

the amount of innovated specialization that happens in the long run increases.
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The region of increase can be divided into two parts:

α̂ +
αperceivedθ

1− θ

(
βperceived

β̂

) 1
1−θ−1

>
α̂

1− θ (3.17)

and

α̂ +
αperceivedθ

1− θ

(
βperceived

β̂

) 1
1−θ−1

<
α̂

1− θ . (3.18)

In the first region (3.17), decreasing either αperceived or βperceived results in the group’s

long-term average fitness increasing, and thereby becoming closer to the optimal

value. In the second region (3.18), decreasing either αperceived or βperceived results in

the group’s long-term average fitness decreasing, and thereby becoming further from

the optimal value. In between these two regions, the optimal long-term average fitness

is achieved.

Prediction 4: Among non-egalitarian groups, the amount of long-run innovated spe-

cialization (and thereby, group fitness) is an inverse-U-shaped function of innovators’

overconfidence. The optimal level of overconfidence occurs when juniors are perfectly

indifferent between apprenticing and innovating.

This can be seen in Figure 3.3, which illustrates that a non-egalitarian group with

the optimal level of overconfidence yields the same average group fitness, all else

equal, as the rationally calibrated egalitarian group.

The group-fitness-optimality of egalitarianism is robust, in that the equilibrium size

#∗ of traditional guilds In egalitarian groups does not easily change from the optimal

value. Suppose that either αperceived or βperceived increases. The region of increase can
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be divided into two parts:

α̂1−θβ̂θ < α1−θ
perceivedβ

θ
perceived. (3.19)

and

α̂1−θβ̂θ > α1−θ
perceivedβ

θ
perceived. (3.20)

In the first region (3.19), we have seen that changing either αperceived or βperceived does

not change the equilibrium guild size #∗. This is mathematically equivalent to the fact

that the optimality of egalitarianism is robust to changes in the real fixed cost αreal

and real per-unit cost βreal when assuming the juniors are rational, since the long-run

formula for the number of specializations n does not change whether α and β denote

the perceived cost values or the real cost values. Overall, the fact that egalitarianism

achieves the optimal amount of innovated specialization is robust to a wide range of

confidence parameter values.

Prediction 5: Egalitarian groups are more likely to have their number of long-run in-

novated specialization (and thereby, group fitness) be unaffected by changes in inno-

vators’ confidence norms, in the fixed cost of emerging guilds, and in the per-unit cost

of emerging guilds than their non-egalitarian counterparts.

On the other hand, decreasing either αperceived or βperceived to the point of reaching

the second region (3.20) does change the equilibrium guild size #∗. This is because

in this region, a traditional guild’s equal share is insufficient to convince juniors to

apprentice rather than innovate. Thus, traditional guilds must pay juniors the precise

share at which they are indifferent between apprenticing and innovating. This leads
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the equilibrium size #∗ of traditional guilds to suboptimally increase to (3.14), same

as the unconditional equilibrium size of traditional guilds in non-egalitarian groups.

This makes the long-term degree of specialized innovation to be suboptimally high,

where the suboptimality is due to an excessive loss of productivity from the fixed cost

requisite for each specialized guild.

3.3.4 When innovated specializations are lost

Many ancestral humans likely died prematurely due to factors like disease, starva-

tion, environmental accidents, predation, and warfare. In between time steps, some

junior individuals pass away, and the remaining ones comprise the next time step’s se-

nior generation. The guilds with at least some members surviving become traditional

guilds, indicating that their specialized methods of production are successfully passed

down intergenerationally. The guilds with no members surviving do not become tra-

ditional guilds, meaning they must be innovated again in the future.

In a finite guild with k junior members and a probability r of each junior’s death,

the guild would disappear with a probability of rk. But recall that our model is an in-

finite, analytically tractable approximation of a discrete reality where finitely many

guilds each have finitely many members. We do not specify an approximation pro-

cess by which a sequence of increasingly fine-grained discrete models—one of which

is the proposed model of the real system—becomes our infinite, analytically tractable

model, such as the approximation process described in Park 178 for knowledge-based

learning strategies.

However, let us make the realistic assumption that in this approximation process,

the probability of a traditional guild’s death qtrad and the probability of a probability
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of an emerging guild’s death qemer are well-defined. Recall that emerging guilds are

comprised entirely of juniors, and are larger than traditional guilds in equilibrium.

Thus, the number of juniors in an emerging guild will tend to be higher than that in

a traditional guild. Mathematically, we can without loss of generality suppose that

the random variable of the former number first-order stochastically dominates that of

the latter number. It then follows that the limiting probability of an emerging guild’s

death, qemer, is less than that of a traditional guild’s death, qtrad. We do not make

any additional assumptions or specifications of qemer and qtrad, and propose that they

be empirically studied.

Regardless, we can still compute the long-run number of specializations as a func-

tion of the unspecified probability values qemer and qtrad. Let nemer and ntrad denote

the long-run number of emerging guilds and that of traditional guilds. Assuming that

the system is in equilibrium, the values of nemer and ntrad are uniquely determined by

the system of equations

qemernemer + qtradntrad = nemer (3.21)

and

#∗emernemer + #∗tradntrad = L. (3.22)

Here, the first equation (3.21) denotes the condition that the totality of the forgotten

guilds in a given time step are replaced in equilibrium by innovating the same number

of emerging guilds in the following time step. It is equivalent to

nemer =
qtradntrad
1− qemer

(3.23)
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The second equation (3.22) denotes the condition that the limit of the total number

of people across all guilds must be L. Substituting in (3.23), we obtain

ntrad =
L

#∗trad + #∗emer
qtrad

1−qemer

. (3.24)

Notice that the expression (3.24) is increasing in qemer. It is also increasing in qtrad.

This means that if a higher proportion of either emerging guilds or traditional guilds

are forgotten due to all member dying, then the limiting proportion of traditional

guilds decreases. Since #∗trad < #∗emer, it follows that the limiting number of guilds also

decreases. Stated in another way, since more of the guilds are emerging guilds in the

long run, and emerging guilds take up more members per guild, the long-run number

of guilds—of specializations—decreases. We thus have the following prediction:

Prediction 6: Groups with a higher rate of premature deaths sustain a smaller num-

ber of specializations in the long run.

Premature deaths cause a higher proportion of a group’s guilds to stay at the ini-

tially inefficient level of production rather than the efficient level that comes with ex-

perience and tradition. This inefficiency results in a lower fitness value for the average

group member: a lower group fitness. This is qualitatively illustrated in Figure 3.4(c).

3.3.5 Inter-group trade

Finally, we discuss the predictions of our two-group model. Our contributions for the

two-group case include incorporating multigenerational dynamics and cumulative cul-

tural evolution into the model, demonstrating that the original economic model’s
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Figure 3.4. Qualitative visualizations of the single-group model’s dynamics. The visualization
(a) contrasts the optimal innovation of an egalitarian group (top) with the suboptimally low
innovation, all else equal, of a non-egalitarian group (bottom). This is due to the
suboptimally large size of traditional guilds in the latter, and the suboptimally high number
of juniors that apprentice rather than innovate as a result. The visualization (b) shows that a
non-egalitarian group’s total number of innovated specializations changes based on the level of
juniors’ overconfidence in innovating versus apprenticing. There exists an optimal level of
overconfidence that allows it to match the optimal number of innovated specializations, all
else equal, of egalitarian groups. The visualization (c) shows that if there is a positive
probability that all members of a guild die in a given time step, then this reduces the long-run
number of innovated specializations.
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trade predictions are robust to this incorporation, and connecting the model to the

trade of ancestral societies in addition to that of contemporary ones.

Our first result is that two groups that engage in trade will specialize in mutually

exclusive niches, whereas their specializations may overlap if they do not engage in

trade. In other words, phenotypic specialization at the group level will tend to in-

crease as groups come into contact with each other for trade. We note that this result

predicts the opposite of what is predicted by a solely memetic evolutionary model of

phenotype, in which a group becomes more similar to another group when the two

make contact. In fact, trade contact can have a differentiating effect, rather than a

homogenizing effect, on societies’ culturally transmitted phenotypes91.

Prediction 7: Trade increases specialization.

One interesting aspect of this effect any nonzero amount of trade contact is sufficient

to incentivize the two groups to specialize in non-overlapping niches. The two groups’

specializations can overlap only if they engage in no trade. This all-or-nothing effect

is qualitatively illustrated in Figure 5(a). The all-or-nothing nature of this effect is

an artifact of the model assumptions, and may not be realistic. However, our model

shows the possibility that the differentiating effect of trade contact on societies’ ar-

eas of specializations may have a discrete effect akin to an activation function, rather

than a continuous effect akin to a linear or similar function.

Our second result is that both groups gain from trade. More generally, a decrease

in the trade barrier causes a strict increase in the fitness values of both groups’ mem-

bers. This occurs because easier trade with the other group enables an individual to

take advantage of a wider variety of exchangeable goods, which is more preferable
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and adaptive due to our assumption that a diversity of resources results in increas-

ing returns to fitness. The mutually beneficial effect of decreasing trade barriers may

help explain the ubiquity of mechanisms to reduce various types of trade barriers in

contemporary and plausibly ancient societies30, such as exogamy, shared rituals, cur-

rency, merchants, trade roads, and free trade agreements.

Prediction 8: Groups benefit from trade. A decrease in the trade barrier causes an

increase in the fitness of both groups’ members.

An example of this effect is illustrated in Figure 3.5(b), which plots the average group

fitness of two groups (sharing certain environmental parameters) that trade across a

barrier of varying degree τ.

Our third result pertains to the trade, all else equal, between a group with a smaller

population L1, denoted by Group 1; and a group with a larger population L2, denoted

by Group 2. First, the smaller group exchanges a higher proportion of its produced

goods to the larger group than the other way around. This can be intuitively be seen

by considering the case of no trade barrier τ = 1. In this case, the two groups trade

as if they comprised one overarching group. The trade of one overarching group would

be such that every member gets an equidistributed bundle of goods. This would mean

that every individual would trade L1/(L1+L2) of their starting goods to Group 1 mem-

bers and L2/(L1 + L2) of their starting goods to Group 2 members, regardless of the

group in which they reside. In other words, the less populous Group 1 would export a

higher proportion of its starting goods to the more populous Group 2.

Moreover, the difference in export proportions becomes even higher in the remain-

ing case of a positive trade barrier τ > 1, because the less populous group must pay
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Figure 3.5. Plots pertaining to the trade between Group 1 and Group 2. They are assumed to
share the environmental parameters θ = 0.3, α = 10, β = 10, α̂ = 4, and β̂ = 2. Our plots
comprise (a) the proportion of produced goods that each group exports as a function of the
trade barrier size, (b) average member fitness of each group as a function of the trade barrier
size, (c) the trade premium (defined as the relative price of the more populous Group 2’s good
to that of the less populous Group 1’s good) as a function of the trade barrier size, and (d)
the trade premium as a function of the population ratio between the two groups. The base
parameters are τ = 10 and L2/L1 = 1.5. In each plot, exactly one of the parameters is varied
from its base value.
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a higher price than normal to trade with the more populous group. Intuitively, this

is due to the fact that the opportunity cost is higher for the larger group’s goods.

Specifically, an individual in the larger group can exchange their initial goods for a

large variety of goods produced by their fellow group members, instead of trading it

for the other group’s goods. On the other hand, an individual in the smaller group

can exchange their initial goods only for a small variety of goods produced by their

fellow group members, which is a worse deal. Thus, individuals of the larger group

can ask for a higher price relative to those of the smaller group. It follows that the

less populous Group 1 exports a proportion that is even higher than L2/(L1+L2) of its

starting goods to the more populous Group 2 in the presence of a trade barrier τ > 1.

Prediction 9: Consider the trade between a larger group and a smaller group. All

else equal, the smaller group exports a higher proportion of its produced goods to

the larger group.

An example of this effect is illustrated in Figure 3.5(a), which plots the average pro-

portion of goods exported when two groups (sharing certain environmental param-

eters) trade across a barrier of varying degree τ. Indeed, the plot shows that the

smaller group exports a higher proportion of its produced goods than the larger group.

This effect is also shown in a visualization presented in Figure 3.6(b).

Our final prediction pertains to the trade premium between a larger group and the

smaller group. The trade premium is defined as the price ratio (i.e., exchange rate)

between a good produced by the larger group and a good produced by the smaller

group. Members of the smaller group need to pay a trade premium in order to trade

with members of the larger group. Intuitively, this is because the option of trading
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(a)

(b)

Figure 3.6. Qualitative visualizations of the two-group model’s trade dynamics. The
visualization (a) denotes the phenomenon in which two groups that do not trade can innovate
overlapping specializations, but two groups that engage in trade intentionally specialize away
from each other. The visualization (b) illustrates how much of each group’s goods are
exchanged across groups. The smaller group exports a higher proportion of its produced
goods than the larger group. Moreover, increasing the trade barrier results in the increase of
both groups’ proportion of goods exported.
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with other in-group members is more favorable to members of the larger group than

to those of the smaller group. The difference in opportunity cost forces members of

the smaller group to pay a premium to sufficiently incentivize members of the larger

group to trade with them.

Prediction 10: Consider the trade between a larger group and a smaller group. If the

trade barrier is nontrivial, then the smaller group must pay a premium to trade with

the larger group. The trade premium is increasing with respect to the trade barrier,

and increasing with respect to the population ratio of the two groups.

An example of this effect is illustrated in Figure 3.5(c), which plots the trade pre-

mium when two groups (sharing certain environmental parameters) have a varying

trade barrier; and in Figure 3.5(d), which plots the trade premium when the two

groups have a varying population ratio.

Due to the complicated formulas involved, we have limited this section to a verbal

discussion of four predictions. A more detailed, quantitative discussion—as well as

additional predictions—can be found in the SI.

3.3.6 Empirical corroboration

Above, we have deduced from our model ten predictions. Preliminary empirical cor-

roboration for nine of the ten predictions is summarized in Tables 3.1 and 3.2, and

discussed in further detail within the SI. The former pertains to predictions from the

single-group model and the latter, those from the two-group model.
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Table 3.1: Testable predictions for an exchange economy comprised of a single group.

Prediction Empirical Evidence
Prediction 1: Groups with a larger population size
have a higher number of innovated specializations
in the long run.

EA ethnic groups with a larger population tend
to have a greater number of specialized activities
(see Subsection 3.6.1 of the SI). This prediction is
also corroborated by the Tasmanian archaeological
record 88,111, by ancient DNA evidence pertaining
to the emergence times of modern-level toolkit com-
plexity 189, by a study of early-European-contact-
era toolkit complexity in the islands of Oceania 119,
and by a study of the toolkit complexity in 40
nonindustrial farming and pastoralist groups 41.
Moreover, contemporary economic studies by Red-
ding and Venables 194 and by Head and Mayer 86

demonstrate that income increases with respect to a
measure of “market potential,” which increases with
respect to country size.

Prediction 2: The long-run number of specializa-
tions is higher when the degree of specialization
noncomplementarity in the environment is low.

Ethnic groups of the WNAI and of the EA that
inhabit ecologically diverse environments tend to
have a greater number of specialized activities (see
Subsection 3.6.2 of the SI). Ecological diversity
is used as a proxy for the noncomplementarity of
specializations.

Prediction 3: Egalitarian groups robustly innovate
the optimal number of specializations in the long
run. Non-egalitarian groups innovate a subopti-
mally low number of specializations in the long
run.

Ethnic groups of the WNAI and of the EA with
more Subsection sharing norms tend to have a
greater number of specialized activities (see Section
3.6.3 of the SI).

Prediction 4: Among non-egalitarian groups, the
amount of long-run innovated specialization (and
thereby, group fitness) is an inverse-U-shaped func-
tion of innovators’ overconfidence. The optimal
level of overconfidence occurs when juniors are
perfectly indifferent between apprenticing and inno-
vating.

A study by Cieślik et al. 40 found that countries’
Gross Domestic Product (GDP) measure—a proxy
for both the amount of innovated specialization
and for group fitness—is predicted by an inverse-
U-shaped function of their level of entrepreneurial
overconfidence. In particular, an intermediate level
of entrepreneurial overconfidence maximizes GDP.

Prediction 5: Egalitarian groups are more likely to
have their number of long-run innovated special-
ization (and thereby, group fitness) be unaffected
by changes in innovators’ confidence norms, in the
fixed cost of emerging guilds, and in the per-unit
cost of emerging guilds than their non-egalitarian
counterparts.

Remains to be tested.

Prediction 6: Groups with a higher rate of prema-
ture deaths sustain a smaller number of specializa-
tions in the long run.

Archaeological data suggest that technological in-
novations were lost as a result of rapid population
decline among Northern Europeans during the Late
Glacial Period 49,198.
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Table 3.2: Testable predictions for an exchange economy comprised of two groups.

Prediction Empirical Evidence
Prediction 7: Trade increases specialization. Groups engaged in trade specialize in differenti-

ated types of goods, a phenomenon observed in
both ancestral societies 200,219 and contemporary
societies 44,138,196. Contemporary trade data also
suggest that groups specialize more when trade
between them opens up. To illustrate, countries
of the European Union increasingly specialized in
differentiated types of goods following their 1957
economic integration 6,33. Moreover, as the regional
economies comprising the U.S. became more inte-
grated between the 1800s and the early 1900s, they
increasingly specialized in differentiated types of
goods 117.

Prediction 8: Groups benefit from trade. A decrease
in the trade barrier causes an increase in the fitness
of both groups’ members.

Contemporary data strongly corroborate this hy-
pothesis. For example, a study by the OECD 175

has found that countries that have a relatively open
trade policy have experienced twice the average
annual economic growth compared to those that
have a relatively closed trade policy. Also, a study
by Frankel and Romer 60 has shown that an in-
crease in the geographical barrier to countries’ trade
decreases their average income levels.

Prediction 9: Consider the trade between a larger
group and a smaller group. All else equal, the
smaller group exports a higher proportion of its
produced goods to the larger group.

In contemporary international trade, smaller coun-
tries tend to have a higher trade-to-GDP ratio than
larger countries 176.

Prediction 10: Consider the trade between a larger
group and a smaller group. If the trade barrier is
nontrivial, then the smaller group must pay a pre-
mium to trade with the larger group. The trade
premium is increasing with respect to the trade bar-
rier, and increasing with respect to the population
ratio of the two groups.

Smaller countries tend to face higher aggregate
prices for tradeable goods than larger countries 142.
Similarly, oral-tradition data from the evolutionar-
ily relevant forager societies of Borneo suggest that
these forager societies traded at a disadvantage with
larger agriculturalist societies 212.

277



3.4 Discussion

3.4.1 Growing recognition of paleo-complexity

Our model of human specialization and trade yields a number of predictions: some

intuitive, and others less so. These predictions pertain not just to specialization and

trade, but also to a wide range of factors in human cognition, such as social norms

(egalitarianism vs. non-egalitarianism) and cognitive biases (overconfidence vs. ratio-

nal confidence). The empirical corroboration of these predictions is currently prelimi-

nary. However, it nevertheless bolsters the growing body of evidence that Pleistocene

human societies’ propensity for complex specialization and trade is not a modern out-

lier, but an adaptation that emerged in the Holocene human groups which comprised

most of human evolutionary history30,32,133. This adaptation was crucially shaped by

ancestral humans’ selection pressure towards the optimal social accumulation of spe-

cialized knowledge.

Prediction 3 of our theory states that egalitarian groups enjoy a higher average

group fitness than non-egalitarian groups, due to innovating a larger and more opti-

mal number of specializations in the long run. This may help explain the consistent

emergence of egalitarian social norms in evolutionarily relevant forager societies. We

have found preliminary corroboration of this prediction in our analyses of the EA and

the WNAI ethnographic datasets. This adds to the body of multidisciplinary evidence

behind the dominant paradigm that egalitarianism has consistently emerged through-

out most of human evolutionary history19,63,127. Egalitarianism was adaptive despite

its consequent free-rider problem20, because among ancestral humans whose primary

selection pressure pertained to the optimal accumulation of specialized knowledge at
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the group level, egalitarianism robustly helped achieve this.

Prediction 4 of our model states that the penalty to long-run innovation imposed

by non-egalitarianism can be offset by an intermediate increase in juniors’ overcon-

fidence (in their prospects from innovating versus apprenticing). This prediction

finds preliminary corroboration in the study of Cieślik et al. 40 of how countries’ GDP

varies with their average level of entrepreneurial overconfidence. The number of spe-

cializations that an egalitarian group innovates, in contrast, is predicted to be more

robust to changes in confidence norms. This is because egalitarian groups innovate

the optimal number of specializations already for a wide range of model parameters.

The evolution of overconfidence, and of cognitive biases in general, may seem evo-

lutionarily puzzling at first glance. How did natural selection select for cognitive bi-

ases when they systematically cause errors in judgement? In fact, cognitive biases like

overconfidence—which seem like systematic flaws in how a person learns from their

individual observations—may in fact be behavioral byproducts of a strategy optimized

for the social learning of specialized knowledge178. Our theory adds to the plausibility

of this hypothesis by formally deducing that even if overconfidence is maladaptive at

the individual level, it can be robustly adaptive at the group level due to its optimiz-

ing effects on the social accumulation of specialized knowledge.

The phenomenon of human cooperation in large groups of non-kin is also an evo-

lutionary puzzle. Direct reciprocity has traditionally been proposed as an evolution-

ary explanation of non-kin cooperation, for which the theorem that cooperation can

be evolutionarily sustained in the repeated prisoner’s dilemma—the most commonly

used model of direct reciprocity—is often asserted as evidence233. However, reciprocal

cooperation is much more difficult to sustain when the repeated prisoner’s dilemma

is modified to be more biologically realistic181. Moreover, data from social animal
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species—including but not limited to humans—generally do not identify a high fre-

quency of reciprocity opportunities to be as strong of a predictor of cooperative be-

havior as predicted by the theory of direct reciprocity78,145,243. This overall suggests

that direct reciprocity, by itself, may not be sufficient to evolutionarily explain the

sheer degree to which humans cooperate.

Cultural group selection is a more viable evolutionary explanation of human ul-

trasocial cooperation25,87,197. This differs from genetic group selection, which is ham-

pered as an explanation by the negligibility of genetic differences between competing

human groups39. Indeed, the accumulated norms, specialized knowledge, and other

culturally transmissible forms of phenotype display far more variation between groups

than genetically transmissible forms of phenotype14. Our theory helps explain why

inter-group cultural variation is larger than inter-group genetic variation by specifying

a source of cultural variation other than random mutations. In our theory, different

groups endogenously specialize away from each other when making trade contact,

a pattern that consistently emerges from their members’ pursuit of their individual

fitness. Intentional specialization rooted in individual incentives is more likely to cre-

ate and maintain sizable phenotypic variation than random phenotypic changes like

genetic mutations, especially when the gene flow between groups is substantial. Cul-

tural group selection can act on this sizable phenotypic variation to robustly select for

group-cooperative phenotypes, despite their large negative effect on individual fitness

in excess of what can be explained away by direct reciprocity.

Cultural group selection is also a viable explanation for how group phenotypes that

increase group fitness by facilitating a more adaptive collective brain can robustly

persist90. Potential examples of such selection events suggested by our theory include

the hypothesized spread of norms that facilitate the maintenance of societies and

280



exchange networks with a high population size, the hypothesized spread of egalitar-

ian sharing norms throughout most ancestral human societies, and the hypothesized

spread of social norms like exogamy and shared rituals that reduce various barriers to

trade. Our model thus bolsters the hypothesis that the human propensity for complex

specialization and trade is not a modern outlier. It is an ancestral adaptation with a

crucial role in the theory of cultural group selection.

3.4.2 Limitations of the model

We constructed our model with the goal of tractably deducing predictions about how

innovation, specialization, and trade interact. For this analytic tractability, we made

a number of oversimplifying model assumptions, including the linearity of the produc-

tion function, symmetry between different guilds and their specialized goods, as well

as the homogeneity of members’ preferences (and thereby, the existence of a repre-

sentative member). Such assumptions are standard in complex fields of social science

such as international trade, where constructing mechanistically accurate models is

computationally impractical and in practice, generalizable predictions come at the ex-

pense of precision. We provide a non-exhaustive list several of these oversimplifying

model assumptions and discuss how they may be made more realistic in future vari-

ants of the model.

Cumulative cultural evolution is abstracted away

In our model, cumulative cultural evolution among guilds was modeled as a one-shot

event, in which guilds in the “emerging” phase enter the “traditional” phase and

thereby obtain a one-time increase in production efficiency. In reality, cumulative
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cultural evolution is a process in which the practices that more successful or more

ostensibly successful than status-quo practices are innovated, adopted, and dissemi-

nated. In particular, a traditional guild’s gain in production efficiency may occur as a

continual, stochastically determined sequence rather than as a one-time deterministic

event. We made the oversimplifying assumption of a one-shot efficiency increase based

on experience with the goal of a model that can simultaneously achieve the goals of

analytically tractability and the investigation of how cumulative cultural evolution

interacts with other model mechanisms.

The social norm is not an explicit evolutionary outcome

In our model, the social norm of whether the guilds in a group share their produc-

tion equally with apprentices (egalitarian) or without constraint (non-egalitarian)

is assumed to be an exogenous factor. The emergence, survival, and spread of such

a social norm is not explicitly modeled in a cultural-evolutionary manner. We note,

however, that future variants of our model that aim to explicitly model these cultural-

evolutionary dynamics may use the average group fitness for this purpose.

Preference is not an explicit evolutionary outcome

In our model, group members’ innate types are solely characterized by their prefer-

ence U. Members are born and die in our model, which may lead a standard evolu-

tionary model to incorporate the effect of natural selection: such as on members’ pref-

erence. Also, human preferences in reality are significantly dependent on the local en-

vironment, and on the preferences of associates. However, our economics-based model

abstracts away the effects of natural selection and of adaptive learning on members’
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preferences. A mechanistically realistic model would allow members’ preferences U to

undergo variations—via either genetic mutation or adaptive learning—as well as to

differentially survive and propagate (via genetic- or cultural-evolutionary channels).

However, recall that we have abstracted away this process by assuming that in equi-

librium, members’ genetic evolution and adaptive learning will cause surviving mem-

bers to have their preference coincide with the ecologically optimal utility function

U. Our approach has the advantage of epistemic modesty on how the fitness-utility

function U is determined in reality, but has the disadvantage of lacking realism of how

such a preference may be mechanistically shaped by various factors spanning genetics

and the environment.

3.4.3 Future Directions

Effect of overconfidence on societal innovation

Prediction 5 of our model states that egalitarian groups’ number of innovated spe-

cializations is more robust to changes in confidence levels. Specifically, an increased

social norm overconfidence will tend to increase societal innovation in non-egalitarian

groups. While this effect can also occur in egalitarian groups, it will tend to occur in

fewer situations.

We have not yet found empirical corroboration of the prediction that egalitarian

groups’ innovation are more robust to changes in confidence (or falsification, for that

matter). While we have been able to find datasets on groups that vary in their de-

gree of egalitarianism, as well as datasets on groups that vary in confidence norms,

it remains to compile a dataset on groups that sizably vary in both. We propose the

future collection of such a dataset in order to either corroborate or falsify the at-large
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prediction.

Further tests of our prediction that overconfidence tends to generally increase so-

cietal innovation—and thereby, group fitness—will also require a dataset on societies

that show sufficient variation in their degrees of overconfidence. While the finding of

Cieślik et al. 40 that countries’ entrepreneurial overconfidence affects their GDP val-

ues in the way predicted by our model is a valuable start, robust and non-confounded

measurements of overconfidence or underconfidence norms at the society level is a

nontrivial but doable task163. We propose the future collection of data on social

norms pertaining to the degree of overconfidence or underconfidence in various cul-

tures around the world, so that the effect of these confidence norms on societal inno-

vation may be further studied, ideally in a robust and non-confounded way.

Effect of changing cost parameters on societal innovation

We similarly propose empirical tests of another mathematical interpretation of Pre-

diction 4. Specifically, this is the prediction that egalitarian groups’ number of inno-

vated specializations is more robust to changes in emerging guilds’ real (rather than

perceived) cost values: the fixed cost and the per-unit cost. Nontrivial tests of this

prediction for real cost values (rather than perceived cost values, as a parametrization

of innovators’ overconfidence or underconfidence) would necessitate domain-specific

knowledge of the cost parameters ahead of time, such as how many labor hours are

needed for the production of a given amount of a certain good or service. In general,

corroborating further or falsifying any of our model’s predictions via additional data

would be scientifically productive.
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Incorporating resource curse

Our model’s prediction that non-egalitarian groups experience a penalty to aver-

age group fitness due to innovating too few specializations may seem counterintu-

itive. Small-scale mobile foraging groups—the egalitarian societies that exist today—

are less specialized than modern non-egalitarian societies. However, this is not a

controlled comparison, since the former is characterized by a much lower popula-

tion size than the latter. Our theory predicts that societies with larger populations

tend to innovate more specializations, a prediction corroborated by various archae-

ological data which suggest that technological complexity increases with population

size41,88,111,119,189. The increasing effect of population size on innovation can more-

than-offset the decreasing effect due to non-egalitarian social norms. The question of

why non-egalitarianism consistently emerges in modern societies (and agricultural so-

cieties in general) may be studied in future work, by incorporating into our model the

resource curse and other additional causal mechanisms.
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3.5 Supplementary Information: The model

Suppose first that there is a single group, whose population is modeled by a volume.

It is comprised of numerous members, each of whom has infinitesimal volume in the

population. Let Z = [0,L] model the population of these members, where L > 0

denotes the total volume of all members in the population. In other words, the quan-

tity L represents the normalized approximation of the group’s population size. For

conciseness, we call L the population size. Members are divided into two overlapping

generations: seniors and juniors. Juniors who survive to the next time step become

seniors, whose experience improves the productivity of their specialization.

3.5.1 Production

The group’s members coordinate on a number of specializations (e.g., hunting, fishing,

gathering), each of which manifests as a guild which cooperatively produces the cor-

responding specialized good (e.g., meat, fish, gathered food items). Each specialized

guild contains a finite number of members. As a result, since the group’s population

size is modeled by a continuum, the set of specializations must also be modeled by a

continuum. Let the continuum I = [0,∞) denote the set of all possible specializations.

The index i ∈ I will be used to mean, depending on the context, either the given spe-

cialized guild or the corresponding specialized good that is produced by the guild.

We assume that specialized guilds come in two types. The first type is a recently

emerging guild. We assume that recently emerging guilds are inefficient, due to their

lack of experience. The second type is a traditional guild, whose methods of produc-

tion have been passed down from generation to generation. We assume that the tradi-
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tional guilds, compared to their recently innovated counterparts, produce with higher

efficiency due to their experiential learning. Traditional guilds are led by their senior

leaders, who take on junior apprentices. This is the mechanism of cultural learning.

The remaining juniors coordinate to create and produce in new guilds. This is the

mechanism of innovation.

Suppose a specialized guild i was recently innovated. We assume that the total

amount of good i produced by this recently emerging guild is equal to the value x(i)

which solves the equation

#(i) = α + βx(i). (3.25)

Observe that the production function (3.26) is characterized by increasing returns.

Specifically, there is a fixed cost, denoted by α. The fixed cost denotes the amount

of time that members of the specialized guild i have to collectively spend. For ex-

ample, the= specialized guilds of mobile forager bands may have needed to spend a

fixed amount of time and resources to survey the current area, to create the necessary

tools, and to invest in other overhead costs. The per-unit cost is denoted by β. In the

above example, the per-unit cost denotes the average amount of goods created by one

guild member in one unit of time after the phase of surveying the area and developing

the cooperative foraging strategy.

On the other hand, suppose a specialized guild i is a traditional guild. We assume

that the total amount of good i produced by this traditional guild is equal to the

value x(i) which solves the equation

#(i) = α̂ + β̂x(i). (3.26)

Here, we assume that the fixed cost α̂ and the per-unit cost β̂ are assumed to be lower
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than their counterparts for recently emerging guilds: that α̂ ≤ α and β̂ ≤ β (with at

least one of the inequalities assumed to hold strictly).

After every specialized guild produce its respective good, the good is distributed

among the guild members. The ratio of the distribution is determined by the group’s

social norm. In non-egalitarian groups, senior leaders have the right to give each ju-

nior apprentice a smaller proportion of their guild’s produced good. Thus, they will in

equilibrium pay each junior apprentice the proportion that would make the apprentice

indifferent between apprenticing at a generic traditional guild and founding a generic

emerging guild. In other words, the exchange value of the proportion allocated to an

apprentice of a traditional guild must be equal to that of the proportion allocated to

a founder of an emerging guild.

However, in egalitarian groups, senior leaders do not have the right to give each

junior apprentice any amount less than they accord each of themselves. Consequently,

in equilibrium, every traditional guild shares equally, even among both senior leaders

and apprentices.

3.5.2 Preference

A bundle of goods c ∈ [0,∞)I is defined by the collection of nonnegative numbers c(i),

each of which denotes the amount of the specialized good i corresponding to guild i.

An agent’s fitness from obtaining the bundle of goods c ∈ [0,∞)I is

U(c) =
∫

i∈I
c(i)θdi for θ > 0. (3.27)
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It is a utility function on the space

C = {c ∈ L2(I) : c(i) ≥ 0 for all i ∈ I} (3.28)

of potentially consumed information-good bundles. Here, L2(S) denotes the normed

space of square-integrable, Lebesgue-measurable functions S → R, which comes with

the caveat that two Lebesgue-measurable functions f1, f2 are considered equivalent if

they only differ on a measure-zero subset.

In the above, “fitness” denotes some combination of cultural fitness and genetic

fitness, the exact ratio of which we are agnostic about. The combination is likely

weighted towards the former, given the compelling body of evidence that cultural

evolution is the primary adaptive mechanism acting on human phenotypes. In equi-

librium, every agent’s decision-making maximizes their fitness function. Thus, we use

the terms “fitness function” and “utility function” interchangeably.

When θ < 1, the fitness function U has the property of increasing returns to special-

ization. Specifically, consider subsets S1 ! S2 ! I of positive measures n1 < n2; without

loss of generality, we can let S1 = [0, n1] and S2 = [0, n2]. The property of increasing

returns to specialization is that for any C ∈ (0,∞),

∫ n1

0
Cθdi <

∫ n2

0

(
Cn1
n2

)θ
di. (3.29)

In other words, the fitness function U strictly prefers spreading out a fixed number

of units for consumption within the larger subset S2 over doing so within the smaller

subset S1.

On the other hand, when θ > 1, the fitness function U has the property of increas-
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ing returns to homogeneity. The definition of this property is given by replacing the

inequality (3.29) with the reverse inequality

∫ n1

0
Cθdi >

∫ n2

0

(
Cn1
n2

)θ
di. (3.30)

Finally, when θ = 1, the fitness function U is indifferent between increasing returns

to specialization and increasing returns to homogeneity. It prioritizes the summed

amount of all goods, without distinguishing between distinct goods.

Throughout this paper, we will assume that θ < 1 unless otherwise stated. This

assumption represents the case in which the returns to specialization are increasing:

the case where niche specialization and mutually beneficial trade occurs.

For tractability, we have assumed symmetry among the possible goods i ∈ I in

our fitness utility function U. Also, we have implicitly assumed that the mechanisms

causing increasing returns to specialization and those causing increasing returns to

homogeneity can be aggregated into a unidimensional parameter θ > 0. We note

that these are significant oversimplifications, and that our model can be generalized to

incorporate realistic variability in these and other aspects.

3.5.3 Exchange

Without loss of generality, suppose that the subset of traditional guilds is [0, ntrad)

and the subset of emerging guilds is [ntrad, n).

If i ∈ [ntrad, n) denotes an emerging guild, say comprising a population size of #(i)

larger than the fixed cost α, it produces

x(i) = #(i)− α
β (3.31)
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units of goods i. On the other hand, if the producers of a traditional guild i ∈ [0, ntrad),

say comprising a population size of #(i) larger than the fixed cost α̂, it produces

x(i) = #(i)− α̂
β̂

(3.32)

units of good i. We require that #(i) is a Lebesgue-measurable function that satisfies

∫

i∈I
#(i) = L. (3.33)

Simultaneously, the specialized guild producing each good i offers a relative price

p(i) : [0, n] → [0,∞) for their product. The function p(i) is assumed to be contained

in the space L2([0, n]) of square-integrable functions. Then, the members maximize

their utility by voluntarily exchanging their produced goods with each other accord-

ing to the relative price vector p(i). The total value that a producer of good i has to

exchange is given by the wage function

w(i) = p(i)x(i)
#(i) . (3.34)

Assume that w(i) = W is the total exchange value of the produced goods that an

agent starts with. After the agent’s net exchange, their bundle of goods is assumed to

solve the fitness-maximization program:

max
c(i)∈C

U (c) (3.35)
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with respect to the constraint

∫

i∈[0,n]
p(i)c(i)di = W. (3.36)

The solution c = c∗ of the fitness-maximization program (3.35) must satisfy the

continuum version of the Lagrange-multiplier necessary condition. The necessary con-

dition is that the Gâteaux derivative of the Lagrangian functional

L[c, λ] =
∫

i∈[0,n]

(
c(i)θ − λp(i)c(i)

)
di (3.37)

with respect to each variable c(i) equals zero at c = c∗. For each variable c(i), the

Gâteaux derivative with respect to c(i) is given by

δL[c, λ]
δc(i) = θc(i)θ−1 − λp(i). (3.38)

Setting this equal to zero, we obtain the necessary condition

θc(i)θ−1 = λp(i). (3.39)

The collection of necessary conditions for each variable c(i) uniquely determines the

fitness-maximizing bundle of goods c = c∗ that the individual achieves during the

exchanging phase. The explicit formula for c∗ further yields an explicit formula x(p)

for every guild’s optimal amount of goods to produce when their goods are priced at

p. This is done as follows.
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First, the necessary condition (3.39) is rewritten as

c(i) =
(
λp(i)
θ

)− 1
1−θ

. (3.40)

This determines the relative amount consumed of each good i,

c(i)
c(j) =

(
p(j)
p(i)

) 1
1−θ

. (3.41)

Rearrange (3.41) to get

c(i) = c(j)
(
p(j)
p(i)

) 1
1−θ

. (3.42)

Then, multiply by p(i) and integrate to get

∫ n

0
p(i)c(i)di = c(j)p(j)

1
1−θ

∫ n

0
p(i)1−

1
1−θ dt. (3.43)

Note that the left-hand side of (3.43) is precisely W. So, we get

p(j)−
1

1−θ

(∫ n

0
p(i)−

θ
1−θ di

)−1
W = c(j). (3.44)

Take the values of the relative price function p(·) and the values of the output func-

tion c(·) to be fixed, except for the values p(j) and x(j). This determines the starting

exchange value Wa of agent a by

Wa =

∫

i∈[0,j)∪(j,n]
p(i)ca(i)di. (3.45)
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The expression (3.44) we obtained before can then be written as

ca(j) = p(j)−
1

1−θ

(∫ n

0
p(i)−

θ
1−θ di

)−1
Wa. (3.46)

Take the integral of (3.46) over all members a, which yields

Ctotal(j) = p(j)−
1

1−θ

(∫ n

0
p(i)−

θ
1−θ di

)−1
Wtotal, (3.47)

This gives a formula for the optimal amount of goods xj(p) to produce, assuming a

relative price value of p.

xj(p) = p−
1

1−θ

(∫ n

0
p(i)−

θ
1−θ di

)−1
Wtotal, (3.48)

Size of emerging guilds

Suppose i is an emerging guild, say with number of members

# = α + βx. (3.49)

Their optimal guild size x is determined by the optimal guild-size program:

maximize
pxj(p)

α + βxj(p)
subject to p > 0. (3.50)

The maximum is obtained at the point where the derivative is zero:

∂

∂p
pxj(p)

α + βxj(p)
=

(
α + βxj(p)

) (
xj(p) + p∂xj∂p (p)

)
− pxi(p)β

∂xj
∂p (p)

(
α + βxj(p)

)2 = 0. (3.51)
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This is simplified to

(
α + βxj(p)

)


 xj(p)
∂xj
∂p (p)

+ p



− βpxi(p) = 0. (3.52)

The function xj(p) is given by p−
1

1−θ times a constant. Thus, we have

xj(p)
∂xj
∂p (p)

= −p(1− θ). (3.53)

Substituting this into (3.52), we get

∂

∂p
pxj(p)

α + βxj(p)
=

αθ− β(1− θ)xj(p)
(
α + βxj(p)

)2 . (3.54)

This derivative is zero if and only if

xj =
αθ

β(1− θ) . (3.55)

This is the optimal size of emerging guilds, the size that maximizes the exchange

value accorded to each member.

Note. We remark that the above logic relies on the assumption that θ < 1. What

happens when θ ≥ 1 instead? In that case, the derivative (3.54) is positive whenever p

and xj(p) are positive. This is because the numerator

αθ− β(1− θ)xj(p) (3.56)

is positive. Thus, a larger guild size will always yield more exchange value per mem-

ber than a smaller guild. This intuitively makes sense. With either neutral or decreas-
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ing returns to specialization, it is in the individuals’ interest to coordinate on a small

number of populous guilds. This has the benefit of mitigating the inefficiency posed

by the fixed cost and, for the case of strictly decreasing returns to specialization, of

achieving the consequently increasing returns to homogeneity. Since we are interested

in studying groups of people who exchange specialized goods for their mutual benefit,

we will return to the case of θ < 1 (increasing returns to specialization, decreasing

returns to homogeneity) for the remainder of this paper.

Size of traditional guilds

By the same argument as above, the optimal size of traditional guilds in egalitarian

groups is given by

#j = α̂ + β̂xj =
α̂

1− θ . (3.57)

This is because the optimal amount to produce per member is given by

xj =
α̂θ

β̂(1− θ)
. (3.58)

However, the optimal size of traditional guilds in non-egalitarian groups must be

computed differently. The total exchange value allocated to each innovator is

winn =
total value produced
number of producers =

pinnxinn

#inn =
pinnθ
β . (3.59)

The seniors need to promise at least this much to each junior apprentice. As a result,

the seniors maximize the optimal guild-size program:

maximize
pxj(p)− winn(α̂ + β̂xj(p)− #trad(j))

#trad(j) subject to p > 0. (3.60)
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The maximizing price p must solve the first-order condition

xj(p) + p∂xi
∂p (p)− winnβ̂∂xi

∂p (p) = 0 (3.61)

Substitute in the expression from before,

xj(p)
∂xj
∂p (p)

= −p(1− θ), (3.62)

to get the maximizing price:

ptrad =
winnβ̂
θ =

pinnβ̂
β . (3.63)

Given the inequality β̂ ≤ β, traditional guilds’ goods have an equal or lower price

ptrad =
pinnβ̂
β (3.64)

than that of the emerging guilds’ goods, pinn.

From the optimal size of emerging guilds,

xinn =
αθ

β(1− θ) ⇐⇒ #inn = α + βxinn =
α

1− θ , (3.65)

we can compute the optimal size of traditional guilds in non-egalitarian groups:

xtrad =
αθ

β(1− θ)

(
β
β̂

) 1
1−θ

⇐⇒ #trad = α̂ + β̂xtrad = α̂ + αθ
1− θ

(
β
β̂

) 1
1−θ−1

. (3.66)
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Juniors in egalitarian groups prefer apprenticing to innovating

In non-egalitarian groups, seniors pay their apprentices the precise proportion of the

produced goods that would make a junior person indifferent between apprenticing

and innovating. What about in egalitarian groups? We demonstrate below that in

egalitarian groups, juniors strictly prefer apprenticing to innovating. Thus, the seniors

will open up the optimal number of apprentice slots that each pay an equal share,

juniors will rush and compete to fill them, and the remaining juniors will cooperate to

innovate new guilds.

The trade value of a new guild’s equal share is given by

winn =
pinnxinn

#inn =
pinn

(
αθ

β(1−θ)

)

α
1−θ

=
θpinn

β . (3.67)

Similarly, the trade value of an old guild’s equal share is given by

wtrad =
ptradxtrad

#trad =
ptrad

(
α̂θ

β̂(1−θ)

)

α̂
1−θ

=
θptrad

β̂
. (3.68)

Apprenticing is strictly better than innovating if and only if

θpinn

β <
θptrad

β̂
, (3.69)

which can be simplified to

β̂pinn < βptrad. (3.70)

Recall from the formula (3.48) that the optimal amount xj(p) to produce of a good
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priced at p is given by

xj(p) = p−
1

1−θ · constant. (3.71)

Thus, it follows that

pinn = ptrad
(
α̂β
αβ̂

)1−θ

. (3.72)

Substituting (3.72) into (3.70), we obtain that apprenticing is strictly better than in-

novating if and only if

α̂1−θβ̂θ < α1−θβθ. (3.73)

This is always true, since α̂ ≤ α and β̂ ≤ β, with one of the two inequalities holding

strictly.

Thus, the exchange value of the goods a junior person would gain from apprentic-

ing is strictly higher than that from innovating. Juniors will first fill up the appren-

tice slots, and only after these slots are all filled up will they choose to innovate.

Juniors who are fortunate enough to apprentice earn more than juniors who are

left out and forced to innovate. This is because junior apprentices, unlike junior inno-

vators, enjoy the strictly better benefit of equally sharing with seniors of traditional

guilds, whose production is more efficient than emerging guilds. Counterintuitively,

the cause of this economic inequality among juniors is the group’s egalitarian social

norm (equal sharing within each guild, even between seniors and juniors).

3.5.4 Multigenerational dynamics

The discussion above pertains to the group’s outcome (of coordination, production,

and exchange) in a single generation of the model. In the following discussion, we will

model how the group’s outcome changes over multiple generations.
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Let L(t) denote the population of the group at the tth generation, for t ∈ N.

Suppose that the group, at each time step t ∈ N, is comprised of an senior genera-

tion Lsenior(t) and a junior generation Ljunior(t). When the time step t is incremented,

the following occurs:

1. Members of both the senior generation and the junior generation give birth to

the new junior generation Ljunior(t+ 1).

2. All of the previous senior generation Lsenior(t), and some proportion φ(t) ∈ [0, 1)

of the previous junior generation Ljunior(t) dies off.

3. The remaining proportion 1− φ(t) becomes the next senior generation Lsenior(t+

1).

We assume that as t → ∞, the population size L(t) converges to a limit L̄. Both

endogenous and endogenous mechanisms will factor into the limiting population size L̄

in complex and interrelated ways.

We also assume that the number of surviving seniors in each guild is smaller than

the equilibrium size of traditional guilds #trad. The benefit of this assumption is that

the proportion of guilds that are traditional converges to a well-defined limit of 1, of a

full proportion. This is helpful for exposition, although an analogous analysis can be

straightforwardly done without assuming that the number of surviving seniors in each

guild is small.
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Egalitarianism is robustly optimal in the long run

Consider a group comprised solely of guilds with size #. The representative group

member’s fitness is given by the function

u(#) =
∫ n

0
c(i)θdi = ncθ = L

#

(
(#− α̂)/β̂

L

)θ

=
(#− α̂)θ

#

L1−θ

β̂θ
. (3.74)

Observe that u(#) is a non-monotonic function that is maximized at # = α̂
1−θ . Specifi-

cally, it is increasing in the region # < α̂
1−θ and decreasing in the region # > α̂

1−θ .

In the limit, the proportion of guilds that are traditional rather than innovated in-

creases to 1. Thus, the group’s limiting average fitness is a function of the equilibrium

size #trad of traditional guilds.

Recall that in egalitarian groups, the limiting number of specialized guilds is given

by L/#trad for

#trad =
α̂

1− θ . (3.75)

Thus, the limiting average group fitness is u
(

α̂
1−θ

)
, the maximum possible value.

Colloquially, egalitarianism achieves the long-term niche diversity that maximizes

average fitness. A social norm of equal sharing within each guild leads group members

to innovate the optimal number of specialized guilds in the long run, which allows the

group to capture the maximum possible long-term benefits from innovated specializa-

tion.

In contrast, a non-egalitarian group innovates a suboptimally low number of spe-

cialized guilds in the long run. Recall that the equilibrium size of traditional guilds in
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non-egalitarian groups is

#trad = α̂ + αθ
1− θ

(
β
β̂

) 1
1−θ−1

. (3.76)

Since we have assumed that α̂ ≤ α and β̂ ≤ β with at least one of these two inequalities

holding strictly, we see that the limiting guild size (3.76) is larger than the optimal

value, α̂
1−θ . Equivalently, the limiting number of guilds in the group is smaller than

the optimal value. The degree of suboptimality increases with how much α̂ is smaller

than α, as well as with how much β̂ is smaller than β.

Colloquially, a non-egalitarian social norm that allows seniors to pay their appren-

tices a lower share causes the group to innovate a suboptimally low number of special-

izations in the long run. If the parameters of the group and its environment are such

that an emerging guild is nearly as efficient as a traditional guild, then the degree of

suboptimality is low. However, if the parameters are such that an emerging guild is

much less efficient than a traditional guild, then the degree of suboptimality is high.

Moderately overconfident juniors can help offset the innovation penalty posed by

non-egalitarianism

Suppose we modify our model so that the group’s juniors believe that the fixed cost

and the per-unit cost of an emerging guild are not necessarily equal to their true re-

spective values. In this interpretation, αperceived and βperceived denote the perceived

fixed cost and per-unit cost, in the perception of juniors. We distinguish this from

α = αtrue and β = βtrue, the true values of these respective parameters.

The size #trad of traditional guilds in non-egalitarian groups changes when changing
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either αperceived or βperceived. It changes from

α̂ + αθ
1− θ

(
β
β̂

) 1
1−θ−1

(3.77)

to

#∗ = α̂ +
αperceivedθ

1− θ

(
βperceived

β̂

) 1
1−θ−1

. (3.78)

On the other hand, the size of traditional guilds in egalitarian groups is situation-

ally determined. A similar argument to the one presented in (3.73) yields that ap-

prenticing is strictly better than innovating for juniors if and only if

α̂1−θβ̂θ < α1−θ
perceivedβ

θ
perceived. (3.79)

If this inequality holds, then the equilibrium size #∗ is unchanged; it is given by

#∗ =
α̂

1− θ . (3.80)

If this inequality holds in the other direction, however, traditional guilds must pay

strictly higher than an equal share to incentivize juniors to apprentice. They must

pay the precise share at which juniors are indifferent between apprenticing and in-

novating, just like the traditional guilds of non-egalitarian groups, In this case, the

equilibrium size #∗ of traditional guilds in egalitarian groups is given by (3.78), just

like that of non-egalitarian groups.

Recall that in the limit, the proportion of guilds that are traditional rather than

innovated increases to 1. Thus, the group’s limiting average fitness is a function of the

equilibrium size #∗ of traditional guilds.
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In non-egalitarian groups, the equilibrium size #∗ of traditional guilds granularly

changes with respect to αperceived and βperceived. This means that the group’s long-

term limiting average fitness changes as well. As either αperceived or βperceived increases,

the equilibrium size #∗ of traditional guilds increases, because apprentices are less ex-

pensive to hire. Thus, the amount of innovated specialization that happens in the

long run decreases, making it more suboptimally low than before.

On the other hand, as either αperceived or βperceived decreases, the equilibrium size #∗

of traditional guilds decreases, because apprentices are more expensive to hire. Thus,

the amount of innovated specialization that happens in the long run increases. The

region of increase can be divided into two parts:

α̂ +
αperceivedθ

1− θ

(
βperceived

β̂

) 1
1−θ−1

>
α̂

1− θ (3.81)

and

α̂ +
αperceivedθ

1− θ

(
βperceived

β̂

) 1
1−θ−1

<
α̂

1− θ . (3.82)

In the first region (3.81), decreasing either αperceived or βperceived results in the group’s

long-term average fitness increasing, and thereby becoming closer to the optimal

value. In the second region (3.82), decreasing either αperceived or βperceived results in

the group’s long-term average fitness decreasing, and thereby becoming further from

the optimal value. In between these two regions, the optimal long-term average fitness

is achieved.

In egalitarian groups, however, the equilibrium size #trad of traditional guilds does

not always change from the optimal value. Suppose that either αperceived or βperceived
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increases. The region of increase can be divided into two parts:

α̂1−θβ̂θ < α1−θ
perceivedβ

θ
perceived. (3.83)

and

α̂1−θβ̂θ > α1−θ
perceivedβ

θ
perceived. (3.84)

In the first region (3.83), we have seen that decreasing either αperceived or βperceived

does not change the equilibrium guild size #trad. In other words, the fact that egalitar-

ianism achieves the optimal amount of innovated specialization is robust to juniors’s

irrationalities.

Decreasing either αperceived or βperceived to the point of reaching the second region

(3.84) does change the equilibrium guild size #trad. This is because in this region, a

traditional guild’s equal share is insufficient to convince juniors to apprentice rather

than innovate. Thus, traditional guilds must pay juniors the precise share at which

they are indifferent between apprenticing and innovating. This leads the equilibrium

size #trad of traditional guilds to suboptimally increase to (3.78), same as the uncondi-

tional equilibrium size of traditional guilds in non-egalitarian groups. This makes the

long-term degree of specialized innovation to be suboptimally high, where the subopti-

mality is due to an excessive loss of productivity from the fixed cost requisite for each

specialized guild.

3.5.5 Inter-group trade: A two-group model

To investigate the properties of inter-group trade, we consider a model of two groups

which have the option of trading with each other. The two groups may potentially
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have a trade barrier. This notion can geographic barriers to trade. It can also rep-

resent a linguistic trade barrier between neighboring ethnolinguistic groups or sub-

cultures, because such a trade barrier would make trade more difficult. To illustrate,

trade patterns within Switzerland and external counterparts show that linguistic dif-

ferences causally decreases trade volume55. This finding was also corroborated by

the study of Melitz 153 , who moreover found that literacy and linguistic diversity at

home cause foreign trade to increase. Additionally, a study of 67 countries found that

greater cultural differences between trade partners tend to decrease trade229.

Denote the two groups by Group 1 and Group 2, say of populations L1 and L2, re-

spectively. Suppose that for k ∈ {1, 2}, the traditional guilds of Group j produce ac-

cording to the productivity function

#(i) = α̂k + β̂kx(i) (3.85)

and the emerging guilds of Group j produce according to the productivity function

#(i) = αk + βkx(i). (3.86)

We also allow each group to have a social norm that can vary in whether guilds are

egalitarian, the degree of overconfidence or underconfidence of juniors, and even po-

tentially other dimensions of variation. We let #trad
k and #inn

k denote the equilibrium

sizes of traditional guilds and emerging guilds in Group j. We have implicitly assumed

that the social norm of Group j is such that the equilibrium size #trad
k of traditional

guilds and the equilibrium size #inn
k of emerging guilds are well-defined quantities.

Moreover, we suppose that the trade barrier between the two groups is represented
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by an iceberg transport cost, meaning that one unit of a good reduces to 1/τ when

transported from one group from another. Here, we assume that τ ≥ 1, indicating that

the trade barrier impedes the exchange of goods between groups.

For k ∈ {1, 2}, let ptrad
k denote the unit price of a traditional guild’s good produced

in Group k, and pinn
k denote that of an emerging guild’s good produced in Group k.

In the limit, the proportion of traditional guilds in both groups increases to 1. Thus,

only the price values pk = ptrad
k of traditional guilds’ goods matter in the limit. Mem-

bers of Group 1 can obtain goods produced in Group 1 at a price of p1, and goods pro-

duced in Group 2 as a price of τp2. Members of Group 2 can obtain goods produced

in Group 2 at a price of p2, and goods produced in Group 1 as a price of τp1. Simi-

larly, only the size #k = #trad
k of traditional guilds matter in the limit.

Recall the formula (3.41) for the ratio between the amounts consumed of two goods,

c(i)
c(j) =

(
p(j)
p(i)

) 1
1−θ

. (3.87)

It follows that
c1,1
c1,2

=

(
τp2
p1

) 1
1−θ

(3.88)

and
c2,1
c2,2

=

(
p2
τp1

) 1
1−θ

, (3.89)

where ck,m denotes the amount consumed of an good produced by group m by an

agent of group k.

In the limit, there are n1 = L1/#1 types of goods in Group 1 and n2 = L2/#2 types of
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goods in Group 2. It follows that among the total value

n1p1
#1 − α̂1
β̂1

(3.90)

of goods produced by Group 1, a proportion

γ1 =
n2τp2c1,2

n1p1c1,1 + n2τp2c1,2
(3.91)

is spent on the consumption of Group 2’s goods. Substituting in (3.88), we get

γ1 =
n2τp2

n2τp2 + n1p1
(
τp2
p1

) 1
1−θ

. (3.92)

We thus obtain that the wage amount

n2τp2

n2τp2 + n1p1
(
τp2
p1

) 1
1−θ

n1p1
#1 − α̂1
β̂1

(3.93)

is spent on the consumption of Group 2’s goods.

By an analogous argument, the total wage of Group 2 is

n2p2
#2 − α̂2

β̂2
, (3.94)

and of it, the proportion

γ2 =
n1τp1c2,1

n2p2c2,2 + n1τp1c2,1
(3.95)
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is spent on the consumption of Group 1’s goods. Substituting in (3.89), we get

γ2 =
n1τp1

n1τp1 + n2p2
(
τp1
p2

) 1
1−θ

n2p2
#2 − α̂2

β̂2
(3.96)

We thus obtain that the wage amount

n1τp1

n1τp1 + n2p2
(
τp1
p2

) 1
1−θ

n2p2
#2 − α̂2

β̂2
(3.97)

is spent on the consumption of Group 1’s goods.

In equilibrium, every exchange between the two groups must be between equal val-

ues. It follows that the value imported and the value exported must coincide: that

(3.93) equals (3.97). This yields the condition

(L2/#2)τp2

(L2/#2)τp2 + (L1/#1)p1
(
τp2
p1

) 1
1−θ

(L1/#1)p1
#1 − α̂1
β̂1

=
(L1/#1)τp1

(L1/#1)τp1 + (L2/#2)p2
(
τp1
p2

) 1
1−θ

(L2/#2)p2
#2 − α̂2

β̂2
. (3.98)

Simplifying, we obtain

1

(L2/#2)τp2 + (L1/#1)p1
(
τp2
p1

) 1
1−θ

#1 − α̂1
β̂1

=
1

(L1/#1)τp1 + (L2/#2)p2
(
τp1
p2

) 1
1−θ

#2 − α̂2
β̂2

. (3.99)

Note that when p2 increases relative to p1, the left-hand side decreases while the right-

hand side increases. Thus, there is precisely one ratio p2/p1 that solves the above
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equality condition.

Comparative statics of the proportion of goods exported

The first comparative-statics result we will prove pertains to the proportion of each

group’s goods that is exported to the other group. We will show that γ1 and γ2 are

both strictly decreasing in τ. We compute

∂

∂τγ1 =
n2p2

(
n2τp2 + n1p1

(
τp2
p1

) 1
1−θ
)
− n2τp2

(
n2p2 + 1

1−θn1p1τ
1

1−θ−1
(
p2
p1

) 1
1−θ
)

(
n2τp2 + n1p1

(
τp2
p1

) 1
1−θ
)2

=
−
(

1
1−θ − 1

)
n2p2n1p1

(
τp2
p1

) 1
1−θ

(
n2τp2 + n1p1

(
τp2
p1

) 1
1−θ
)2 < 0. (3.100)

A similar computation shows that ∂
∂τ γ2 < 0, as well.

Comparative statics as the population ratio varies

The second comparative-statics result we will prove pertains to two groups of differ-

ent population sizes and equal values for the other parameters. Suppose that the two

groups share the same fixed cost for traditional guilds α̂ = α̂1 = α̂2 and the same per-

unit cost for traditional guilds β̂ = β̂1 = β̂2. Moreover, we suppose that the two groups’

respective social norms are such that they share the same equilibrium size of tradi-

tional guilds, # = #1 = #2. However, we suppose that the two groups’ population sizes,

L1 and L2, are not necessarily the same.

Without loss of generality, suppose that p2 ≥ p1. Then, let y = p2/p1. Similarly,

we let z = n2/n1 = L2/L1. We will let the population ratio z vary, and observe its
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comparative-statics effect on the price ratio y.

We can simplify the equality (3.99) to

1
z+ (τy)

1
1−θ−1

=
y

1+ z
(
τ
y

) 1
1−θ−1

, (3.101)

and further to

0 =

(
1+ z

(
τ
y

) 1
1−θ−1

)
− y
(
z+ (τy)

1
1−θ−1

)
. (3.102)

This can be rearranged to

zy1−
1

1−θ
(
τ

1
1−θ−1 − y

1
1−θ
)
= y

1
1−θ τ

1
1−θ−1 − 1 (3.103)

of equation (3.102). Since y ≥ 1 and τ ≥ 1, the right-hand side of (3.103) is nonnega-

tive, and zero if and only if y = τ = 1. Thus, the same applies to the left-hand side of

(3.103): we have

τ
1

1−θ−1 ≥ y
1

1−θ . (3.104)

with equality if and only if τ = y = 1.

We can now show via implicit differentiation that y is strictly increasing with re-

spect to z. Differentiate (3.102) with respect to z to get

0 =
1
τy

(((
τ
y

) 1
1−θ

− τ
)
y2

− z
(
τ+

(
1

1− θ − 1
)(

τ
y

) 1
1−θ
)
y∂y
∂z −

1
1− θ (τy)

1
1−θ

∂y
∂z

)
. (3.105)
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Solving for ∂y
∂z , we obtain

∂y
∂z =

((
τ
y

) 1
1−θ − τ

)
y2

z
(
τ+

(
1

1−θ − 1
)(

τ
y

) 1
1−θ
)
y+ 1

1−θ (τy)
1

1−θ

. (3.106)

It follows from (3.104) that
(
τ
y

) 1
1−θ

− τ ≥ 0, (3.107)

with equality if and only if τ = y = 1. Thus, the same applies to the expression for ∂y
∂z ,

given by (3.106). We have ∂y
∂z ≥ 0, with equality if and only if τ = y = 1.

Moreover, we check the limit of (3.102) as z → ∞. This yields the equality

0 = lim
z→∞

(
zy1−

1
1−θ
(
τ

1
1−θ−1 − y

1
1−θ
)
−
(
y

1
1−θ τ

1
1−θ−1 − 1

))
. (3.108)

It follows that

0 = lim
z→∞

(
y

1
1−θ τ

1
1−θ−1 − 1

)
. (3.109)

Solving for the limit, we obtain

lim
z→∞

= τθ, (3.110)

the threshold value. We thus see that the domain z ∈ [1,∞) is mapped bijectively to

the range y ∈ [1, τθ) in a monotonically increasing way.

Colloquially, we have shown the following. First, the larger group produces goods

of a higher relative price than the smaller group. Second, the ratio y between the two

groups’ relative prices is strictly increasing in the ratio z of their populations. Finally,

the ratio y between the two groups’ relative prices converges to the finite value τθ as

the ratio z of their populations is taken to infinity.
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The ratio y between the two groups’ relative prices quantifies how much more ex-

change value the good of an agent of the more populous group has. It is intuitive that

the maximum possible value for this ratio, τθ, is increasing in τ. An increase in the

trade barrier τ would significantly reduce the effective market for the less populous

group’s goods. However, it would only slightly reduce the effective market for the

more populous group’s goods.

A slightly less obvious fact is that the maximum possible ratio, τθ, decreases when

love-of-variety increases (when θ decreases), although this can also be intuitively ex-

plained. An increase in the love-of-variety increases the willingness of the more pop-

ulous group to—despite the trade barrier—trade for the goods of the less populous

group.

Comparative statics as the trade barrier varies

The third comparative-statics result we will prove again pertains to two groups of

different population sizes and equal values for the other parameters. The result is

about how the price ratio of a foreign good to a domestic good varies with respect to

the trade barrier τ.

Consider

τy = τp2
p1

, (3.111)

the effective price ratio of a foreign good to a domestic good in the less populous

Group 1. Since y is at least weakly increasing in τ, it follows that (3.111) is strictly

increasing in τ. In other words, for members of the less populous Group 1, the effec-

tive price ratio of a foreign good to a domestic good is higher when the trade barrier

is higher.
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Next, consider
τ
y =

τp1
p2

, (3.112)

the effective price ratio of a foreign good to a domestic good in the less populous

Group 1. We can show that like (3.111), the ratio (3.112) is also strictly increasing

in τ. In other words, for members of the more populous Group 2, the effective price

ratio (3.112) of a foreign good to a domestic good is higher when the trade barrier is

higher. To demonstrate this, substitute g = τ
y into (3.102), which yields the equality

0 =
(
1+ zg

1
1−θ−1

)
− τ

g

(
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(
τ2
g

) 1
1−θ−1)

. (3.113)

Differentiating with respect to τ, we obtain
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We can then solve for ∂g
∂τ ,

∂g
∂τ =

1

τ
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) 1
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1
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g
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. (3.115)

Since this expression is positive, we have shown that ∂g
∂τ > 0.

Increasing the trade barrier increases the base price of the more populous group’s
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goods compared to that of the less populous group’s goods. However, this effect is

outweighed by the increase in the trade barrier itself. From the perspective of the less

populous group’s members, the effective price of the more populous group’s goods is

monotonically increasing with respect to the size of the trade barrier.

Trade barrier decreases group members’ utility

Finally, we show that the members of both the more populous Group 2 and the less

populous Group 1 have utility strictly decreasing in the trade barrier τ. This follows

from the fact that the price of foreign goods in terms of domestic goods, given respec-

tively by (3.111) and (3.112), are both strictly increasing in τ.

Indeed, without loss of generality, we can assume that the equilibrium we have

computed occurs sequentially via the following exchanges. First, all members pro-

duce their respective goods. This yields the starting allocation. Second, all members

of Group 1 exchange within the group to obtain equidistributed goods, as do all mem-

bers of Group 2. Because this step homogenizes members’ allocations within each

group, we can without loss of generality consider each group to be comprised of a rep-

resentative agent. Finally, the representative agent of Group 1 and that of Group 2

exchanges fractions of their respective allocations.

We can without loss of generality assume that the exchanged items are two discrete

units: a collection of one unit of each Group 1 good, and a collection of one unit of

each Group 2 good. For the representative agent of Group 1, an increase in τ results

in a strict increase in the price of the latter in terms of the former, (3.112). This re-

sults in a strict decrease in the maximum utility achievable by the starting allocation,

since the utility function U is concave and increasing. An analogous argument with

(3.111) shows the same result for the representative agent of Group 2. Thus, we have
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shown that the representative members’ utility values strictly decrease in the trade

barrier τ.

3.6 Supplementary Information: Empirical results

The present paper introduces a theoretical framework that aims to understand the

process of cultural evolution through the examination of various features of human

behavior, including social learning, innovation, self-confidence, sharing behavior, and

inter-group trade. By integrating these aspects, the model generates a range of po-

tentially testable predictions. These predictions are theoretically elaborated upon in

Section 3.3 and summarized in Tables 3.1 and 3.2.

In this section, we present an empirical analysis of several of these predictions us-

ing data from the Ethnographic Atlas, abbreviated as the EA dataset12,22,76,118,121,158;

and the Western North American Indians, abbreviated as the WNAI dataset112–114,118.

Specifically, the analysis corroborates the following predictions.

Prediction 1: Groups with a larger population size L have a higher number n of inno-

vated specializations in the long run.

Prediction 2: The long-run number n of specializations is higher when the degree θ of

specialization noncomplementarity in the environment is low.

Prediction 3: Egalitarian groups robustly innovate the optimal number of specializa-

tions n in the long run. Non-egalitarian groups innovate a suboptimally low number

of specializations n in the long run..
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3.6.1 Group population and specialization

This subsection empirically explores relationship between group’s population and the

number of cultural niches entailed by the Prediction 1 of the theoretical model. As

predicted by the theory, our analysis establishes that groups with larger population

on the local level tend to be characterized by a higher number of activities with spe-

cialization.

To explore the relationship empirically the average population of local communi-

ties, as captured by the corresponding variable in the EA∗ is mapped into the mea-

sure that reflects the number of specialized activities across ethnic groups in EA. The

measure is based on the presence of occupational specialization across nine potential

activities (e.g., metal working, weaving, building, etc).† The relationship is explored

using an Ordinary Least Squares (OLS) linear-log model, while accounting for: (i)

geographic controls (e.g., elevation, terrain ruggedness, distance to coast or river, cli-

mate), (ii) continental fixed-effects, and (iii) several ethnographic characteristics (e.g.,

dependence on hunting vs gathering).

The baseline relationship between the size of local population and the number of

specialized activities is depicted in Figure 3.7 in a form of binned scattered plot of

residuals with a fitted line. The baseline analysis establishes a statistically significant

relationship of magnitude 0.34 in terms of standardized β coefficient‡, which is signifi-

cant at 0.1% level. The empirical relationship is further explored in Table 3.3,

∗The population size of the local community measure is based on variable 31 of EA. Coded
as the average value of each population size interval of variable 31.

†The number of specialized activities is based on variables 57 through 65 of EA, and is
constructed as a sum of indicators of whether the specialization in each activity exists in the
ethnic group.

‡β coefficient of magnitude d implies that an explained variable y changes by d standard
deviations if explanatory variable x is increased by one standard deviation.
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Figure 3.7. The residualized and binned scatterplot of cultural diversity and group size among
EA ethnic groups, plotted with the accompanying OLS linear-log regression. Cultural
diversity, denoting the number of specialized activities, is based on variables 57 through 65 of
the EA dataset. Group size is based on variable 31. The OLS linear-log regression accounts
for geographic controls, continental fixed-effects, and ethnographic characteristics. The
relationship is statistically significant at the 0.1% level, with a magnitude of 0.34 in terms of
the standardized β coefficient.
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Table 3.3: Cultural diversity and group size among EA ethnic groups.

Number of Specialized Activities

All Sample non-WEIRD

(1) (2) (3) (4) (5) (6)

Local Population (Log) 0.65*** 0.52*** 0.64*** 0.41*** 0.36*** 0.34***
(0.07) (0.07) (0.07) (0.07) (0.07) (0.08)

Continental FE No Yes No No Yes Yes
Geographic Controls No No Yes No Yes Yes
Ethnographic Controls No No No Yes Yes Yes

Adjusted-R2 0.29 0.40 0.32 0.40 0.46 0.46
Observations 508 508 508 508 508 475

Notes: Using the OLS regression, this table establishes a positive significant effect of the pop-
ulation of local community on the number of specialized activities, across the ethnic groups
in EA. Geographic controls are absolute latitude, mean elevation, terrain ruggedness, agricul-
tural suitability, distance to coast or river, temperature and precipitation annual mean and
standard variation. Ethnographic controls include dependence on hunting, gathering and agri-
culture, year of groups ethnographic observation. Both dependent and independent variables
has not been normalized to have zero mean in a standard deviation of 1. Spatial correlation
robust standard error42 estimates are reported in parentheses; *** denotes statistical signifi-
cance at the 1% level, ** at the 5% level, and * at the 10% level, all for two-sided hypothesis
tests.
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which summarizes the result under the different combination of controls across differ-

ent samples.

3.6.2 Cultural diversity and ecological variety

This subsection aims to empirically assess the validity of Prediction 2. As predicted

by the theory, groups that inhabit an environment with low specialization noncomple-

mentarity would develop a higher number of specializations.

To evaluate this prediction, we investigate the relationship between the number of

specialized activities and the ecological diversity—defined by the number of plants

and animal species present—of the environments inhabited by ethnic groups observed

in EA and WNAI. The empirical test is based on the assumption that an ecologically

diverse environment allows for a wider range of unique strategies for plant and animal

species, and that this correlates with a wider range of unique strategies for human

specializations.

First, the analysis focuses on the WNAI dataset, which contains the data on both

the presence of specialization across 10 activities (e.g., weaving, boat-construction,

leather-working, etc)§ and ecological diversity, as captured by the number of plants

and animal species present around the ethnic group.¶ The relationship is explored

via linear OLS model, while accounting for: (i) geographic controls (e.g., elevation,

distance to coast or river, climate), (ii)regional fixed-effects, and (iii) several ethno-

graphic characteristics (e.g., dependence on hunting and agriculture).
§The number of specialized activities is based on variables 218, 221, 224 , 227, 230, 233,

236, 241, 246, 249 of WNAI dataset and is constructed as a sum of indicators of whether the
specialization in each activity exists in the ethnic group.

¶The measure of ecological variety is based on the binary variables 11 – 140 of WNAI
dataset, and is constructed as the sum of the indicators for the presence of each plant or
animal species.
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The baseline relationship between the size of local population and the number of

specialized activities is depicted in Figure 3.8 in a form of binned scattered plot of

residuals with a fitted line. The baseline analysis establishes a statistically signifi-

cant relationship of magnitude 0.27 in terms of standardized β coefficient, which is

significant at 0.5% level. The empirical relationship is further explored in Table 3.4,

which summarizes the result under the different combination of controls across differ-

ent samples.

In the second part of the analysis, we examine the relationship between the number

of specialized activities and ecological diversity among ethnic groups in EA. As the

dataset does not include a ready-to-use measure of ecological diversity, we develop a

novel metric for this purpose. Our measure encompasses various aspects of the local

ecology, including plants, animals, terrain, and climate, and is constructed through

the following steps:

1. A 200km-radius zone around the centroid of each ethnic group in EA is con-

structed;

2. With each zone a number of potentially cultivable crops59, number of mam-

mals57, range of elevation and terrain ruggedness82, and variation in mean an-

nual temperature and annual precipitation58 are calculated;

3. These 6 dimension are standardized to have a zero mean and a standard devia-

tion of one;

4. A first principal component of these 6 dimensions is constructed to represent

ecological variety.

Relationship between the ecological variety and the number of specialized
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Figure 3.8. The residualized and binned scatterplot of cultural diversity and ecological variety
among EA ethnic groups, plotted with the accompanying OLS regression. Cultural diversity,
denoting the number of specialized activities, is based on variables 57 through 65 of the EA
datset. Our measure of ecological variety encompasses the number of potentially cultivable
crops59, the number of mammals57, range of elevation and terrain ruggedness82, and variation
in mean annual temperature and annual precipitation58. The relationship is statistically
significant at the 0.1% level, with a magnitude 0.13 in terms of the standardized β coefficient.
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Table 3.4: Cultural diversity and ecological variety among WNAI ethnic groups

Number of Specialized Activities

All Sample Foragers

(1) (2) (3) (4) (5) (6)

Ecological Variety 0.56*** 0.52*** 0.60*** 0.25*** 0.27*** 0.34***
(0.10) (0.13) (0.10) (0.09) (0.10) (0.12)

Region FE No Yes No No Yes Yes
Ethnographic Controls No No Yes No Yes Yes
Geographic Controls No No No Yes Yes Yes

Adjusted-R2 0.31 0.37 0.33 0.42 0.48 0.58
Observations 172 172 172 172 172 129

Notes: Using the OLS regression, this table establishes a positive significant effect of the eco-
logical diversity on the number of specialized activities, across the ethnic groups in WNAI.
Geographic controls are latitude/ longitude polynomial of the second order, mean elevation,
distance to coast or river, temperature and precipitation mean. Ethnographic controls include
dependence on hunting and agriculture. Regional FE are based on 6 general regions in the
dataset: Mexico, Northwestern, South-Central and Southwestern USA, Western Canada and
Subarctic America. Both dependent and independent variables has not been normalized to
have zero mean in a standard deviation of 1. Spatial correlation robust standard error42 es-
timates are reported in parentheses; *** denotes statistical significance at the 1% level, ** at
the 5% level, and * at the 10% level, all for two-sided hypothesis tests.
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activities is explored using a linear OLS model, while accounting for other geographic

and ethnographic controls, as well as continental fixed effects (i.e., in the same man-

ner as above). The baseline result is presented in Figure 3.9. It establishes a statisti-

cally significant relationship of magnitude 0.13 in terms of standardized β coefficient,

which is significant at 0.1% level. The relationship is further explored in Table 3.5,

demonstrating the robustness of the results to the combination of controls.

3.6.3 Egalitarianism and cultural diversity

In this subsection, we empirically examine one of the more intriguing predictions of

the theory: the relationship between the presence of egalitarian social norms and the

degree of cultural diversity. As previously mentioned in Subsection 3.3.2, the model

posits that groups with egalitarian norms and institutions will tend to have a greater

number of specialized cultural niches over time, all else being equal.

To test the prediction, we first turn to the WNAI dataset. The measure that cap-

tures the number of specialized activities, defined above, is related to the indicator of

the presence of food sharing norm in the society.‖ The distributions of societies with

and without the social norm of food sharing over the number of specialized activi-

ties are depicted in Figure 3.10. Figure 3.10 suggests that more egalitarian societies

(i.e., ones that practise the sharing of food and chattels) are far more likely to have a

higher number of activities with specialization, while the societies with less egalitarian

norms more commonly posses a lower number of specialized activities. This observa-

tion is supported by a statistical test that compares the means of two distributions.

The observed difference between two groups in terms of the number of specialized

‖The measure is based on the variable 253 of WNAI that is coded as 0 if where is no redis-
tribution of chattels and/or food and 1 otherwise.
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Figure 3.9. The residualized and binned scatterplot of cultural diversity and ecological variety
among WANI ethnic groups, plotted with the accompanying OLS regression. Cultural
diversity, denoting the number of specialized activities, is based on variables 218, 221, 224 ,
227, 230, 233, 236, 241, 246, 249 of the WNAI dataset. Ecological variety is based on the
binary variables 11–140. The OLS regression accounts for geographic controls, regional
fixed-effects, and several ethnographic characteristics. The relationship is statistically
significant at the 0.5% level, with a magnitude of 0.27 in terms of the standardized β
coefficient.
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Table 3.5: Cultural diversity and ecological variety among EA ethnic groups

Number of Specialized Activities

All Sample non-WEIRD

(1) (2) (3) (4) (5) (6)

Ecological Variety 0.13*** 0.15*** 0.17*** 0.14*** 0.13*** 0.13***
(0.04) (0.03) (0.04) (0.03) (0.03) (0.03)

Region FE No Yes No No Yes Yes
Geographic Controls No No Yes No Yes Yes
Ethnographic Controls No No No Yes Yes Yes

Adjusted-R2 0.02 0.19 0.03 0.22 0.27 0.27
Observations 1058 1058 1058 1058 1058 1012

Notes: Using the OLS regression, this table establishes a positive significant effect of the
ecological variety on the number of specialized activities, across the ethnic groups in EA. Ge-
ographic controls are absolute latitude, mean elevation, terrain ruggedness, agricultural suit-
ability, distance to coast or river, temperature and precipitation annual mean and standard
variation. Ethnographic controls include dependence on hunting, gathering and agriculture,
year of groups ethnographic observation. Both dependent and independent variables has not
been normalized to have zero mean in a standard deviation of 1. Spatial correlation robust
standard error42 estimates are reported in parentheses; *** denotes statistical significance at
the 1% level, ** at the 5% level, and * at the 10% level, all for two-sided hypothesis tests.
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Figure 3.10. Histogram of cultural diversity and egaitarianism among WANI ethnic groups.
Cultural diversity, denoting the number of specialized activities, is based on variables 218,
221, 224 , 227, 230, 233, 236, 241, 246, 249 of the WNAI dataset, while the measure of
egalitarianism is based on variable 253 (redistribution of food and chattels within a society).
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activities is 2.1, which allows us to reject the null-hypothesis of mean with equality

more than 99.9% confidence.

Since in this case the outcome variable is an ordered categorical variable while the

explanatory variable is binary, the relationship could be explored in a greater detail

using the ordered probit regression model. Estimation of the empirical model estab-

lishes a positive relationship between the presences of food sharing social norm on the

number of specialized activities, across a number of specifications (Table 3.6). The re-

sults are statistically significant at less than 1% level throughout. Although this is re-

assuring, the interpretation of the coefficients is not straightforward. In order to bet-

ter understand the implications of these parameters, Figure 3.11 presents the average

marginal effects of food sharing for each number of specialized activities for the spec-

ification in column (5) of Table 3.6. The figure measures the number of activities on

the horizontal axis and the average marginal effect of food sharing with its 95% con-

fidence interval on the vertical axis. As can be seen there, the average marginal effect

of food sharing is negative for low number of specialized niches and increases until it

becomes positive for high values. This implies that having a food sharing norm in the

society decreases the probability of observing low number of specialized activities and

increases the probability of observing high values. Thus, the presence of egalitarian

social norm shifts the probability distribution of the number of specialized activities

rightwards.

Additionally, we perform a similar empirical analysis using the ethnic group-level

data from EA. The number of specialized activities, as constructed in Subsection 3.6.1

is mapped into the measure of wealth equality across the societies.∗∗ The

∗∗The measure of wealth equality intensity is constructed based on the variable 66 of EA.
The measure is coded as binary equal to 0 if the presence of class stratification based on
wealth is observed in the society and coded 1 otherwise.
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Figure 3.11. Average marginal effect of the presence of food sharing on the number of
specialized activities, among WNAI ethnic groups. The figure shows that the average
marginal effect of food sharing on the number of specialized activities in a society is negative
for low values and positive for high values. This indicates that the presence of a food sharing
norm decreases the likelihood of observing low numbers of specialized activities and increases
the likelihood of observing high numbers. This suggests that egalitarian social norms shift the
distribution of specialized activities towards higher values.
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Table 3.6: Cultural diversity and egalitarianism: Ordered probit (WNAI)

Number of Specialized Activities

All Sample Foragers

(1) (2) (3) (4) (5) (6)

Presence of Food Sharing 1.67*** 1.59*** 1.78*** 1.22*** 1.29*** 1.73***
(0.22) (0.23) (0.24) (0.30) (0.32) (0.39)

Region FE No Yes No No Yes Yes
Ethnographic Controls No No Yes No Yes Yes
Geographic Controls No No No Yes Yes Yes

Pseudo-R2 0.11 0.15 0.12 0.20 0.22 0.29
Observations 172 172 172 172 172 129

Notes: Using ordered probit regression, this table establishes a positive significant effect of the
presences of food sharing social norm on the number of specialized activities, across the ethnic
groups in WNAI. Geographic controls are latitude/ longitude polynomial of the second order,
mean elevation, distance to coast or river, temperature and precipitation mean. Ethnographic
controls include dependence on hunting and agriculture. Regional FE are based on 6 general
regions in the dataset: Mexico, Northwestern, South-Central and Southwestern USA, West-
ern Canada and Subarctic America. Heteroskedastisity robust standard error estimates are
reported in parentheses; *** denotes statistical significance at the 1% level, ** at the 5% level,
and * at the 10% level, all for two-sided hypothesis tests.
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distributions of societies with high and low levels of wealth equality over the number

of specialized activities are depicted in Figure 3.12. Although the observed distinction

in the distributions is not as stark as in the case of WNAI dataset, with a difference

in observed mean number of specialized activities being equal to 0.21 between the two

groups, the simple t-test, nevertheless, rejects the null-hypothesis of mean equality

with more than 99% confidence.

The effect of wealth equality on the cultural diversity is further analyzed via the

ordered probit regression model. Results of Table 3.7 establish a positive and sta-

tistically significant relationship between the presence of wealth equality in the soci-

ety and the observed number of activities with specialization. The result is robust to

combination of geographic and ethnographic controls, as well as continental fixed ef-

fects. The interpretation of the result for a full specification in column (5) of Table

3.7 in terms of the average marginal effects is depicted in Figure 3.13. As can be seen

there, the average marginal effect of wealth equality is negative for zero specialized

niches and positive for positive values. This implies that having a wealth equality in

the society significantly reduces chances of having no specialized cultural niches, while

increasing the probability of having larger number of activities with specialization.
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Figure 3.12. Histogram of cultural diversity and egaitarianism among EA ethnic groups.
Cultural diversity, denoting the number of specialized activities, is based on variables 57
through 65 of the EA dataset. The measure of egalitarianism is based on class differentiation
based on wealth, which is part of variable 66.
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Table 3.7: Cultural diversity and egalitarianism among EA ethnic groups: Ordered probit

Number of Specialized Activities

All Sample non-WEIRD

(1) (2) (3) (4) (5) (6)

Presence of Wealth Equality 0.32*** 0.27** 0.27*** 0.34*** 0.35*** 0.35***
(0.10) (0.12) (0.11) (0.12) (0.12) (0.13)

Continental FE No Yes No No Yes Yes
Geographic Controls No No Yes No Yes Yes
Ethnographic Controls No No No Yes Yes Yes

Pseudo-R2 0.06 0.21 0.09 0.21 0.26 0.26
Observations 843 843 843 843 843 808

Notes: Using the ordered probit regression, this table establishes a positive significant effect
of the presence of equal wealth distribution on the number of specialized activities, across
the ethnic groups in EA. Geographic controls are absolute latitude, mean elevation, terrain
ruggedness, agricultural suitability, distance to coast or river, temperature and precipitation
annual mean and standard variation. Ethnographic controls include dependence on hunting,
gathering and agriculture, year of groups ethnographic observation. Heteroskedasticity robust
standard error estimates are reported in parentheses; *** denotes statistical significance at the
1% level, ** at the 5% level, and * at the 10% level, all for two-sided hypothesis tests.
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Figure 3.13. Average marginal effect of the intensity of wealth equality on the number of
specialized activities, among EA ethnic groups. The figure shows that the average marginal
effect of wealth equality intensity on the number of specialized activities in a society is
negative at zero specialized activities. The average marginal effect is positive at positive
numbers of specialized activities. This overall indicates that wealth equality in a society
reduces the probability of having no specialized niches and increases the probability of having
a higher number of specialized activities.
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