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Chapter 1

Introduction

Our objective in this exposition is to state and prove the main theorems of Hodge theory.

In Chapter 2, we first describe a key motivation behind the Hodge theory for compact,
closed, oriented Riemannian manifolds: the observation that the differential forms that
satisfy certain partial differential equations depending on the choice of Riemannian metric
(forms in the kernel of the associated Laplacian operator, or harmonic forms) turn out to
be precisely the norm-minimizing representatives of the de Rham cohomology classes. This
naturally leads to the statement our first main theorem, the Hodge decomposition—for a
given compact, closed, oriented Riemannian manifold—of the space of smooth k-forms into
the image of the Laplacian and its kernel, the subspace of harmonic forms. We then develop
the analytic machinery—specifically, Sobolev spaces and the theory of elliptic differential
operators—that we use to prove the aforementioned decomposition, which immediately
yields as a corollary the phenomenon of Poincaré duality. We have consulted the exposi-
tion [1, §1] based on [2] and the exposition [4] based on [6] for the material in this chapter.

In Chapter 3, we appeal to the analytic machinery developed in the previous chapter
to prove the Hodge decomposition for compact, closed Kéahler manifolds, a canonical de-
composition of each de Rham cohomology space with complex coefficients into Dolbeault
cohomology spaces. We then conclude the exposition by showing that Hodge theory can be
used to give elegant proofs of the Lefschetz decomposition of de Rham cohomology spaces
into primitive components, the hard Lefschetz theorem and the Hodge index theorem. We

have consulted [3] and the exposition [1, §4] based on [5] for the material in this chapter.
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Chapter 2

Hodge Theory of Compact

Oriented Riemannian Manifolds

2.1 Hodge star operator

Let (M, g) be a Riemannian n-manifold. We can consider g as an element of TM* @ TM*,
and in particular, as a canonical bundle isomorphism T'M — T M* by evaluating one of
the tensor factors of g pointwise at a given tangent vector. Thus, g defines a canonical
metric g* on TM*. Furthermore, consider the canonical inner product (¢*)®? on (T'M*)®P.
Note that when viewed as a fiberwise inner product, (¢*)®? is invariant under the natural
group action of the symmetric group S;, on the fiber V, over an arbitrary point x € M. So,
(g*)®P descends to a metric on the Sp-subrepresentation A’ V,. It is clear that the above

construction applied fiberwise over every x € M gives a functorial bilinear bundle morphism
g": CC(M,QP) x C°(M,QP) — C>(M,R), (2.1)

where we have reused notation and will use g* to denote the above map for varying values
of p.

Next, we define an operator that is, as its name will suggest, central to Hodge theory.
Let V be an n-dimensional Euclidean space with a choice of orientation. With the Euclidean

inner product, V has a canonical volume form vol € A" V. Then, since the exterior product



A NVxNTPV — N'V is anondegenerate pairing, we can define the Hodge star operator
x: NV — NPV by the requirement that 3 € A’V is mapped to the unique form =3
satisfying

a A= g*(a, ) vol

for all « € A’V. Similarly to before, we will abuse notation to denote by * Hodge star
operators for different values of p.
Take a positively oriented orthonormal basis {ey,...,e,} of V. Consider the associated

1-forms {dey,...,de,} and the forms {del}lc{l,_“’n} defined by

I
de” :=de;, \---de;,, (2.2)
where i1, ..., 7 are the indices of the elements of I in increasing order. We can check that
el = e(I)del", (2.3)

where €(/) denotes the signature of the permutation given by the elements of I in increasing
order of index followed by the elements of its complement, I¢, in increasing order of index.

In particular, we have xvol = 1, %1 = vol, and
sem = (=1)" ey A A A A" for 1 <m <n,

where the hat denotes omission. It is also evident that ** : A’V — APV acts as multipli-
cation by (—1)""~P),
Now, suppose M is closed, compact, orientable, and fix an orientation. We can define

an inner product on the sections of QP M by

o= [ G mvott = [ wn (2.4)

where volY is the canonical volume form associated to g and our choice of orientation. For



smooth differential forms w € C*°(M,QP) and n € C>°(M, QP*!), we have

(dw,n) = /M dw A s = (=1)P~! /M w A d(xn) = (—1)P~D+nn=p) /Mw A s (xds) (1),

where we have used Stokes’ theorem. This demonstrates that the formal adjoint to the

exterior derivative d is given by
d = (=)D g QP — QP (2.5)

Example 2.1. Fix a local orthonormal basis 01,...,0, of TM at a point z € M, and let
dei,...,de, denote the corresponding local dual basis of TM*. Let w = 2?21 fide; denote

a smooth 1-form on the local trivialization. Note then that we have

dw = (=1 4 e w

= (~1)%d>_(~1)""fidey A+~ Adeg A+ A de,
=1

= (=1) %> _ifides A+ Nde,
=1

= — Zaifi-
i1

A key motivation behind Hodge theory is to find harmonic representatives of de Rham
cohomology classes. Specifically, let L?(M, QP M) denote the Hilbert space arising from
completing C*°(M, ), and consider the de Rham cohomology class [w] of a given closed

p-form w. Then, its closure, given by

[w] ={w+n:nedC=(M,Qrt),

is a closed affine subspace of the Hilbert space L?(M,QP), and thus has a unique element
wo of minimal norm, which can equivalently be described as the condition of being per-

pendicular to the subspace. In other words, wg is the unique elements of [w] that satisfies

(wo, dn) = 0 for all exact p-forms dn. Note that this can be rewritten in terms of the formal



adjoint of d, yielding the condition that (d*wp,n) = 0 for all exact p-forms dn. Thus, we
have that wq is a solution to the differential equations dwg = 0 and d*wy = 0.

Note that the above discussion also holds analogously when we switch the roles of d
and d*, in that the closure of a cohomology class defined with respect to d* rather than
d contains a unique element wy of minimal norm that satisfies d*wy = 0 and dwg = 0.
Moreover, since d and d* are formal adjoints, we have imd* | kerd and imd L kerd*.

These facts suggest an orthogonal decomposition of the form
C>®(M,QF) = (kerd Nkerd*) @ d(C°° (M, QP~1)) @ d*(C°° (M, QFTh)). (2.6)

Note that (ker dNnker d*) ®d(C*(M,P~1)) comprise the closed forms, where each de Rham
cohomology class is represented by a unique representative in kerd N kerd*. Similarly,
(kerd N ker d*) @ d*(C>®(M,QP*!)) comprise the coclosed forms, and each d*-de Rham
cohomology class (defined with respect to d* rather than d, and denoted by H? . ar(M)) is

represented by a unique representative in ker d N ker d*.

2.2 The main theorem

The composition dd* : C*°(M, QP) — C>(M, QP) sends all summands other than d(C°(M, QP~1))
to 0. Consider dd* as a map on this summand. Note that d : C*°(M, QP) — d(C>(M, QP))
is surjective, which shows that its formal adjoint d* : d(C*°(M,QP)) — C°°(M,QP) is in-
jective. Likewise, analogous discussion shows that d : d*(C*°(M,QP)) — C°(M,QP) is

injective. Thus, the composition
d(C™°(M, Q1)) S d(C™ (M, Q) % d(C™(M, 1))

is injective. An analogous discussion holds for the composition d*d, which sends all direct
summands of C°°(M, QP) other than d*(C>(M,QP1)) to 0.

Define the Hodge—de Rham Laplacian on p-forms by

A= dd* + d*d : C°(M, Q) — C(M, QP),



again abusing notation by using A for different values of p. We can use our computations
in Example 2.1 (whose notation we retain) to verify that as operators on smooth 0-forms,
A coincides with the standard Laplacian on a local trivialization. First, note that d* as an

operator on C*(M, Q) is trivial, so A = d*d in our case. Hence, for a smooth function f,
Af=ddf =d*) 0ifde; = _ 00;f,
i=1 i=1

as expected. In fact, one can similarly compute that for a general smooth p-form

W= Z fjlv“'ujpdejl A dejp’

1<j1,5e09p<n

we have

Aw = — Z Z agkfjh---,jpdeﬁ A---dej,.

k=11<j1,....jp<n
In other words, the Hodge—-de Rham Laplacian on p-forms acts on w by applying the usual
Laplacian (the Hodge-de Rham Laplacian on 0-forms) on the coefficients with respect to
the standard basis dej, A ---dej,.

By our work in Section 2.1, we know that on d(C> (M, QP~1)), A acts like the injective
map dd*, and on d*(C°°(M,P*T1)), A acts like the injective map d*d. Finally, A sends
the remaining summand, ker d N ker d*, to 0. Define a harmonic form to be a C* form in
the kernel of A. We see that w € C*°(M, QP) is harmonic if and only if w € kerd N ker d*.
In particular, we see that the only harmonic 0-forms are the constant ones. Denote the

subspace ker A C C*°(M, Q) of harmonic p-forms by HP(M ), for which we have
HP(M) = kerd Nkerd”, (2.7)

as shown above.
The following is the main theorem of this chapter, and fulfills our original motivation of

finding harmonic representatives of de Rham cohomology classes.

Theorem 2.2 (Hodge). Let (M,g) be a compact, closed, orientable Riemannian manifold

with a choice of orientation. The following are true:



(i) HP(M) is finite-dimensional.

(ii) We have an L? orthogonal decomposition given by

(M, Q) = HP (M) & A(C®(M, QP)). (2.8)

Note that the above decomposition is equivalent to (2.6), with the identifications
kerd = HP(M) @ d(C™(M, QP~1)), (2.9)

ker d* = HP(M) @ d*(C> (M, QPT1)). (2.10)
In light of (2.9) and (2.10), we immediately have the following corollary.

Corollary 2.3. Retain the hypotheses of Theorem 2.2. The natural maps (given by sending
a harmonic p-form to its cohomology class, whose unique element of minimal norm is the
original harmonic p-form) HP (M) — Hyp(M) and HP(M) — Hj. 45(M) are isomorphisms.
In particular, the dimensions of these vector spaces are finite and do not depend on the choice

of Riemannian metric.
Moreover, the straightforward observation that A commutes with * yields the following;:

Corollary 2.4 (Poincaré duality). Retain the hypotheses of Theorem 2.2. The Hodge star

operator induces an isomorphism HP(M) — H""P(M).

In combination with Corollary 2.3, we obtain the well-known Poincaré duality isomorphism
Hyp(M) = Hyp?(M).
We will later see that proving Theorem 2.2 reduces to establishing the ellipticity of the

differential operator A, a property we will define and investigate in Section 2.4.

2.3 Sobolev spaces

Let T" denote the n-torus (R/27Z)", and let L?(T",C™) denote the space of square-

integrable functions T" — C™. We introduce for s € R the Sobolev space W*(T" C™),



defined as the Hilbert space given by the completion of L?(T"™ C™) with respect to the

inner product

(f9)s = | DA+ 167 F(©)a) (2.11)

Eezn
and the corresponding norm ||-||,. We note that since the subspace C*(T™, C™) C L*(T",C™)
of smooth functions T” — C™ is dense in L?(T™, C™), we can equivalently define W*(T", C™)
as the completion of C°°(T™) rather than of L*(T", C™).

One can ask for a more concrete description of the elements of W#(T", C™). This can be
obtained by observing in the frequency domain. Let £%,,(Z") denote the space of C"-valued
square-summable sequences indexed by Z". By the duality between L*(T") and ¢2,,(Z")
given by the Fourier transform, any element of L?(T"™, C™) can be viewed as an element of
(2, (Z") without loss of information, and vice versa. Then, it is evident that the element of
L%(T",C™) corresponding to a given o = (0¢)eezn € (3(Z™) is contained in W*(T") if and
only if

3 (1 +[€)oel < oo.

Lezn
Throughout this exposition, we will abuse notation by abbreviating the notation for the
Sobolev space W*(T",C™) to W* for a fixed m (we note that it is instructive to first
consider the case m = 1 in order to conceptually understand the general case), as well as
considering elements of W* to be C™-valued square-summable sequences indexed by Z",
when convenient.
The fact that (2.11) is in fact an inner product is a special case of the following conse-

quence of Cauchy—Schwartz:

2 2 2
SN+ Foor] < [ Y +eP)oel? Yo+ |

gezn cezn cezn

where - denotes the Hermitian inner product. The above can be restated as

(o m)sl < Nlollyellmllo—s-



Moreover, note that the definition (2.11) of (o, 7)s is also well-defined for ¢ € W?* and
T € W* such that s = (t +u)/2.

A key fact about Sobolev spaces that if o € W¥ for sufficiently large s, then it in fact
corresponds to a function whose derivatives up to some order exist, and this order directly
correlates with the size of s. Often called Sobolev’s lemma, this fact plays a crucial role
in the phenomenon of elliptic regularity, in which for a generalized solution o of a partial
differential equation of a certain form, if ¢ belongs to W?* for sufficiently large s, then o

corresponds to an actual solution. Sobolev’s lemma has the following base case.
Lemma 2.5 (Sobolev). Suppose s > n/2. Then, we have a continuous inclusion W*—C°(T™ C™).

Proof. First, we need to show that o € W# actually corresponds to a function, or in other

words, that

Z crge“”'g

cezn

is uniformly convergent. It suffices to show absolute convergence, i.e., show that the sum

> loel

gezn

is convergent. Let N be a positive integer. By applying Cauchy—Schwartz, we verify that

Do loel= Y0 L+ €)1+ €)7ol

jel<N j€l<N
1
<Y s DL L+ EP) ol
(1+1¢]%)
j€l<N €l<N

| )
< ZW o ll5-

gezn
However, our hypothesis implies that

1
“ 2 e <

cezn

which shows our desired claim, and thus demonstrates that we have an inclusion W¥<C?(T").

In fact, the above constant ¢ only depends on s, so the inclusion is continuous. O



A similar proof will show that if s > k + n/2, then we have a continuous inclu-
sion W*<C¥(T™ C™). Beforehand, we first define some terminologies. Define a differ-
ential operator of order £ (on C™-valued C* functions of T") to be a linear operator
L : C®(T",C™) — C>=(T",C™) that, with respect to the standard basis, is an m x m

matrix L of the form

Lij= Y a$D®, (2.12)
[a]<¢
where af; € C°°(T",C) with at least one af; not identically zero for some i,j and o with

[a] = ¢, and
D = (—i)llger ... 9o, (2.13)

As a matter of convention, we appended the factor of (—i)[® in (2.13) in order to make sure

that the Fourier transform 150‘\]0 does not have the factor of il since
oL gon f = glelf

Note that for x € T", the m x m matrix a®(z) whose entries are given by af;(x) represents
an element of End(C*°(T"™,C™),). Furthermore, since C*°(T", C™) is dense in any Sobolev
space W#, differential operators can be extended to W?* and in this exposition, we will
consider differential operators to be these extended operators when appropriate. Note that
while we use the standard basis in the above definition, this is equivalent to the general
definition of a differential operator on arbitrary bundles over a general M; the general
definition necessitates that the operator has entries of the form described in (2.12) for any

local trivialization. Note that L acts on f = (f1,..., fn) € C°(T",C™) by

m m
=1 i=1

and the formal adjoint L* of L is given by

L= D%
[a]<?

10



For a vector a = (a1, ..., a,) with nonnegative integer entries, define

[Oé] =ar+ -t ay

and

ga: ?1371,

for &€ = (&1,...,&,) € Z™, with the convention 0° = 1. Abusing notation, define the formal

differentiation operator D : W* — Ws~lol by

(D%(0))e = (§)% ¢

This operator was defined so that it corresponds to D® defined in (2.13) when acting on
functions f € C*°(T"™,C™). This operator allows us to define a useful norm equivalent to
||, on f € C°°(T™,C™) in terms of the L? norms of the order < s partial derivatives of f.

Note that by Parseval’s identity, we have

[NIES

IDFE) 2= | S €21f(©)P

Lezn
We claim that the norm
fo DIl (2.14)
[o]<s
is equivalent to ||-||,. In fact, for nonnegative real numbers a1, ..., a;, we have
2 2

k k

k
2
o | <D ai< > a| .
1 7=1 7

—1

=

j=

So it is equivalent to show that the norm

Fe 30 > IDofE)

[a]<s&ezm™

11



is equivalent to ||-||,. Indeed,

STST DR =Y 1FOP Y. € < ST IFOPO+ (G + -+ 162 = 1111,

EEZ™ [a]<s Eezn [a]<s cezn

and there exists a constant ¢ > 0 depending only on n and s such that

£l = ST IFOPA+1EP < S 1fOP [ Y e =c Y 3 1Dof(e))?

gezn £ezn [a]<s EEL™ [a]<s

which shows our claim. This gives us the description of |-||, as the sum of the order < s
partial derivatives’ L? norms.

We can show the following result about the effect of D® on the Sobolev norm.

Lemma 2.6. Let a = (o, ..., ap) be a vector with nonnegative integer entries. We have

1Dy < Ml

s—[a]

for all o0 € W5.

Proof. We check that

(D%0)el* = [€%0¢]* < (1+ €)1 |oe|?
and sum over all £ € Z". d
This immediately allows to prove the aforementioned generalization of Sobolev’s lemma.

Lemma 2.7 (Sobolev). Suppose s > k + n/2. Then, we have a continuous inclusion

Ws—Ck(T™,C™).

In addition, it is clear that for s < t, we have that W' C W* and that the inclusion
Wt—sW?* is continuous. The following result, often called the Rellich Compactness Lemma,

shows that this inclusion is also compact.

Lemma 2.8 (Rellich). Suppose s < t, and consider a sequence (0j)jez., of elements in

W with ||oj]|l, < 1. Then, (0})jez-, has a subsequence that is convergent in W*.

12



Proof. For any fixed £ € Z", the sequence ((1+ \f|2)5/2(0j)§)jez>o is bounded and has a
convergent subsequence. Thus, by a diagonalization argument, we can obtain a subsequence
(0, )kezs, such that for every £ € Z", the sequence

(@ + 1)/,

kGZZO

is convergent. We now show that (o jk)kEZZO is a Cauchy sequence, and thus convergent
in the complete space W¥. Let N be a positive integer to be specified later, and split the

following sum accordingly:

Y A+ IEP N, e — (o, el

cen
= ) (L+[EP)N(0)))e = (05> + D (L + €710, )e — (05, )el?
<N E>N
< Y A+ IEP) (g )e — (0, )el?
<N
1
tar N g:N(l + [¢%)! (I(%l)el2 +2|(a, ell(o,, el + \(Ujk2)5\2)
4
< @+ N(o,)e — (Ujk2)5!2+ma
E[<N

where we have used the hypothesis that ||o;, < 1 for all j. The last term 4/(1 + N?)i=*
can be made arbitrarily small by taking N to be sufficiently large, so (¢, ) keZs, is indeed

a Cauchy sequence in W¥. O
We will also need the following:

Proposition 2.9 (Peter—Paul inequality). Suppose s <t < u. For any e > 0, there exists
a constant ¢ such that

2 2 2
lolly < elloll, + cllolls

Proof. For sufficiently large N, we have

(1+ 1€ <e@+[gP)"

13



for all |¢| > N. Then, ¢ can be made sufficiently large so that c||o||? is at least as large as

the remaining terms corresponding to |{| < N. O

Next, we define a useful operator that allows us to transmit information from one Sobolev

space to another. Define the operator K; : W& — W92 by
(Ki(0))e = (1+[¢[%) o
for o € W*. Note that K; is an isometry, and that
(0,7)s = (0, KiT)s—t

It is straightforward to verify that if ¢ is a nonnegative integer, then K; corresponds to the

differential operator of order 2t given by

t

n
Yo
j=1
when acting on functions in C°°(T",C™), and also that
(0,7)s = {0, KyT)s—t = (K10, T)s—1
for all s,t € R and o,7 € W?®. The operator K; allows us to show the following result that

will prove to be useful.

Proposition 2.10. Let ¢ be a smooth, complex-valued function on T™. Then, for s = 0,

we have

(po,T)o = (P, T)o.

For a general integer s, there exists a constant ¢ > 0 only depending only on s,n and ¢

such that

|<¢07 T>s - <07 ¢_57_>S| < CHO-HsHTHs—l

for all o, 7 € W*.

14



Proof. The first claim immediately follows from the fact that the Sobolev norm |||, coin-
cides with the L? norm. To prove the second claim, we consider separately the cases s > 0

and s < 0. In the case of s < 0, check that

<¢Ua T>5 = <¢K—5K50'7 K8T>O = <K—8KSU7 (Z)KST>O = <KSU7 K—SQEKST>O

= (0,¢7)s + (K0, [K_s, &]Ksﬂo

where [K_, ¢| denotes the commutator of the two operators (the right entry denotes mul-
tiplication by ¢). However, we note a fact that we will use several times: for differential
operators A of order a and B of order b, the commutator [A, B] is itself a differential op-
erator of order < a 4+ b — 1 (the < sign is used to include the case when the commutator
vanishes). In particular, [K_g, ¢] is a differential operator of order < —2s + 1, so writing it

in terms of D® for [a] < —2s+ 1, we obtain
(K0, [K s, 9| KsT)o| = O Z [(Ks0, D" K)ol
[a]<—2s+1

=0 > |Kol_JIDKrl,
[a]<—2s+1

=0 Z HKSU‘LS”KST”sHa]
[a]<—2s+1

O (I Ksoll _ | Kol _s_y)
= O (llollslImlls-1) »
which proves our claim.

The case of s > 0 is proven analogously. O

We can also deduce the following result about how multiplying an element of W* by a

complex-valued function affects the Sobolev norm.

Proposition 2.11. Let ¢ be a smooth, complex-valued function on T™ and s be an in-

teger. There exist constants c1,co > 0 depending only on s,n and ¢, such that for all

15



feC>(T",C™), we have

loflls < erllflls—1 + e2llello I F1ls-

In particular, there exists a constant ¢ > 0 depending only on s,n, and the derivatives of f

up to order s, for which

1of1ls < cllflls-

Proof. First, consider the case of s > 0. Recall the equivalence of (2.14) with ||-||,, which

shows that

lof1, =0 { D IDN) 2

[a]<s
However, [D?, ¢] is a differential operator of order < [a] — 1. Thus, we have

STIDYG)le < D ID*Sf) = oD (P2 + D 16D ()l 2

[a]<s [a]<s [a]<s

o[ 3 ID* Wl + el S 107 5]

[a]<s—1 [a]<s

= 0 (Iflly-1 + 19l 711)

thereby showing that ||¢f|, is also O (|| fll,_; + 9l |l f]l5)-
For the remaining case s < 0, we use the operator K; to reduce to the former case.

Specifically, we have
I6f12 = (@Ko f, Kb f)o
= <K*S¢st> Ks¢f>0 + <[¢7 Kfs]sta ngbf)()

= (K- s¢Kf, Ko f)ol +O [ Y (DK f, Ko f)ol |,

[a]<—2s5—1

where we have used that [¢, K_g] is a differential operator of order < —2s + 1. The first

16



term can be bounded as follows:

|<K*S¢stv Ks¢f>0| = |<¢sta Ks¢f>fs| < ||¢st||_sHKs¢fH—s
= O (I8la I fll—y + KNl —sma) 1K f Il

= O (lollaollflls + £ 1) ll6£1l

where we have used Cauchy—Schwartz. The second term can be bounded as follows:

> (DK f,Kof)ol =0 Y DKl Ko f]

[a]<—2s—1 [a]<—2s—1

=0 [ IKfly Y IEKS o

[a]<—2s5—1
= O (| Ko fll 1K Fll 1)
= O (eIl £ll,-1) -

So, we overall have

16513 = O (16 lla I flls + 1F1ls—1) 191,

and dividing by ||¢f]|, (if this quantity is zero, the claim is already trivially true), we obtain

the claim for s < 0. O

We end this section with the following generalization of Proposition 2.11 describing the

effect of general differential operators on the Sobolev norm of f € C*°(T", C™).

Proposition 2.12. Let L be a differential operator of order £ and s be an integer. There
exists ¢c; > 0 depending only on n,m,s,{ and ca > 0 depending only on n,m,s,{ and the

order < £ partial derivatives of the coefficients of L satisfying

HLst S ClM”st«kZ + CQHstJrffl

for all f € C>°(T™,C™), where

M := max |ag}|.
[a]=¢

17



In particular, there exists ¢ > 0 depending only on n,m,s,t and the order < { partial

derivatives of the coefficients of L satisfying

ILflls < ell flsye

for all f € C®(T",C™), and thus L extends to a continuous operator W+t — W,

Proof. The case m = 1 follows immediately from Proposition 2.11, and the case for general

m follows from the case of m = 1 combined with the bound

1<i,j<m
where the f; denote the entries of f and the implied constant depends only on m. O
2.4 Elliptic theory
Let L, whose entries are denoted by
Lij= Y afiD", (2.15)
[a]<e

be a differential operator of order £ on C*°(T", C™). The fact that
((D%) o) = &0

suggests the utility of the multilinear form defined on ¢ € T;(T") = R™ (for a given
x € T™) obtained by replacing D% in (2.15) with &%, when investigating a differential
operator L of order ¢. Motivated by this, we define the principal symbol St (x,-) : Tx(T™) —
End(C*(T",C™),) of L by

Sp(@,&)i =Y afi(x)E™.

[a]=¢
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Note that while we have used the standard basis to trivialize 75 (T™) = R™, this is equivalent
to the general definition of the principal symbol for differential operators between arbitrary
bundles over a general M. The general definition is analogously defined for an arbitrary
local trivialization about x, but can be shown to be well-defined.

We say that L is elliptic at x € T" if for every nonzero & € T (T"), the principal symbol
Sr(z,€) is nonsingular. We say that L is elliptic if it is elliptic at all z € T™.

A key fact about elliptic operators we will later use is the following result that is some-

times called the fundamental inequality for elliptic operators.

Theorem 2.13 (Fundamental inequality). Let L be an elliptic operator of order £, and let

s be an integer. Then, there exists a constant ¢ > 0 such that
lollsre < clllLally + ol (2.16)

for all 0 € W5+L,

Proof. Tt suffices to prove the claim for o corresponding to f € C°°(T",C™). The proof
is comprised of several steps. First, we prove the claim under the assumption that L has
constant coefficients and has only nonzero terms of order p, or in other words, that L is
homogeneous. This means that the following discussion holds uniformly for any = € T™.
By ellipticity, we have that for any nonzero { € T;T™ and nonzero v € C*°(T",C™), = C™,
the quantity |L(&)v| is strictly positive. By the compactness of the unit sphere of C™, there
exists a constant C' > 0 such that

L(&)v]* > C

for v and £ taken to be unit vectors, or in other words,
L& > Clef*|of?

for v and £ arbitrary. Applying this lower bound, we obtain

Sl loel 1+ 162 = 0 | 3 1E@ocP 1+ gy | =0 (La]?).

cezn cezn
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It follows that

o5y =0 [ D loePA+ 1) | =0 | D loel (1 + €)1+ 1€[*)

Eezmn Lezm
2 2
(Lo 2+ llo12)

((IZall, +lell)?) -

I
S O

as needed.

Next, we prove the general case. Fix x € T”. We will show that there exists an open
neighborhood U, 3 z such that (2.16) holds for all o corresponding to all f € C*°(T",C™)
supported on U. Evaluating the coordinate functions i of L at x for each o with [a] = ¢,
we obtain a homogeneous differential operator Ly of order £ that agrees with the order /¢

part of L evaluated on z. Using the previous case, observe that
lolls4¢ = O (ILoalls + llolls) = O ([ Lol + (L = Lo)olls + lloll,) -

Let ¢1 > 0 denote the implied constant in ||o|,,, = O (| Lo|, + (L — Lo)o||, + ||o]l,). Fix
a positive € < 1/(2c1¢2), where ¢ denotes the implied constant in (2.12). On a sufficiently
small open neighborhood of x, the coefficients of the highest-order part of L — Ly have
absolute value less than e. Let L be a differential operator agreeing with L — Ly on some
smaller open neighborhood U, > x such that the coefficients of the order p part are all
uniformly less than ¢ in absolute value. Then, for ¢ whose corresponding f is supported on

U,, we may deduce from Proposition 2.12 and the choice of ¢ that

lollyse = O (WL, + ol + o,

1
< Slolloe+ O (ILolly + llollypes + llol,) -
Applying the Peter—Paul inequality, we further have

3
lolls e < Fllollsre + O ULl +olls)
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which proves our desired claim.
Consider the open cover of T™ by the collection of U, indexed by xz € T™. Since T" is
compact, we can find a finite subcover Uy, ..., U;. We take a partition of unity p1,..., g

associated to this subcover, satisfying the additional condition

Now, let o corresponding to f € C°°(T",C™) be arbitrary. Then, applying the afore-

mentioned condition, Proposition 2.10 and Proposition 2.11, we have

k
lol2,p = (0,0)sre = <Z pj; 0 > =Y 0ifs0if) + O (If el Fllge) -
s+¢  J=1
Since p; f is supported on one of the finitely many, specially chosen open sets Ux,..., U,

we can continue the above computation in the following way:
k
2
”O'Hs—i-ﬁ = Z(p]f7 pjf) +0 (Hf”s—i—é”f”s—i—f—l)

j=1

k
= O L IIFI2 + 1 el Fll oy + D WL f1

=1

We find a useful bound for || Lp; f||°>. Observe that

W Lpi F112 = (Lo £, Lf)s| < [(Lpif. Lpjf)s — (pjLpif. LE)s| + [(pjLpif, Lf)s — (Lpjp;f, Lf)s]

= (Lp;f,Lpjf — piLf)s| + [(Lf,pjLp;f — Lp;ipif)sl,

but both [L, p;] and [pj, Lp;] are differential operators of order < ¢ —1. Thus, we can apply

Proposition 2.12 and Cauchy—Schwartz to obtain

ILp; 112 < (Lp2 . Lf)s + Lo fII2 — (Lo3 fo Lf)s| = (Lo3 £, LE)s + O (1 sl Fllgsomr)
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This permits us to continue our computation:

k
2 2 2
o310 = O [ IFIZ + 1 el Fllssemr + D0 F 1
1

Jj=

k
= O | IFIE+ 1 llgrel fllgrems + D (LAFS L)

j=1
= O (IF12 + 1 el o + IEFI2)
1
= SIAIE+O (I + 11 oy + ILFIZ)

3 2 2 2
= ZIF + 0 (W12 +11212)

where we have used the arithmetic mean-geometric mean inequality followed by the Peter—

Paul inequality in the last two lines. This concludes our proof. O

A Dbit of additional work would yield a proof of elliptic regularity for T", from which
the general case follows. While the following theorem represents an essential characteristic
of elliptic operators, we will not prove it as the information of elliptic regularity already

contained in the fundamental inequality will suffice for our purposes.

Theorem 2.14 (Elliptic regularity). Let L be an elliptic operator of order {. Suppose that
o € W3 and T € W satisfy

Lo=rT.
Then, o is in W,

Example 2.15. The Cauchy-Riemann operator 0, + 9y is clearly elliptic. Thus, elliptic
regularity tells us that under the relatively weak condition that o satisfying (0, +i0y)o =0
is in W* for some s, we have that o is in W' for all ¢, and thus is smooth by a local

application of Sobolev’s lemma. In particular, a holomorphic function must be smooth.

2.5 Proof of the main theorem

We now prove the Hodge decomposition for a compact, closed, orientable Riemannian man-

ifold M with a choice of orientation.
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First, we port our results on Sobolev spaces and elliptic operators on T" globally to a
general M. Using the compactness of M, fix an open cover of M with coordinate charts
Ui,..., Uy and the corresponding homeomorphisms ¢; : U; — V; C T", to open sets V
contained in T™. Also, fix a partition of unity pi,...,pr associated to this cover. On
each coordinate chart, we can consider smooth p-forms to be functions in C*°(R",R™) C
C>®(R™,C™) for m = (Z), where the inner product on R™ C C™ is defined by the inner
product (2.4) on p-forms. Reusing notation, for w,n € C*(M,QP), we define the inner
product (-, )5 on C*° (M, QP) by

k 2
(1, 02)s = | D (pjwowj,pmown)? |

j=1
where (-, ) in the left-hand side defined in terms of the earlier defined (-,-)s in the right-

hand side. The associated norm is

2

k
2
lel, = | D llpjeowill?]
=1

again with the notation of the right-hand side corresponding to the earlier definition. It
is straightforward to check that this inner product does not depend on the choice of open
cover and partition of unity. Define the Sobolev space W*(M, QP) to be the completion of
C>° (M, QP) with respect to this inner product.

Also, analogous to the T™ case, define a differential operator of order ¢ for M by a
linear operator L : C*°(M,QP) — C>°(M,QP) that, in any local trivialization over some

coordinate chart, is a m X m matrix with entries of the form

Lz’j = Z Q%Da,
[a]<t

where af; € C°°(M,C) with at least one af; not identically zero for some 4,j and o with

[a] = ¢. Note again that for x € M, the m x m matrix a®(z) whose entries are given by
ag;(z) represents an element of End(C°°(M,QP);). Moreover, such differential operators

can be extended to W*(M,P), and we will consider differential operators to be these
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extended operators when suitable. We define the principal symbol Sp(z,-) : Th(M) —
End(C*(M,QP),) of L similarly to before. Likewise, we say that L is elliptic at x € M if
for every nonzero ¢ € T;(M) = M, the principal symbol Sz(x,&) is nonsingular, and that
L is elliptic if it is elliptic at all M. One can see that this is equivalent to L being elliptic on
each coordinate chart. Furthermore, one can show an equivalent, coordinate-free definition

of ellipticity at x, given by the condition that

L(¢'w)(x) #0

for every smooth p-form w such that w(x) # 0 and every smooth function ¢ on M such that
¢(x) =0 and do(z) # 0.

It is straightforward to verify that our previous results about Sobolev spaces, differen-
tial operators, and elliptic operators—in particular, Rellich’s lemma and the fundamental
inequality—remain true in this general case.

In order to utilize the nice properties of elliptic operators, we actually have to prove the

following long-awaited fact.
Proposition 2.16. The Hodge—de Rham Laplacian A is elliptic.

Proof. By our discussion earlier, it is equivalent to show that for every x € M,

L(¢*w)(x) # 0 (2.17)

for every smooth p-form w such that w(z) # 0 and every smooth function ¢ on M such that

¢(x) = 0 but dé(z) # 0. By our computation of d* in Section 2.1, we have
A = (—=1)"PHDH g g 4 (—1)"PH w d x d.

Let ¢ denote the nonzero vector d¢(x) € T M. To compute the left-hand side of (2.17), we

work out

dxdx($°w)(z) = (dxd(¢w)(z) = (2d*$(dg) ¥w)(x) = (2(de) * (de) xw)(2) = 2% &+ (w(x)),
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and similarly,

swd % d x (PPw)(z) = 2% € x E(w(x)),
so that overall,

A@w)(r) = =2 (-1 (€A )= (€A )+ (1) PDEA ) (€A ) (w(z).  (218)

We have to show that the above is nonzero. To do so, we appeal to the fact that for an
exact sequence

U=V =>W

of finite-dimensional inner-product spaces, the self-map B*B + AA* : V — V is an auto-

morphism. Indeed, for nonzero v € V,
(B*B + AA*)v,v) = (Bv, Bv) + (A*v, A*v).

If Bv # 0, then the above is nonzero so that (B*B + AA*)v # 0. On the other hand, if
Bv =0, then v € im A by exactness, but A* is injective on im A. This shows that A*v # 0
and as in the above, this implies that (B*B 4+ AA*)v # 0.

We apply the above observation to the setting
N @ £ Nz £ N7,
where the vector spaces are equipped with the inner product
(w,m) = #(w Axn).

Indeed, this sequence is exact, and that the adjoint of &€ A - : NP(TFM) — NTHTEM) is

(—=1)" % &x. Thus,

(1) 5 (EA) % (EN)+ (—1)"PD(EA ) * (A )=

is an automorphism of AP(77 M), which shows our desired claim that (2.18) is nonzero. [
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The ellipticity of A finally allows us to prove the Hodge decomposition for M.

Proof of Theorem 2.2. By the fundamental inequality, we have
lwlly = O (lwlly + Awllg) = O (wlly) = O(1)
uniformly for all w € ker A. Thus, in the diagram of identity maps
(ker A, L?) — (ker A, W?) — (ker A, L?),

the first map is continuous. The second map is compact by Rellich’s lemma, and the
composition is clearly compact. Consequently, the closed unit ball of ker A is compact,
which proves that ker A is finite-dimensional.

We now prove the second claim. Recalling that A can be naturally extended to a self-
map of L?(M, QP), we will let A denoted this extended map. Since L?(M, QP) is a Hilbert
space, we have ker A = (im A*)*+ = (im A)*, rather than just an inclusion. Thus, we would

like to show the decomposition
L*(M, Q) =ker A ®im A = (im A)* @ im A. (2.19)

Proving the above is equivalent to showing that im A is closed. Consider an arbitrary
element 1 = [(7))jezs,] € im A, expressed as the equivalence class of a Cauchy sequence
(nj)jezs, of smooth p-forms. This means that there exists v = [(v})jez.,] € L*(M,QP),
where (v;) jeZs, is also a Cauchy sequence of smooth p-forms, such that Av; —n; converges
to 0 in the L? norm. Without loss of generality, we can assume each vj is in ker A.

We claim that v has finite ||-||, norm. Indeed, suppose the contrary. This means that
any subsequence of (v;)jez., has undefined ||-||, norm, which implies that |v;[|, — oo as
j — oo. Thus, the sequence (7j)jez.,, Where v; := v;/|vll, has finite ||-||, norm and
thus defines an element v € W?2(M,QP). By Rellich’s lemma, a subsequence (Vi Jk€Zso
converges in L?(M,QP). But the smooth p-forms ~;, are in (ker A)* even though A~v;, — 0

in L?(M,QP) as k — oo. This implies that ~y;, must converge to 0 in the L? norm, which
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means v = 0 in L?(M,QP), and thus also in W?(M,QP). But this contradicts the fact
that||y|l, = 1. Thus, v has finite [|-[|, norm, so by the fundamental inequality, (v;);ez., has
a subsequence that converges in the L? norm to some element v. It follows that n = Av is
in im A, as needed.

Finally, we show that ker A = ker A, so that restricting the orthogonal decomposition
L3(M,QP) = ker A @ im A to C%°(M,QP) gives our desired Hodge decomposition. Our
proof is rooted in the phenomenon of elliptic regularity. Consider an arbitrary element
n = [(nj)jezs,] € ker A, or in other words, An; — 0 in the L? norm as j — oco. Recall
that A is continuous as a map L?(M,QP) — W~2(M,QP). Thus, we have that An; — 0
in the ||| _, norm as j — oo, or equivalently, that An = 0 in W~2(M,QP). However, the

fundamental inequality allows us to conclude the finiteness of ||n]|.,, from the finiteness

s+2
of ||n|l,- By induction starting from the base case of s = —2, we conclude that n is in
fact in C°°(M,QP), and thus in ker A, as desired. This completes our proof of the Hodge

decomposition for compact, closed, oriented Riemannian manifolds. ]

In fact, the only specific property of A we have used is its ellipticity and, perhaps less
prominently, the fact that it is a self-map. It is not difficult to see that the above argument
can be applied to prove the following generalization, the statement of which relates to elliptic

operators between general vector bundles of the same finite rank over M.

Theorem 2.17. Let M be a compact, closed, orientable Riemannian manifold with a choice
of orientation; E and F, vector bundles over M of the same finite rank; and L : T'(E) —

L(F), an elliptic operator. The following are true:
(i) ker L is finite-dimensional.

(ii) We have an L? orthogonal decomposition

C®(M, F) = ker L* & L(C™(M, E)).
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Chapter 3

Hodge Theory of Compact Kahler
Manifolds

3.1 Differential operators on complex manifolds

Let (X,h) be a compact, closed complex manifold of dimension n, with h denoting its
Hermitian metric. We can also consider X to be a 2n-dimensional Riemannian manifold,
which we denote by Xg. Recall the concept of complexification, denoted by (-)c, which is
defined by applying ®rC to a given real vector space or bundle. In our case, we let Qf: denote
the complexification QF Xg @g C. Then, analogously to the construction of g* in (2.1), we
can define the sesquilinear bundle morphism h* : C*(M, Q) x C>=(M,Qk) — C>=(M,C).

We can extend the Hodge star operator defined in Chapter 2 to our new setting, as
follows. Let V' be an n-dimensional complex FEuclidean space, and let Vg be V' considered
as a 2n-dimensional real Euclidean space. With the standard inner product, there is a

canonical volume form vol € /\2n Vk ®r C. Then, since the exterior product
k 2n—k 2n
AN\ Ve@rCx A VRerC— N VeerC

is a nondegenerate pairing, we can define the Hodge star operator * : /\]C Ve ®r C —

/\2n_k Vg ®r C by the requirement that 3 € /\k Vk ®r C is mapped to the unique form %/
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satisfying
a A xB = h*(a, B) vol”

for all a € /\k Vk ®r C. This allows us to, as done in Chapter 2, define an inner product on
C™(X,Qf) by
(n,v) = / nA*U = / h*(n,v)vol. (3.1)
X X

Furthermore, the almost complex structure J on Vg induces the decomposition V =
V10 g V0l where V10 denotes the eigenspace on which J acts by multiplication by i and

V01 the eigenspace on which J acts by multiplication by —i. This allows us to define

/\p,q Vo= /\p Vl’o ®(C /\q Vo’l,

and applying fiberwise to Qf&, we obtain a complex vector bundle 2P¢ whose sections we
call (p,q)-forms.

We now investigate the action of the Hodge star operator on the complex vector bundles
QP4 For an arbitrary point x € X, let dzy,...,dz, denote a local frame of holomorphic

coordinates that are isometric at . Using the convention given in (2.2), let

u= g ur, r,dz" A dz212
[11]=p,|12|=q
and
v = g or, 1, d2" A dz T2
[11]=p,|12|=q

denote arbitrary forms in C*°(M, QP9). Then, we have

(u,v), = Z UL, 1,01 Ip- (3.2)

|I1|=p,|I2|=q

Moreover, one can check that

*ﬁ(a:) = Z 6’([1, IQ)’U[LbdZ[(l: A dﬁ, (3.3)
|I1]=p,|I2]=q
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where € (I}, I5) := (—1)9""P¢(I1)e(I5) for € defined in (2.3).
Since *U is of type (n — p,n — q), the definition u A U = (u,v) vol shows that the
Hodge star operator yields a C-linear isometry * : QP4 — Q"~9"7P It follows that the

decomposition

C¥(X,08) = P C>(X, %) (3.4)
p+q=k

is L? orthogonal. Indeed, suppose v is not only of type (p, ¢), but also of type (p’,¢’), where
necessarily p+q = p' + ¢’. Then, u A *v is of type (n —p’ +p,n — ¢ + q) for any u of type
(p,q), which forces v to be 0 unless p = p’ and ¢ = ¢'.

The exterior derivative d and its formal adjoint d* can be extended by complexification
to QF. Note that d(C>(X, Q2P9)) is contained in C°(X, QPT19) & C®(X, QP4+, Thus, it

is natural to consider two more differential operators, often called the Dolbeault operators:
9 :=nPtlioqg: C®(X,0P1) — C™(X, QpTLa)

and

0= 7P od : O®(X,0P7) — C®(X, Pt

where 779 denotes the projection map to the summand C*° (X, QP7) in (3.4).
Recall from (2.5) that the formal adjoint d* is given by —xdx, since X is even-dimensional
as a Riemannian manifold. We now show that the formal adjoints of our newly defined

operators 0 and 0* take similar forms.

Lemma 3.1. The formal adjoints of O and O are given by
O = — % 0%

and

Yl

0 =—%x0x%.

Proof. We show the second claim. In light of the fact that = is a real operator, we need to
verify that
(On,v) = (n,x0 xv)
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for all n € C®°(X,0P4) and v € C®(X, QP4FL). Note that n A 7 € C°(X, Q™" 1) so we

have d(n A *7) = d(n A 7). Further computing, we obtain
d(n A*D) = O(n A *D) = On A0 + (—=1)PTIn A O * D.
The left-hand side vanishes by Stokes’ theorem, so we have

<8w,n>:/8w/\*n:(—1)p+q“/ w/\@*n:(—l)pﬂﬂ/ wAO*xn
X X X

= (—1)prart / w A xx19 1.
X

Using the fact that 1y = (—1)(2”_k)k x v for any k-form -, we further obtain

/ AT = (1)p+q+1/ nAx(—1)Ptazn=p=q) (x0xv) = / NAxx0 x v = (1, —*0*V),
X X X

as needed. The proof of the first claim is analogous. O

We can derive a local expression of the formal adjoint in terms of vector fields. Conider
an open set U C C™ and fix a choice of standard coordinates z1, ..., z,. We can consider the
standard Hermitian metric Z;‘Zl dz; ® dzj on the tangent bundle TU, so that 0,,,...,0,,

comprise an isometric holomorphic frame for TU. Then, we can compute the following.

Lemma 3.2. Let u be a compactly supported smooth k-form on U. Then, in the local

coordinates chosen above, we have

Ou=— Z 8Zj _nazju
j=1

Proof. For any compactly supported function f, we have
0., f vol”,
(Cn

as seen from applying the fundamental theorem of calculus separately to the real and imag-
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inary parts. Thus, for any compactly supported smooth (k — 1)-form v, we have

0 :/ Zazj<aszu,v> vol®
(o
= / Z(@Zj 10, u,v) vol” +/ Z(@zj u, Ozv) vol”
" =1 " =1
:/ Z(@ZjJazju,v) vol” +/ Z(u,dzj/\ dzv) vol”
tj=1 " =1

— Z (02,202, u,v) + (u, Ov)) ,

j=1
as needed. O

We note that the computations for 9* are analogous.
Just as we have done in Chapter 2, we can define the Laplacian operators associated to

d,0 and 0, given by

Ag:=dd" +d"d
Ay := 00" +0"0
N

We say that n € C*®(X, Qfé) is harmonic (respectively, Ag-harmonic; respectively,Az-
harmonic) if Agn = 0 (respectively, Agn = 0; respectively, Azn = 0). A proof analogous to
that of (2.7) shows that the harmonic forms (respectively, Ag-harmonic forms; respectively,
Agz-harmonic forms) are precisely the forms that are simultaneously d- and d*-closed (re-
spectively, 0- and 0*-closed; respectively, O- and 5*-closed). It follows from Proposition 2.16
that Ay is elliptic, and it can similarly be proven that Ay and Ay are elliptic. In particular,

this allows us to apply Theorem 2.17 to Ay, yielding the following fact.

Theorem 3.3. Let (X, h) be a compact, closed complex manifold with Hermitian metric h.

Let 7¢P79(X) denote the space of Ag-harmonic forms of type (p,q). We have that:

(i) HP1X) is finite-dimensional.
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(ii) We have an L? orthogonal decomposition

C(X,0P) = AP9(X) & Ag(C™(X, P7)).

Just as we have for the Hodge decomposition in the Riemannian case, we deduce that

the above decomposition is equivalent to
C(X,QP) = #P9(X) @ J(C™(X, P71 9 9 (C(X, ), (3.5)
where

kerd = AP1(X) ® 9(CP(X, QPatl)),

kerd = #P9(X) ® D (C®(X,QPath)).
In particular, this implies the following fact about the natural map J#74(X) — HP(X),
which is well-defined since a Az-harmonic form must be O-closed.

Corollary 3.4. Retain the hypotheses of Theorem 3.3. Then, the natural map
<%p:q()() N Hp7q

is an isomorphism. In particular, H?9(X) is finite-dimensional.

In other words, every Dolbeault cohomology class in HP9(X) has a unique Agz-harmonic

representative.

3.2 Differential operators on Kahler manifolds

For now, we remove the hypotheses of compactness on (X, h) stated in Section 3.1, but we
suppose that X is a closed Kdhler manifold. Let w denote the K&hler form corresponding
to h, so that the canonical volume form vol” is given by vol, := w" /n. The map n+— wAn
is a differential operator

L:C™®(X,0F) — C™(X, Q)
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of degree 0, which we name the Lefschetz operator. Let A denote its formal adjoint.

Proposition 3.5. For
A C®(X,08) = C®(X,0Q572),

we have

Av = (=1)F(xLx)v
for all v € C=(X,QF).

Proof. Since w is a real differential form, it suffices to prove the claim for an arbitrary

v € C®(X,0F). We need to show that
(L, v) = (. (~1)* (+Lx)v)
for all n € C>(X, Q{f{rz). Check that
InAsv=wAnA*v=nAwA*v=mnAx* ((—1)k*(w/\*u)>,

which suffices. ]

Note also that since w is a real differential form, the maps L and A are invariant under

complex conjugation.

Observe that [0, L] = [0, L] = [0*,A] = [0*,A] = 0. Indeed, these are all equivalent by

applying complex conjugation or the formal adjoint property, and we can check that
[0, Lln=0(wAn)—wAdn=(0w)An=0

for any n € C*°(X, Qfé) We would like to compute the other commutators with one entry
given by L or A and the other entry, by one of the Dolbeault operators and their formal

adjoints. Motivated by these, we work out the following.
Proposition 3.6 (Kéhler identities). We have
[0, L] =0,
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0%, L] = —id,

A, 3] = —id",

A, 0] =id".

Proof. Just like before, it suffices to prove the first identity, since the other identities can
then be deduced by applying complex conjugation or the formal adjoint property.
At a given z € X, there exists a local choice of holomorphic coordinates so that h is

given by
n
> dz @ dz
j=1

plus possibly an error term of order 2. Thus, we can reduce to the case of X = U C C", an

open set equipped with the standard Kéahler form

w=-S|) dy®dz | =-S5 > (dz; ® dr; + —2idx; @ dy; — dy; @ dy;)
j=1 j=1
n 2 n n
=2 da; Ady; = 2.—QZ,Z(d,zj +dz) A (dz; — dz) = i) dz; A dF.
j=1 j=1 j=1

Let n € O (X, Q{é) be arbitrary. Using Lemma 3.2, we compute

%

0", LIn =09 (wAn) —wA (@ n)

Jj=1 /=1 (=1

= — Z (—@jJ (z Z dzg N dzg N 8zj77> +1 Z dze \dzg N (azjﬁzjn))
Jj=1 /=1 /=1

= (—O +idzj Am—1 Z dze N dzg N (0z;102,m) +i Z dzy N\ dzg A (azjjazjn)>

Jj=1 /=1 /=1
= idn,
as needed. 0

Also, we prove the following addenda to the Kéhler identities that will be useful in our
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proof of the Lefschetz decomposition in Section 3.4.

Proposition 3.7. We have

[Aav L] =0

and

[L,Aln = Hn,

for allm € C=(X,Qk), where H denotes the counting operator that sends n € C*(X, Q(’é)

to (k —n)n. More generally, for 0 <k <n and 0 <r <n —k, we have
(L7, Aln = (r(k —n) +r(r —1))L"'n

for all n € C=(X,QF).

Proof. To show the first claim, we check that

Ay, L] = (90" + 9*9)L — L(9d" + 8"9)
= 9(0*L — LO*) + OLO* + 0*(OL — L) + 0" L
+ (0L — LO)* — OLI* + (0°L — LO*)D — 0L
= 9(0"L — LO*) + 9" (0L — L) + (L — LI)O* + (9" L — LI*)d

= (i) + 070 + 00" + 90 = 0.

We now prove the second claim. Since it suffices to prove the claim fiberwise, we may
reduce to the case that X = V = C" with the standard Hermitian metric. Our proof is by
induction on n. Consider the base case n = 1. With respect to the standard coordinate
z = x + 1y, we have that L acts as 1 — w on /\0 V* and coincides with the zero map
otherwise. Likewise, A acts as w +— 1 on /\2 V* and coincides with the zero map otherwise.
Thus, [L,A] acts as —AL = —1 on A\’ V*, as the zero map on A\' V* and as LA = 1 on
N2 V*, as needed.

Next, we prove the inductive step. Let V = C™ for n > 1, and assume the inductive

hypothesis that [L, A] = H for all m < n. Take a decomposition X = W7 & Wy, compatible
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with the Kahler structure, for positive-dimensional subspaces W; = C"' and W, =2 C™2.
The Kahler form w on X decomposes as wq @ ws, where w; denotes the Kahler form on W;.
Thus, L decomposes as the direct sum of the Lefschetz operators L; and Ly of Wy and Wa,

respectively. Specifically, L = L1 ® 1 +1 ® Lo as operators on
Nvee Nwre N ws

Let o, 8 € \° V*, where we can without loss of generality suppose that they are split, i.e.,
a=oo®azand B =6 ® s for aj, B € \° Wr. Then, (o, B) = (a1, P1){aa, B2), and thus

we have

(a, LB) = (a, L1f1 @ B2) + (a, B1 @ Lafa)
= (a1, L181){2, B2) + {1, B1)(a1, Lafa)
= (Ara1, Br){ag, B2) + (a1, 1) (A2az, f2)

= (Ma1 ® ag, f1 ® B2) + (a1 ® Asa, fa),

which shows that A also decomposes as the direct sum A1 ® 1 + 1 ® Ay, where A; is the

formal adjoint of the Lefshetz operator of W;. Consequently, we have

(L, Al(1 @ ag) = (L1 ® 1+ Lo @ 1)(Aror @ g + o1 @ Agarg)
— (M ®1+1®Ay)(Liog ® ag + a1 @ Laag)
= [L1,A1]ar @ ag + a1 @ [La, Ao
= (k1 — n1)a1 ® ag + (k2 — n2) (o1 — a2)

= (kl + ko —ni — ng)al X o,

where k; is such that «; € /\kj W7, and we have used the inductive hypothesis.

To show the final claim, note that

[L",A] = L[L™™' A} + [L,A]L" Y,
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so we prove by induction. The base case r = 0 is trivial, and r = 1 has been shown. For

the inductive step, we have

[L",Aln=L((r—1)(k—n)+ (r—1)(r — 2))LT_277 +(k+2r—2-— n)L’"_ln

= (r(k—n)+7r(r—1)L" 1.

O]

The Kahler identities allow us to prove the following fundamental relationship between

Ag,Ap and Ag.

Theorem 3.8. We have
Ag =205 = 2A5.

In particular, the conditions of a k-form being harmonic, Ag-harmonic, and Ag-harmonic

are equivalent.

Proof. We show the first equality. Since d = 8 + 0, we have

Ag=(040)(0"+8)+ (0" +0)(d+d).

By Proposition 3.6, we have " = —i[A, 9], which implies

(04 0)(0" +8°) = 00" — iOND + DO* — iDAD + iDOA

and

(0 4+8)(0+0) = 80 + iOAD + 8" + iOAD — iADD.

Proposition 3.6 also gives us that 9* = i[A, ], so we have

0*0 = —i0AND = —00*. (3.6)
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We thus have

Ay = 00* — iOAO + 100\ + 0*0 + i0AOO
= Ay —iAIO — iOAD + iOAD + iOOA
= Ay +iAJO — iOAD + iONO — iOOA
= Ay +i(AD — DN)D + iD(AD — OA)

= Ay + 00+ 90" = 2/,

where we have used the fact that 90 = —90 and Proposition 3.6. The proof of the equality

for Az is analogous. O

This relationship between the Laplacian operators of a Kahler manifold has a number of
important consequences, one of which is the following corollary that will be key in proving

the Hodge decomposition for Kéhler manifolds.
Corollary 3.9. Let n € C®°(X,QP?). Then, Agn is also in C*°(X, QP9).
Proof. Immediately follows from Agn = (Agn)/2. O

This naturally leads us to the following fundamental result regarding the space #7%(X) =

H*(XRr) ®r C of harmonic forms on Kihler manifolds.

Theorem 3.10. Let u € C°(X, Q(’é), and denote its decomposition into components of type

(p,q) by

U= g uPd,

pt+a=Fk
Then, u is harmonic if and only if each uP? is harmonic. In particular, we have the
decomposition

HHX) = P APX),
ptq=k

where P4 denotes the space of harmonic forms of type (p,q). Moreover, we have

HPUX) = 9P (X).

39



Proof. Since Ay maps (p, q)-type components to (p, q)-type components by Corollary 3.9,
u is harmonic if and only if each uP? is harmonic, and we have the claimed decomposition.
Furthermore, for a harmonic form 7n of type (p,q), we have that 77 is of type (¢q,p) and
satisfies

Aol = Azn = Apn =0
by Theorem 3.8, and thus is harmonic. O

In the case that X is compact, the above theorem combined with Corollary 2.3—which
yields 7#%(X) = H*(X,C), where we have used de Rham’s theorem to justify our notation
H*(X,R) := H%,(Xgr) and H*(X,C) := H%,(Xr) ®g C that we will use from now on—and
Corollary 3.4—which gives the isomorphism 779 =2 HP4(X )—gives us the main theorem

of this section.

Theorem 3.11 (Hodge). Let (X, h) be a compact, closed Kdhler manifold. Then, we have
the Hodge decomposition

HY(X.C) = P HM(X), (3.7)
p+q=Fk
and Hodge duality

HoP(X) = HP(X).

Proof. The proof of Hodge duality follows immediately from the remarks in the paragraph
preceding the theorem statement. However, regarding the Hodge decomposition, these

remarks only show the weaker statement that

H*X,C)= @ HM(X).

p+g=k

The stronger statement of (3.7) states that the isomorphism is canonical, in the sense that
it does not depend on the choice of the Hermitian metric &, which determines the Hodge
star operator and the Laplacian operators, and thus could a priori affect the isomorphism.

The fact that the isomorphism is canonical will be proven in Section 3.3. O

The Hodge decomposition yields a wealth of information on the Betti numbers by and
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their analogue, h) 4 := dim¢ HP9(X), associated to X.
Corollary 3.12. Retain the hypotheses of Theorem 8.11. We have
b, = Z hP4 Vk € Zzo,
pta=Fk

hPd — pOP Vp, q € Z>y,
Hk,k(X)ggo Vk e {1,...,n},

and by, is even for odd k.

Proof. The first, second and fourth claims are immediately deduced from the Hodge decom-
position and Hodge duality. The third claim follows from applying to the Hodge decom-
position the fact that the de Rham cohomology class [w*] of the kth power of the Kihler
form is a nonzero element in H 2’“(XR, R), and thus a complex-conjugation-invariant nonzero
element in H?* (X, C). Indeed, suppose for the sake of a contradiction that w* is exact, say

equal to dn. Then,

/w”:/d(n/\w”_k):/ nAWF =0,
D' X X

which is a contradiction, since w™ is a nontrivial volume form. ]
As an instructive example, let us obtain the Dolbeault cohomology groups of P" using

the Hodge decomposition.

Corollary 3.13. We have

C if0<p=qg<n,
HPA(P") =

0 otherwise.

Proof. 1t is well-known that

C if0<k<n,
H? (P, C) =

0 otherwise.
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However, P" is Kihler, so by Corollary 3.12, we have H®F(P") 2 0 for 0 < k < n. The

claim then follows from the Hodge decomposition. O

3.3 Bott—Chern cohomology and the 9d0-Lemma

As stated before, we will prove that the isomorphism in the Hodge decomposition for com-
pact, closed Kéahler manifolds does not depend on the choice of the Hermitian metric. To
accomplish this, we define a new notion of cohomology that is independent of the choice of
Hermitian metric. For a complex manifold X, define the Bott—Chern cohomology groups of
X by

HYL(X) :=={ne C®(X, Q) : dn = 0}/00C> (X, P~ ha—1),

Since dO0 = 0, the natural map
{n e C™®(X,QP%) :dn =0} - HPT(X,C)

induces a canonical map

HB.(X) — HPTI(X, C).

Moreover, since a d-closed form is also 0-closed, we have a natural map
{n e C®(X,QP%) : dn =0} —» HP(X),
and it follows from 990 = 0 that we have a canonical map
HYL(X) — HP(X).

Under the hypotheses of Theorem 3.11, we will see that the de Rham/singular, Dolbeault
and Bott—Chern cohomologies are interrelated. To show this, we will need the following

lemma, often called the 09-lemma.

Lemma 3.14 (00-lemma). Retain the hypotheses of Theorem 8.11. Let n be a d-closed

form of type (p,q). If n is O- or O-exzact, then there exists a form B of type (p —1,q — 1)
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such that n = 00p.

Proof. We first prove the claim for n 0-exact, say n = dv. Since 7 is d-closed, it is also 0-

and O-closed. It follows from (3.5) that v can be decomposed as
v=a+08+0~

for a € P171(X), B € C(X, QP17 1) and v € C®(X, QP14 Since Apar = Aga =

0, it follows that « is 0-closed, and thus
n =008+ dd .

We have 00 = —09, and we can take complex conjugates in (3.6) to see that 00" = —do*.
Thus, we have

n=—-003—98 .

In particular, taking @ of both sides yields that 0 = —88 dv. Then, & 9 is both d-closed
and 5*—exact, which necessitates that v is Az-harmonic, a contradiction unless v = 0.
The proof of the claim under the hypothesis that 1 is O-exact is similar, and follows

from the analogue of Theorem 3.3—and consequently, (3.5)—for the operator 0. O

Equipped with the 00-lemma, we are now ready to prove our desired relationship be-

tween the cohomology theories.

Corollary 3.15. Retain the hypotheses of Theorem 8.11. Then, the canonical maps
Hg’g(X) — HPI(X)

and

P HLL(X) - HF(X,C)
pt+g=k

are isomorphisms. In particular, the Hodge decomposition isomorphism of Theorem 3.11 is

canonical.
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Proof. Recall from Corollary 3.4 that HP9(X) = J#P49(X). In other words, every Dol-
beault cohomology class has a unique representative that is Az-harmonic, or equivalently
by Theorem 3.8, A-harmonic. Since A-harmonic forms are d-closed, we see that the map
HYL(X) — HP9(X) is surjective.

It remains to verify injectivity. Consider v € H% (X) whose image in HP7(X) is 0. Let
n € C°°(X,QP7) be a d-closed representative of v in H;Z,. By our hypothesis, 7 is O-exact.
Thus, by the 90-lemma, we have that 7 is in the image of 99, and thus v = 0.

We have verified the first claim the canonical map H3A(X) — HP(X) is an isomor-

phism. In light of Corollary 2.3 and Theorem 3.10 together implying that
HE(X,C) = M () = @) APIX),
p+a=Fk

we can apply the first claim to the above, which proves the second claim. O

3.4 Lefschetz decomposition and the Hodge index theorem

Remove the compactness hypothesis again, so we suppose X is a closed Kéhler manifold of
dimension n. The Lefschetz operator L defined in Section 3.2 can be thought of as a bundle
morphism over X,

L:Qf — Qpt?,

since w is a real-valued form. In this section, we wish to show that the map
Ln—k . QI@ N QQTL*k
: R

is a bundle isomorphism. Since Qﬁi and Q%{L—k are vector bundles of the same finite rank,
it suffices to show that the morphism is injective at a fiber over an arbitrary point € X.
We will show this on the way to proving the Lefschetz decomposition for k-forms.

It will be useful to note that on A*V* (where V = C" has the standard Hermitian
structure, and in particular can denote a fiber of the tangent bundle of X), the operators

L,A and H define a natural sl(2)-representation. Indeed, s[(2) (over R or C, depending
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on which field V' is defined over) is the three-dimensional Lie algebra of 2 x 2 traceless
matrices. A basis of s[(2) is given by e = (§4),f = (99) and h = (§ °;), with relations
[h,e] = 2e, [h, f] = —2f, and [e, f] = h. Thus, the map given by e — L, f — A and h — H
defines a Lie algebra morphism s[(2) — End(A®* V*), as needed.

Before we prove the main machinery behind this section below, we will need the following
definition. We call a form a € A*V* primitive if Aa = 0. Let P¥ ¢ A*V* denote the

subspace of primitive forms.
Proposition 3.16. Let V = C" have the standard Hermitian structure.

(i) We have the Lefschetz decomposition

/\k vi= @ L/(PFH),
0<j<%
which is orthogonal with respect to the inner product.

(ii) For k > n, we have P* = 0.

(iii) For k <n, the map L% : N'V* — N""FV* is injective on P*.
(iv) For k <n, the map L™ % : N°V* = A" V* is bijective.

(v) For k <n, we have P* = {a € N°V*: L"F+lg = 0},

Proof. (i). We have shown that A’ V* is a finite-dimensional s[(2)-representation, and by
the semisimplicity of sl(2), we can write A\* V* as a direct sum of irreducible subrepresenta-
tions. Due to finite-dimensionality of A® V*, any subrepresentation has a primitive vector
v, i.e., one that satisfies Av = 0. For any such primitive vector, Proposition 3.7 shows that
the subspace spanned by v, Lv, L?v, ... defines a subrepresentation. It follows that this is
the general form of the irreducible subrepresentations that comprise A* V* by direct sum.
This proves the Lefschetz decomposition, and the fact that it is orthogonal with respect to
the inner product follows from Proposition 3.7.

(ii). Suppose for the sake of a contradiction that there exists nonzero a € P*. Let j > 0
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minimal such that L/a = 0. Then, by Proposition 3.7, we have
0= [l ANa=jk—n+j—1)L a. (3.8)

In light of our hypothesis & > n and the minimality of j, it follows that j = 0, which is a
contradiction.

(4ii). Consider a nonzero element o € P* and let j > 0 be minimal such that Lia = 0.
The identity (3.8) still holds, and thus k —n+j5—1=0, i.e, j =n—k+ 1. It follows that
L" %o 0, as needed.

(iv). This follows from (), (ii) and (ii).

(v). In the proof of (iii), we have shown that P* C ker(L"**1). We now show the

converse. Let a € /\k V* such that L" **la = 0. We have
LR 200 = L F2N0 — AL 20 = (n—k+ 2)L" *la = 0.

However, we know from (iv) that the map L™ %2 is injective, so Ao = 0, as needed.  [J

Applying Proposition 3.16 fiberwise, we deduce that the bundle morphism
L. ok - o2nk (3.9)

is in fact an isomorphism. This fact will, once we add back the compactness condition, allow
us to prove a beautiful duality statement known as the Hard Lefschetz theorem. Before we

do so, note that since w is d-closed, the map
L:C>®(X,08) — C™(X,0E™)

induces a map

L:H*X,R) - H*2(X,R).
We prove the following result about this induced map.

Theorem 3.17 (Hard Lefschetz theorem). Let (X, h) be a compact, closed Kdhler manifold
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of dimension n. Then, for 0 <k <n, the map
L% HE(X,R) — H™ *(X,R)

18 an isomorphism.

Proof. By Proposition 3.16 and Theorem 3.8, we know that Ay commutes with L, or equiv-
alently, that L maps harmonic forms to harmonic forms. We can thus consider the induced
map

L% g X, R) — H *(X,R) (3.10)

By Corollary 2.3, it suffices to show that (3.10) is an isomorphism. By Theorem 2.2 and
Corollary 2.4 (Poincaré duality), H*(X) and H?"~*(X) have the same finite dimension.

Moreover, we have previously shown that (3.9) is a bundle isomorphism, and thus
Lk 0%®(X,0k) - (X, 0F)

is an isomorphism, and in particular injective. However, this shows in particular that L™*
is injective on H¥(X), from which the statement follows by the fact that the domain and

the range have equal finite dimension. ]

Retain the hypotheses of Theorem 3.17. We have seen that L (and consequently, A
and H) commute with Ay, which means all three operators induce corresponding maps on
H*(X,R). Thus, we can define [7] € H*(X,R),0 < k < n to be primitive if Aln] = 0, or
equivalently (by Proposition 3.16(v)), L **1[n] = 0. Let H*(X,R)prim C H*(X,R) denote
the subspace of primitive cohomology classes. Since the cohomology algebra H®(X,R) is
finite-dimensional, we can use a proof similar to that of Proposition 3.16(i) to deduce the

following decomposition.

Theorem 3.18 (Lefschetz decomposition). Retain the hypotheses of Theorem 3.17. Then,

we have the Lefschetz decomposition

HYX,R)= P LH* ¥(X,R)prim-

.k
0<j<k
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We note that every result we have obtained in this section can be done in the analogous

setting for Dolbeault cohomology. Indeed, since the Kiahler form w is d-closed, so the map
L: C®(X,QP9) — C®(X, QpThatl)
induces a map
L: HPY(X) — HPTaH (X)),

We can apply the Hodge decomposition and a proof analogous to that of Theorem 3.17 to

obtain the following result over complex coefficients.

Theorem 3.19 (Hard Lefschetz theorem, Dolbeault-cohomology version). Retain the hy-

potheses of Theorem 3.17. Then, for all p,q > 0 such that p+ q < n, the map
LPP=4 . HPA(X) — H" 9" P(X)

s an tsomorphism.

An important application of the Lefchsetz decomposition is to the computation of the
signature of the intersection form on H?(X,C) for a given compact Kihler surface X, a
result known as the Hodge index theorem. To prepare the setting, recall from Corollary 2.4

oincaré duality) that we have a nondegenerate symmetric bilinear pairing
Poi ¢ duali h h d ic bili iri
Q:H*(X,R) x H*(X,R) - R

defined by ([n], [v]) — / n A v. The sesquilinear form Q([n], [v]) := Q([n], [¥]) is in fact a
X
Hermitian form on H?(X,C). The Lefschetz decomposition happens to be orthogonal with

respect to this form.

Lemma 3.20. Let X be a compact, closed Kdhler manifold of dimension 2. We have the
Lefschetz decomposition

H?*(X,C) = H*(X, C)prim @ C[w],
which is orthogonal with respect to Q.
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Note that the subspace H*(X,C)prim C H*(X,C) is defined analogously to H*(X,R)pyim-
Proof. By base-changing the isomorphism in Theorem 3.18 to C, we obtain the Lefschetz
decomposition

H*(X,C) = H*(X,C)prim ® LH*(X, C)prim = H*(X, C) prim © C[w].

Let [n] € H?(X, C)prim, or equivalently, w A n = 0. We have

Gt~ [[wrn=o

which proves the second claim. ]
The orthogonality with respect to Q will be key in proving the following.

Theorem 3.21 (Hodge index theorem). Let X be a compact, closed Kdhler manifold of
dimension 2. Then, the signature of the intersection form Q on H?(X,R) N H“'(X) is

given by (1,hH1 —1).

Proof. Recall that Lemma 3.20 states that we have a Lefschetz decomposition

H*(X, C)prim © Clu]
that is orthogonal with respect to Q. In particular, the decomposition
H*(X,R)NH"Y(X) = H*(X,R)N(H" (X )primn © Clw]) = (H*(X, R)NH (X ) prin) DR[w],

is orthogonal with respect to Q\HQ(XR) = @, where we have used that Clw] ¢ HV(X).
Since w is a volume form, we have that Q(w,w) > 0. Thus, @ is positive definite on the
1-dimensional subspace R[w].

It remains to show that @ is negative definite on the orthogonal complement H?(X,R)N
HY(X)pim. Consider a nonzero class [v] € H"!(X)prim with unique harmonic represen-
tative . We claim that v = —7. By considering an arbitrary local trivialization, we can

reduce to the case of an open set U C C? with the standard metric h = dz; ® dz] +dz @ dz3
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and the associated Kéhler form w = i(dz; A dz1 4+ dza A dz3). Denote v in local coordinates
by

v =v1dz1 A dz1 4+ viedzy A dZs + ve1dzo N dzZ7 + voadzo A dZs.

Then, by the formula (3.2), we have

O=wAv
= i(dzl Adz1 + dzo A d?g) A (Vndzl A dz1 + viadz1 A dZs + vo1dze A dZ1 + voadzg A d?g)

=i(v11 + ve2)dz ® dz7,
which shows that v9e = —vq1. Also, by the formula (3.3), we have
xU = —Ugodz1 N dZ1 + Ua1dz1 A\ dZs + U1adze A dz1 — T11dze A dZzs.
Comparing this to
U = —n1dz1 N dz] — a1dz1 A dzz — Uiadze N dzZ1 — Tlzadzo N dZ3,

we indeed obtain that xv = —7.

This allows us to observe that for any [n] € H2(X,R) N HY(X)prim, we have

Q. 1)) = /

an/ nA*n=—|nl <0
X X

which shows that @ is indeed negative definite on the (h!! — 1)-dimensional subspace

H%(X,R) N H (X)) prim, as needed. O
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