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Abstract

We use the classification of commutators in free groups and in free products by Wicks [14]
to asymptotically count for these groups the conjugacy classes of commutators with a given
word length. Let F, denote the free group on r > 1 generators. We show that the number
of conjugacy classes of commutators in F,. with word length k is given by 0 for odd k£ and

(2r — 2)2(2r —1)2~"

967’ (k2 + O”’ (k>)

for even k, where the implied constant depends only on r and is effectively computable. This
result builds on the work of Rivin [9], who counted the conjugacy classes of commutator-
subgroup elements in F; with a given word length.

Next, we show that the number of conjugacy classes of commutators in the free product

Z)3Z x 7.)2Z = PSLy(Z) with word length k is given by 0 for 4 { k and

[\
e

35 K0 (R)) .

for 4 | k, where the implied constant is effectively computable.
Finally, we give an algorithm to exhaustively compute all hyperbolic conjugacy classes
of commutators of PSLy(Z) with a given trace. We conclude by formulating several density-

type conjectures suggested by the data from this algorithm.
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Chapter 1

Introduction

Let G be a finitely generated group with a finite symmetric set of generators &. Any
element g € G can then be written as a word in the letters of &, and one can define the
length of g by

inf k.
kGZZ():HCL...,CkEG
g=c1-Cg

Consider the closed ball Bi(G,S) C G of radius k in the word metric, defined as the subset
consisting of elements with length < k. One can then ask natural questions about the
growth of G: how large is | B (G, S)| as k — oo, and more generally, what connections can
be made between the properties of G and this notion of its growth rate? Since the middle of
the 20th century, this group-theoretic question has been widely studied in various contexts
largely arising from geometric motivations, such as characterizing the volume growth of
Riemannian manifolds and Lie groups. One of the pioneering results on this question of
geometric group theory is that of Gromov [6], who classified groups G with polynomial
growth, i.e., those that satisfy |By(G, &)| < k(). There are also groups with exponential
growth, one of which is the free group F, on r > 1 generators; more precisely, after fixing

a symmetric generating set & := {z1,...,z,, :cfl, ...,x1}, it is easy to see that

r((2r—1)%-1)
r—1 ’

k k
Bi(G,6) =1+ 0Bi(G,6) =1+ 2r(2r—1)"' =

=1 i=1

where 0By (G, &) denotes the subset of length-k elements.



In certain contexts, it is more natural to consider the growth rate of the conjugacy

classes of G. For a given conjugacy class C of G, define the length of C by

inf length(g),
inf leng (9)

and define 8B,§°nj(G,6) as the set of conjugacy classes of G with length k. In the case
of F,., the minimal-length elements of a conjugacy class are precisely its cyclically reduced
elements, all of which are cyclic conjugates of each other. The conjugacy growth of F). can
be described as dB{"™(G, &) ~ (2r — 1)*/k, which agrees with the intuition of identifying
the cyclic conjugates among the 2r(2r—1)*~! words of length k; for the full explicit formula,
see [7, Proposition 17.8].

One context for which conjugacy growth may be a more natural quantity to study than
the growth rate in terms of elements is when characterizing the frequency with which a
conjugacy-invariant property occurs in G. An example of such a property is membership
in the commutator subgroup [G,G]. On this front, Rivin [9] computed the number ¢ of
length-k cyclically reduced words in F,. that are in the commutator subgroup (i.e., have

trivial abelianization) to be the constant term in

(2v2r — )Ty, <2 2i — Z; <m + ;)) ,

where T} denotes the kth Chebyshev polynomial of the first kind. This quantity can asymp-
totically be described as ¢, ~ C,.(2r—1)¥ /k"/2 for some positive constant C, depending only
on r. Furthermore, from the number of cyclically reduced words with trivial abelianization,
one can derive the growth of conjugacy classes with trivial abelianization by using M&bius

inversion, due to the following relationships:

Cp = chh

d|k

where pg denotes the number of primitive (i.e., not a proper power of any subword) length-d



words with trivial abelianization, and

conj p
0B;™(G.&) NG Gl =D,
d|k

which together imply by Mdobius inversion that

|8-B](;Onj(G7 6) N [G, G” = Z 2 Z/j’(z) Ce = Z% Z 'u’(dcll/)

dlk eld elk d/|§
ce o¢(k/e o(k/e
:ije. S{//e):%:ce (k/). (1.1)

In the above, ¢ denotes the Euler totient function. For details on this derivation, the reader
is directed to [7, Chapter 17] .

In this paper, we answer the analogous question for commutators rather than for
commutator-subgroup elements. This new inquiry is structurally different in that it aims
to solve a Diophantine equation over a group G (whether there exist X and Y such that
XYXlYy=! = W) for a given W € G, rather than a subgroup-membership problem
(whether W is in [G,G]). In particular, the set of commutators is not multiplicatively
closed, so we cannot use primitive words as a bridge between counting cyclically reduced
words and counting conjugacy classes as above. Instead, we use a theorem of Wicks [14],
which states that an element of F,. is a commutator if and only if it is a cyclically reduced

conjugate of a commutator satisfying the following definition.

Definition 1.1. A Wicks commutator of F, is a word W € F, of the form ABCA~'B~1C~!,
where the product is cyclically reduced; i.e., there are no cancellations between the subwords

A, B,C,A7',B7! and C~!, and the first and last letters are not inverses.

After proving this theorem for expository purposes, we count the number of conjugacy
classes of commutators with length k£ in F,. by counting the number of Wicks commutators

with length k.



Theorem 1.2. Let k > 0 be even. The number of distinct conjugacy classes of commutators

in F,. with length k is given by

(2r —2)2(2r —1)2~"
96r

(K + Or (k) ,

where the implied constant depends only on v and is effectively computable.

Note that the number of conjugacy classes of commutators in F;. is roughly proportional
to the square root of the number (1.1) of all conjugacy classes with trivial abelianization.

We also employ a similar argument, using Wicks’ characterization of commutators in free
products, to answer the analogous question for Z/3Z x Z/27. This group is of independent
interest as the isomorphism class of PSLa(Z); specifically, for the usual generators

0 -1 11
S = and T := (1.2)

of PSLy(Z), we have that S corresponds to a generator of the Z/27Z factor and ST, to a
generator of the Z/3Z factor. Let & := {r,7~!, s}, where r denotes a generator of the Z/3Z
factor and s, the generator of the Z/27Z factor. Then, a theorem of Wicks [14] analogous
to the previous one, which we will again prove for expository purposes, implies that an
element of Z /37 x 7 /27 is a commutator if and only if it is a cyclically reduced conjugate

of a commutator satisfying the following definition.

Definition 1.3. A Wicks commutator of Z/37 x Z./27Z is a word W € Z /37 x 7./ 27 either
of the form ABA~'B~! or of the form AaBBCaA~'3B~taC~1p for a, 8 € {r,r~'}. Here,
the product is fully cyclically reduced; i.e., adjacent letters are in different factors of the free

product, as are the first and last letters.

A fully cyclically reduced element W with length k in 7Z/37Z % Z /27 alternates between
k/2 letters in {r,r~1} and k/2 letters equal to s, where k/2 is necessarily an integer. Thus,
the number of fully cyclically reduced elements with length &k in Z/3Z«7Z/27 is 0 if k is odd
and 2¥/2 if k is even. Furthermore, W has trivial abelianization if and only if k/2 is an even

integer (so that the product of all the s factors is trivial) and the product of all the letters

4



of W in {r,7~'} is trivial. In particular, this is necessary for W to be a Wicks commutator,
so the length of any Wicks commutator of Z/37Z x 7 /27 is divisible by 4. Accordingly, for
any k divisible by 4, we obtain the number of length-k conjugacy classes in Z/37Z x Z/27

comprised of commutators.

Theorem 1.4. Let k > 0 be a multiple of 4. The number of distinct conjugacy classes of

commutators in 7 /37 x /27 with length k is given by

\]
e

25 (K*+0(k)),

where the implied constant is effectively computable.

Suppose that 4 | k. Then, the cyclically reduced elements of Z/37Z x 7. /27 with length k
are in bijection with the closed paths of length k/2 on the triangle PQR with fixed basepoint
P. Let p, denote the number of paths with length n from P to itself and g,, the number
of paths with length n from @ to P. Then, note that p,, = 2¢,,—1 for n > 1, and thus, ¢, is

the solution to the linear recurrence
0=0, q=1, and  ¢p = qn-1+Pn-1 = qu-1 + 2¢n—2 for n > 2,

which is (2" + (—1)"*1)/3. It follows that p, = 2¢,_1 = (2" +2(—=1)") /3 = 2"/3 + O(1).
Thus, the number of cyclically reduced words with length k in Z/3Z*Z/27Z is 2¥/2 3+ O(1),
and applying M&bius inversion as done in (1.1), we see that the number of conjugacy classes
of commutators in Z/3Z x Z/2Z is roughly comparable to the square root of the number of
all conjugacy classes with trivial abelianization.

Counting conjugacy classes of commutators has a topological application. Let X be a
connected CW complex with fundamental group G, and let C be a conjugacy class of G with
trivial abelianization, corresponding to the free homotopy class of a homologically trivial
loop 7 : S' — X. Then, the commutator length of C, defined as the minimum number of
commutators whose product is equal to an element of C, is also the minimum genus of an
orientable surface that continuously maps to X so that the boundary of the surface maps

to v [2, Section 2.1]. Thus, using the bijective correspondence between conjugacy classes

5



of the fundamental group and free homotopy classes of loops S' — X, our above results

immediately yield the following corollaries.
Corollary 1.5. Let X be a connected CW complex.

1. Suppose X has fundamental group F,. with a symmetric set of free gemerators .
Then, the number of free homotopy classes of loops vy : St — X with length k (in the
generators of &) such that there exists a genus-1 orientable surface Y and a continuous
map f:Y — X satisfying f(OY) = Im~ is given by

(2r —2)%(2r —1)5 !

o6 (k* + Or (k)

where the implied constant depends only on r and is effectively computable.

2. Suppose X has fundamental group 7./37 * Z.]27 with the symmetric set of generators
& = {r,r7 1 s}, where r is a generator of the Z/37Z factor and s, the generator of the
727 factor. Then, the number of free homotopy classes of loops v : St — X with
length k (in the generators of &) such that there exists a genus-1 orientable surface

Y and a continuous map f:Y — X satisfying f(OY) = Im~ is given by

[\S)
e

@(szrO(k)),

where the implied constant is effectively computable.

In addition, counting conjugacy classes of PSLg(Z) arises in the following geometric
context. Consider the upper-half plane H and a discrete subgroup I' € PSLy(R) which acts
on H by fractional linear transformations; in our case, I' = PSLy(Z). Then, the quotient
surface T'\H is a hyperbolic manifold, and every hyperbolic element h € T' gives rise to a
closed geodesic of I'\H by projecting the geodesic of H connecting the fixed points of h to
M\H. In fact, this gives a bijective correspondence between the closed geodesics of I'\H
and the hyperbolic conjugacy classes of I'. In this correspondence, the primitive hyperbolic
conjugacy classes give rise to primitive closed geodesics. These are called prime geodesics

because when ordered by trace, they satisfy equidistribution theorems analogous to those



of prime numbers, such as the prime number theorem (generally credited to Selberg [12],
while its analogue for surfaces of varying negative curvature was proven by Margulis [8])
and Chebotarev’s density theorem (proven by Sarnak [10]). Specifically, this analogue of
the prime number theorem is called the prime geodesic theorem, which states that the
number of prime geodesics of I'\H with norm < N is asymptotically given by ~ N/log N.
Furthermore, Sarnak’s analogue of Chebotarev’s density theorem implies that the number
of prime geodesics of I'\H with norm < N that correspond to elements of I' with trivial
abelianization is asymptotically given by ~ N/(6log V), since [I",T'] is an index-6 subgroup
(in fact, a congruence subgroup) of I'; see (3.3) for details.

For this application, we present an algorithm, based on Gauss’ reduction theory of indef-
inite binary quadratic forms and Wicks’ theorem, to exhaustively compute the hyperbolic
conjugacy classes of commutators of I' with a given trace. Note that the trace ¢ of a hy-
perbolic element of I' is connected to the norm N of the corresponding geodesic by the

relationship

2

5 2
N (t—l—\/t —4) |

A commutator of T' is precisely a coset {C,—C} for a commutator C = ABA™'B~! of
SLa(Z), where A, B € SLy(Z). In light of this, one application of this algorithm arises from
the fact that commutators ABA~!B~1 of SLy(Z) with a given trace ¢ give rise to integral
solutions

(Tr(A), Tr(B), Tr(AB))

of the Markoff-type surface 2 + 3% + 22 — zyz =t + 2, since we have the trace identity
Tr(A)? + Tr(B)? 4+ Tr(AB)? — Tr(A) Tr(B) Tr(AB) = Tr(ABA !B 1) + 2.

Integral points on this Markoff-type surface are of independent number-theoretic interest
and have been studied in [1] and [5].
Finally, we conclude our paper with a discussion of the data arising from the algorithm,

along with several conjectures suggested by our work.



Chapter 2

Commutators of the Free Group

2.1 Proof of Wicks’ Theorem for the Free Group

In this section, we give an exposition of Wicks’ proof of his theorem [14] that every commu-
tator in F. is conjugate to a Wicks commutator, i.e., a word of the fully cyclically reduced
form ABCA~'B~1C~!. In fact, this is a full characterization, since a Wicks commutator

is indeed a commutator, as seen from
(ACYHY(CB)(ACH) L (CB)™' = ABCA !B~ CcL. (2.1)

Suppose that W is a nontrivial commutator. Then, the set of commutators of the form
ABCA~'B~1C~! (not necessarily cyclically reduced) that are conjugate to W is nonempty,
and we can take the least-length such commutator XY ZX 'Y ~1Z~1 We will show that
this expression is cyclically reduced.

Suppose the contrary. If two of the factors X,Y, and Z are trivial, then we have that
W is trivial, a contradiction. First, we suppose that one of X Y, and Z is trivial. By
conjugating, we may assume that Z is trivial. Then, in the expression XY X 1Y~ we
must have that two cyclically adjacent letters in distinct subwords (among X,Y, X!, and
Y1) are inverses. Again, by conjugating, we may assume that these two letters are the
first letter of X and the last letter of Y~!. Then, we must have X = aX; and Y = aY].

But then, XlaYlelolefl, which is also of the form ABCA~'B~1C~!, is conjugate to



aXaY1 X 1a_1Y1_1a_1, and thus to W. This contradicts our minimality assumption.

Second, we suppose that none of X,Y, and Z are trivial. Then, in the expression
XYZX'Y~1Z71 we must have that two cyclically adjacent letters in distinct subwords
(among X,Y,Z, X1, Y~! and Z7!) are inverses. By conjugating, we may assume that
these two letters are the first letter of X and the last letter of Z=!. Then, we must
have X = aX; and Z = aZ;. However, this implies that XlYaZle_lolelel_l =
X1(Ya)Z1 X7 H(Ya)~1Z7!, which is also of the foom ABCA™'B~1C~', is conjugate to
aX1YaZi X ta 'Y =1 Z7 a1, and thus to W. This contradicts our minimality assump-
tion.

Thus, we have proven that a word in F). is a commutator if and only if it is a conjugate

of a Wicks commutator.

2.2 Proof of Theorem 1.2

Since the cyclically reduced conjugacy representative of F. is unique up to cyclic permuta-
tion, it suffices to count equivalence classes (with respect to cyclic permutation) of Wicks
commutators of length k = 2X. Let Rx denote the set of reduced words of length X, of
which there are 27 - (2r — 1)X~!. For each such word W, the number of ways to decom-
pose W into A, B, and C' (i.e., W = ABC without cancellation) is given by the number of
ordered partitions p of X into three (not necessarily nontrivial) parts.

Let p = (n1,n2,n3). From this point, we suppose that 0 < nj,ng2,n3. Define a pair
(W,p) to be viable if the resulting word W’ := ABCA~'B~1C~! is a Wicks commutator.
We now show that for a fixed p, the proportion of W € Rx such that (W,p) is viable is

given by

1 +0 ! + L + L
2r (2r —1)m—1 ° (2r —1)n2—1  (2r —1)ms—1 )~
For s € G, let R C R,, denote the subset of words that begin with s, which gives us

a decomposition of R, into the disjoint union R, = USEG R?. The number ¢, of words

in R; whose final letter is s is the solution to the linear recurrence given by ¢; = 1 and



¢iv1 = (2r — 1)i=! — g;, which is

2r — )"t (=) (2r - 1)

qn = o .

Thus, we have that the proportion of words in R;, whose final letter is s is

¢ =1l (=nrto@2r-1) 1 1
|Rs| 2r - (2r — 1)1 2r+0<( )

- - 2r — 1)n—1

while the proportion of words whose final letter is s~ ! is

1 @\ 1 1
2 — 1 (1_ |R;§|> or +0 <(2r—1)n1>'

Now, fix a partition p, and consider Rx with the uniform probability measure placed on

its elements. Within the decomposition W = ABC' in accordance with p, let the first letter
and last letter of A respectively be ag and a1, and define by, b1, cg, and ¢; similarly. We will
compute the probability that (W, p) is viable for a random W € Ry, i.e., the probability
that by # aal, co # ag, €1 # a1, and ¢; # bal.

Suppose that the first letter of W is s. Then, by our work above, the set of possible
candidates for a1bg is the 2r(2r — 1)-element set S = {wz : w,z € &,w # 2z~ '}, each of

which has probability

w1 (o0 (@) =m0 (@)

We fix a choice of a1by in S, and all probabilities from now on are conditional on this

event. The set of possible candidates for bicg is also S, each of which has probability
1/2r(2r — 1) + O(1/(2r — 1)™2). Let S’ C S be the subset of possible candidates for byco
that satisfy the conditions ag # bfl and ag # cg. The cardinality of S’ can be computed as
follows: there are 2r — 1 choices for by satisfying s £ bl_l, and conditional on this, there are
2r — 2 choices for cg satisfying s # co and by # c; !, for a total of (2r — 1)(2r — 2) elements
of S’. Fix a choice of bicy in S’, and all probabilities from now on are conditional on this

event. Since aj # b, ! the conditions ¢; # a; and ¢; # by ! Jeave precisely 2r — 2 (out of

10



2r) possible values for ¢, so the probability that ¢; satisfies these conditions is

2r — 2 1
2r +0 ((27“—1)”3)'

Overall, we have that the probability that (W, p) is viable is

2r(2r —1)- (27(2:—1) +0 ((27,_11)m>)

-(2r —=1)(2r - 2) <27“(2:—1) +0 <(27"—11)”2>>

=2 (5 +0(=m))

_ <2r2;2>2' <1+O (W)) : <1+O <(2T11)n22)>
(140 ()

- (275 2>2 (1 o <<2r —11>m—2 T —11>n2—2 T —11>)> |

The number of (W, p) that are viable is then given by

S 2@ - 1X (TY

0<ni,n2,n3
ni+na+nz=X

| <1 o ((m e teTe —11>>>
(2r — 2)2(2r — 1)* !

2r

(X —2)(X — 1) ! ) .
> o2 0 <(27~ “mz e (2 1)n3—2>

0<ni,n2,n3
ni+na+n3=X

(2r —2)202r — DX [ (X —2)(X - 1) 1
= 3-0 S —
or 2 + Z (2r —1)m—2
0<ni,n2,n3
n1+na+nz=X

2 —2)2(2r — X1 (X —2)(X — 1 — 1
:( )(2r ) (( )2( )‘f‘O(Z(X_I_nl)(Qr—l)"l—Q))

ni=1

11



(2r — 2)2(2r — 1)* !

2r
X-2xX-1 (2r —1)2((2r = 1)>"% + X(2r — 2) — 4r + 3)
' 2 * (2r —2)2
~(2r=2)%(2r — 1) ! r?
= . (X2+O<(2T_1)X+TX>>.

While all commutators arise from viable pairs (W, p), there could be a commutator
ABCA~'B~'C~! arising from distinct viable pairs, say (W,p1) and (W, p3) for p; =
(n1,n2,n3), and poy = (my,ma,m3). We show that the number of such commutators is
small.

Let W = ABC be its decomposition with respect to pi, and W = A’B’C’ its decompo-
sition with respect to ps. Consider the function f : {1,..., X} — {1,..., X }? that maps i
to (j, k) in the following way: the ith letter of A=!B~1C~!, when corresponding to p, is
the inverse of the jth letter of W, and when corresponding to po, is the inverse of the kth
letter of W. For example, the first letter of A='B~1C~! is defined to be the inverse of the
ni1th when the decomposition is in terms of p;, and is defined to be the mith letter of W
when in terms of pa, so f(1) = (n1,m1). We consider two cases: when the two entries of
f(i) are distinct for all 4, and otherwise. In the first case, the following algorithm allows us

to reduce the degrees of freedom for the letters of W by at least half:
1. Let i = 1. For f(i) = (ji, ki), do the following:

e If neither the j;th or the k;th position has an indeterminate variable assigned to
it, then assign a new indeterminate variable simultaneously to the j;th and k;th

positions. This increases the number of indeterminate variables by two.

o If just one of the j;th and the k;th positions has an indeterminate variable as-
signed to it, but the other does not, then assign this indeterminate variable to

the former.

e If both the j;th and the k;th positions have the same indeterminate variable

assigned to them, make no changes.

12



e If the j;th and the k;th positions have distinct indeterminate variables assigned
to them, set these indeterminate variables equal to each other. This decreases

the number of indeterminate variables by one.
2. Increment 7 by one and repeat this procedure for all 1 <i < X.

By our hypothesis that the two entries of f(i) are distinct for all 4, the number of indeter-
minate variables, which precisely represents the number of degrees of freedom for the word
W such that (W,p1) and (W, p2) give rise to the same commutator, is < X/2. It follows
that there are only O((2r — 1)*/2) of such words for each pair py, ps.

Now, consider the next case that there exists an ¢ such that the two entries of f(i) are
equal. Then, we consider the following three cases for W, py, and ps:

Case 1. Suppose the smallest ¢ such that the two entries of f(i) are equal satisfies that
this entry is a position in A. Then, n; = my must be this entry and ¢ must equal 1, since
otherwise we can continue to decrement i so that the two entries of f(i) are incremented
and remain equal, a contradiction. Next, the subwords B~'C~!' and B/~!C’~! must be
equal. Without loss of generality, suppose that ny > my. Decompose B = B’D so that our
condition B~'C~! = B/71C"~! is precisely CB'D = DCB'. Since CB’' and D commute,
we have that they are both powers of a common subword V'; without loss of generality, the
powers are positive, since otherwise there would be cancellation, which contradicts that the
commutator is cyclically reduced. We can bound the number of (W, p) satisfying this case
by counting, for each i = X — ny and for each proper divisor d | ¢ (denoting the length
of V'), the number of ways to place V in the right subword of length i and the number of
degrees of freedom. Thus, the number of additional Wicks commutators arising from this

case can be upper-bounded by

X—-1
YN (i—d+1)-(2r — ¥t

i=1 dli
di

§(2r71)X,Z (i*d+1)-(2r—1)_i+d

1=2 1<d<

—_

(SR
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-1

=@2r-1D%- ) @2r-1)7" (i—d+1)-(2r —1)

A\g

1<d<

-1 Cir—2)((r—1)2—2)+2@2r -1 (2r—1)2 -1
< (2r-1)%. ' (2r — 1)~ ( 2(2r 5 ( )

s

>

~
[|
¥

< (2r —1)%,

which is dominated by our error term.

Case 2. Suppose the smallest ¢ such that the two entries of f(i) are equal satisfies that
this entry is a position in C. An argument symmetric to that above can be given to show
that the above expression is also an upper bound for the number of (W), p) satisfying this
case.

Case 3. Suppose the smallest ¢ such that the two entries of f(i) are equal satisfies
that this entry is a position in B. Without loss of generality, suppose n; > mj. Then,
f(mi+1) = (n1 —mi,m1 +m2), and by an argument similar to that in Case (1), we have
that the simultaneous entry of the aforementioned f(i) must be ny + ng, with ny —m; =
n3 — ms so that f(mi + 1) = (n1 — mi,n1 + na + (n1 — my)). Thus, divide W into
DEFGH so that |D| + |E| = n1, |G|+ |H| = ns, and |E| = |G|. Then, (W,p1) gives
rise to the commutator WE~'D~'F~'H~1G~1, while (W, ps) gives rise to the commutator
WD G 'F'E-'H-!. Since these are equal, it follows that DE = GD and GH =
HE. Note that if a word O satisfies the equality OE = G0 without cancellation, then
[J is uniquely determined, since one can inductively identify the letters of [J from left to
right (or right to left). It follows that D = H. But this contradicts the assumption that
DEFGHD 'G 'F~'E-'H!is cyclically reduced.

Note that pairs (W, p) such that n; = 0 for some i € {1,2,3} are counted in the above
cases, which justifies our assumption of ny,n9,n3 > 0 in our earlier counting of the main
term.

We have shown that the number of Wicks commutators having length X is

(2r — 2)%(2r — 1)% 1
4r

(X*+0, (X)) .

14



We need to count the number of conjugacy classes containing at least one such commu-
tator. Consider the conjugacy class C of the Wicks commutator W/ = ABCA-'B~1C~!
arising from (W,p), where p = (n1,ng,ng). Note that the minimum-length elements in
a conjugacy class are precisely the cyclically reduced words, and that two cyclically re-
duced words are conjugate if and only if they are cyclically conjugate. The Wicks com-
mutators BCA™'B~1C~1A, CA='B~'C~'AB, A~'B~'C~'ABC, B'C~'ABCA~', and
C~'ABCA~'B~! are conjugates of W’. We show that the number of other Wicks commu-
tators in C is on average negligible.

For an arbitrary 1 < ¢ < ng/2 denoting the number of letters of the conjugation,
let C = DEF be a decomposition without cancellation such that |D| = |F| = ¢. Label
the letters of W/ by A = ay---ay,, B="0b1-bpy, D =di---dy, E = ey---e€p4_2, and
F = f1--- f;. Consider the cyclic conjugate W” := D' ABDEFA-'B-1F~1E~1 of W'.
We wish to show that on average, W” is not a Wicks commutator. Suppose the contrary,

that there exists a partition p’ = (mq,m2, m3) of X into three parts such that
W"” =D 'ABDEFA'B'F'E™! = wiwywzw; 'wy twg?

for subwords w1, we, and ws of lengths m1, mo, and mg.
Label the letters of A from left to right as ay, ..., a,,, and label the letters of B,C, D, E,

and F' similarly. We have that wi, w2, and ws as subwords comprised of the letters

-1 -1
df ,...,dl ,al,...,anl,bl,...,an,dl,...,dg,el,...,€n3,2g, (2.2)

1

and we accordingly consider the subwords w; *, w5 1 and wy 1 as comprised of the inverses

of these letters. Then, note that the second half of W’ can be considered in two forms:
—1p—1p—1p-1 -1, -1, —1
FAT B F 'E " =w wy, wy .
Equivalently, this equality can be written as

EFBAF™! = wywyw. (2.3)
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Consider the function g mapping the ordered set of symbols of the left-hand side,

—1
A:: {615"'7en3—25?f17"',f€7b17"'7bn25a15"'7an17fg 7"'af1}

to the ordered set B of symbols of the right-hand side (2.2). Specifically, ¢ maps the ith
leftmost letter of the left-hand side of (2.3) to the ith leftmost letter of the right-hand side.

First, suppose g has no fixed points (i such that g(i) = i). Then, use an algorithm similar
to the previous one to conclude that there are < X/2 degrees of freedom for ABDEF, so
W must be one of only O((2r — 1)*/2) choices (for each choice of £ and p').

Now, suppose that there exists an i such that g(i) = i. Such fixed points i must be
letters of A, B, or E. We first consider the case that all the fixed points are letters of only
one of A, B, and E. In this case, we consider the following subcases for W, p, and p':

Case 1. Suppose that the fixed points are letters of E. Then, all of the fixed points
must be in one of wo and ws; they cannot be in w1, since this would mean that w, contains
e1, but e is necessarily located at different positions in the left-hand side and right-hand
side of (2.3). Suppose that the fixed points of E are in ws. Then, in order for the letters of
E to match, we require that ws = E. This means that g(f1) is the first letter of wq, which
is adjacent to the last letter of wi. But the last letter of wy is g(f; 1), which shows that
we have adjacent letters that are inverses. This contradicts the fact that W' is cyclically
reduced.

Next, suppose all the fixed points are in ws. Then, we must have that mg + 1 =
n3 — 20 — (m2 + ms) so that the first letter of wy is at the same position in both the
left-hand and right-hand side. Thus, mo + 2m3 = ng — 2¢ — 1, which means there are
< (n3—2¢—1)/2 choices for p’ parametrized by ms < (n3—2¢—1)/2 . For each such choice
of p/, there are mo = n3 — 20 — (1 +mg +m3) = ng — 20 — 2mg — 1 fixed letters, from €,,,+1
t0 €ng—20—mg+1, and (X — (n3 — 20 — 2mg — 1))/2 non-fixed letters. Counting across all

choices of values for the letters, p, p’, and ¢, we have that the number of additional Wicks
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commutators arising from this case is upper-bounded by

)OID DD DI DEECES ) b e AN

which is dominated by our error term.

Case 2. Suppose that the fixed points are letters of B. Then, all of the fixed points must
be in one of wy, wy, and ws. First, suppose they are in w;. Then, note that g(f;) = ap,,
but we also have g(ay,) is next to g(f, '), which leads to the contradiction that a letter
cannot equal its inverse. Second, suppose the fixed letters are in ws. Then, g(d;) = a1, but
ay is adjacent to dfl, a contradiction.

Thus, the fixed points of B must be in wy. We consider three subcases: ny > mag,
ng < me, and no = my. If no > my, then in order for the letters of B to match, we require
that the leftmost fixed letter of B is b%. But then bngzﬂ_l is both equal to f1_1 (since
g(f hH = bnﬁ%il) and e,,_9/ (since g(bnfgﬂil) = €ny—2¢)), which contradicts the fact
that f1 and en,_os are adjacent. If ny < ma, then g(f;) = an,, but also g(an,) is the
letter in D~'A that is left of the letter g( N 1), giving us the contradiction that the value
of fg is adjacent to f, ! This implies that ny = ms, from which we can use an argument
similar to that in Case 1 of the previous casework (showing that W’ on average can be only
decomposed as a commutator in one way) to conclude that A is a power of D~! and E, a
power of D. It follows that our original (W, p) is one of the pairs falling under Case 1 of
the previous casework, which are negligible.

Case 3. Suppose that the fixed points are letters of A. Then, all of the fixed points must
be in one of wy and wo; they cannot be in ws, since then there must be more than ¢ letters
right of A. Suppose the fixed letters of A are in w;. Then, we must have g(b,,) = dfl, which
contradicts the fact that b,, is adjacent to d;. Therefore, the fixed points are necessarily
in wy. This requires that m; — ¢+ 1 = ny + £ — (m; — mg) in order for the letters of A
to be in matching positions. Thus, we have mo = ny + 2¢ — 2m; — 1. Note then that p’ is
parametrized by my < (ny 4+ 2¢ — 1)/2. For each choice of p/, we have n; fixed letters (and

(X 4+n1)/2 < (X +n1 —mq+£)/2 overall degrees of freedom) if m; < ¢, and n; — (m1 —¥¢)
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fixed letters (and (X +ny —my +¢)/2 overall degrees of freedom) if m; > ¢. Thus, counting
across all choices of values for the letters, p, p’, and £, we have that the number of additional

Wicks commutators arising from this case is upper-bounded by

X—ny—ng ni+2¢—1
X X-m { 2 J L 2 J X+4ni+l—m
1 ST DR
n1=0 n2=0 /=1 m1=0

which is dominated by our error term.

Next, consider the case where the fixed points are in two of A, B, and E. It is necessary
that the fixed letters inside these two subwords must respectively be in two distinct subwords
among w1, wo, and ws. However, we have shown above that the subwords w; and ws cannot
contain fixed points, a contradiction. Finally, the fixed letters cannot be in all of A, B, and
E. Indeed, if this were true, then in order for the letters of A and E to match, we require
m1 = n1+2¢ and m3 = n3. But then the letters of B cannot possibly match, a contradiction.

If £ > n3/2, then we can think of our commutator as a cyclic conjugate of C~!ABCA~-1B~!
such that the letters are moved from left to right. A symmetric argument like above gives
us the same conclusion for this case. We have thus shown that the number of conjugacy

classes of commutators with length 2.X is given by

r_9)2(2y _ 1)X -1
% (2r=2) (fr V™" (x2+ 0, (x)
P R,

as needed.
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Chapter 3

Commutators of Z /37 x 7./27.

3.1 Proof of Wicks’ Theorem for Free Products

In addition to his theorem classifying commutators of free groups, Wicks [14] also proved the
following analogous theorem characterizing all commutators of a free product of arbitrary

groups.

Theorem 3.1 (Wicks). A word in *;c; G; is a commutator if and only if it is a conjugate

of one of the following fully cyclically reduced products:

1. a word comprised of a single letter that is a commutator in its factor G;,

2. XalXagl, where X is nontrivial and oy, ag belong to the same factor G; as conjugate

elements,

3. XarYoo X tasY tay, where X and Y are both nontrivial, aq,as,as, oy belong to

the same factor G;, and asazasaq is trivial,
4. XYZX\y-1z-1

5. XY ZX tonY 1 Z Yo, where Y and at least one of X and Z is nontrivial, oy, aa, a3

belong to the same factor G;, and azasay is trivial,

6. Xa1Y B1Zao X 1Y LasZ71 B3, where aq,as, a3 belong to the same factor G; and
B1, B2, B3, to Gj, azasay = B3P = 1, and either ay, az, as, b1, B2, B3 are not all in

the same factor or X,Y, Z are all nontrivial.
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Note that in the above, the Greek letters are assumed to be nontrivial. This convention
is used later in the proof of Theorem 3.1 as well, where when a Greek letter « is said to
satisfy a € GG;, we mean that « is a nontrivial element of G;.

Theorem 3.1 implies our claim in the introduction that all commutators of Z/3Z x Z/2Z
are conjugates of Wicks commutators defined in Definition 1.3. Indeed, the free factors of
ZJ3Z « 7/2Z are abelian, so the commutators of the form (1) are trivial. Also, if C is a
commutator of the form (2), then a; and ag are conjugate elements in an abelian free factor
and thus equal, which means C is of the form ABA™'B~1.

Next, we consider commutators C' of the form (3). Then, we have that the commutators

o XrYr~1X~1r=1Y =1y which is conjugate to

rXrYr ' Xy T = (b XY (r X ) TV T

Xr~'YrX 'Y ~1y~1 which is conjugate to

P X e Xy = P X Y (X ) Ty

o Xr Yy iXprY by = X(r7lYr H) X1ty r—hH 7L

XrYrXr Y 7l = X(rYr) XL (rYr) 7L,

XrYr !Xy b=l = X(rYr H) X1 (rYr—1)~L,
o Xr lYrX—lr7ly=lr = X(r=tyr) X 1(r—tyr)7t

are of the form ABA~'B~!. Overall, we have that commutators of the form (3) must be
of the cyclically reduced form XY X1y 1

If C is of the form (4), then the last letter of X is in different factors compared to the first
letter of Y and the last letter of Z, which must also be in different factors, a contradiction.
If C is of the form (5), then we must have oy = as = ag € {r,r~*}. But this would imply
that the last letter of Y is in different free factors compared to the first letter of Z and the

first letter of X, which contradicts the similar implication that the first letter of Z and the

20



first letter of X are in different factors. Finally, if C' is of the form (6), then we must have
ar=as=az € {r,r~'} and 31 = B2 = B3 € {r,r~'}. Thus, commutators of Z/3Z x Z /27
must be of the fully cyclically reduced form XY X 'Y ~! or XaYB3ZaX 1Y taZ~'p for
o, € {r,r~'}, as we have claimed.

We now exposit a proof of Theorem 3.1, Wicks’ theorem for an arbitrary free prod-
uct G = k;c; G;. We follow the original proof in [14]. First, we check that the possible
forms given in the statement of Theorem 3.1 are in fact commutators. (1) is clearly a
commutator. Since a; = £aeé ! in (2) for some ¢ € G;, we have that XalX_loz;l =
Xéapt ' Xyt = (X€)aa(XE)Layt. Next, check that for (3), we have ay = o] 'ay tag !,
which gives that XonY e X tazY tay = XalYagX_lagY_laflaglagl is conjugate to
az' XaYas X tazV o oyt = (a3 X) (a1 Y)az(as X)) HaqY)tayt. (4) is a commu-
tator, as shown in (2.1). (6) is a commutator because ag = a; 'ay ' and B3 = By '35 ', which
shows that Xa1Y 81 Zas X 1B Lz Z 7183 = Xa1Y 1 Zas X 1BV Loy tay 1 27151 By
is conjugate to the following commutator of form (4): BngalYﬁl Zanglﬂnglaflangflﬁfl
= (85" X) (1Y) (B1Za2)(By ' X) (1Y) "1 (B1Zaz) . Finally, (5) is a commutator by sub-
stituting a; = ag = a3 = 1 in the above expression for (6) and its conjugate.

Next, we show the other direction that every commutator is in one of these six forms.
Define a word in G to be fully reduced if no adjacent pair of letters is in the same free factor
G;. Let C be a nontrivial commutator of G, and let V' be the shortest word conjugate
to C and of the form XY ZX 'Y ~1Z~! such that X,Y, and Z are fully reduced. If V is
fully cyclically reduced, then we are done, so suppose V' is not fully cyclically reduced. If
two subwords among X, Y, and Z are trivial, then C' must be trivial. We thus consider two
cases: Case 1, that one of the subwords X,Y, and Z (without loss of generality, Z) is trivial;
and Case 2, that none of them are trivial.

Case 1. Since V is not fully cyclically reduced, we can, by conjugation, assume that the
first letter of X and the last letter of Y ! are in the same free factor G;. Let X = nX;
and Y = £Y; for n,& € G;, and write ¢ = ¢ ' € G;. Indeed, ¢ cannot be trivial, since
if this were true, then V' would be conjugate to leYlelg_lYfl, which contradicts the
assumption that V = XY ZX 1Y ~1Z~1 was taken to have minimum length. Thus, we have

that V is conjugate to Vi1 = X1§Y1X1_177_1Y1_1C. At this point, we consider four subcases:
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Subcase 1, that both X; and Y7 are trivial; Subcase 2, that only X trivial; Subcase 3, that
only Y7 is trivial; and Subcase 4, that both X7 and Y; are nontrivial.

Subcase 1. 'V is conjugate to Vi = én~1¢~ 1y, which reduces to a single-letter commutator
in G;.

Subcase 2. We have Vi = XlﬁXfln_lg. Note that 77!¢ reduces to some single-letter
element v € G; that is conjugate to 1, since n~1¢ = n~'¢~1n. If the further reduced
word Vo = X &X | 1y is fully cyclically reduced, then we are done. On the other hand,
the only way V5 is not fully cyclically reduced is if the last letter of X7 is in G;. If this is
true, say X1 = Xoqe for € € G1, we require that Xo be nontrivial, since otherwise X; would
begin with a letter in G;, which contradicts that X is fully reduced. Thus, we have that

1 so efe!

Vo = Xgege_lXQ_IV. Then, efe~! is conjugate to &, and thus conjugate to v~
reduces to a single-letter element of G; that is conjugate to v~!, which yields a commutator
of one of the desired forms.

Subcase 8. We have V] = §Y177*1Y1_1C, which is conjugate to Y177*1Y1_11/ forv=_£=
¢ 1n¢é. Thus, the argument in Subcase 2 can be immediately applied to this subcase to
obtain the same conclusion.

Subcase 4. We have Vi = X1£Y1X| 177*1Y1_1§ . If this is fully cyclically reduced, then
we are done, so suppose not. We already have that the first letters of X; and Y; are in
different free factors than G;, so one of the following four must be true about the last letters
of X7 and Y7: Subcase 4.a, they are both in G;; Subcase 4.b, they are both in G for j # i;
Subcase 4.c, the last letter of X is in G; while the last letter of Y; is in G for j # 4; and
Subcase 4.d, the last letter of Y; is in G; while the last letter of X is in G for j # i. We
go through each of these subcases.

Subcase 4.a. Let X1 = Xov and Y7 = Yse for v, € € G;. Since the first letters of X; and
Y1 must be in a free factor different from Gj, it follows that Xo and Y5 are nontrivial. We
have V; = Xae€Yarve 1 X5 '~ 1w 1Y, ¢, Note that ¢(n~ v~ 1) (ve 1) (e€) = ('€ = 1,50 by

1

reducing €€, ve~ !, and n~ v ™! each to single-letter elements, we reduce V; to a commutator

of one of the desired forms.
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Subcase 4.b. Let X1 = Xov and Y7 = Yae for v,e € G;. If v = ¢, then V; is conjugate to
nX2eYa Xy e Yy T = (nX2)elYa(nXo) e (€Y, D) T,

which contradicts our assumption that V = XY ZX 1Y ~1Z~! was taken to have minimum

length. Thus, ve ' = pu € Gj, and we have that

Vi = XoeZYou Xy ' 27y ¢

for Z = 1. This commutator is in one of our desired forms.

Subcase 4.c. Let X1 = Xov for v € G;. If v and £ are inverses, then V7 is conjugate to

nXoY1EX5 I YT = (X)) Vié(nXa) Ty e

which contradicts our assumption that V = XY ZX 1Y ~1Z~! was taken to have minimum

length. Thus, v = pu € G, and we have that

Vi = XouViv ' X5 7ty i

1 1

Since ¢(n~ vty = (v~ lv€ = 1, this commutator is in one of our desired forms.

Subcase 4.d. Let Y1 = Yov for v € G;. If v and 7 are inverses, then Vj is conjugate to
NX1EYan XY T = X0 (EYa)n T X (EYR) T

which contradicts our assumption that V = XY ZX 1Y ~1Z~! was taken to have minimum

length. Thus, vn = u € G;, and we have that

Vi = X1 &Yor Xy umtYy G

Since (pu~'vé = ¢(n~lv~lwé = 1, this commutator is in one of our desired forms. This
concludes our proof in Case 1.

Case 2. We assumed that V = XY ZX 'Y ~1Z7! is not fully cyclically reduced. By
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conjugation, we can suppose that the first letter of X and the first letter of Z are in the
same free factor, say X = nX; and Z = £Z;. Let ¢ = ¢ 'n € G;, which cannot be
trivial; if it were, then V = X;(Y€)Z; X (V€)™ Z; !, which contradicts our assumption
that V = XY ZX 'Y ~1Z~! was taken to have minimum length. We then have that V is
conjugate to

Vi=X\Ye¢n Xy Tz ¢ (3.1)

If V1 is fully cyclically reduced, then we are done. Consequently, suppose not. First, suppose
for the sake of a contradiction that the last letter of Y is in G;, say Y = Yiv for v € G;.

Then,
Vi = XY Zi X Y T 2 = X () (20X (Vi) T (<2

for ;1 = vn. We have used that u¢ = = vgn~1¢ = v€. This contradicts our assumption that
V = XYZX'Y~1Z7! was taken to have minimum length. Thus, the last letter of Y must
be in a free factor different from G;. In light of this, it follows from our assumption that
V7 is not fully cyclically reduced that one of four subcases must hold: Subcase 1, that both
X1 and Z; are trivial; Subcase 2, that only X is trivial; Subcase 3, that only Z; is trivial;
and Subcase 4, that both X7 and Z; are nontrivial.

Subcase 1. We have V; = Yén~1Y (¢, where £én7~! is a conjugate of (7' = n~1¢. Thus,
reducing £n~! to a single-letter element of G;, we obtain one of our desired commutator
forms.

Subcase 2. We have that V] = Yme_lY_lZl_lg‘ is conjugate to Vo = Zln_lY_lZl_ngﬁ.
Since (p™H) 71! = ny~1¢ = &, this subcase is equivalent to Case 1 Subcase 4.

Subcase 3. We have that Vi = X1Y§X1_177*1Y*1C is conjugate to Vo = Y*1CX1Y§X1_117*1.
Since ¢~1¢~1 = n~te¢=1 = =1, this subcase is also equivalent to Case 1 Subcase 4.

Subcase 4. Since (3.1) is not fully cyclically reduced, one of the following must be true:
the last letter of X7 and the first letter of Y are in the same free factor, the last letter of Z;
and the last letter of X are in the same free factor, or the first letter of Y and the last letter

of Z1 are in the same factor. Given this, we consider the following four subcases: Subcase
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4.a, that the first letter of Y, the last letter of X7, and the last letter of Z; are all in the
same factor GGj; Subcase 4.b, that the first letter of ¥ and the last letter of X7, but not the
last letter of Z1, are in the same factor G;; Subcase 4.c, that the first letter of ¥ and the
last letter of Z1, but not the last letter of X1, are in the same factor G;; and Subcase 4.d,
the last letters of X7 and Z7, but not the first letter of Y, are in the same factor G;.

Subcase 4.a. Let Y = €Y1, X1 = Xov, and Z1 = Zou for €,v, u € G;. Then, we have

Vi = XoveY1&Zopr Xy iy Y e T 251

1

Note that ve, ur~!, and e !'u~! each reduce to a single-letter element of Gj, say ay = Ve,

as = pr~ !, and a3 = e 't Indeed, none of these three can be trivial. For instance,

suppose that ve = 1. Then, ay = Ozgl, which means that
Vi = XoY1€Za00 Xy Y 0y Z57'C
is conjugate to
Vo = nXoYi€Zpaa Xy ™ Y a1 2517 = (0X0)V1(€2200) (nX2) 7Y (E2202) 7,

which contradicts our assumption that V = XY ZX 1Y ~1Z~! was taken to have minimum
length. Analogous arguments show that as and ag are also nontrivial. If ¢ £ j, then the

further reduced expression for Vi, given by
XoonV1€Zo0n X5 7 'Y s Z5 ¢,

is fully cyclically reduced. Even if j = i, this expression must be fully cyclically reduced;
this is because Y7, X5, and Z> must be nontrivial, since the first letters of X; and Z; and
the last letter of Y7 must not be in G;. Since (n~1¢ = 1 and agasa; = 1, we have obtained

one of our desired commutator forms.
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Subcase 4.b. Let Y = €Y7 and X1 = Xov for €,v € Gj. Then, we have
Vi = XoveYV1€Z1v Xy iy et 2

By the argument used in Case 2 Subcase 4.a, ve reduces to a (nontrivial) single-letter

element of G;, say o € G;. If i # j, then the further reduced expression for Vi, given by
XoaY1€Ziw Xy Iy e 2 e,

is fully cyclically reduced. Even if 7 = i, this expression must be fully cyclically reduced;
this is because Y7 and X9 must be nontrivial, since the first letter of X7 and the last letter
of Y1 must not be in G;. Since (n~'¢ =1 and e 'v~'a = 1, we have obtained one of our
desired commutator forms.

Subcase 4.c. Let Y = €Y7 and Z1 = Zou for €, u € Gj. Then, we have

Vi = XoeYi€Zop Xy iy~ Y ey 252

1

By the argument used in Case 2 Subcase 4.a, ¢ ' ~! reduces to a (nontrivial) single-letter

element of Gj, say o € G. If i # j, then the further reduced expression for V1, given by
XoeV1€Zop Xy 'Yy ey ¢

is fully cyclically reduced. Even if j = i, this expression must be fully cyclically reduced;
this is because Y7 and Z5 must be nontrivial, since the first letter of Z; and the last letter
of Y7 must not be in G;. Since (n~1¢ = 1 and aue = 1, we have obtained one of our desired
commutator forms.

Subcase 4.d. Let X1 = Xov and Z1 = Zop for v, € Gj. Then, we have

Vi = XovVi€Zouw ' X5 I Yt 251

By the argument used in Case 2 Subcase 4.a, uv~—' reduces to a (nontrivial) single-letter
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element of G;, say o € G;. If i # j, then the further reduced expression for Vi, given by
XovY1€Z0 X5 = Y p T 25 '¢

is fully cyclically reduced. Even if j = i, this expression must be fully cyclically reduced;
this is because X5 and X9 must be nontrivial, since the first letter of X; and the last letter

1

of Y1 must not be in G;. Since (n'¢ = 1 and g~ 'ar = 1, we have obtained one of our

desired commutator forms.

3.2 Proof of Theorem 1.4

By Wicks’ theorem for free products, we need to count cyclic conjugacy classes of Wicks
commutators of Z/3Z x Z/2Z. As discussed before, a Wicks commutator of Z/3Z  Z/2Z
must, when going from left to right, alternate between letters of the Z/3Z factor, r and 1,
and the letter of the Z /27 factor, s. Thus, the occurrences of s provide no information when
writing our word in terms of the generators in &, so from this point, we abuse notation by

omitting all occurrences of s and writing all words and subwords in terms of only r and

1 1

r~1. For example, the element srsr—! would be written as rr—1.

Consider a Wicks commutator W of Z/3Z 7, /27 having length k, where k is a multiple
of 4. Let X = k/4, so that the left-half subword of W contains X letters of the Z/3Z factor
and X letters of the Z/2Z factor, which are placed in an alternating way. As seen from
our work in Section 3.1, W can either be of the fully cyclically reduced form ABA~'B~!
or the fully cyclically reduced form AaBBCaA~'B3B~'aC~!3, where o, 8 € {r,r '} and
A, B, and C are nontrivial. However, by using the arguments of Section 2.2, we see that
the number of the former is O(X - 2%), while the number of the latter is

(X =5)(X —4) L9X=3,

4.
2

since we have four choices of (d,e) € {r,7~!}2, (X — 5)(X — 4)/2 partitions of X — 3 into
three nontrivial parts giving the lengths of A, B, and C', and X — 3 degrees of freedom for

choosing the letters of A, B, and C, with no cancellation between the extremal letters of A,
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B, and C (the key difference between counting commutators of Z/3Z x 7 /27 and counting
those of a free group). Thus, the number of Wicks commutators of the form ABA~!B~! is
negligible.

Next, we need to count the number of conjugacy classes containing at least one Wicks
commutator of the form AaBBCaA BB 'aC~ 5. As before, let C be the conjugacy
class of the Wicks commutator W := AaBBCaA 3B taC~!3, with |A| = ni, B = na,
and C' = n3. We wish to show that on average, C does not contain Wicks commutators
other than the six obvious ones: W, BACaA™ BB~ 'aC~1BAa, CaA™ ' BB 1aC~ 1 fAaBg,
A713B taC~ 1 BAaBBCo, B~'aC 1 AaBSCaA™ 3, and C~1BAaBBCaA BB ta. Sup-
pose the number of letters of the conjugation is ¢ < n3/2, and accordingly decompose
C = DEF without cancellation so that |D| = |F| = ¢. Label the letters of W by
A=ay-apn, B=0b-bpy, D=dy---dy, E =e1---ep,_9 and F = f;--- fp. Con-
sider the cyclic conjugate W' := D™ 'BAaBBDEFaA~ BB~ 'aF~1E~1 of W. We wish to
show that on average, W' is not a Wicks commutator. Suppose the contrary, i.e., that there

exists a partition p’ = (my, ma, m3) of X — 3 into three parts such that
W' = D 'BAaBSDEFaA BB taFtE~1 = w1o/wgﬂ/wgalwl_16/w2_1a/w3_15’ (3.2)

for subwords wy, we, and w3 of lengths my,m2, and m3, and o/, ' € {r,r~'}.

As before, label the letters of A as ay,...,an,, and label the letters of B,C, D, E, and
F similarly. Also, label the three incidences of « from left to right as «aq, as, and as, and
similarly for 8, o/, and 5. We have that w1, w9, and w3 are subwords comprised of the

letters
-1 —1
dé 7"‘7d1 7637a17” . 7an17alvbl7’ . '7bn27/817d17"’ 7d57617‘- -5 €nz—205

and we accordingly consider the subwords w; L wy ! and w3 1 as comprised of the inverses

of these letters. Then, note that the second half of W’ can be considered in two forms:

-1 -1 —1 -1 S R )
FoapA™ 3B a3 " E™" = w; Bywy azws Bs.
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Equivalently, this equality can be written as
EFozngﬁglAaglF_l = éﬁlwgaglwgﬁ;lwl.
Consider the function g mapping the ordered set of symbols of the left-hand side,

-1 -1 -1 p—1
A::{617-"7en372€7f17'"7f£7a3 7b17"'7b'rl2753 7a'17"'7a7117a2 7fg 7"'7f1}

to the set B of symbols of the right-hand side, which are given by replacing the (m; + 1)th,
(m1+ma+2)th, and (m1+ma+ms+3)th letters of (3.2) (note that the (m;+ma+ms+3)th
letter is always e,,_o/) with Bé_l, ozg_l, and ﬁé_l. Specifically, g maps the ith leftmost letter
of the left-hand side of (3.2) to the ith leftmost letter of the right-hand side.

First, suppose g has no fixed points (i such that g(i) = i). Then, use an algorithm
similar to the one used in Section 2.2 to conclude that there are < X /2 degrees of freedom
for ABDEF, so W must be one of only O(2%/2) choices (for each choice of £ and p').

Now, suppose that there exists an i such that g(i) = i. Such fixed points i must be
letters of A, B, or E. We first consider the case that all the fixed points are letters of only
one of A, B, and E. In this case, we consider the following subcases for W, p, and p':

Case 1. Suppose that the fixed points are letters of E. Then, all of the fixed points must
be in one of wo and ws; they cannot be in w since this would mean that w; contains ey, but
ey is necessarily located at different positions in the left-hand side and right-hand side of
(3.2). If all the fixed points are in we, then we require that 2+ms = ng—2¢— (ma+ms+1)
in order for the first letter of wy to be at the same position in both the left-hand and right-
hand side. Hence, we have ma+2m3 = ng — 2¢ — 3, which means there are < (n3—2¢—3)/2
choices for p’ parametrized by ms < (ng — 2¢ — 3)/2 . For each such choice of p/, there are
n3 — 20 — (2 4+ mg + mg3) = n3 — 20 — 2m3 — 2 fixed letters, from e;,43 t0 €py_20—mg, and
(X — (n3 —2¢—2mg3 —2))/2 non-fixed letters. Thus, counting across all choices of values for

the letters, p, p’, and ¢, we have that the number of additional Wicks commutators arising
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from this case is upper-bounded by

{X 3— "1 ngJ Lng 20— 3J
X—-3 X-3—n1

>y e

n1=0 n2=0 m3=0

which is dominated by our error term.

Next, suppose the fixed letters are in ws. Then, it is necessary that ﬂé‘l = e; and
w3 = e epy—2¢—1. LThus, we have that m3 = ng —2¢—2, so the number of possible choices
for p’ is at most the number of partitions of X —1—ng-+2/ into two nontrivial parts, which is
X —1—n3+2¢. For each choice of p/, the non-fixed letters have < (X —ng+2¢+1)/2 degrees
of freedom, along with the nz — 2¢ — 1 degrees of freedom from the letters es, ..., en,—20.
Counting across all choices of values for the letters, p, p/, and ¢, we have that the number

of additional Wicks commutators arising from this case is upper-bounded by

{XSnl ngJ
X-3 X-3—n

Z Z Z (X_ 1—n3+2€) ,2n372g,1+){7n3f+22+1

n1=0 n2=0

X—-3X—-3—m {%J 2X —nq—ng—20—4
-3 ¥ S (mtmet20+2)20 2 < 2%,

which is dominated by our error term.

Case 2. Suppose that the fixed points are letters of B. Then, all of the fixed points
must be in one of wi, we, and ws. First, suppose they are in wi. This requires that
wi; = D™'B3Aa BV, where V is the left subword of 8; DE having length n; 4+ 2 + ¢ (the
length of Aaz_lF_l). All letters of B are thus included in wi. We have m; =€+ 1+ ny +
14+ mn2+ (n1+2+4) = 2ny +ng + 20 + 4, so the number of possible choices for p’ is at most
the number of partitions of X — 3 — 2n; — ny — 2¢ — 4 into two nontrivial parts, which is
X —2n1 —ng —20—7< X —3—mn; —ny — 2( (the latter is guaranteed to be nonnegative
for any choice of p). For each choice of p/, the non-fixed letters have < (X — ngy)/2 degrees
of freedom, along with the ngs degrees of freedom from the letters of B. Counting across all

choices of values for the letters, p, p’, and ¢, we have that the number of additional Wicks
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commutators arising from this case is upper-bounded by

X—-3—nj1—ng
2

X-3X-3—n1 Xt
>y (X =3—n1—ng—20)-27 2 «2%
n1=0 mno=0 /=0

which is dominated by our error term.

Next, suppose that the fixed points are in we. Then, we require that the difference
between the lengths of EFayz* (length ng—£+1) and 35 ' Aay ' F~! (length nq +£+2) is the
same as that between 85 'wsaj ! (length mg+2) and 85 'w (length my 41). Furthermore,
the number of letters of Bin wyisng if j=n1 +4+2—(mi+1)=ng—L+1— (m3+2)
is negative and ny — j if j > 0. First, suppose that 7 > 0. In this case, p’ is determined by
the choice of j < ny/2, for which there are ny — 2j fixed letters of B. The non-fixed letters
have < (X — ng + 2j)/2 degrees of freedom, so overall, we can count across all choices of
values for the letters, p, j, and £ to get that the number of additional Wicks commutators

arising from this case is upper-bounded by

n1=0 n3=0 (=0 7=0
{X—B—nl—ngJ
X-3X-3-n1 na 2 X inp_2j .
<y = 2 < 2%,
n1=0 mn3=0 2 7=0

which is dominated by our error term.

Now, suppose that j < 0. In this case, —j =n; —mi1+£€+1=n3—msg—£—11s
a positive integer less than or equal to min(ny + ¢+ 1,n3 — £ — 1) < X — ng, and p’ is
determined by the choice of —j, for which there are no fixed letters of B. The non-fixed
letters have < (X — ng)/2 degrees of freedom, so overall, we can count across all choices of
values for the letters, p, —j, and £ to get that the number of additional Wicks commutators

arising from this case is upper-bounded by
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Finally, suppose that the fixed points are in w3. This requires that ws = VBp1Dey - - - eny—20—1,
where V is the right subword of D! 83 Ao having length ng—20+¢+1—1 = ns—£. All letters
of B are thus included in w3. We have mg = ng—f+no+1+£4+n3—20—1 = no+2n3—2¢, so
the number of possible choices for p’ is at most the number of partitions of X —3—ngo—2n3+2/¢
into two nontrivial parts, which is X — 3 —ng — 2n3 + 20 < X — 3 — ny + 2/ (the latter
is guaranteed to be nonnegative for any choice of p). For each choice of p/, the non-fixed
letters have < (X — ng)/2 degrees of freedom, along with the ny degrees of freedom from
the letters of B. Counting across all choices of values for the letters, p, p’, and ¢, we have
that the number of additional Wicks commutators arising from this case is upper-bounded

by

X—-3—n1—ng
2

X-3X-3—n1 Xt
>y (X —3-np+20)-272 < 2%,
n1=0 n2=0 =0

which is dominated by our error term.

Case 3. Suppose that the fixed points are letters of A. Then, all of the fixed points
must be in one of wy and ws; they cannot be in ws, since then there must be more than
£+ 1 letters right of A. First, suppose they are in wy. This requires that wy = D_1,6’3_1AV,
where V is the left subword of aleﬁf !DE having length ¢ + 1. All letters of A are thus
included in wq. The number of possible choices for p’ is at most the number of partitions
of X-3-m=X-3-(+14n+¢+1)=X —5—2¢—n; into two nontrivial parts,
which is X — 5 —2¢ —ny < X —3 — 20 —ny (the latter is guaranteed to be nonnegative for
any choice of p). For each choice of p/, the non-fixed letters have < (X — nq)/2 degrees of
freedom, along with the n; degrees of freedom from the letters of A. Counting across all
choices of values for the letters, p, p/, and ¢, we have that the number of additional Wicks
commutators arising from this case is upper-bounded by

X—3 X—3-m LWJ
>y (X —3-20—ny)-277" <« 2%,
n1=0 n2=0 £=0

which is dominated by our error term.
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Finally, suppose the fixed points are in wy. This requires that wy is the word between
the (mq + 2)th letter and the (n; + 2¢ + 1 — mq)th letter, so that the letters of A will
be in matching positions. Thus, we have ms = ny + 2¢ — 2m; — 2. Note then that p’ is
parametrized by m; < (n; 4+ 2¢ — 2)/2. For each choice of p’, we have n; fixed letters (and
(X +n1)/2 < (X +ny—mq+L)/2 overall degrees of freedom) if m; < ¢, and ny — (my3 —¥)
fixed letters (and (X 4 ny —my +¢)/2 overall degrees of freedom) if m > ¢. Thus, counting
across all choices of values for the letters, p, p’, and £, we have that the number of additional

Wicks commutators arising from this case is upper-bounded by

LX 3— "7'1 HQJ \‘n1+2£ 2
X—-3X-3—n;

> 2 Z ST <o,

mOngO ml()

which is dominated by our error term.

Next, we suppose that the fixed letters of g are in two of the three subwords A, B, and
E. Consider the following subcases:

Case 1. Suppose the fixed letters of g are in A and B. It is necessary that the fixed
letters of A and those of B are in w; and wj, respectively, such that i < j; otherwise, the
fixed letters of A would come before the fixed letters of B, a contradiction. First, suppose
that the fixed letters of B are in ws, which implies that the fixed letters of A are in wy.
Then, we require that wy = D! By LAV, where V is the left subword of a; BB DE having
length ¢ 4+ 1. Furthermore, since we have fixed letters of B, we require that V' does not
include all of B, i.e., no > £. Next, for the fixed letters of B to match in position, we require
that wy ends at the letter b,,_,, which givesus mo=ng —¢ -0 —-1—-1=n9y —20—-2> 0.
It follows that w3 is the subword of by, 41 - bp,S1DE omitting the leftmost letter. In
particular, mg is automatically determined, and for this p’ corresponding to p, we have ny
fixed letters of A and no — 2¢ — 2 fixed letters of B. Next, we upper-bound the degrees
of freedom of the non-fixed letters. Note that EFaglbl N V= é_lan_g+2 < bp,/1DE,
but g maps f[l, ey ffl to bi,...,bp and by,—py1,...,bp,, tO d;l, e ,dfl. Thus, arguing
inductively by translation, we see that that choosing the letters of F' determines the letters

of E, and thus also determines those of D, thereby determining all non-fixed letters (while
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not caring about the constant number of o and f letters). Counting across all choices of
values for the letters, p, and ¢, we have that the number of additional Wicks commutators

arising from this case is upper-bounded by

X—-3—n1—no
X-3X-3—-n; { 2 J
Z Z Z 2n1+n2—2ﬁ—2+f < X . 2.)(7

n1=0 mn9o=0 /=0

which is dominated by our error term.

Next, suppose that the fixed letters of B are in ws. Then, we require that ws =
VBB1DE, where V is the right subword of D™'83Aq; having length ny — ¢. Further-
more, since we have fixed letters of A, we require that V does not include all of A,
ie, ny > nyg — ¢ — 1. Next, for the fixed letters of A to match in position, we re-
quire that they are in wsp, and specifically that wy = ans—¢y1 - apy—nyt+e. This gives
us mo = nq — 2n3 + 2¢ — 2 > 0, and it follows that w; is the subword of D~1B3a; - - - Qpg—t
omitting the rightmost letter. In particular, my is automatically determined, and for this
p’ corresponding to p, we have no fixed letters of B and ny — 2n3 + 2¢ — 2 fixed letters
of A. Next, we upper-bound the degrees of freedom of the non-fixed letters. Note that
Oy —na40+2 * -ama2_1F_1 = D 'p3a;--- (ps—¢—1, but g maps di,...,dg,e1,...,€p,-9¢ to
ai,...,0ns—¢ a0 Gy _pgqes1 - Qp,y, O €1,. .., €ns—2¢, f1,..., fe. Thus, arguing inductively
by translation, we see that that choosing the letters of F' determines the letters of F, and
thus also determines those of D, thereby determining all non-fixed letters (while not caring
about the constant number of o and f letters). Counting across all choices of values for the
letters, p, and ¢, we have that the number of additional Wicks commutators arising from

this case is upper-bounded by

\‘XBnl n2J
X-3X-3—n;

Z Z Z 2n2+(n172n3+2672)+€ < X 2X7

n1=0 mno=0

which is dominated by our error term.
Case 2. Suppose the fixed letters of g are in B and E. Similarly to before, it is

necessary that the fixed letters of B and those of E are in w; and wj, respectively, such
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that ¢ < j. First, suppose that the fixed letters of B are in w;. Then, we require that w; =
D~1'33Aa1 BV, where V is the left subword of 5 DE having length 24n;4¢. Then, w, must
start with e;, +3, which means in order to have the letters of £ match, we must have mz+2 =
n1+2. Since mo+mg+24n1+£ = ng—~L, there are my = ng—2n1—2¢—2 > 0 fixed letters of £
in wo, and no fixed letters of B. Next, we upper-bound the degrees of freedom of the non-
fixed letters. Note that AOQ_IF*1 = Dej---ep+1 and epg_p, 20 epng—2eF = D 153A.
However, we also have e ---en, 41 = ﬁg‘lem_m_% -+ eps—20—1, which overall gives us that
Aa;lF_leng_ggF = DﬁgﬁlD_lﬂgA. Thus, arguing inductively by translation, we see that
that choosing the letters of F' determines the letters of A, and thus also determines those of
D, thereby determining all non-fixed letters (while not caring about the constant number of
« and S letters, including e,,,_o; = b3). Counting across all choices of values for the letters,

p, and ¢, we have that the number of additional Wicks commutators arising from this case

is upper-bounded by

{X3n1 nQJ
X-3 X-3—n

Z Z Z 2n2+(n3—2n1—2€—2)+f < X- 2X7

n1=0 mngo=0

which is dominated by our error term.

Next, suppose that the fixed letters of B are in ws, which implies the fixed letters of
are in w3. Then, we require that w3 = ez - - - ey,_2/—1. Furthermore, in order for the letters
of B to match in position, we must have that wo = Va3 BB D, where V is the right subword
of D71 B3 A having length £. We thus have n3 —2¢—2 fixed letters in E and ns fixed letters in
B. Now, we upper-bound the degrees of freedom of the non-fixed letters. First, suppose that
ny > £. Note then that F' = a,,_¢41---a,, and AaQ_lF_1 = Dﬁé_lD_lﬁgal Sy —f—1-
Thus, we have aq - --anl_g_lam_gFaglF_l = DﬁéﬁlD_lﬁgal “++Qp,—¢—1. Thus, arguing
inductively by translation, we see that that choosing the letters of F' determines the letters of
ap -+ Gp,—r—1, and thus also determines those of the rest of A and of D, thereby determining
all non-fixed letters (while not caring about the constant number of o and 3 letters). In the
other case of n; < ¢, the notation above for a; - - - a,,, —¢—1 becomes inviable, but nevertheless

we can use a similar argument as above to conclude that F' determines all the non-fixed
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letters. Counting across all choices of values for the letters, p, and ¢, we have that the

number of additional Wicks commutators arising from this case is upper-bounded by

X3 X—3— m{wj

Z Z Z 2n2+(n3—2€—2)+£ < X - 2X7

n1=0 mn9o=0

which is dominated by our error term.

Case 3. Finally, suppose the fixed letters of g are in A and E. Similarly to before,
it is necessary that the fixed letters of A and those of E/ are in w; and wj, respectively,
such that ¢ < j. First, suppose that the fixed letters of E are in ws. Then, we require
that w3 = e --ep,-9¢—1. Furthermore, in order for the letters of A to match in position,
we need that the fixed letters of A are contained in wi, and in particular, that w; =
D™ 1B3A0qV, where V is the left subword of Bf;DE having length ¢£. We thus have ns —
20 — 2 fixed letters in £ and n; fixed letters in A. Now, we upper-bound the degrees
of freedom of the non-fixed letters. First, suppose that ny > ¢. Note then that F~! =
by by and Faz'B = o 'bpyo -+ bn, S1 DBy ' DL Thus, we have Fag ' F by by, =
ag_lbg+2 < bpy BlDﬁé_lDfl. Arguing inductively by translation, we see that that choosing
the letters of F' determines the letters of B of D, thereby determining all non-fixed letters.
In the other case of ny < ¢, the notation above for b1 - - - by becomes inviable, but nevertheless
we can use a similar argument as above to conclude that F' determines all the non-fixed
letters. Counting across all choices of values for the letters, p, and ¢, we have that the

number of additional Wicks commutators arising from this case is upper-bounded by

{XSnl nQJ
X—-3 X-3—n

Z Z Z 2n1+(n3—2€—2)+€ < X- 2X’

n1=0 no=0

which is dominated by our error term.

Next, suppose that the fixed letters of E are in wo. Then, the fixed letters of A are
contained in wi, which requires that wq, = D™ '3340,V, where V is the left subword of
Bp1DFE having length £. But then we must start on a letter not in E, which makes it

impossible for the letters of £ to match in position.
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Finally, if there are fixed letters in A, B, and C, then it is necessarily that £ = 0 and
p = p/, which does not need to be considered.

If £ > n3/2, then we can think of our commutator as a cyclic conjugate of C~!ABCA~1B~!
such that the letters are moved from left to right. A symmetric argument like above gives us
the conclusion that W/ = D™18AaBSDEFaA~ ' BB 'aF~'E~! is on average not a Wicks
commutator of the form wia/wsB'wsa’wi ! f'wy 'a'wy B, Note that this entire argument
can then be repeated mutatis mutandis to show that W' is on average also not a Wicks
commutator of the form wjwow] 1w5 ! Indeed, the only difference from the previous case
is that ws is taken to be trivial there are no extra letters « or 5, and the latter only affects
error bounds by at most a multiplicative constant.

Thus, W’ is on average not a Wicks commutator, and furthermore, the £ = 0 case shows
that W' is on average only decomposable as a Wicks commutator in one way.We have thus

shown that the number of conjugacy classes of commutators with length 4.X is given by

2X

o (X +0(X)),

as needed.

3.3 Algorithm to List Commutators of PSLy(Z) by Trace

In this section, we give an algorithm that exhaustively computes all hyperbolic (i.e., having
trace greater than 2) commutators of PSLy(Z) with a given trace. The algorithm uses a
bijective correspondence between the hyperbolic conjugacy classes of PSLy(Z) whose traces
have absolute value ¢ > 2 and the SLy(Z)-orbits of binary quadratic forms with discriminant
t? — 4, where the action of SLy(Z) is defined as follows: for a binary quadratic form ¢(x,y)

and M € SLQ(Z),

M - q(z,y) = q((z,y)M").

We now describe this correspondence, following the exposition in [11]. Let ¢ be an
integer greater than 2. Define PSLa(Z); to be the set of elements in PSLy(Z) that contain

a matrix of trace t as a coset element, and define Qp to be the set of quadratic forms of
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discriminant D. We first construct a bijective correspondence ® : PSLa(Z); — Qp2_4 as
follows.

Let 0 = @ € PSLy(Z) be the coset containing the given matrix such that the trace
a + d is equal to t. Then, o is an automorphism of H with two hyperbolic fixed points,

given by the solutions to oz = z. Rewriting this equation as (az 4+ b)/(cz + d) = z, we see

that the fixed points are roots of the quadratic cz? + (d — a)z — b, which has discriminant
(d — a)? + 4bc = a* — 2ad + d* + 4bc = a* + 2ad + d* — 4(ad — be) = (a + d)? — 4.

By projectivizing the coordinates, we obtain q(z,y) = cx? + (d — a)zy — by?, the binary
quadratic form corresponding to o.

Next, we define a map ¥ : Q;2_y — PSL2(Z); and show that it is the inverse of ®.
Suppose we have a binary quadratic form q(x,y) = Az? + Bry+ Cy? of discriminant 2 — 4.
Then, define ¥(q(z,y)) € PSLa(Z); as the coset containing the matrix

—B+t _
5 C

B+t
A 2

Note that B and t have the same parity, as one can see from reducing B? — 4AC = t*> — 4
to B2 = ¢ (mod 2). This shows that the above matrix is integral. Furthermore, it has
determinant

t? — B2 t? — (B% - 4AC)
+ AC = 1

:1’

which shows that ¥ is well-defined. It is straightforward to check that ® and ¥ are inverses,
so ® is bijective, as claimed.
We next show that two elements of PSLy(Z); are conjugate if and only if their cor-
responding binary quadratic forms are in the same SLg(Z)-orbit. Consider My, My €
c1 di c2 d2

PSLy(Z):, where the matrix representatives M; = (al bl) and My = (a2 b2) are cho-

sen so that a; + dy = as + do = t. We have that M; is conjugate to M, if and only if there
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exists S € SLy(Z) such that M; = S™1M,S. However, we have

3S € SLy(Z) such that M; = S™'M,S
<= 35 € SLy(Z) such that S—1M5Sz = 2 gives the same quadratic form as Myz =

<= 38§ € SLy(Z) such that M, - Sz = Sz gives the same quadratic form as Mz = 2

<= 35 € SLy(Z) such that My - ?E = g{ gives the same quadratic form as EE -z
Y Y Yy

Y
<= 3S € SLy(Z) such that ®(M;) = S - &(My).

Thus, we have shown that the conjugacy classes of PSLy(Z) with trace +t correspond to
the SLg(Z)-orbits of binary quadratic forms with discriminant ¢> — 4. This allows us to
use Gauss’ reduction theory of indefinite binary quadratic forms, which yields a full set of
representatives for the SLy(Z)-orbits of binary quadratic forms of any positive discriminant,
to exhaustively list matrix representatives for the conjugacy classes of PSLo(Z) with any
given trace.

Next, we check whether or not each conjugacy class M € PSLy(Z); is in the commutator

subgroup [PSLa(Z),PSLo(Z)]. Doing this is straightforward, since [PSL2(Z), PSLy(Z)] is

precisely
a b )
c(1=c*)(bd+3(c—1)d+c+3)+cla+d—3)=0 (mod 12) (3.3)
c d

or (1 —=c®)(bd+3(c+1)d—c+3)+cla+d+3)=0 (mod 12)} (3.4)

a congruence subgroup of index 6. This follows from the fact that [SLa(Z),SLa(Z)] = ker x

for the surjective homomorphism y : SLy(Z) — Z/12Z defined by

a b
= (1= (bd+3(c—1)d+c+3)+cla+d—3),
c d

as shown in [3, Proof of Theorem 3.8]. Note that this step is done to save time that would

otherwise be spent unnecessarily on combinatorially checking whether conjugacy classes that
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are not even in the commutator subgroup are commutators. If M satisfies the condition
(3.3), then it is a commutator in SLg(Z), whereas if M satisfies the condition (3.4), then
—M is a commutator in SLy(Z). Exactly one of these two possibilities is true if and only if
M is a commutator in PSLy(Z).

Afterwards, our algorithm writes the representative M of each conjugacy class of PSLy(Z);
in terms of the generators in & = {r,r~1, s}. Here, s denotes the coset containing S and is
a generator of the Z/2Z factor of PSLy(Z) = Z/37Z * Z/2Z, while r is the coset containing
ST and is a generator of the Z/3Z factor; the matrices S and T" are defined in (1.2). We
use the well-known reduction process to write any matrix in SL(Z) in terms of S and T’

for a reference, see [3, Section 2]. First, note that

a b —c —d a b a+nc b+nd
S = and T =

c d a b c d c d

In light of this, we follow the following steps to reduce M = (‘; 3), which we can assume to

have trace t, to a product of powers of S and of T.

1. If ¢ = 0, then skip this step. Otherwise, consider whether |a| is less than |c| or not.
If la| > |c|, then write a = cq + 7 for 0 < 7 < |¢|. Then, T7IM = (% b_dqc) has
its upper-left entry equal to 7. Then, we apply S to T-2M (or to M, if |a| < |¢|),
which switches the absolute values of the upper-left and lower-left entries, yielding a
matrix with the upper-left entry having a greater absolute value than the lower-left
entry. We repeat this process, and every iteration of this process decreases min(a, c),
so eventually we obtain that M is equal to a product of powers of S and of T, right-

multiplied by a matrix with lower-left entry 0.

2. A matrix with lower-left entry 0 and determinant 1 must be either of the form () =
T™ or of the form (_01 _"1) = —T" = S?T™. Thus, we overall have that M is a product

of powers of S and of T

Since T = S—1r = sr, we can substitute s for S and sr for T to get an expression for

M that is a product of powers of s and of 7. By repeatedly canceling adjacent entries that
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are in the same free factor, we can, without loss of generality, assume that this product
expression W is fully cyclically reduced.

Finally, the algorithm checks whether there is a cyclic conjugate of W that is of the
form XY X~1Y ! or of the form XaY ZaX 1Y taZ=18 for a, 8 € {r,r~'}, which have
been shown in Section 3.1 to be the only possible Wicks commutator forms for Z/3Z*Z/27Z.
If M = W is a commutator in PSLy(Z), then we can conclude that either M or —M is a
commutator, depending on whether M satisfies the condition (3.3) or the condition (3.4).

We have run the above algorithm for 3 < ¢ < 3000. For each such t, our program
computes the conjugacy classes (and their matrix representatives with trace t) in PSLy(Z)q,
determines which of these conjugacy classes are in the commutator subgroup by check-
ing the congruence condition (3.3), and determines which of the conjugacy classes in the
commutator subgroup are in fact commutators. First, below is a table of our full set of
data for 3 < ¢t < 100, which displays any conjugacy classes of trace ¢t and —t that have
trivial abelianization, whether each such conjugacy class is comprised of commutators (say,

containing ABA™'B~! for A, B € SLy(Z)), and the matrices A and B in this description.

Trace Conj. class Commutator? A B
representative

3 (13) true (?7%) (116)
6 (32) true (?7%) (20)
7 (32) true (?7%) (7' 7)
=9 (Z128) true (44) (7' %)
(7' %) true (% 24) (24)
11 (%130) true ((1)_01) (—31(%)
15 (23) true (YY) (27%)
(%335) true (%5 %) (173)

(11}) false

(1 5%) false
18 (111147) true ((1)_01) (—416)
(3 %) true (Y7%) (2 7)
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—18 (% 37) true (13) (7 4)
(23 5%) true (°10) (7' %)
—921 ( j :;8 ) false
( -+ 1% ) false
95 (Z2-1) true (40) (7 3%)
(2 1,) true (5 24) (%3
27 (433) true (Z21) (216)
(%) true (%7 (179
(535) true (f73) (°10)
(4 26) false
(133) false
_99 (72 9) true (5 8) (7214)
(3 %) true (% %) (24)
30 (7 o) true (3*7Y) (Zio)
(1053) true (?2):%) (—11(%)
(333) false
(72 —194) false
30 (=3 -20) true (277 (' 3%)
(7 %) true (4 %) (%7)
33 (21 75) false
(e y false
(7' 25) false
(55 —57) false
34 (3) true (19) (21 5)
—34 (& %) true (%) (7 4)
(26 %) frue (37 (7' %)
38 (§47) true (273) (51o)
([T s) true (5 %) (Zio)
39 (531 true (17) (2 7)
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(35 751) true (3 %) (7%
(135 false
(433 false
—42 (70 1) true (50) (7' %)
(Zio Za1) true (Y7") (24)
(22 73) false
(52 false
43 (341) true (1%) (7*7°)
(Z31) true (5 1) (173)
(330 false
(%3) false
—45 (22 25) true (%10) (7' %)
(228 ~2) true (& 24) (3 24)
(% 1) true (13) (%7
(25 225) true (%40) (7 2)
(Z124) false
(7' %) false
47 (51 31) true (Y5) (% 2%)
(L 3) false
(J1536) false
51 (i &) true (T32) (%)
(533) true (371) (%0)
(1 ar) true (%5 %) (173)
(95 732) true (%7) (173)
(750) true (17) (50)
(4 =) false
(159) false
54 (328) false
(1341 false
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(423 false
(14 3n) false
—57 (2% 23) true (216) (%73)
(25 Z56) true (%) (7' %)
(Z1775) true (40) (3 %)
(3% %) true (85 (32 3)
(5 2%) true (9 %) (74)
(77 °k) true (% L) (7 2)
(1°%) false
(7 %) false
61 (25 =5 false
(% %) false
63 (£3) true (21) (46)
(33 true (1% (73"
(5:357) true (%' 3") (173)
(125733) true (% %) (173)
(16) false
(556) false
(4 ah false
(%5 %) false
—65 (23281 false
(5 =81 false
(o7 Z61) false
(3 %) false
(o 20) false
(37 61) false
66 (§¢5) true (1%) (50)
(%) true (%23) (%10)
(365) false

44




(L, 9) false
—66 (Z26 °33) true (219) (L3)
(26 %) true (93" (%7)

(Z2763) false

(% %) false
—69 (=) ~60) true (193) (7 %)
(7 %) true (% %) (%7
(1 —67) true (50) (%3)
(i Zo0) true (% %) (7 4)
(11 %) true (2% %) (224)
(22 267) true (50) (7' %)
(% Z67) true (25") (7°2)
(% Z60) true (223) (7' %)

(T1268) false

(7" %) false
70 (139) true (4 %) (T0)
(M 500) true (% 7Y) (77)

(2¢5) false

(%) false
—74 (Z6243) true (%10) (7' 2%)
(& %) true (97) (7 4)
75 (Mo 61) true (%) (Z1o)
(3383) true (Z23) (1o)
(158D true (5 3) (Y1)
(155 762) true (3 3) (Z1o)

(173) false

(3%) false

(%) false

(33) false
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(4 53) false
(2% 23) false
(28) false
(25 &) false
78 (£415) true (Z54) (40)
(16 67) true (Y23) (4 %)
(4 7) true (%5 4) (T10)
(i o7 ) true (73 (Z13)
(277 false
(10 65) false
(14 5%) false
(50 65) false
—78 (it true (Y7) (7' 2)
(28 %) true (510) (5 1)
(23-3%) fase
(33) flse
79 (251) false
(5 5%) fale
(23 false
(5170 false
(5%) false
(5% false
-1 EE) flse
(50 =7) false
(723 Z66) false
(7' %%o0) false
Ty false
) false
83 (53 true (Zi1) (%)
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true

4 1
(§) true (25") (%0)
(37%) true (?73) (3 7)
(33) false
(L2 false
87 (5 8) true (?7) (77
(345 true (97) (55 2)
(157%) true (27 %) (173)
(2 5s) true (%7) (77%)
(1%) false
(34) false
(L5 false
(%556 ) false
—90 (556 —a1) true (%6 31) (%3
(=32 261) true (%) (%7
(71 %) true (% 33) (%7)
(10 %) true (30 43) (%7)
(36 2%51) true (2'7) (7' %)
(=5 56) true (4 7) (7' %)
(Z1529%) true (%) (7' %)
(S =83) true (42 75°) (7' %)
(22 7s0) false
(Z178) false
(% %) false
(7 22) false
—93 (27 Ze2) true (25) (7' %)
(Z17 %) true (% 2) ()
(7 15) true (% o) (24)
( _1174 f%) true ( =5 —813) ( _12 31 )
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(=13 fase
(4°3) false
(3 %) false
(3 ) fase
—97 (72-2) true (514) (1 3%)
(%2 2%) true (2 7) (%7%)
(25 22) true (%40) (7' %)
(% %) true (17) (%7)
(27 °0) true (5 %) (57%)
(& L) true (% 4) (2*14)
(Z526) false
(2 63) false
99 (18 3) true (121) (% %)
(13 %0) true (Y3 (333)
(18%) false
(28D false
(% o6 ) false
(4 o2) false
(57 a1) false
(#56) false

Table 3.1: Full set of data for 3 < ¢ < 100 outputted
by our algorithm. The provided commutator decomposition
ABA7'B™! is of an element in the corresponding conjugacy
class C, but this element is not necessarily the matrix repre-

sentative listed in the table.

Second, below is table of summarized data for 3 < ¢ < 3000. For n € 100Z N [3,3000],
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the table displays the ratios

~ {t:3 <[t <nandtis the trace of a commutator of SLa(Z)}|

Ri(n) : [{t:3 < |t| <n} ’

[{t : 3 <|t| <n and t is the trace of a commutator of SLa(Z)}|

R =
2(n) [{t : 3 < |t| < n and t is the trace of a commutator-subgroup element of SLy(Z)}|’
and
[{conj. class C of commutators in SLy(Z) : 3 < |TrC| < n}|
Rs(n) :=

|{conj. class C of commutator-subgroup elements in SLy(Z) : 3 < |TrC| < n}|’

rounded to three decimal places. This information is also sufficient to obtain the ratio be-
tween |{t : 3 < |t| < mn and ¢ is the trace of a commutator-subgroup element of SLy(Z)}| and

[{t : 3 < |t| < n and t is the trace of a commutator of SLo(Z)}|, which is given by the ratio

Ray(n)/Ri(n).

n Ri(n) Ry (n) R3(n)
100 0.232 0.844 0.524
200 0.242 0.779 0.418
300 0.244 0.752 0.341
400 0.242 0.750 0.300
500 0.243 0.739 0.277
600 0.243 0.734 0.255
700 0.242 0.725 0.236
800 0.243 0.724 0.226
900 0.244 0.714 0.209
1000 0.242 0.716 0.200
1100 0.243 0.720 0.192
1200 0.244 0.714 0.185
1300 0.243 0.712 0.177
1400 0.242 0.708 0.168
1500 0.243 0.709 0.164
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1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243
0.243

0.706
0.702
0.703
0.700
0.701
0.701
0.698
0.693
0.694
0.693
0.694
0.695
0.696
0.695
0.689

0.158
0.154
0.149
0.144
0.141
0.137
0.133
0.130
0.128
0.125
0.122
0.120
0.118
0.116
0.112

Table 3.2: Summarized data for 3 < ¢ < 3000.
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Chapter 4

Concluding Remarks

The data of Table 3.2 suggest that Ri(n) and Rg(n) are each converging to a nonzero
proportion. In light of this, we conjecture that the set of ¢ > 3 that are absolute values
of traces of commutators appear to be a positive-proportion subset within the set of all
t > 3, with a proportion close to 0.243. We similarly conjecture that the set of ¢ > 3 that
are absolute values of traces of commutator-subgroup elements also seem to be a positive-
proportion subset within the set of all ¢ > 3, with a proportion somewhere within or close
to the interval [R2(2000), R2(3000)] = [0.689,0.701]. If these conjectures were to be proven
true, then it would follow that the values of ¢ > 3 that are absolute values of traces of
commutators would have positive density within the set of ¢ > 3 that are absolute values of
traces of commutator-subgroup elements.

On the other hand, it is less clear from the data of Table 3.2 whether R3(n) is converging
to a positive proportion or to 0. We observed in Section 1 that the number of conjugacy
classes of commutators in Z/37Z *x 7./27 = PSLo(Z) with a given word length k is roughly
comparable to the square root of the number of all conjugacy classes with trivial abelian-
ization, and we expect the same to occur when counting by trace rather than word length,
which, if true, would imply that Rs(n) converges to 0 as n — oo. We anticipate collecting
more data from our algorithm to investigate the asymptotic behavior of R3(n).

To check which conjugacy classes are comprised of commutators, our algorithm rep-
resents each conjugacy-class representative M in terms of the generators of PSLy(Z) and

group-theoretically determines whether or not it is a commutator. A natural question to
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ask on this front is: does there exist a purely number-theoretic criterion (i.e., one which only
uses the matrix entries of M) that is necessary and sufficient for M to be a commutator in
PSL9(Z)? Such a criterion could both improve the speed of the algorithm and help explain
some of the asymptotic phenomena shown by our data, such as the asymptotic behavior of
the ratios Ry(n), Ra(n), and R3(n).

While we have solved the problem of counting conjugacy classes of commutators ordered
by word length for any free group and for Z /37 x Z./27, there are a number of directions in
which Theorems 1.2 and 1.4 can be generalized. First, one can ask: how many conjugacy
classes of commutators with word length k are in an arbitrary finitely-generated free product
G = *;c7 G;7 While one can define the word length in this context to be with respect to
an arbitrary generating set &, a natural notion of length to use in this setting would be the

free product length, which can be defined as the word length with respect to

S:={9geG\{l}:9€, forsomeicl}.

Note that word length with respect to our choice of & for Z/3Z x Z/2Z coincides with the
free product length.

Also, let the n-commutators of a given group be defined by the elements with trivial
abelianization and commutator length n. A second direction for generalizing Theorems 1.2
and 1.4 is to, for any n, count the number of conjugacy classes of n-commutators with word
length k in a free group or free product (such as Z/37Z*7 /27, or more generally, an arbitrary
finitely-generated free product G = sk;c; G;). This is natural to ask, given that Culler [4]
has classified the possible forms of n-commutators for a free group and Vdovina [13] has
done this for an arbitrary free product. In fact, Culler has also classified the possible forms
that a product of n square elements can take for a free group, so an analogous question can

be asked for the number of conjugacy classes comprised of products of n square elements.
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Appendix: Code

Subs:=function(str,pos,length)
if length ge 1 then
return Substring(str,pos,length);
else
return "";
end if;
end function;

negatee:=function(str)
if str eq "r" then
return "i"
elif str eq "i" then
return "r";
else
return "s";
end if;
end function;

concat:=function(strl,str2)
n:=1;
lengthl:=#stril;
length2:=#str2;
lengthlpl:=lengthl+1;
while n le lengthl and n le length2
and negatee(strl[lengthlpi-n])
eq str2[n] do
n:=n+1;
end while;
if n gt length2 then
return Substring(strl,1,lengthlipl-n);
else
x:=lengthlpl-n;
if x gt O and stri[x] eq "r" and str2[n] eq "r" then
return Subs(strl,1,x-1) cat "i"
cat Substring(str2,n+1,length2);
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elif x gt O and stri[x] eq "i" and str2[n] eq "i" then

return Subs(strl,1,x-1) cat "r"
cat Substring(str2,n+l,length2);

else
return Subs(stril,1,x) cat Substring(str2,n,length2);

end if;

end if;
end function;

genform := function(A,B,C,D)

a:=A;
b:=B;
c:=C;
d:=D;
str:="";

while ¢ ne 0 do
if a*a ge c*c then
q:=a div c;
a:=a mod c;
b:=b-qg*d;
if q gt O then
str:=concat(str,"sr""q);

else
str:=concat(str,"is""(-q));

end if;

end if;

temp:=d;

d:=b;

b:=-temp;

temp:=c;

c:=a;

a:=-temp;

strlength:=#str;
if strlength gt O and strstrlength] eq "s" then
str:=Substring(str,1,strlength-1);
else
str:=str cat "s";
end if;
end while;
if a eq 1 then
if b ge O then
str:=concat(str,"sr""b);
else
str:=concat(str,"is""(-b));
end if;
else
if b ge O then
str:=concat(str,"is""b);
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else
str:=concat(str,"sr""(-b));
end if;
end if;
return str;
end function;

SSubstring:=function(str,length)
if length ge 1 then
return Substring(str,1,length);
else
return "";
end if;
end function;

Checkinvv:=function(strl,str2)
lengthl:=#stril;
lengthlpl:=lengthl+1;
if lengthl ne #str2 then

return false;
end if;
count:=1;
while count le lengthl do
if stril[count] ne negatee(str2[lengthlpl-count]) then
return false;
end if;
count:=count+1;
end while;
return true;
end function;

matrixform:=function(str)
M:=Matrix(IntegerRing(), 2, 2, [1,0,0,1]1);
for n in [1..#str] do
if str[n] eq "s" then
M:=M*Matrix(IntegerRing(), 2, 2, [0,-1,1,0]);
elif str[n] eq "r" then
M:=M#Matrix(IntegerRing(), 2, 2, [0,-1,1,1]);
elif str[n] eq "i" then
M:=M#Matrix(IntegerRing(), 2, 2, [1,1,-1,0]);
end if;
end for;
return M;
end function;

checkcommdetailed:= function(string?2)
latest:=string?2;

seclength:=#string?2;
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lastbit:=latest[seclength];
if lastbit eq "s" then
if latest[1] eq "s" and seclength gt 1 then
latest:=Substring(latest,2,seclength-2);
end if;
elif lastbit eq "r" then
if latest[1] eq lastbit and seclength gt 1 then
latest:= "i" cat Substring(latest,2,seclength-2);
elif latest[1] eq "i" and seclength gt 1 then
latest:= Substring(latest,1,seclength-1);
end if;
else
if latest[1] eq lastbit and seclength gt 1 then
latest:= "r" cat Substring(latest,2,seclength-2);
elif latest[1] eq "r" and seclength gt 1 then
latest:= Substring(latest,1,seclength-1);
end if;
end if;
length:=#latest;
list2:=[latest];
for n in [1..length] do
tempstr:= Substring(latest,length,1)
cat Substring(latest,1,length-1);
list2:=Append(list2,tempstr);
latest:=tempstr;
end for;
for str in list2 do
if length mod 2 eq 1 then
return false;
end if;
if length mod 4 eq O then
hlength:=length div 2;
hlengthpl:=hlength+1;
glength:=hlength div 2;
for a in [1..qlength] do
x:=Substring(str,1,ax2-1);
y:=Substring(str,a*2,hlengthpl-a*2);
if Checkinvv(x,Substring(str,hlengthpl,a*2-1))
and Checkinvv(y,
Substring(str,a*2+hlength,hlengthpl-a*2)) then
mattx:=matrixform(x);
matty:=matrixform(y) ;

return <true, ";", mattx[1,1], ";", mattx[1,2],";",
mattx[2,1], ";", mattx[2,2], ";", matty[1,1], ";",
matty[1,2],";", matty[2,1], ";", matty[2,2]>;
end if;
end for;
end if;
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lengthm6:=length-6;
if str(length] ne "s" and lengthm6 mod 4 eq 2 then
v:=str[hlength];
hlength:=lengthm6 div 2;
qlength:=lengthm6 div 4;
for a in [1..qlength] do
if str[a*2] eq v and strl[hlength+3+a*2] eq str[length] then
for b in [1..qlength-a+1] do
if str[a*2+b*2] eq str[length]
and str[hlength+3+a*x2+b*2] eq v then
x:=Substring(str,1,a*2-1);
y:=Substring(str,a*2+1,bx2-1);
z:=Substring(str,a*2+b*2+1,hlength-a*2-b*2+2) ;
zinv:=Substring(str,hlength+a*2+b*2+4,hlength-a*2-b*2+2) ;
if Checkinvv(x,Substring(str,4+hlength,a*x2-1))
and Checkinvv(y,Substring(str,hlength+a*2+4,b*2-1))
and Checkinvv(z,zinv) then
mattx:=matrixform(negatee(str[length]) cat x cat negatee(v)
cat zinv cat negatee(str[length]));
matty:=matrixform(str[length] cat z cat negatee(v) cat y);

return <true, ";", mattx([1,1], ";", mattx[1,2],";",
mattx[2,1], ";", mattx[2,2], ";", matty[1,1], ";",
matty[1,2],";", matty[2,1], ";", matty[2,2]>;
end if;
end if;
end for;
end if;
end for;
end if;
end for;

return false;
end function;

checkcomm:= function(string?2)
latest:=string?2;
seclength:=#string2;
lastbit:=latest[seclength];
if lastbit eq "s" then
if latest[1] eq "s" and seclength gt 1 then
latest:=Substring(latest,2,seclength-2);
end if;
elif lastbit eq "r" then
if latest[1] eq lastbit and seclength gt 1 then
latest:= "i" cat Substring(latest,2,seclength-2);
elif latest[1] eq "i" and seclength gt 1 then
latest:= Substring(latest,1,seclength-1);
end if;
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else
if latest[1] eq lastbit and seclength gt 1 then
latest:= "r" cat Substring(latest,2,seclength-2);
elif latest[1] eq "r" and seclength gt 1 then
latest:= Substring(latest,1,seclength-1);
end if;
end if;
length:=#latest;
list2:=[latest];
for n in [1..length] do
tempstr:= Substring(latest,length,1)
cat Substring(latest,l,length-1);
list2:=Append(list2,tempstr);
latest:=tempstr;
end for;
for str in list2 do
if length mod 2 eq 1 then
return false;
end if;
if length mod 4 eq O then
hlength:=length div 2;
hlengthpl:=hlength+1;
gqlength:=hlength div 2;
for a in [1..qlength] do
x:=Substring(str,1,ax2-1);
y:=Substring(str,a*2,hlengthpl-ax2) ;
if Checkinvv(x,Substring(str,hlengthpl,a*2-1))
and Checkinvv(y,
Substring(str,a*2+hlength,hlengthpl-a*2)) then
return true;
end if;
end for;
end if;
lengthm6:=length-6;
if str(length] ne "s" and lengthm6 mod 4 eq 2 then
v:=str[hlength];
hlength:=lengthm6 div 2;
qlength:=lengthm6 div 4;
for a in [1..qlength] do
if str[a*2] eq v and strl[hlength+3+a*2] eq str[length] then
for b in [1..qlength-a+1] do
if str[a*2+b*2] eq str[length]
and str[hlength+3+a*x2+b*2] eq v then
x:=Substring(str,1,a*2-1);
y:=Substring(str,a*2+1,bx2-1);
z:=Substring(str,a*2+b*2+1,hlength-a*2-b*2+2) ;
zinv:=Substring(str,hlength+a*2+b*2+4,hlength-a*2-b*2+2) ;
if Checkinvv(x,Substring(str,4+hlength,a*2-1))
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end

for

and Checkinvv(y,Substring(str,hlength+a*2+4,b*2-1))

and Checkinvv(z,zinv) then
return true;
end if;
end if;

end for;
end i
end for;

end if;

end for;
return false;
function;

t in [3..100] do
D:=t*xt-4;

modt:=t mod 12;

for dd in Divisors(D) do

Disc:=Round(D/dd) ;
if IsSquare(dd) ne false and (Disc mod 4) le 1 then
mult:=Round (SquareRoot (dd)) ;
Q := BinaryQuadraticForms(Disc);
QQ:=ReducedForms (Q) ;
for quad in QQ do
a:=mult*quad[1];
b:=mult*quad[2];
c:=mult*quad[3];
ma:=Round ((-b+t)/2);
mb:=-c;
mc:=a;
md:=Round ((b+t)/2);
a:=ma mod 12;
b:=mb mod 12;
c:=mc mod 12;
d:=md mod 12;
if modt in [0, 2, 3, 4, 6, 7, 8, 10, 11]

and ((1-cxc)*(bxd+3*(c-1)*d+c+3)+c*(a+d-3)) mod 12

eq O then
thegenform:=genform(ma,mb,mc,md) ;
answer:=checkcommdetailed (thegenform) ;

t, 'Y, ma, "3, mb, ";", mc, ";", md,
elif modt in [0,1,2, 4,5 ,6, 8,9, 10]

and ((1-c*c)*(b*xd+3*(-c-1)*(-d)-c+3)-c*(-a-d-3)) mod 12

eq O then
thegenform:=genform(-ma,-mb,-mc,-md) ;
answer:=checkcommdetailed (thegenform) ;
-t, ";", -ma, ";", -mb, ";", -mc, ";",
end if;
end for;
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end if;
end for;
end for;

num:=0;
den:=0;
for t in [3..3000] do
D:=t*xt-4;
modt:=t mod 12;
cnumberplus:=0;
cnumberminus:=0;
mnumberplus:=0;
mnumberminus:=0;
for dd in Divisors(D) do
Disc:=Round(D/dd) ;
if IsSquare(dd) ne false and (Disc mod 4) le 1 then
mult:=Round(SquareRoot(dd));
Q := BinaryQuadraticForms(Disc);
QQ:=ReducedForms (Q) ;
for quad in QQ do
a:=mult*quad[1];
b:=mult*quad[2];
c:=mult*quad[3];
ma:=Round ((-b+t)/2);
mb:=-c;
mc:=a;
md : =Round ((b+t) /2) ;
a:=ma mod 12;
b:=mb mod 12;
c:=mc mod 12;
d:=md mod 12;
if modt in [0, 2, 3, 4, 6, 7, 8, 10, 11]
and ((1-c*c)*(bxd+3*(c-1)*d+c+3)+c*(a+d-3)) mod 12
eq O then
thegenform:=genform(ma,mb,mc,md) ;
answer : =checkcomm(thegenform) ;
if answer cmpne false then
mnumberplus:=mnumberplus+1;
end if;
cnumberplus:=cnumberplus+1;
elif modt in [0,1,2, 4,5 ,6, 8,9, 10]
and ((1-c*c)*(b*d+3*(-c-1)*(-d)-c+3)-c*(-a-d-3)) mod 12
eq O then
thegenform:=genform(-ma,-mb,-mc,-md) ;
answer : =checkcomm(thegenform) ;
if answer cmpne false then
mnumberminus : =mnumberminus+1;
end if;
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cnumberminus :=cnumberminus+1;
end if;
end for;
end if;

end for;

num:=num+mnumberplus+mnumberminus;
den:=den+cnumberplus+cnumberminus;

if cnumberplus ne O then

t,";",D,";", mnumberplus,";",
cnumberplus,";", mnumberplus ne 0,";", num, ";", den;
end if;
if cnumberminus ne O then
-t,";",D,";", mnumberminus,";",
cnumberminus,";", mnumberminus ne 0 ,";", num, ";", den;
end if;

end for;
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