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Abstract

We use the classification of commutators in free groups and in free products by Wicks [14]

to asymptotically count for these groups the conjugacy classes of commutators with a given

word length. Let Fr denote the free group on r > 1 generators. We show that the number

of conjugacy classes of commutators in Fr with word length k is given by 0 for odd k and

(2r − 2)2(2r − 1)
k
2
−1

96r

(
k2 +Or (k)

)
for even k, where the implied constant depends only on r and is effectively computable. This

result builds on the work of Rivin [9], who counted the conjugacy classes of commutator-

subgroup elements in Fr with a given word length.

Next, we show that the number of conjugacy classes of commutators in the free product

Z/3Z ∗ Z/2Z ∼= PSL2(Z) with word length k is given by 0 for 4 - k and

2
k
4

384

(
k2 +O (k)

)
.

for 4 | k, where the implied constant is effectively computable.

Finally, we give an algorithm to exhaustively compute all hyperbolic conjugacy classes

of commutators of PSL2(Z) with a given trace. We conclude by formulating several density-

type conjectures suggested by the data from this algorithm.
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Chapter 1

Introduction

Let G be a finitely generated group with a finite symmetric set of generators S. Any

element g ∈ G can then be written as a word in the letters of S, and one can define the

length of g by

inf
k∈Z≥0:∃c1,...,ck∈S

g=c1···ck

k.

Consider the closed ball Bk(G,S) ⊂ G of radius k in the word metric, defined as the subset

consisting of elements with length ≤ k. One can then ask natural questions about the

growth of G: how large is |Bk(G,S)| as k →∞, and more generally, what connections can

be made between the properties of G and this notion of its growth rate? Since the middle of

the 20th century, this group-theoretic question has been widely studied in various contexts

largely arising from geometric motivations, such as characterizing the volume growth of

Riemannian manifolds and Lie groups. One of the pioneering results on this question of

geometric group theory is that of Gromov [6], who classified groups G with polynomial

growth, i.e., those that satisfy |Bk(G,S)| � kO(1). There are also groups with exponential

growth, one of which is the free group Fr on r > 1 generators; more precisely, after fixing

a symmetric generating set S ··= {x1, . . . , xr, x−11 , . . . , x−1r }, it is easy to see that

Bk(G,S) = 1 +

k∑
i=1

∂Bi(G,S) = 1 +

k∑
i=1

2r(2r − 1)i−1 =
r
(
(2r − 1)k − 1

)
r − 1

,

where ∂Bk(G,S) denotes the subset of length-k elements.
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In certain contexts, it is more natural to consider the growth rate of the conjugacy

classes of G. For a given conjugacy class C of G, define the length of C by

inf
g∈C

length(g),

and define ∂Bconj
k (G,S) as the set of conjugacy classes of G with length k. In the case

of Fr, the minimal-length elements of a conjugacy class are precisely its cyclically reduced

elements, all of which are cyclic conjugates of each other. The conjugacy growth of Fr can

be described as ∂Bconj
k (G,S) ∼ (2r − 1)k/k, which agrees with the intuition of identifying

the cyclic conjugates among the 2r(2r−1)k−1 words of length k; for the full explicit formula,

see [7, Proposition 17.8].

One context for which conjugacy growth may be a more natural quantity to study than

the growth rate in terms of elements is when characterizing the frequency with which a

conjugacy-invariant property occurs in G. An example of such a property is membership

in the commutator subgroup [G,G]. On this front, Rivin [9] computed the number ck of

length-k cyclically reduced words in Fr that are in the commutator subgroup (i.e., have

trivial abelianization) to be the constant term in

(2
√

2r − 1)kTk

(
1

2
√

2r − 1

r∑
i=1

(
xi +

1

xi

))
,

where Tk denotes the kth Chebyshev polynomial of the first kind. This quantity can asymp-

totically be described as ck ∼ Cr(2r−1)k/kr/2 for some positive constant Cr depending only

on r. Furthermore, from the number of cyclically reduced words with trivial abelianization,

one can derive the growth of conjugacy classes with trivial abelianization by using Möbius

inversion, due to the following relationships:

ck =
∑
d|k

pd,

where pd denotes the number of primitive (i.e., not a proper power of any subword) length-d
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words with trivial abelianization, and

|∂Bconj
k (G,S) ∩ [G,G]| =

∑
d|k

pd
d
,

which together imply by Möbius inversion that

|∂Bconj
k (G,S) ∩ [G,G]| =

∑
d|k

1

d

∑
e|d

µ

(
d

e

)
ce =

∑
e|k

ce
e

∑
d′| k

e

µ(d′)

d′


=
∑
e|k

ce
e
· φ(k/e)

k/e
=
∑
e|k

ce
φ(k/e)

k
. (1.1)

In the above, φ denotes the Euler totient function. For details on this derivation, the reader

is directed to [7, Chapter 17] .

In this paper, we answer the analogous question for commutators rather than for

commutator-subgroup elements. This new inquiry is structurally different in that it aims

to solve a Diophantine equation over a group G (whether there exist X and Y such that

XYX−1Y −1 = W ) for a given W ∈ G, rather than a subgroup-membership problem

(whether W is in [G,G]). In particular, the set of commutators is not multiplicatively

closed, so we cannot use primitive words as a bridge between counting cyclically reduced

words and counting conjugacy classes as above. Instead, we use a theorem of Wicks [14],

which states that an element of Fr is a commutator if and only if it is a cyclically reduced

conjugate of a commutator satisfying the following definition.

Definition 1.1. A Wicks commutator of Fr is a wordW ∈ Fr of the formABCA−1B−1C−1,

where the product is cyclically reduced ; i.e., there are no cancellations between the subwords

A,B,C,A−1, B−1, and C−1, and the first and last letters are not inverses.

After proving this theorem for expository purposes, we count the number of conjugacy

classes of commutators with length k in Fr by counting the number of Wicks commutators

with length k.
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Theorem 1.2. Let k ≥ 0 be even. The number of distinct conjugacy classes of commutators

in Fr with length k is given by

(2r − 2)2(2r − 1)
k
2
−1

96r

(
k2 +Or (k)

)
,

where the implied constant depends only on r and is effectively computable.

Note that the number of conjugacy classes of commutators in Fr is roughly proportional

to the square root of the number (1.1) of all conjugacy classes with trivial abelianization.

We also employ a similar argument, using Wicks’ characterization of commutators in free

products, to answer the analogous question for Z/3Z ∗ Z/2Z. This group is of independent

interest as the isomorphism class of PSL2(Z); specifically, for the usual generators

S ··=

0 −1

1 0

 and T ··=

1 1

0 1

 (1.2)

of PSL2(Z), we have that S corresponds to a generator of the Z/2Z factor and ST , to a

generator of the Z/3Z factor. Let S ··= {r, r−1, s}, where r denotes a generator of the Z/3Z

factor and s, the generator of the Z/2Z factor. Then, a theorem of Wicks [14] analogous

to the previous one, which we will again prove for expository purposes, implies that an

element of Z/3Z ∗ Z/2Z is a commutator if and only if it is a cyclically reduced conjugate

of a commutator satisfying the following definition.

Definition 1.3. A Wicks commutator of Z/3Z ∗ Z/2Z is a word W ∈ Z/3Z ∗ Z/2Z either

of the form ABA−1B−1 or of the form AαBβCαA−1βB−1αC−1β for α, β ∈ {r, r−1}. Here,

the product is fully cyclically reduced ; i.e., adjacent letters are in different factors of the free

product, as are the first and last letters.

A fully cyclically reduced element W with length k in Z/3Z ∗ Z/2Z alternates between

k/2 letters in {r, r−1} and k/2 letters equal to s, where k/2 is necessarily an integer. Thus,

the number of fully cyclically reduced elements with length k in Z/3Z∗Z/2Z is 0 if k is odd

and 2k/2 if k is even. Furthermore, W has trivial abelianization if and only if k/2 is an even

integer (so that the product of all the s factors is trivial) and the product of all the letters
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of W in {r, r−1} is trivial. In particular, this is necessary for W to be a Wicks commutator,

so the length of any Wicks commutator of Z/3Z ∗ Z/2Z is divisible by 4. Accordingly, for

any k divisible by 4, we obtain the number of length-k conjugacy classes in Z/3Z ∗ Z/2Z

comprised of commutators.

Theorem 1.4. Let k ≥ 0 be a multiple of 4. The number of distinct conjugacy classes of

commutators in Z/3Z ∗ Z/2Z with length k is given by

2
k
4

384

(
k2 +O (k)

)
,

where the implied constant is effectively computable.

Suppose that 4 | k. Then, the cyclically reduced elements of Z/3Z ∗Z/2Z with length k

are in bijection with the closed paths of length k/2 on the triangle PQR with fixed basepoint

P . Let pn denote the number of paths with length n from P to itself and qn, the number

of paths with length n from Q to P . Then, note that pn = 2qn−1 for n ≥ 1, and thus, qn is

the solution to the linear recurrence

q0 = 0, q1 = 1, and qn = qn−1 + pn−1 = qn−1 + 2qn−2 for n ≥ 2,

which is (2n + (−1)n+1)/3. It follows that pn = 2qn−1 = (2n + 2(−1)n) /3 = 2n/3 + O(1).

Thus, the number of cyclically reduced words with length k in Z/3Z∗Z/2Z is 2k/2/3+O(1),

and applying Möbius inversion as done in (1.1), we see that the number of conjugacy classes

of commutators in Z/3Z ∗Z/2Z is roughly comparable to the square root of the number of

all conjugacy classes with trivial abelianization.

Counting conjugacy classes of commutators has a topological application. Let X be a

connected CW complex with fundamental group G, and let C be a conjugacy class of G with

trivial abelianization, corresponding to the free homotopy class of a homologically trivial

loop γ : S1 → X. Then, the commutator length of C, defined as the minimum number of

commutators whose product is equal to an element of C, is also the minimum genus of an

orientable surface that continuously maps to X so that the boundary of the surface maps

to γ [2, Section 2.1]. Thus, using the bijective correspondence between conjugacy classes

5



of the fundamental group and free homotopy classes of loops S1 → X, our above results

immediately yield the following corollaries.

Corollary 1.5. Let X be a connected CW complex.

1. Suppose X has fundamental group Fr with a symmetric set of free generators S.

Then, the number of free homotopy classes of loops γ : S1 → X with length k (in the

generators of S) such that there exists a genus-1 orientable surface Y and a continuous

map f : Y → X satisfying f(∂Y ) = Im γ is given by

(2r − 2)2(2r − 1)
k
2
−1

96r

(
k2 +Or (k)

)
,

where the implied constant depends only on r and is effectively computable.

2. Suppose X has fundamental group Z/3Z ∗ Z/2Z with the symmetric set of generators

S = {r, r−1, s}, where r is a generator of the Z/3Z factor and s, the generator of the

Z/2Z factor. Then, the number of free homotopy classes of loops γ : S1 → X with

length k (in the generators of S) such that there exists a genus-1 orientable surface

Y and a continuous map f : Y → X satisfying f(∂Y ) = Im γ is given by

2
k
4

384

(
k2 +O (k)

)
,

where the implied constant is effectively computable.

In addition, counting conjugacy classes of PSL2(Z) arises in the following geometric

context. Consider the upper-half plane H and a discrete subgroup Γ ⊂ PSL2(R) which acts

on H by fractional linear transformations; in our case, Γ = PSL2(Z). Then, the quotient

surface Γ\H is a hyperbolic manifold, and every hyperbolic element h ∈ Γ gives rise to a

closed geodesic of Γ\H by projecting the geodesic of H connecting the fixed points of h to

Γ\H. In fact, this gives a bijective correspondence between the closed geodesics of Γ\H

and the hyperbolic conjugacy classes of Γ. In this correspondence, the primitive hyperbolic

conjugacy classes give rise to primitive closed geodesics. These are called prime geodesics

because when ordered by trace, they satisfy equidistribution theorems analogous to those

6



of prime numbers, such as the prime number theorem (generally credited to Selberg [12],

while its analogue for surfaces of varying negative curvature was proven by Margulis [8])

and Chebotarev’s density theorem (proven by Sarnak [10]). Specifically, this analogue of

the prime number theorem is called the prime geodesic theorem, which states that the

number of prime geodesics of Γ\H with norm ≤ N is asymptotically given by ∼ N/ logN .

Furthermore, Sarnak’s analogue of Chebotarev’s density theorem implies that the number

of prime geodesics of Γ\H with norm ≤ N that correspond to elements of Γ with trivial

abelianization is asymptotically given by ∼ N/(6 logN), since [Γ,Γ] is an index-6 subgroup

(in fact, a congruence subgroup) of Γ; see (3.3) for details.

For this application, we present an algorithm, based on Gauss’ reduction theory of indef-

inite binary quadratic forms and Wicks’ theorem, to exhaustively compute the hyperbolic

conjugacy classes of commutators of Γ with a given trace. Note that the trace t of a hy-

perbolic element of Γ is connected to the norm N of the corresponding geodesic by the

relationship

N =

(
t+
√
t2 − 4

2

)2

.

A commutator of Γ is precisely a coset {C,−C} for a commutator C = ABA−1B−1 of

SL2(Z), where A,B ∈ SL2(Z). In light of this, one application of this algorithm arises from

the fact that commutators ABA−1B−1 of SL2(Z) with a given trace t give rise to integral

solutions

(Tr(A),Tr(B),Tr(AB))

of the Markoff-type surface x2 + y2 + z2 − xyz = t+ 2, since we have the trace identity

Tr(A)2 + Tr(B)2 + Tr(AB)2 − Tr(A) Tr(B) Tr(AB) = Tr(ABA−1B−1) + 2.

Integral points on this Markoff-type surface are of independent number-theoretic interest

and have been studied in [1] and [5].

Finally, we conclude our paper with a discussion of the data arising from the algorithm,

along with several conjectures suggested by our work.

7



Chapter 2

Commutators of the Free Group

2.1 Proof of Wicks’ Theorem for the Free Group

In this section, we give an exposition of Wicks’ proof of his theorem [14] that every commu-

tator in Fr is conjugate to a Wicks commutator, i.e., a word of the fully cyclically reduced

form ABCA−1B−1C−1. In fact, this is a full characterization, since a Wicks commutator

is indeed a commutator, as seen from

(AC−1)(CB)(AC−1)−1(CB)−1 = ABCA−1B−1C−1. (2.1)

Suppose that W is a nontrivial commutator. Then, the set of commutators of the form

ABCA−1B−1C−1 (not necessarily cyclically reduced) that are conjugate to W is nonempty,

and we can take the least-length such commutator XY ZX−1Y −1Z−1. We will show that

this expression is cyclically reduced.

Suppose the contrary. If two of the factors X,Y, and Z are trivial, then we have that

W is trivial, a contradiction. First, we suppose that one of X,Y, and Z is trivial. By

conjugating, we may assume that Z is trivial. Then, in the expression XYX−1Y −1, we

must have that two cyclically adjacent letters in distinct subwords (among X,Y,X−1, and

Y −1) are inverses. Again, by conjugating, we may assume that these two letters are the

first letter of X and the last letter of Y −1. Then, we must have X = αX1 and Y = αY1.

But then, X1αY1X
−1
1 α−1Y −11 , which is also of the form ABCA−1B−1C−1, is conjugate to

8



αX1αY1X
−1
1 α−1Y −11 α−1, and thus to W . This contradicts our minimality assumption.

Second, we suppose that none of X,Y, and Z are trivial. Then, in the expression

XY ZX−1Y −1Z−1, we must have that two cyclically adjacent letters in distinct subwords

(among X,Y, Z,X−1, Y −1 and Z−1) are inverses. By conjugating, we may assume that

these two letters are the first letter of X and the last letter of Z−1. Then, we must

have X = αX1 and Z = αZ1. However, this implies that X1Y αZ1X
−1
1 α−1Y −1Z−11 =

X1(Y α)Z1X
−1
1 (Y α)−1Z−11 , which is also of the form ABCA−1B−1C−1, is conjugate to

αX1Y αZ1X
−1
1 α−1Y −1Z−11 α−1, and thus to W . This contradicts our minimality assump-

tion.

Thus, we have proven that a word in Fr is a commutator if and only if it is a conjugate

of a Wicks commutator.

2.2 Proof of Theorem 1.2

Since the cyclically reduced conjugacy representative of Fr is unique up to cyclic permuta-

tion, it suffices to count equivalence classes (with respect to cyclic permutation) of Wicks

commutators of length k = 2X. Let RX denote the set of reduced words of length X, of

which there are 2r · (2r − 1)X−1. For each such word W , the number of ways to decom-

pose W into A,B, and C (i.e., W = ABC without cancellation) is given by the number of

ordered partitions p of X into three (not necessarily nontrivial) parts.

Let p = (n1, n2, n3). From this point, we suppose that 0 < n1, n2, n3. Define a pair

(W,p) to be viable if the resulting word W ′ ··= ABCA−1B−1C−1 is a Wicks commutator.

We now show that for a fixed p, the proportion of W ∈ RX such that (W,p) is viable is

given by

1

2r
+O

(
1

(2r − 1)n1−1 +
1

(2r − 1)n2−1 +
1

(2r − 1)n3−1

)
.

For s ∈ S, let Rs
n ⊂ Rn denote the subset of words that begin with s, which gives us

a decomposition of Rn into the disjoint union Rn =
⋃

s∈SR
s
n. The number qn of words

in Rs
n whose final letter is s is the solution to the linear recurrence given by q1 = 1 and

9



qi+1 = (2r − 1)i−1 − qi, which is

qn =
(2r − 1)n−1 + (−1)n−1 · (2r − 1)

2r
.

Thus, we have that the proportion of words in Rs
n whose final letter is s is

qn
|Rs

n|
=

(2r − 1)n−1 + (−1)n−1 · (2r − 1)

2r · (2r − 1)n−1
=

1

2r
+O

(
1

(2r − 1)n−1

)
,

while the proportion of words whose final letter is s−1 is

1

2r − 1

(
1− qn
|Rs

n|

)
=

1

2r
+O

(
1

(2r − 1)n−1

)
.

Now, fix a partition p, and consider RX with the uniform probability measure placed on

its elements. Within the decomposition W = ABC in accordance with p, let the first letter

and last letter of A respectively be a0 and a1, and define b0, b1, c0, and c1 similarly. We will

compute the probability that (W,p) is viable for a random W ∈ RX , i.e., the probability

that b1 6= a−10 , c0 6= a0, c1 6= a1, and c1 6= b−10 .

Suppose that the first letter of W is s. Then, by our work above, the set of possible

candidates for a1b0 is the 2r(2r − 1)-element set S = {wz : w, z ∈ S, w 6= z−1}, each of

which has probability

1

2r − 1

(
1

2r
+O

(
1

(2r − 1)n1−1

))
=

1

2r(2r − 1)
+O

(
1

(2r − 1)n1

)
.

We fix a choice of a1b0 in S, and all probabilities from now on are conditional on this

event. The set of possible candidates for b1c0 is also S, each of which has probability

1/2r(2r − 1) + O(1/(2r − 1)n2). Let S′ ⊂ S be the subset of possible candidates for b1c0

that satisfy the conditions a0 6= b−11 and a0 6= c0. The cardinality of S′ can be computed as

follows: there are 2r− 1 choices for b1 satisfying s 6= b−11 , and conditional on this, there are

2r − 2 choices for c0 satisfying s 6= c0 and b0 6= c−10 , for a total of (2r − 1)(2r − 2) elements

of S′. Fix a choice of b1c0 in S′, and all probabilities from now on are conditional on this

event. Since a1 6= b−10 , the conditions c1 6= a1 and c1 6= b−10 leave precisely 2r − 2 (out of

10



2r) possible values for c1, so the probability that c1 satisfies these conditions is

2r − 2

2r
+O

(
1

(2r − 1)n3

)
.

Overall, we have that the probability that (W,p) is viable is

2r(2r − 1) ·
(

1

2r(2r − 1)
+O

(
1

(2r − 1)n1

))
· (2r − 1)(2r − 2)

(
1

2r(2r − 1)
+O

(
1

(2r − 1)n2

))
· (2r − 2)

(
1

2r
+O

(
1

(2r − 1)n3−1

))
=

(
2r − 2

2r

)2

·
(

1 +O

(
1

(2r − 1)n1−2

))
·
(

1 +O

(
1

(2r − 1)n2−2

))
·
(

1 +O

(
1

(2r − 1)n3−2

))
=

(
2r − 2

2r

)2(
1 +O

(
1

(2r − 1)n1−2 +
1

(2r − 1)n2−2 +
1

(2r − 1)n3−2

))
.

The number of (W,p) that are viable is then given by

∑
0<n1,n2,n3

n1+n2+n3=X

2r(2r − 1)X−1
(

2r − 2

2r

)2

·
(

1 +O

(
1

(2r − 1)n1−2 +
1

(2r − 1)n2−2 +
1

(2r − 1)n3−2

))
=

(2r − 2)2(2r − 1)X−1

2r

·

(X − 2)(X − 1)

2
+

∑
0<n1,n2,n3

n1+n2+n3=X

O

(
1

(2r − 1)n1−2 +
1

(2r − 1)n2−2 +
1

(2r − 1)n3−2

)

=
(2r − 2)2(2r − 1)X−1

2r

(X − 2)(X − 1)

2
+ 3 ·O

 ∑
0<n1,n2,n3

n1+n2+n3=X

1

(2r − 1)n1−2




=
(2r − 2)2(2r − 1)X−1

2r

(
(X − 2)(X − 1)

2
+O

(
X−2∑
n1=1

(X − 1− n1)
1

(2r − 1)n1−2

))

11



=
(2r − 2)2(2r − 1)X−1

2r

·

(
(X − 2)(X − 1)

2
+O

(
(2r − 1)2

(
(2r − 1)2−X +X(2r − 2)− 4r + 3

)
(2r − 2)2

))

=
(2r − 2)2(2r − 1)X−1

4r

(
X2 +O

(
r2

(2r − 1)X
+ rX

))
.

While all commutators arise from viable pairs (W,p), there could be a commutator

ABCA−1B−1C−1 arising from distinct viable pairs, say (W,p1) and (W,p2) for p1 =

(n1, n2, n3), and p2 = (m1,m2,m3). We show that the number of such commutators is

small.

Let W = ABC be its decomposition with respect to p1, and W = A′B′C ′ its decompo-

sition with respect to p2. Consider the function f : {1, . . . , X} → {1, . . . , X}2 that maps i

to (j, k) in the following way: the ith letter of A−1B−1C−1, when corresponding to p1, is

the inverse of the jth letter of W , and when corresponding to p2, is the inverse of the kth

letter of W . For example, the first letter of A−1B−1C−1 is defined to be the inverse of the

n1th when the decomposition is in terms of p1, and is defined to be the m1th letter of W

when in terms of p2, so f(1) = (n1,m1). We consider two cases: when the two entries of

f(i) are distinct for all i, and otherwise. In the first case, the following algorithm allows us

to reduce the degrees of freedom for the letters of W by at least half:

1. Let i = 1. For f(i) = (ji, ki), do the following:

• If neither the jith or the kith position has an indeterminate variable assigned to

it, then assign a new indeterminate variable simultaneously to the jith and kith

positions. This increases the number of indeterminate variables by two.

• If just one of the jith and the kith positions has an indeterminate variable as-

signed to it, but the other does not, then assign this indeterminate variable to

the former.

• If both the jith and the kith positions have the same indeterminate variable

assigned to them, make no changes.

12



• If the jith and the kith positions have distinct indeterminate variables assigned

to them, set these indeterminate variables equal to each other. This decreases

the number of indeterminate variables by one.

2. Increment i by one and repeat this procedure for all 1 ≤ i ≤ X.

By our hypothesis that the two entries of f(i) are distinct for all i, the number of indeter-

minate variables, which precisely represents the number of degrees of freedom for the word

W such that (W,p1) and (W,p2) give rise to the same commutator, is ≤ X/2. It follows

that there are only O((2r − 1)X/2) of such words for each pair p1, p2.

Now, consider the next case that there exists an i such that the two entries of f(i) are

equal. Then, we consider the following three cases for W , p1, and p2:

Case 1. Suppose the smallest i such that the two entries of f(i) are equal satisfies that

this entry is a position in A. Then, n1 = m1 must be this entry and i must equal 1, since

otherwise we can continue to decrement i so that the two entries of f(i) are incremented

and remain equal, a contradiction. Next, the subwords B−1C−1 and B′−1C ′−1 must be

equal. Without loss of generality, suppose that n2 > m2. Decompose B = B′D so that our

condition B−1C−1 = B′−1C ′−1 is precisely CB′D = DCB′. Since CB′ and D commute,

we have that they are both powers of a common subword V ; without loss of generality, the

powers are positive, since otherwise there would be cancellation, which contradicts that the

commutator is cyclically reduced. We can bound the number of (W,p) satisfying this case

by counting, for each i = X − n1 and for each proper divisor d | i (denoting the length

of V ), the number of ways to place V in the right subword of length i and the number of

degrees of freedom. Thus, the number of additional Wicks commutators arising from this

case can be upper-bounded by

X−1∑
i=1

∑
d|i
d6=i

(i− d+ 1) · (2r − 1)X−i+d

≤ (2r − 1)X ·
X−1∑
i=2

∑
1≤d≤ i

2

(i− d+ 1) · (2r − 1)−i+d

13



= (2r − 1)X ·
X−1∑
i=2

(2r − 1)−i
∑

1≤d≤ i
2

(i− d+ 1) · (2r − 1)d

≤ (2r − 1)X ·
X−1∑
i=2

(2r − 1)−i+1
i(2r − 2)

(
(2r − 1)

i
2 − 2

)
+ 2(2r − 1)

(
(2r − 1)

i
2 − 1

)
2(2r − 2)2

� (2r − 1)X ,

which is dominated by our error term.

Case 2. Suppose the smallest i such that the two entries of f(i) are equal satisfies that

this entry is a position in C. An argument symmetric to that above can be given to show

that the above expression is also an upper bound for the number of (W,p) satisfying this

case.

Case 3. Suppose the smallest i such that the two entries of f(i) are equal satisfies

that this entry is a position in B. Without loss of generality, suppose n1 > m1. Then,

f(m1 + 1) = (n1 −m1,m1 +m2), and by an argument similar to that in Case (1), we have

that the simultaneous entry of the aforementioned f(i) must be n1 + n2, with n1 −m1 =

n3 − m3 so that f(m1 + 1) = (n1 − m1, n1 + n2 + (n1 − m1)). Thus, divide W into

DEFGH so that |D| + |E| = n1, |G| + |H| = n3, and |E| = |G|. Then, (W,p1) gives

rise to the commutator WE−1D−1F−1H−1G−1, while (W,p2) gives rise to the commutator

WD−1G−1F−1E−1H−1. Since these are equal, it follows that DE = GD and GH =

HE. Note that if a word � satisfies the equality �E = G� without cancellation, then

� is uniquely determined, since one can inductively identify the letters of � from left to

right (or right to left). It follows that D = H. But this contradicts the assumption that

DEFGHD−1G−1F−1E−1H−1 is cyclically reduced.

Note that pairs (W,p) such that ni = 0 for some i ∈ {1, 2, 3} are counted in the above

cases, which justifies our assumption of n1, n2, n3 > 0 in our earlier counting of the main

term.

We have shown that the number of Wicks commutators having length X is

(2r − 2)2(2r − 1)X−1

4r

(
X2 +Or (X)

)
.
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We need to count the number of conjugacy classes containing at least one such commu-

tator. Consider the conjugacy class C of the Wicks commutator W ′ = ABCA−1B−1C−1

arising from (W,p), where p = (n1, n2, n3). Note that the minimum-length elements in

a conjugacy class are precisely the cyclically reduced words, and that two cyclically re-

duced words are conjugate if and only if they are cyclically conjugate. The Wicks com-

mutators BCA−1B−1C−1A, CA−1B−1C−1AB, A−1B−1C−1ABC, B−1C−1ABCA−1, and

C−1ABCA−1B−1 are conjugates of W ′. We show that the number of other Wicks commu-

tators in C is on average negligible.

For an arbitrary 1 ≤ ` ≤ n3/2 denoting the number of letters of the conjugation,

let C = DEF be a decomposition without cancellation such that |D| = |F | = `. Label

the letters of W ′ by A = a1 · · · an1 , B = b1 · · · bn2 , D = d1 · · · d`, E = e1 · · · en3−2`, and

F = f1 · · · f`. Consider the cyclic conjugate W ′′ ··= D−1ABDEFA−1B−1F−1E−1 of W ′.

We wish to show that on average, W ′′ is not a Wicks commutator. Suppose the contrary,

that there exists a partition p′ = (m1,m2,m3) of X into three parts such that

W ′′ = D−1ABDEFA−1B−1F−1E−1 = w1w2w3w
−1
1 w−12 w−13

for subwords w1, w2, and w3 of lengths m1,m2, and m3.

Label the letters of A from left to right as a1, . . . , an1 , and label the letters of B,C,D,E,

and F similarly. We have that w1, w2, and w3 as subwords comprised of the letters

d−1` , . . . , d−11 , a1, . . . , an1 , b1, . . . , bn2 , d1, . . . , d`, e1, . . . , en3−2`, (2.2)

and we accordingly consider the subwords w−11 , w−12 , and w−13 as comprised of the inverses

of these letters. Then, note that the second half of W ′ can be considered in two forms:

FA−1B−1F−1E−1 = w−11 w−12 w−13 .

Equivalently, this equality can be written as

EFBAF−1 = w3w2w1. (2.3)
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Consider the function g mapping the ordered set of symbols of the left-hand side,

A ··= {e1, . . . , en3−2`, f1, . . . , f`, b1, . . . , bn2 , a1, . . . , an1 , f
−1
` , . . . , f1}

to the ordered set B of symbols of the right-hand side (2.2). Specifically, g maps the ith

leftmost letter of the left-hand side of (2.3) to the ith leftmost letter of the right-hand side.

First, suppose g has no fixed points (i such that g(i) = i). Then, use an algorithm similar

to the previous one to conclude that there are ≤ X/2 degrees of freedom for ABDEF , so

W must be one of only O((2r − 1)X/2) choices (for each choice of ` and p′).

Now, suppose that there exists an i such that g(i) = i. Such fixed points i must be

letters of A, B, or E. We first consider the case that all the fixed points are letters of only

one of A, B, and E. In this case, we consider the following subcases for W , p, and p′:

Case 1. Suppose that the fixed points are letters of E. Then, all of the fixed points

must be in one of w2 and w3; they cannot be in w1, since this would mean that w1 contains

e1, but e1 is necessarily located at different positions in the left-hand side and right-hand

side of (2.3). Suppose that the fixed points of E are in w3. Then, in order for the letters of

E to match, we require that w3 = E. This means that g(f1) is the first letter of w2, which

is adjacent to the last letter of w1. But the last letter of w1 is g(f−11 ), which shows that

we have adjacent letters that are inverses. This contradicts the fact that W ′ is cyclically

reduced.

Next, suppose all the fixed points are in w2. Then, we must have that m3 + 1 =

n3 − 2` − (m2 + m3) so that the first letter of w2 is at the same position in both the

left-hand and right-hand side. Thus, m2 + 2m3 = n3 − 2` − 1, which means there are

≤ (n3−2`−1)/2 choices for p′ parametrized by m3 ≤ (n3−2`−1)/2 . For each such choice

of p′, there are m2 = n3− 2`− (1 +m3 +m3) = n3− 2`− 2m3− 1 fixed letters, from em3+1

to en3−2`−m3+1, and (X − (n3 − 2` − 2m3 − 1))/2 non-fixed letters. Counting across all

choices of values for the letters, p, p′, and `, we have that the number of additional Wicks
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commutators arising from this case is upper-bounded by

X∑
n1=0

X−n1∑
n2=0

⌊
X−n1−n2

2

⌋∑
`=1

⌊
n3−2`−1

2

⌋∑
m3=0

(2r − 1)
X+n3−2`−2m3−1

2 � (2r − 1)X ,

which is dominated by our error term.

Case 2. Suppose that the fixed points are letters of B. Then, all of the fixed points must

be in one of w1, w2, and w3. First, suppose they are in w1. Then, note that g(f`) = an1 ,

but we also have g(an1) is next to g(f−1` ), which leads to the contradiction that a letter

cannot equal its inverse. Second, suppose the fixed letters are in w3. Then, g(d1) = a1, but

a1 is adjacent to d−11 , a contradiction.

Thus, the fixed points of B must be in w2. We consider three subcases: n2 > m2,

n2 < m2, and n2 = m2. If n2 > m2, then in order for the letters of B to match, we require

that the leftmost fixed letter of B is bn2+m2
2

. But then bn2+m2
2
−1 is both equal to f−11 (since

g(f−1) = bn2+m2
2
−1) and en3−2` (since g(bn2+m2

2
−1) = en3−2`)), which contradicts the fact

that f1 and en3−2` are adjacent. If n2 < m2, then g(f`) = an1 , but also g(an1) is the

letter in D−1A that is left of the letter g(f−1` ), giving us the contradiction that the value

of f` is adjacent to f−1` . This implies that n2 = m2, from which we can use an argument

similar to that in Case 1 of the previous casework (showing that W ′ on average can be only

decomposed as a commutator in one way) to conclude that A is a power of D−1 and E, a

power of D. It follows that our original (W,p) is one of the pairs falling under Case 1 of

the previous casework, which are negligible.

Case 3. Suppose that the fixed points are letters of A. Then, all of the fixed points must

be in one of w1 and w2; they cannot be in w3, since then there must be more than ` letters

right of A. Suppose the fixed letters of A are in w1. Then, we must have g(bn2) = d−11 , which

contradicts the fact that bn2 is adjacent to d1. Therefore, the fixed points are necessarily

in w2. This requires that m1 − ` + 1 = n1 + ` − (m1 − m2) in order for the letters of A

to be in matching positions. Thus, we have m2 = n1 + 2`− 2m1 − 1. Note then that p′ is

parametrized by m1 ≤ (n1 + 2`− 1)/2. For each choice of p′, we have n1 fixed letters (and

(X +n1)/2 ≤ (X +n1−m1 + `)/2 overall degrees of freedom) if m1 ≤ `, and n1− (m1− `)
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fixed letters (and (X+n1−m1 + `)/2 overall degrees of freedom) if m1 > `. Thus, counting

across all choices of values for the letters, p, p′, and `, we have that the number of additional

Wicks commutators arising from this case is upper-bounded by

X∑
n1=0

X−n1∑
n2=0

⌊
X−n1−n2

2

⌋∑
`=1

⌊
n1+2`−1

2

⌋∑
m1=0

(2r − 1)
X+n1+`−m1

2 � (2r − 1)X ,

which is dominated by our error term.

Next, consider the case where the fixed points are in two of A,B, and E. It is necessary

that the fixed letters inside these two subwords must respectively be in two distinct subwords

among w1, w2, and w3. However, we have shown above that the subwords w1 and w3 cannot

contain fixed points, a contradiction. Finally, the fixed letters cannot be in all of A,B, and

E. Indeed, if this were true, then in order for the letters of A and E to match, we require

m1 = n1+2` and m3 = n3. But then the letters of B cannot possibly match, a contradiction.

If ` ≥ n3/2, then we can think of our commutator as a cyclic conjugate of C−1ABCA−1B−1

such that the letters are moved from left to right. A symmetric argument like above gives

us the same conclusion for this case. We have thus shown that the number of conjugacy

classes of commutators with length 2X is given by

1

6
· (2r − 2)2(2r − 1)X−1

4r

(
X2 +Or (X)

)
=

(2r − 2)2(2r − 1)X−1

24r

(
X2 +Or (X)

)
,

as needed.
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Chapter 3

Commutators of Z/3Z ∗ Z/2Z

3.1 Proof of Wicks’ Theorem for Free Products

In addition to his theorem classifying commutators of free groups, Wicks [14] also proved the

following analogous theorem characterizing all commutators of a free product of arbitrary

groups.

Theorem 3.1 (Wicks). A word in ∗i∈I Gi is a commutator if and only if it is a conjugate

of one of the following fully cyclically reduced products:

1. a word comprised of a single letter that is a commutator in its factor Gi,

2. Xα1Xα
−1
2 , where X is nontrivial and α1, α2 belong to the same factor Gi as conjugate

elements,

3. Xα1Y α2X
−1α3Y

−1α4, where X and Y are both nontrivial, α1, α2, α3, α4 belong to

the same factor Gi, and α4α3α2α1 is trivial,

4. XY ZX−1Y −1Z−1,

5. XY α1ZX
−1α2Y

−1Z−1α3, where Y and at least one of X and Z is nontrivial, α1, α2, α3

belong to the same factor Gi, and α3α2α1 is trivial,

6. Xα1Y β1Zα2X
−1β2Y

−1α3Z
−1β3, where α1, α2, α3 belong to the same factor Gi and

β1, β2, β3, to Gj, α3α2α1 = β3β2β1 = 1, and either α1, α2, α3, β1, β2, β3 are not all in

the same factor or X,Y, Z are all nontrivial.
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Note that in the above, the Greek letters are assumed to be nontrivial. This convention

is used later in the proof of Theorem 3.1 as well, where when a Greek letter α is said to

satisfy α ∈ Gi, we mean that α is a nontrivial element of Gi.

Theorem 3.1 implies our claim in the introduction that all commutators of Z/3Z∗Z/2Z

are conjugates of Wicks commutators defined in Definition 1.3. Indeed, the free factors of

Z/3Z ∗ Z/2Z are abelian, so the commutators of the form (1) are trivial. Also, if C is a

commutator of the form (2), then α1 and α2 are conjugate elements in an abelian free factor

and thus equal, which means C is of the form ABA−1B−1.

Next, we consider commutators C of the form (3). Then, we have that the commutators

• XrY r−1X−1r−1Y −1r, which is conjugate to

rXrY r−1X−1r−1Y −1 = (rXr)Y (rXr)−1Y −1,

• Xr−1Y rX−1rY −1r−1, which is conjugate to

r−1Xr−1Y rX−1rY −1 = (r−1Xr−1)Y (r−1Xr−1)−1Y,

• Xr−1Y r−1XrY −1r = X(r−1Y r−1)X−1(r−1Y r−1)−1,

• XrY rXr−1Y −1r−1 = X(rY r)X−1(rY r)−1,

• XrY r−1X−1rY −1r−1 = X(rY r−1)X−1(rY r−1)−1,

• Xr−1Y rX−1r−1Y −1r = X(r−1Y r)X−1(r−1Y r)−1,

are of the form ABA−1B−1. Overall, we have that commutators of the form (3) must be

of the cyclically reduced form XYX−1Y −1.

If C is of the form (4), then the last letter of X is in different factors compared to the first

letter of Y and the last letter of Z, which must also be in different factors, a contradiction.

If C is of the form (5), then we must have α1 = α2 = α3 ∈ {r, r−1}. But this would imply

that the last letter of Y is in different free factors compared to the first letter of Z and the

first letter of X, which contradicts the similar implication that the first letter of Z and the
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first letter of X are in different factors. Finally, if C is of the form (6), then we must have

α1 = α2 = α3 ∈ {r, r−1} and β1 = β2 = β3 ∈ {r, r−1}. Thus, commutators of Z/3Z ∗ Z/2Z

must be of the fully cyclically reduced form XYX−1Y −1 or XαY βZαX−1βY −1αZ−1β for

α, β ∈ {r, r−1}, as we have claimed.

We now exposit a proof of Theorem 3.1, Wicks’ theorem for an arbitrary free prod-

uct G = ∗i∈I Gi. We follow the original proof in [14]. First, we check that the possible

forms given in the statement of Theorem 3.1 are in fact commutators. (1) is clearly a

commutator. Since α1 = ξα2ξ
−1 in (2) for some ξ ∈ Gi, we have that Xα1X

−1α−12 =

Xξα2ξ
−1X−1α−12 = (Xξ)α2(Xξ)

−1α−12 . Next, check that for (3), we have α4 = α−11 α−12 α−13 ,

which gives that Xα1Y α2X
−1α3Y

−1α4 = Xα1Y α2X
−1α3Y

−1α−11 α−12 α−13 is conjugate to

α−13 Xα1Y α2X
−1α3Y

−1α−11 α−12 = (α−13 X)(α1Y )α2(α3X)−1(α1Y )−1α−12 . (4) is a commu-

tator, as shown in (2.1). (6) is a commutator because α3 = α−11 α−12 and β3 = β−11 β−12 , which

shows that Xα1Y β1Zα2X
−1β2Y

−1α3Z
−1β3 = Xα1Y β1Zα2X

−1β2Y
−1α−11 α−12 Z−1β−11 β−12

is conjugate to the following commutator of form (4): β−12 Xα1Y β1Zα2X
−1β2Y

−1α−11 α−12 Z−1β−11

= (β−12 X)(α1Y )(β1Zα2)(β
−1
2 X)−1(α1Y )−1(β1Zα2)

−1. Finally, (5) is a commutator by sub-

stituting α1 = α2 = α3 = 1 in the above expression for (6) and its conjugate.

Next, we show the other direction that every commutator is in one of these six forms.

Define a word in G to be fully reduced if no adjacent pair of letters is in the same free factor

Gi. Let C be a nontrivial commutator of G, and let V be the shortest word conjugate

to C and of the form XY ZX−1Y −1Z−1 such that X,Y, and Z are fully reduced. If V is

fully cyclically reduced, then we are done, so suppose V is not fully cyclically reduced. If

two subwords among X,Y, and Z are trivial, then C must be trivial. We thus consider two

cases: Case 1, that one of the subwords X,Y, and Z (without loss of generality, Z) is trivial;

and Case 2, that none of them are trivial.

Case 1. Since V is not fully cyclically reduced, we can, by conjugation, assume that the

first letter of X and the last letter of Y −1 are in the same free factor Gi. Let X = ηX1

and Y = ξY1 for η, ξ ∈ Gi, and write ζ = ξ−1η ∈ Gi. Indeed, ζ cannot be trivial, since

if this were true, then V would be conjugate to X1ξY1X
−1
1 ξ−1Y −11 , which contradicts the

assumption that V = XY ZX−1Y −1Z−1 was taken to have minimum length. Thus, we have

that V is conjugate to V1 = X1ξY1X
−1
1 η−1Y −11 ζ. At this point, we consider four subcases:

21



Subcase 1, that both X1 and Y1 are trivial; Subcase 2, that only X1 trivial; Subcase 3, that

only Y1 is trivial; and Subcase 4, that both X1 and Y1 are nontrivial.

Subcase 1. V is conjugate to V1 = ξη−1ξ−1η, which reduces to a single-letter commutator

in Gi.

Subcase 2. We have V1 = X1ξX
−1
1 η−1ζ. Note that η−1ζ reduces to some single-letter

element ν ∈ Gi that is conjugate to ξ−1, since η−1ζ = η−1ξ−1η. If the further reduced

word V2 = X1ξX
−1
1 ν is fully cyclically reduced, then we are done. On the other hand,

the only way V2 is not fully cyclically reduced is if the last letter of X1 is in Gi. If this is

true, say X1 = X2ε for ε ∈ G1, we require that X2 be nontrivial, since otherwise X1 would

begin with a letter in Gi, which contradicts that X is fully reduced. Thus, we have that

V2 = X2εξε
−1X−12 ν. Then, εξε−1 is conjugate to ξ, and thus conjugate to ν−1, so εξε−1

reduces to a single-letter element of Gi that is conjugate to ν−1, which yields a commutator

of one of the desired forms.

Subcase 3. We have V1 = ξY1η
−1Y −11 ζ, which is conjugate to Y1η

−1Y −11 ν for ν = ζξ =

ξ−1ηξ. Thus, the argument in Subcase 2 can be immediately applied to this subcase to

obtain the same conclusion.

Subcase 4. We have V1 = X1ξY1X
−1
1 η−1Y −11 ζ. If this is fully cyclically reduced, then

we are done, so suppose not. We already have that the first letters of X1 and Y1 are in

different free factors than Gi, so one of the following four must be true about the last letters

of X1 and Y1: Subcase 4.a, they are both in Gi; Subcase 4.b, they are both in Gj for j 6= i;

Subcase 4.c, the last letter of X1 is in Gi while the last letter of Y1 is in Gj for j 6= i; and

Subcase 4.d, the last letter of Y1 is in Gi while the last letter of X1 is in Gj for j 6= i. We

go through each of these subcases.

Subcase 4.a. Let X1 = X2ν and Y1 = Y2ε for ν, ε ∈ Gi. Since the first letters of X1 and

Y1 must be in a free factor different from Gi, it follows that X2 and Y2 are nontrivial. We

have V1 = X2εξY2νε
−1X−12 η−1ν−1Y −12 ζ. Note that ζ(η−1ν−1)(νε−1)(εξ) = ζη−1ξ = 1, so by

reducing εξ, νε−1, and η−1ν−1 each to single-letter elements, we reduce V1 to a commutator

of one of the desired forms.
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Subcase 4.b. Let X1 = X2ν and Y1 = Y2ε for ν, ε ∈ Gj . If ν = ε, then V1 is conjugate to

ηX2εξY2X
−1
2 η−1ε−1Y −12 ξ−1 = (ηX2)εξY2(ηX2)

−1ε−1(ξY −12 )−1,

which contradicts our assumption that V = XY ZX−1Y −1Z−1 was taken to have minimum

length. Thus, νε−1 = µ ∈ Gj , and we have that

V1 = X2εZξY2µX
−1
2 η−1Z−1ν−1Y −12 ζ

for Z = 1. This commutator is in one of our desired forms.

Subcase 4.c. Let X1 = X2ν for ν ∈ Gi. If ν and ξ are inverses, then V1 is conjugate to

ηX2Y1ξX
−1
2 η−1Y −11 ξ−1 = (ηX2)Y1ξ(ηX2)

−1Y −11 ξ−1,

which contradicts our assumption that V = XY ZX−1Y −1Z−1 was taken to have minimum

length. Thus, νξ = µ ∈ Gi, and we have that

V1 = X2µY1ν
−1X−12 η−1Y −11 ζ.

Since ζη−1ν−1µ = ζη−1ν−1νξ = 1, this commutator is in one of our desired forms.

Subcase 4.d. Let Y1 = Y2ν for ν ∈ Gi. If ν and η are inverses, then V1 is conjugate to

ηX1ξY2η
−1X−11 Y −12 ξ−1 = ηX1(ξY2)η

−1X−11 (ξY2)
−1,

which contradicts our assumption that V = XY ZX−1Y −1Z−1 was taken to have minimum

length. Thus, νη = µ ∈ Gi, and we have that

V1 = X1ξY2νX
−1
2 µ−1Y −12 ζ.

Since ζµ−1νξ = ζη−1ν−1νξ = 1, this commutator is in one of our desired forms. This

concludes our proof in Case 1.

Case 2. We assumed that V = XY ZX−1Y −1Z−1 is not fully cyclically reduced. By
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conjugation, we can suppose that the first letter of X and the first letter of Z are in the

same free factor, say X = ηX1 and Z = ξZ1. Let ζ = ξ−1η ∈ Gi, which cannot be

trivial; if it were, then V = X1(Y ξ)Z1X
−1
1 (Y ξ)−1Z−11 , which contradicts our assumption

that V = XY ZX−1Y −1Z−1 was taken to have minimum length. We then have that V is

conjugate to

V1 = X1Y ξZ1X
−1
1 η−1Y −1Z−11 ζ. (3.1)

If V1 is fully cyclically reduced, then we are done. Consequently, suppose not. First, suppose

for the sake of a contradiction that the last letter of Y is in Gi, say Y = Y1ν for ν ∈ Gi.

Then,

V1 = X1Y1νξZ1X
−1
1 η−1ν−1Y −1Z−11 ζ = X1(Y1µ)(ζZ1)X

−1
1 (Y1µ)−1(ζZ1)

−1

for µ = νη. We have used that µζ−1 = νηη−1ξ = νξ. This contradicts our assumption that

V = XY ZX−1Y −1Z−1 was taken to have minimum length. Thus, the last letter of Y must

be in a free factor different from Gi. In light of this, it follows from our assumption that

V1 is not fully cyclically reduced that one of four subcases must hold: Subcase 1, that both

X1 and Z1 are trivial; Subcase 2, that only X1 is trivial; Subcase 3, that only Z1 is trivial;

and Subcase 4, that both X1 and Z1 are nontrivial.

Subcase 1. We have V1 = Y ξη−1Y −1ζ, where ξη−1 is a conjugate of ζ−1 = η−1ξ. Thus,

reducing ξη−1 to a single-letter element of Gi, we obtain one of our desired commutator

forms.

Subcase 2. We have that V1 = Y ξZ1η
−1Y −1Z−11 ζ is conjugate to V2 = Z1η

−1Y −1Z−11 ζY ξ.

Since (η−1)−1ζ−1 = ηη−1ξ = ξ, this subcase is equivalent to Case 1 Subcase 4.

Subcase 3. We have that V1 = X1Y ξX
−1
1 η−1Y −1ζ is conjugate to V2 = Y −1ζX1Y ξX

−1
1 η−1.

Since ζ−1ξ−1 = η−1ξξ−1 = η−1, this subcase is also equivalent to Case 1 Subcase 4.

Subcase 4. Since (3.1) is not fully cyclically reduced, one of the following must be true:

the last letter of X1 and the first letter of Y are in the same free factor, the last letter of Z1

and the last letter of X1 are in the same free factor, or the first letter of Y and the last letter

of Z1 are in the same factor. Given this, we consider the following four subcases: Subcase
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4.a, that the first letter of Y , the last letter of X1, and the last letter of Z1 are all in the

same factor Gj ; Subcase 4.b, that the first letter of Y and the last letter of X1, but not the

last letter of Z1, are in the same factor Gj ; Subcase 4.c, that the first letter of Y and the

last letter of Z1, but not the last letter of X1, are in the same factor Gj ; and Subcase 4.d,

the last letters of X1 and Z1, but not the first letter of Y , are in the same factor Gj .

Subcase 4.a. Let Y = εY1, X1 = X2ν, and Z1 = Z2µ for ε, ν, µ ∈ Gj . Then, we have

V1 = X2νεY1ξZ2µν
−1X−12 η−1Y −11 ε−1µ−1Z−12 ζ.

Note that νε, µν−1, and ε−1µ−1 each reduce to a single-letter element of Gj , say α1 = νε,

α2 = µν−1, and α3 = ε−1µ−1. Indeed, none of these three can be trivial. For instance,

suppose that νε = 1. Then, α2 = α−13 , which means that

V1 = X2Y1ξZ2α2X
−1
2 η−1Y −11 α−12 Z−12 ζ

is conjugate to

V2 = ηX2Y1ξZ2α2X
−1
2 η−1Y −11 α−12 Z−12 ξ−1 = (ηX2)Y1(ξZ2α2)(ηX2)

−1Y −11 (ξZ2α2)
−1,

which contradicts our assumption that V = XY ZX−1Y −1Z−1 was taken to have minimum

length. Analogous arguments show that α2 and α3 are also nontrivial. If i 6= j, then the

further reduced expression for V1, given by

X2α1Y1ξZ2α2X
−1
2 η−1Y −11 α3Z

−1
2 ζ,

is fully cyclically reduced. Even if j = i, this expression must be fully cyclically reduced;

this is because Y1, X2, and Z2 must be nontrivial, since the first letters of X1 and Z1 and

the last letter of Y1 must not be in Gi. Since ζη−1ξ = 1 and α3α2α1 = 1, we have obtained

one of our desired commutator forms.
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Subcase 4.b. Let Y = εY1 and X1 = X2ν for ε, ν ∈ Gj . Then, we have

V1 = X2νεY1ξZ1ν
−1X−12 η−1Y −11 ε−1Z−11 ζ.

By the argument used in Case 2 Subcase 4.a, νε reduces to a (nontrivial) single-letter

element of Gj , say α ∈ Gj . If i 6= j, then the further reduced expression for V1, given by

X2αY1ξZ1ν
−1X−12 η−1Y −11 ε−1Z−11 ζ,

is fully cyclically reduced. Even if j = i, this expression must be fully cyclically reduced;

this is because Y1 and X2 must be nontrivial, since the first letter of X1 and the last letter

of Y1 must not be in Gi. Since ζη−1ξ = 1 and ε−1ν−1α = 1, we have obtained one of our

desired commutator forms.

Subcase 4.c. Let Y = εY1 and Z1 = Z2µ for ε, µ ∈ Gj . Then, we have

V1 = X2εY1ξZ2µX
−1
2 η−1Y −11 ε−1µ−1Z−12 ζ.

By the argument used in Case 2 Subcase 4.a, ε−1µ−1 reduces to a (nontrivial) single-letter

element of Gj , say α ∈ Gj . If i 6= j, then the further reduced expression for V1, given by

X2εY1ξZ2µX
−1
2 η−1Y −11 αZ−12 ζ

is fully cyclically reduced. Even if j = i, this expression must be fully cyclically reduced;

this is because Y1 and Z2 must be nontrivial, since the first letter of Z1 and the last letter

of Y1 must not be in Gi. Since ζη−1ξ = 1 and αµε = 1, we have obtained one of our desired

commutator forms.

Subcase 4.d. Let X1 = X2ν and Z1 = Z2µ for ν, µ ∈ Gj . Then, we have

V1 = X2νY1ξZ2µν
−1X−12 η−1Y −11 µ−1Z−12 ζ.

By the argument used in Case 2 Subcase 4.a, µν−1 reduces to a (nontrivial) single-letter
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element of Gj , say α ∈ Gj . If i 6= j, then the further reduced expression for V1, given by

X2νY1ξZ2αX
−1
2 η−1Y −11 µ−1Z−12 ζ

is fully cyclically reduced. Even if j = i, this expression must be fully cyclically reduced;

this is because X2 and X2 must be nontrivial, since the first letter of X1 and the last letter

of Y1 must not be in Gi. Since ζη−1ξ = 1 and µ−1αν = 1, we have obtained one of our

desired commutator forms.

3.2 Proof of Theorem 1.4

By Wicks’ theorem for free products, we need to count cyclic conjugacy classes of Wicks

commutators of Z/3Z ∗ Z/2Z. As discussed before, a Wicks commutator of Z/3Z ∗ Z/2Z

must, when going from left to right, alternate between letters of the Z/3Z factor, r and r−1,

and the letter of the Z/2Z factor, s. Thus, the occurrences of s provide no information when

writing our word in terms of the generators in S, so from this point, we abuse notation by

omitting all occurrences of s and writing all words and subwords in terms of only r and

r−1. For example, the element srsr−1 would be written as rr−1.

Consider a Wicks commutator W of Z/3Z∗Z/2Z having length k, where k is a multiple

of 4. Let X = k/4, so that the left-half subword of W contains X letters of the Z/3Z factor

and X letters of the Z/2Z factor, which are placed in an alternating way. As seen from

our work in Section 3.1, W can either be of the fully cyclically reduced form ABA−1B−1

or the fully cyclically reduced form AαBβCαA−1βB−1αC−1β, where α, β ∈ {r, r−1} and

A,B, and C are nontrivial. However, by using the arguments of Section 2.2, we see that

the number of the former is O(X · 2X), while the number of the latter is

4 · (X − 5)(X − 4)

2
· 2X−3,

since we have four choices of (d, e) ∈ {r, r−1}2, (X − 5)(X − 4)/2 partitions of X − 3 into

three nontrivial parts giving the lengths of A,B, and C, and X − 3 degrees of freedom for

choosing the letters of A,B, and C, with no cancellation between the extremal letters of A,
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B, and C (the key difference between counting commutators of Z/3Z ∗ Z/2Z and counting

those of a free group). Thus, the number of Wicks commutators of the form ABA−1B−1 is

negligible.

Next, we need to count the number of conjugacy classes containing at least one Wicks

commutator of the form AαBβCαA−1βB−1αC−1β. As before, let C be the conjugacy

class of the Wicks commutator W ··= AαBβCαA−1βB−1αC−1β, with |A| = n1, B = n2,

and C = n3. We wish to show that on average, C does not contain Wicks commutators

other than the six obvious ones: W , BβCαA−1βB−1αC−1βAα, CαA−1βB−1αC−1βAαBβ,

A−1βB−1αC−1βAαBβCα, B−1αC−1βAαBβCαA−1β, and C−1βAαBβCαA−1βB−1α. Sup-

pose the number of letters of the conjugation is ` ≤ n3/2, and accordingly decompose

C = DEF without cancellation so that |D| = |F | = `. Label the letters of W by

A = a1 · · · an1 , B = b1 · · · bn2 , D = d1 · · · d`, E = e1 · · · en3−2`, and F = f1 · · · f`. Con-

sider the cyclic conjugate W ′ ··= D−1βAαBβDEFαA−1βB−1αF−1E−1 of W . We wish to

show that on average, W ′ is not a Wicks commutator. Suppose the contrary, i.e., that there

exists a partition p′ = (m1,m2,m3) of X − 3 into three parts such that

W ′ = D−1βAαBβDEFαA−1βB−1αF−1E−1 = w1α
′w2β

′w3α
′w−11 β′w−12 α′w−13 β′ (3.2)

for subwords w1, w2, and w3 of lengths m1,m2, and m3, and α′, β′ ∈ {r, r−1}.

As before, label the letters of A as a1, . . . , an1 , and label the letters of B,C,D,E, and

F similarly. Also, label the three incidences of α from left to right as α1, α2, and α3, and

similarly for β, α′, and β′. We have that w1, w2, and w3 are subwords comprised of the

letters

d−1` , . . . , d−11 , β3, a1, . . . , an1 , α1, b1, . . . , bn2 , β1, d1, . . . , d`, e1, . . . , en3−2`,

and we accordingly consider the subwords w−11 , w−12 , and w−13 as comprised of the inverses

of these letters. Then, note that the second half of W ′ can be considered in two forms:

Fα2A
−1β3B

−1α3F
−1E−1 = w−11 β′2w

−1
2 α′3w

−1
3 β′3.
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Equivalently, this equality can be written as

EFα−13 Bβ−13 Aα−12 F−1 = β′−13 w3α
′−1
3 w2β

′−1
2 w1.

Consider the function g mapping the ordered set of symbols of the left-hand side,

A ··= {e1, . . . , en3−2`, f1, . . . , f`, α
−1
3 , b1, . . . , bn2 , β

−1
3 , a1, . . . , an1 , α

−1
2 , f−1` , . . . , f1}

to the set B of symbols of the right-hand side, which are given by replacing the (m1 + 1)th,

(m1+m2+2)th, and (m1+m2+m3+3)th letters of (3.2) (note that the (m1+m2+m3+3)th

letter is always en3−2`) with β′−12 , α′−13 , and β′−13 . Specifically, g maps the ith leftmost letter

of the left-hand side of (3.2) to the ith leftmost letter of the right-hand side.

First, suppose g has no fixed points (i such that g(i) = i). Then, use an algorithm

similar to the one used in Section 2.2 to conclude that there are ≤ X/2 degrees of freedom

for ABDEF , so W must be one of only O(2X/2) choices (for each choice of ` and p′).

Now, suppose that there exists an i such that g(i) = i. Such fixed points i must be

letters of A, B, or E. We first consider the case that all the fixed points are letters of only

one of A, B, and E. In this case, we consider the following subcases for W , p, and p′:

Case 1. Suppose that the fixed points are letters of E. Then, all of the fixed points must

be in one of w2 and w3; they cannot be in w1 since this would mean that w1 contains e1, but

e1 is necessarily located at different positions in the left-hand side and right-hand side of

(3.2). If all the fixed points are in w2, then we require that 2+m3 = n3−2`−(m2 +m3 +1)

in order for the first letter of w2 to be at the same position in both the left-hand and right-

hand side. Hence, we have m2 +2m3 = n3−2`−3, which means there are ≤ (n3−2`−3)/2

choices for p′ parametrized by m3 ≤ (n3 − 2`− 3)/2 . For each such choice of p′, there are

n3 − 2` − (2 + m3 + m3) = n3 − 2` − 2m3 − 2 fixed letters, from em3+3 to en3−2`−m3 , and

(X− (n3−2`−2m3−2))/2 non-fixed letters. Thus, counting across all choices of values for

the letters, p, p′, and `, we have that the number of additional Wicks commutators arising
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from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

⌊
n3−2`−3

2

⌋∑
m3=0

2
X+n3−2`−2m3−2

2 � 2X ,

which is dominated by our error term.

Next, suppose the fixed letters are in w3. Then, it is necessary that β′−13 = e1 and

w3 = e2 · · · en3−2`−1. Thus, we have that m3 = n3−2`−2, so the number of possible choices

for p′ is at most the number of partitions of X−1−n3+2` into two nontrivial parts, which is

X−1−n3+2`. For each choice of p′, the non-fixed letters have ≤ (X−n3+2`+1)/2 degrees

of freedom, along with the n3 − 2` − 1 degrees of freedom from the letters e2, . . . , en3−2`.

Counting across all choices of values for the letters, p, p′, and `, we have that the number

of additional Wicks commutators arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

(X − 1− n3 + 2`) · 2n3−2`−1+X−n3+2`+1
2

=

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

(n1 + n2 + 2`+ 2) · 2
2X−n1−n2−2`−4

2 � 2X ,

which is dominated by our error term.

Case 2. Suppose that the fixed points are letters of B. Then, all of the fixed points

must be in one of w1, w2, and w3. First, suppose they are in w1. This requires that

w1 = D−1β3Aα1BV , where V is the left subword of β1DE having length n1 + 2 + ` (the

length of Aα−12 F−1). All letters of B are thus included in w1. We have m1 = `+ 1 + n1 +

1 +n2 + (n1 + 2 + `) = 2n1 +n2 + 2`+ 4, so the number of possible choices for p′ is at most

the number of partitions of X − 3 − 2n1 − n2 − 2` − 4 into two nontrivial parts, which is

X − 2n1 − n2 − 2`− 7 ≤ X − 3− n1 − n2 − 2` (the latter is guaranteed to be nonnegative

for any choice of p). For each choice of p′, the non-fixed letters have ≤ (X − n2)/2 degrees

of freedom, along with the n2 degrees of freedom from the letters of B. Counting across all

choices of values for the letters, p, p′, and `, we have that the number of additional Wicks
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commutators arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

(X − 3− n1 − n2 − 2`) · 2
X+n2

2 � 2X ,

which is dominated by our error term.

Next, suppose that the fixed points are in w2. Then, we require that the difference

between the lengths of EFα−13 (length n3−`+1) and β−13 Aα−12 F−1 (length n1+`+2) is the

same as that between β′−13 w3α
′−1
3 (length m3+2) and β′−12 w1 (length m1+1). Furthermore,

the number of letters of B in w2 is n2 if j = n1 + `+ 2− (m1 + 1) = n3 − `+ 1− (m3 + 2)

is negative and n2 − j if j ≥ 0. First, suppose that j ≥ 0. In this case, p′ is determined by

the choice of j ≤ n2/2, for which there are n2 − 2j fixed letters of B. The non-fixed letters

have ≤ (X − n2 + 2j)/2 degrees of freedom, so overall, we can count across all choices of

values for the letters, p, j, and ` to get that the number of additional Wicks commutators

arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n3=0

bn3
2 c∑

`=0

⌊
X−3−n1−n3

2

⌋∑
j=0

2
X+n2−2j

2

≤
X−3∑
n1=0

X−3−n1∑
n3=0

n3
2

⌊
X−3−n1−n3

2

⌋∑
j=0

2
X+n2−2j

2 � 2X ,

which is dominated by our error term.

Now, suppose that j < 0. In this case, −j = n1 − m1 + ` + 1 = n3 − m3 − ` − 1 is

a positive integer less than or equal to min(n1 + ` + 1, n3 − ` − 1) ≤ X − n2, and p′ is

determined by the choice of −j, for which there are n2 fixed letters of B. The non-fixed

letters have ≤ (X − n2)/2 degrees of freedom, so overall, we can count across all choices of

values for the letters, p, −j, and ` to get that the number of additional Wicks commutators

arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

(X − n2) · 2
X+n2

2 � 2X
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Finally, suppose that the fixed points are in w3. This requires that w3 = V Bβ1De1 · · · en3−2`−1,

where V is the right subword ofD−1β3Aα1 having length n3−2`+`+1−1 = n3−`. All letters

of B are thus included in w3. We have m3 = n3−`+n2+1+`+n3−2`−1 = n2+2n3−2`, so

the number of possible choices for p′ is at most the number of partitions ofX−3−n2−2n3+2`

into two nontrivial parts, which is X − 3 − n2 − 2n3 + 2` ≤ X − 3 − n2 + 2` (the latter

is guaranteed to be nonnegative for any choice of p). For each choice of p′, the non-fixed

letters have ≤ (X − n2)/2 degrees of freedom, along with the n2 degrees of freedom from

the letters of B. Counting across all choices of values for the letters, p, p′, and `, we have

that the number of additional Wicks commutators arising from this case is upper-bounded

by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

(X − 3− n2 + 2`) · 2
X+n2

2 � 2X ,

which is dominated by our error term.

Case 3. Suppose that the fixed points are letters of A. Then, all of the fixed points

must be in one of w1 and w2; they cannot be in w3, since then there must be more than

`+ 1 letters right of A. First, suppose they are in w1. This requires that w1 = D−1β−13 AV ,

where V is the left subword of α−11 Bβ−11 DE having length `+ 1. All letters of A are thus

included in w1. The number of possible choices for p′ is at most the number of partitions

of X − 3−m1 = X − 3− (`+ 1 + n1 + `+ 1) = X − 5− 2`− n1 into two nontrivial parts,

which is X − 5− 2`− n1 ≤ X − 3− 2`− n1 (the latter is guaranteed to be nonnegative for

any choice of p). For each choice of p′, the non-fixed letters have ≤ (X − n1)/2 degrees of

freedom, along with the n1 degrees of freedom from the letters of A. Counting across all

choices of values for the letters, p, p′, and `, we have that the number of additional Wicks

commutators arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

(X − 3− 2`− n1) · 2
X+n1

2 � 2X ,

which is dominated by our error term.
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Finally, suppose the fixed points are in w2. This requires that w2 is the word between

the (m1 + 2)th letter and the (n1 + 2` + 1 − m1)th letter, so that the letters of A will

be in matching positions. Thus, we have m2 = n1 + 2` − 2m1 − 2. Note then that p′ is

parametrized by m1 ≤ (n1 + 2`− 2)/2. For each choice of p′, we have n1 fixed letters (and

(X +n1)/2 ≤ (X +n1−m1 + `)/2 overall degrees of freedom) if m1 ≤ `, and n1− (m1− `)

fixed letters (and (X+n1−m1 + `)/2 overall degrees of freedom) if m1 > `. Thus, counting

across all choices of values for the letters, p, p′, and `, we have that the number of additional

Wicks commutators arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

⌊
n1+2`−2

2

⌋∑
m1=0

2
X+n1+`−m1

2 � 2X ,

which is dominated by our error term.

Next, we suppose that the fixed letters of g are in two of the three subwords A, B, and

E. Consider the following subcases:

Case 1. Suppose the fixed letters of g are in A and B. It is necessary that the fixed

letters of A and those of B are in wi and wj , respectively, such that i < j; otherwise, the

fixed letters of A would come before the fixed letters of B, a contradiction. First, suppose

that the fixed letters of B are in w2, which implies that the fixed letters of A are in w1.

Then, we require that w1 = D−1β−13 AV , where V is the left subword of α1Bβ1DE having

length ` + 1. Furthermore, since we have fixed letters of B, we require that V does not

include all of B, i.e., n2 > `. Next, for the fixed letters of B to match in position, we require

that w2 ends at the letter bn2−`, which gives us m2 = n2 − `− `− 1− 1 = n2 − 2`− 2 > 0.

It follows that w3 is the subword of bn2−`+1 · · · bn2β1DE omitting the leftmost letter. In

particular, m3 is automatically determined, and for this p′ corresponding to p, we have n1

fixed letters of A and n2 − 2` − 2 fixed letters of B. Next, we upper-bound the degrees

of freedom of the non-fixed letters. Note that EFα−13 b1 · · · b` = β′−13 bn2−`+2 · · · bn2β1DE,

but g maps f−1` , . . . , f−11 to b1, . . . , b` and bn2−`+1, . . . , bn2 , to d−1` , . . . , d−11 . Thus, arguing

inductively by translation, we see that that choosing the letters of F determines the letters

of E, and thus also determines those of D, thereby determining all non-fixed letters (while
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not caring about the constant number of α and β letters). Counting across all choices of

values for the letters, p, and `, we have that the number of additional Wicks commutators

arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

2n1+n2−2`−2+` � X · 2X ,

which is dominated by our error term.

Next, suppose that the fixed letters of B are in w3. Then, we require that w3 =

V Bβ1DE, where V is the right subword of D−1β3Aα1 having length n2 − `. Further-

more, since we have fixed letters of A, we require that V does not include all of A,

i.e., n1 > n2 − ` − 1. Next, for the fixed letters of A to match in position, we re-

quire that they are in w2, and specifically that w2 = an3−`+1 · · · an1−n3+`. This gives

us m2 = n1 − 2n3 + 2`− 2 > 0, and it follows that w1 is the subword of D−1β3a1 · · · an3−`

omitting the rightmost letter. In particular, m1 is automatically determined, and for this

p′ corresponding to p, we have n2 fixed letters of B and n1 − 2n3 + 2` − 2 fixed letters

of A. Next, we upper-bound the degrees of freedom of the non-fixed letters. Note that

an1−n3+`+2 · · · an1α
−1
2 F−1 = D−1β3a1 · · · an3−`−1, but g maps d1, . . . , d`, e1, . . . , en3−2` to

a1, . . . , an3−` and an1−n3+`+1 · · · an1 , to e1, . . . , en3−2`, f1, . . . , f`. Thus, arguing inductively

by translation, we see that that choosing the letters of F determines the letters of E, and

thus also determines those of D, thereby determining all non-fixed letters (while not caring

about the constant number of α and β letters). Counting across all choices of values for the

letters, p, and `, we have that the number of additional Wicks commutators arising from

this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

2n2+(n1−2n3+2`−2)+` � X · 2X ,

which is dominated by our error term.

Case 2. Suppose the fixed letters of g are in B and E. Similarly to before, it is

necessary that the fixed letters of B and those of E are in wi and wj , respectively, such
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that i < j. First, suppose that the fixed letters of B are in w1. Then, we require that w1 =

D−1β3Aα1BV , where V is the left subword of β1DE having length 2+n1+`. Then, w2 must

start with en1+3, which means in order to have the letters of E match, we must have m3+2 =

n1+2. Sincem2+m3+2+n1+` = n3−`, there arem2 = n3−2n1−2`−2 > 0 fixed letters of E

in w2, and n2 fixed letters of B. Next, we upper-bound the degrees of freedom of the non-

fixed letters. Note that Aα−12 F−1 = De1 · · · en1+1 and en3−n1−2` · · · en3−2`F = D−1β3A.

However, we also have e1 · · · en1+1 = β′−13 en3−n1−2` · · · en3−2`−1, which overall gives us that

Aα−12 F−1en3−2`F = Dβ′−13 D−1β3A. Thus, arguing inductively by translation, we see that

that choosing the letters of F determines the letters of A, and thus also determines those of

D, thereby determining all non-fixed letters (while not caring about the constant number of

α and β letters, including en3−2` = b′3). Counting across all choices of values for the letters,

p, and `, we have that the number of additional Wicks commutators arising from this case

is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

2n2+(n3−2n1−2`−2)+` � X · 2X ,

which is dominated by our error term.

Next, suppose that the fixed letters of B are in w2, which implies the fixed letters of E

are in w3. Then, we require that w3 = e2 · · · en3−2`−1. Furthermore, in order for the letters

of B to match in position, we must have that w2 = V α1Bβ1D, where V is the right subword

of D−1β3A having length `. We thus have n3−2`−2 fixed letters in E and n2 fixed letters in

B. Now, we upper-bound the degrees of freedom of the non-fixed letters. First, suppose that

n1 > `. Note then that F = an1−`+1 · · · an1 and Aα−12 F−1 = Dβ′−12 D−1β3a1 · · · an1−`−1.

Thus, we have a1 · · · an1−`−1an1−`Fα
−1
2 F−1 = Dβ′−12 D−1β3a1 · · · an1−`−1. Thus, arguing

inductively by translation, we see that that choosing the letters of F determines the letters of

a1 · · · an1−`−1, and thus also determines those of the rest of A and of D, thereby determining

all non-fixed letters (while not caring about the constant number of α and β letters). In the

other case of n1 ≤ `, the notation above for a1 · · · an1−`−1 becomes inviable, but nevertheless

we can use a similar argument as above to conclude that F determines all the non-fixed
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letters. Counting across all choices of values for the letters, p, and `, we have that the

number of additional Wicks commutators arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

2n2+(n3−2`−2)+` � X · 2X ,

which is dominated by our error term.

Case 3. Finally, suppose the fixed letters of g are in A and E. Similarly to before,

it is necessary that the fixed letters of A and those of E are in wi and wj , respectively,

such that i < j. First, suppose that the fixed letters of E are in w3. Then, we require

that w3 = e2 · · · en3−2`−1. Furthermore, in order for the letters of A to match in position,

we need that the fixed letters of A are contained in w1, and in particular, that w1 =

D−1β3Aα1V , where V is the left subword of Bβ1DE having length `. We thus have n3 −

2` − 2 fixed letters in E and n1 fixed letters in A. Now, we upper-bound the degrees

of freedom of the non-fixed letters. First, suppose that n2 > `. Note then that F−1 =

b1 · · · b` and Fα−13 B = α′−13 b`+2 · · · bn2β1Dβ
′−1
2 D−1. Thus, we have Fα−13 F−1b`+1 · · · bn2 =

α′−13 b`+2 · · · bn2β1Dβ
′−1
2 D−1. Arguing inductively by translation, we see that that choosing

the letters of F determines the letters of B of D, thereby determining all non-fixed letters.

In the other case of n2 ≤ `, the notation above for b1 · · · b` becomes inviable, but nevertheless

we can use a similar argument as above to conclude that F determines all the non-fixed

letters. Counting across all choices of values for the letters, p, and `, we have that the

number of additional Wicks commutators arising from this case is upper-bounded by

X−3∑
n1=0

X−3−n1∑
n2=0

⌊
X−3−n1−n2

2

⌋∑
`=0

2n1+(n3−2`−2)+` � X · 2X ,

which is dominated by our error term.

Next, suppose that the fixed letters of E are in w2. Then, the fixed letters of A are

contained in w1, which requires that w1 = D−1β3Aα1V , where V is the left subword of

Bβ1DE having length `. But then w2 must start on a letter not in E, which makes it

impossible for the letters of E to match in position.
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Finally, if there are fixed letters in A,B, and C, then it is necessarily that ` = 0 and

p = p′, which does not need to be considered.

If ` ≥ n3/2, then we can think of our commutator as a cyclic conjugate of C−1ABCA−1B−1

such that the letters are moved from left to right. A symmetric argument like above gives us

the conclusion that W ′ = D−1βAαBβDEFαA−1βB−1αF−1E−1 is on average not a Wicks

commutator of the form w1α
′w2β

′w3α
′w−11 β′w−12 α′w−13 β′. Note that this entire argument

can then be repeated mutatis mutandis to show that W ′ is on average also not a Wicks

commutator of the form w1w2w
−1
1 w−12 . Indeed, the only difference from the previous case

is that w3 is taken to be trivial there are no extra letters α or β, and the latter only affects

error bounds by at most a multiplicative constant.

Thus, W ′ is on average not a Wicks commutator, and furthermore, the ` = 0 case shows

that W ′ is on average only decomposable as a Wicks commutator in one way.We have thus

shown that the number of conjugacy classes of commutators with length 4X is given by

2X

24

(
X2 +O(X)

)
,

as needed.

3.3 Algorithm to List Commutators of PSL2(Z) by Trace

In this section, we give an algorithm that exhaustively computes all hyperbolic (i.e., having

trace greater than 2) commutators of PSL2(Z) with a given trace. The algorithm uses a

bijective correspondence between the hyperbolic conjugacy classes of PSL2(Z) whose traces

have absolute value t > 2 and the SL2(Z)-orbits of binary quadratic forms with discriminant

t2 − 4, where the action of SL2(Z) is defined as follows: for a binary quadratic form q(x, y)

and M ∈ SL2(Z),

M · q(x, y) = q((x, y)M t).

We now describe this correspondence, following the exposition in [11]. Let t be an

integer greater than 2. Define PSL2(Z)t to be the set of elements in PSL2(Z) that contain

a matrix of trace t as a coset element, and define QD to be the set of quadratic forms of

37



discriminant D. We first construct a bijective correspondence Φ : PSL2(Z)t → Qt2−4 as

follows.

Let σ =
(
a b
c d

)
∈ PSL2(Z) be the coset containing the given matrix such that the trace

a + d is equal to t. Then, σ is an automorphism of H with two hyperbolic fixed points,

given by the solutions to σz = z. Rewriting this equation as (az + b)/(cz + d) = z, we see

that the fixed points are roots of the quadratic cz2 + (d− a)z − b, which has discriminant

(d− a)2 + 4bc = a2 − 2ad+ d2 + 4bc = a2 + 2ad+ d2 − 4(ad− bc) = (a+ d)2 − 4.

By projectivizing the coordinates, we obtain q(x, y) = cx2 + (d − a)xy − by2, the binary

quadratic form corresponding to σ.

Next, we define a map Ψ : Qt2−4 → PSL2(Z)t and show that it is the inverse of Φ.

Suppose we have a binary quadratic form q(x, y) = Ax2 +Bxy+Cy2 of discriminant t2−4.

Then, define Ψ(q(x, y)) ∈ PSL2(Z)t as the coset containing the matrix

−B+t
2 −C

A B+t
2

 .

Note that B and t have the same parity, as one can see from reducing B2 − 4AC = t2 − 4

to B2 ≡ t2 (mod 2). This shows that the above matrix is integral. Furthermore, it has

determinant

t2 −B2

4
+AC =

t2 − (B2 − 4AC)

4
= 1,

which shows that Ψ is well-defined. It is straightforward to check that Φ and Ψ are inverses,

so Φ is bijective, as claimed.

We next show that two elements of PSL2(Z)t are conjugate if and only if their cor-

responding binary quadratic forms are in the same SL2(Z)-orbit. Consider M1,M2 ∈

PSL2(Z)t, where the matrix representatives M1 =
(

a1 b1
c1 d1

)
and M2 =

(
a2 b2
c2 d2

)
are cho-

sen so that a1 + d1 = a2 + d2 = t. We have that M1 is conjugate to M2 if and only if there
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exists S ∈ SL2(Z) such that M1 = S−1M2S. However, we have

∃S ∈ SL2(Z) such that M1 = S−1M2S

⇐⇒ ∃S ∈ SL2(Z) such that S−1M2Sz = z gives the same quadratic form as M1z = z

⇐⇒ ∃S ∈ SL2(Z) such that M2 · Sz = Sz gives the same quadratic form as M1z = z

⇐⇒ ∃S ∈ SL2(Z) such that M2 · S
x

y
= S

x

y
gives the same quadratic form as M1

x

y
=
x

y

⇐⇒ ∃S ∈ SL2(Z) such that Φ(M1) = S · Φ(M2).

Thus, we have shown that the conjugacy classes of PSL2(Z) with trace ±t correspond to

the SL2(Z)-orbits of binary quadratic forms with discriminant t2 − 4. This allows us to

use Gauss’ reduction theory of indefinite binary quadratic forms, which yields a full set of

representatives for the SL2(Z)-orbits of binary quadratic forms of any positive discriminant,

to exhaustively list matrix representatives for the conjugacy classes of PSL2(Z) with any

given trace.

Next, we check whether or not each conjugacy class M ∈ PSL2(Z)t is in the commutator

subgroup [PSL2(Z),PSL2(Z)]. Doing this is straightforward, since [PSL2(Z),PSL2(Z)] is

precisely

{a b

c d

 : (1− c2)(bd+ 3(c− 1)d+ c+ 3) + c(a+ d− 3) ≡ 0 (mod 12) (3.3)

or (1− c2)(bd+ 3(c+ 1)d− c+ 3) + c(a+ d+ 3) ≡ 0 (mod 12)

}
(3.4)

a congruence subgroup of index 6. This follows from the fact that [SL2(Z), SL2(Z)] = kerχ

for the surjective homomorphism χ : SL2(Z)→ Z/12Z defined by

a b

c d

 7→ (1− c2)(bd+ 3(c− 1)d+ c+ 3) + c(a+ d− 3),

as shown in [3, Proof of Theorem 3.8]. Note that this step is done to save time that would

otherwise be spent unnecessarily on combinatorially checking whether conjugacy classes that
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are not even in the commutator subgroup are commutators. If M satisfies the condition

(3.3), then it is a commutator in SL2(Z), whereas if M satisfies the condition (3.4), then

−M is a commutator in SL2(Z). Exactly one of these two possibilities is true if and only if

M is a commutator in PSL2(Z).

Afterwards, our algorithm writes the representativeM of each conjugacy class of PSL2(Z)t

in terms of the generators in S = {r, r−1, s}. Here, s denotes the coset containing S and is

a generator of the Z/2Z factor of PSL2(Z) ∼= Z/3Z ∗ Z/2Z, while r is the coset containing

ST and is a generator of the Z/3Z factor; the matrices S and T are defined in (1.2). We

use the well-known reduction process to write any matrix in SL2(Z) in terms of S and T ;

for a reference, see [3, Section 2]. First, note that

S

a b

c d

 =

−c −d
a b

 and Tn

a b

c d

 =

a+ nc b+ nd

c d

 .

In light of this, we follow the following steps to reduce M =
(
a b
c d

)
, which we can assume to

have trace t, to a product of powers of S and of T .

1. If c = 0, then skip this step. Otherwise, consider whether |a| is less than |c| or not.

If |a| ≥ |c|, then write a = cq + τ for 0 ≤ τ < |c|. Then, T−qM =
(
a−qc b−qc
c d

)
has

its upper-left entry equal to τ . Then, we apply S to T−qM (or to M , if |a| < |c|),

which switches the absolute values of the upper-left and lower-left entries, yielding a

matrix with the upper-left entry having a greater absolute value than the lower-left

entry. We repeat this process, and every iteration of this process decreases min(a, c),

so eventually we obtain that M is equal to a product of powers of S and of T , right-

multiplied by a matrix with lower-left entry 0.

2. A matrix with lower-left entry 0 and determinant 1 must be either of the form ( 1 n
0 1 ) =

Tn or of the form
(−1 n

0 −1
)

= −Tn = S2Tn. Thus, we overall have that M is a product

of powers of S and of T .

Since T = S−1r = sr, we can substitute s for S and sr for T to get an expression for

M that is a product of powers of s and of r. By repeatedly canceling adjacent entries that
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are in the same free factor, we can, without loss of generality, assume that this product

expression W is fully cyclically reduced.

Finally, the algorithm checks whether there is a cyclic conjugate of W that is of the

form XYX−1Y −1 or of the form XαY βZαX−1βY −1αZ−1β for α, β ∈ {r, r−1}, which have

been shown in Section 3.1 to be the only possible Wicks commutator forms for Z/3Z∗Z/2Z.

If M = W is a commutator in PSL2(Z), then we can conclude that either M or −M is a

commutator, depending on whether M satisfies the condition (3.3) or the condition (3.4).

We have run the above algorithm for 3 ≤ t ≤ 3000. For each such t, our program

computes the conjugacy classes (and their matrix representatives with trace t) in PSL2(Z)t,

determines which of these conjugacy classes are in the commutator subgroup by check-

ing the congruence condition (3.3), and determines which of the conjugacy classes in the

commutator subgroup are in fact commutators. First, below is a table of our full set of

data for 3 ≤ t ≤ 100, which displays any conjugacy classes of trace t and −t that have

trivial abelianization, whether each such conjugacy class is comprised of commutators (say,

containing ABA−1B−1 for A,B ∈ SL2(Z)), and the matrices A and B in this description.

Trace Conj. class

representative

Commutator? A B

3 ( 1 1
1 2 ) true

(
0 −1
1 0

) (
1 1
−1 0

)
6 ( 1 2

2 5 ) true
(
0 −1
1 0

) (
2 1
−1 0

)
7 ( 2 3

3 5 ) true
(
0 −1
1 0

) (−1 −2
1 1

)
−9

(−1 −7
−1 −8

)
true

(
4 1
−1 0

) (−1 1
1 −2

)
(−1 7

1 −8
)

true
(

0 1
−1 −4

) (−2 1
1 −1

)
11 ( 1 3

3 10 ) true
(
0 −1
1 0

) (
3 1
−1 0

)
15 ( 2 5

5 13 ) true
(
0 −1
1 0

) (−2 −3
1 1

)
(

2 −5
−5 13

)
true

(
1 1
−3 −2

) (
0 −1
1 0

)
( 1 13
1 14 ) false(
1 −13
−1 14

)
false

18 ( 1 4
4 17 ) true

(
0 −1
1 0

) (
4 1
−1 0

)
( 5 8
8 13 ) true

(
0 −1
1 0

) (−3 −2
2 1

)
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−18
(−1 8

2 −17
)

true
(
0 −1
1 5

) (−2 1
1 −1

)
(−1 −8
−2 −17

)
true

(
5 1
−1 0

) (−1 1
1 −2

)
−21

(−1 −19
−1 −20

)
false(−1 19

1 −20
)

false

−25
(−2 −15
−3 −23

)
true

(
4 1
−1 0

) (−1 2
1 −3

)
(−2 15

3 −23
)

true
(

0 1
−1 −4

) (
3 −1
−2 1

)
27 ( 4 13

7 23 ) true
(−1 1
−2 1

) (
2 1
−1 0

)
(

4 −13
−7 23

)
true

(−1 −1
2 1

) (
2 −1
1 0

)
( 1 5
5 26 ) true

(
0 −1
1 0

) (
5 1
−1 0

)
(

1 −25
−1 26

)
false

( 1 25
1 26 ) false

−29
(−1 −9
−3 −28

)
true

(
6 1
−1 0

) (−1 1
1 −2

)
(−1 9

3 −28
)

true
(

0 1
−1 −6

) (−2 1
1 −1

)
30

(
7 −16
−10 23

)
true

(−2 −1
3 1

) (−1 1
−1 0

)
( 7 16
10 23 ) true

(
2 −1
3 −1

) (
1 1
−1 0

)
( 1 14
2 29 ) false(
1 −14
−2 29

)
false

−30
(−3 −20
−4 −27

)
true

(−7 −4
2 1

) (−1 2
1 −3

)
(−3 20

4 −27
)

true
(

1 2
−4 −7

) (
3 −1
−2 1

)
−33

(−1 −31
−1 −32

)
false( −6 −7

−23 −27
)

false(−1 31
1 −32

)
false(−6 7

23 −27
)

false

34 ( 5 12
12 29 ) true

(
0 −1
1 0

) (
2 5
−1 −2

)
−34

(−5 24
6 −29

)
true

(
1 3
−3 −8

) (−2 1
1 −1

)
(−5 −24
−6 −29

)
true

(−8 −3
3 1

) (−1 1
1 −2

)
38 ( 1 6

6 37 ) true
(
0 −1
1 0

) (
6 1
−1 0

)
(

7 −18
−12 31

)
true

(
1 2
−2 −3

) (−1 1
−1 0

)
39 ( 5 13

13 34 ) true
(
0 −1
1 0

) (−5 −3
2 1

)
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(
5 −13
−13 34

)
true

(−1 −2
3 5

) (
0 −1
1 0

)
( 1 37
1 38 ) false(
1 −37
−1 38

)
false

−42
(−1 4

10 −41
)

true
(

7 1
−1 0

) (−1 1
1 −2

)
( −1 −4
−10 −41

)
true

(
0 −1
1 7

) (−2 1
1 −1

)
(−1 −20
−2 −41

)
false(−1 20

2 −41
)

false

43 ( 2 9
9 41 ) true

(
0 −1
1 0

) (−4 −5
1 1

)
(

2 −9
−9 41

)
true

(
1 1
−5 −4

) (
0 −1
1 0

)
( 2 27
3 41 ) false(
2 −27
−3 41

)
false

−45
(−2 −17
−5 −43

)
true

(
5 1
−1 0

) (−1 2
1 −3

)
(−17 −19
−25 −28

)
true

(
0 1
−1 −4

) (−4 1
3 −1

)
(−2 17

5 −43
)

true
(
0 −1
1 5

) (
3 −1
−2 1

)
(−17 19

25 −28
)

true
(

4 1
−1 0

) (−1 3
1 −4

)
(−1 −43
−1 −44

)
false(−1 43

1 −44
)

false

47 ( 13 21
21 34 ) true

(
0 −1
1 0

) (
3 5
−2 −3

)
( 1 3
15 46 ) false(
1 −3
−15 46

)
false

51 ( 4 17
11 47 ) true

(−1 1
−3 2

) (
2 1
−1 0

)
( 9 29
13 42 ) true

(
2 −1
3 −1

) (
2 1
−1 0

)
(

4 −17
−11 47

)
true

(
1 1
−3 −2

) (
2 −1
1 0

)
(

9 −29
−13 42

)
true

(−2 −1
3 1

) (
2 −1
1 0

)
( 1 7
7 50 ) true

(
0 −1
1 0

) (
7 1
−1 0

)
(

1 −49
−1 50

)
false

( 1 49
1 50 ) false

54 ( 1 26
2 53 ) false

( 13 38
14 41 ) false
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(
1 −26
−2 53

)
false(

13 −38
−14 41

)
false

−57
( −8 −23
−17 −49

)
true

(
5 1
−1 0

) (
2 −1
−3 2

)
(−1 −11
−5 −56

)
true

(
8 1
−1 0

) (−1 1
1 −2

)
(−15 −37
−17 −42

)
true

(
4 1
−1 0

) (−3 1
5 −2

)
(−8 23

17 −49
)

true
(
0 −1
1 5

) (−2 3
1 −2

)
(−1 11

5 −56
)

true
(

0 1
−1 −8

) (−2 1
1 −1

)
(−15 37

17 −42
)

true
(

0 1
−1 −4

) (−2 5
1 −3

)
(−1 −55
−1 −56

)
false(−1 55

1 −56
)

false

−61
(−2 −39
−3 −59

)
false(−2 39

3 −59
)

false

63 ( 6 31
11 57 ) true

(−1 1
−2 1

) (
4 1
−1 0

)
( 10 23
23 53 ) true

(
0 −1
1 0

) (−2 −7
1 3

)
(

6 −31
−11 57

)
true

(−1 −1
2 1

) (
4 −1
1 0

)
(

10 −23
−23 53

)
true

(
3 1
−7 −2

) (
0 −1
1 0

)
( 1 61
1 62 ) false

( 4 47
5 59 ) false(
1 −61
−1 62

)
false(

4 −47
−5 59

)
false

−65
(−1 −21
−3 −64

)
false(−4 −27

−9 −61
)

false( −4 −9
−27 −61

)
false(−1 21

3 −64
)

false(−4 27
9 −61

)
false(−4 9

27 −61
)

false

66 ( 1 8
8 65 ) true

(
0 −1
1 0

) (
8 1
−1 0

)
( 9 32
16 57 ) true

(−1 2
−2 3

) (
2 1
−1 0

)
( 1 16
4 65 ) false
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(
1 −16
−4 65

)
false

−66
(−17 −32
−26 −49

)
true

(
5 1
−1 0

) (
1 −2
−2 5

)
(−17 32

26 −49
)

true
(
0 −1
1 5

) (
5 −2
−2 1

)
(−1 −32
−2 −65

)
false(−1 32

2 −65
)

false

−69
( −9 −49
−11 −60

)
true

(
10 3
−7 −2

) (−1 1
1 −2

)
(−2 19

7 −67
)

true
(

0 1
−1 −6

) (
3 −1
−2 1

)
(−2 7

19 −67
)

true
(

7 1
−1 0

) (
1 −1
−2 3

)
( −9 −11
−49 −60

)
true

(
2 5
−5 −12

) (−2 1
1 −1

)
(−9 49

11 −60
)

true
(

2 7
−3 −10

) (−2 1
1 −1

)
(−2 −19
−7 −67

)
true

(
6 1
−1 0

) (−1 2
1 −3

)
( −2 −7
−19 −67

)
true

(
0 −1
1 7

) (−3 2
1 −1

)
(−9 11

49 −60
)

true
(

12 5
−5 −2

) (−1 1
1 −2

)
(−1 −67
−1 −68

)
false(−1 67

1 −68
)

false

70 ( 11 36
18 59 ) true

(
1 2
−4 −7

) (
0 −1
1 0

)
(

11 −36
−18 59

)
true

(−7 −4
2 1

) (
0 −1
1 0

)
( 5 54
6 65 ) false(
5 −54
−6 65

)
false

−74
(−1 −12
−6 −73

)
true

(
9 1
−1 0

) (−1 1
1 −2

)
(−1 12

6 −73
)

true
(
0 −1
1 9

) (−2 1
1 −1

)
75

(
11 −37
−19 64

)
true

(−5 −3
2 1

) (−1 1
−1 0

)
( 13 35
23 62 ) true

(−1 3
−2 5

) (
1 1
−1 0

)
( 11 37
19 64 ) true

(−1 −2
3 5

) (
0 −1
1 −1

)
(

13 −35
−23 62

)
true

(−1 −3
2 5

) (−1 1
−1 0

)
( 1 73
1 74 ) false

( 2 29
5 73 ) false(
6 −59
−7 69

)
false

( 15 29
31 60 ) false
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(
1 −73
−1 74

)
false(

2 −29
−5 73

)
false

( 6 59
7 69 ) false(

15 −29
−31 60

)
false

78 ( 3 16
14 75 ) true

(−1 1
−5 4

) (
1 1
−1 0

)
( 11 16
46 67 ) true

(
0 −1
1 −3

) (
1 3
−1 −2

)
(

3 −16
−14 75

)
true

(
1 1
−5 −4

) (−1 1
−1 0

)
(

11 −16
−46 67

)
true

(
0 −1
1 3

) (−1 3
−1 2

)
( 1 38
2 77 ) false

( 9 62
10 69 ) false(
1 −38
−2 77

)
false(

9 −62
−10 69

)
false

−78
( −3 −8
−28 −75

)
true

(
0 −1
1 7

) (−4 3
1 −1

)
(−3 8

28 −75
)

true
(

7 1
−1 0

) (−1 1
3 −4

)
(−3 −56
−4 −75

)
false(−3 56

4 −75
)

false

79 ( 2 51
3 77 ) false(
8 −27
−21 71

)
false(

2 −51
−3 77

)
false

( 8 27
21 71 ) false

( 8 63
9 71 ) false(
8 −63
−9 71

)
false

−81
(−1 −79
−1 −80

)
false( −7 −47

−11 −74
)

false(−15 −43
−23 −66

)
false(−1 79

1 −80
)

false(−7 47
11 −74

)
false(−15 43

23 −66
)

false

83 ( 16 51
21 67 ) true

(−3 1
−4 1

) (
2 1
−1 0

)
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(
16 −51
−21 67

)
true

(−3 −1
4 1

) (
2 −1
1 0

)
( 1 9
9 82 ) true

(
0 −1
1 0

) (
9 1
−1 0

)
( 10 27
27 73 ) true

(
0 −1
1 0

) (−8 −3
3 1

)
( 1 27
3 82 ) false(
1 −27
−3 82

)
false

87 ( 2 13
13 85 ) true

(
0 −1
1 0

) (−6 −7
1 1

)
( 29 41
41 58 ) true

(
0 −1
1 0

) (
7 3
−5 −2

)
(

2 −13
−13 85

)
true

(
1 1
−7 −6

) (
0 −1
1 0

)
(

29 −41
−41 58

)
true

(−2 −5
3 7

) (
0 −1
1 0

)
( 1 85
1 86 ) false

( 1 17
5 86 ) false(
1 −85
−1 86

)
false(

1 −17
−5 86

)
false

−90
( −9 −28
−26 −81

)
true

(
1 2
−6 −11

) (
3 −1
−2 1

)
(−29 −34
−52 −61

)
true

(
1 4
−2 −7

) (
3 −1
−2 1

)
(−11 62

14 −79
)

true
(

3 5
−8 −13

) (
3 −1
−2 1

)
(−7 58

10 −83
)

true
(

3 4
−10 −13

) (
5 −1
−4 1

)
(−9 28

26 −81
)

true
(−11 −6

2 1

) (−1 2
1 −3

)
(−29 34

52 −61
)

true
(−7 −2

4 1

) (−1 2
1 −3

)
(−11 −62
−14 −79

)
true

(
13 8
−5 −3

) (−1 2
1 −3

)
( −7 −58
−10 −83

)
true

(−13 −10
4 3

) (−1 4
1 −5

)
(−1 −44
−2 −89

)
false(−1 −22

−4 −89
)

false(−1 44
2 −89

)
false(−1 22

4 −89
)

false

−93
(−1 −13
−7 −92

)
true

(
10 1
−1 0

) (−1 1
1 −2

)
(−14 −65
−17 −79

)
true

(
13 5
−8 −3

) (−1 1
1 −2

)
(−1 13

7 −92
)

true
(

0 1
−1 −10

) (−2 1
1 −1

)
(−14 65

17 −79
)

true
(

3 8
−5 −13

) (−2 1
1 −1

)
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(−1 −91
−1 −92

)
false(−4 −71

−5 −89
)

false(−1 91
1 −92

)
false(−4 71

5 −89
)

false

−97
(−2 −21
−9 −95

)
true

(
7 1
−1 0

) (−1 2
1 −3

)
(−20 −57
−27 −77

)
true

(−9 −5
2 1

) (
2 −3
−3 5

)
(−5 −51
−9 −92

)
true

(
4 1
−1 0

) (−1 5
1 −6

)
(−2 21

9 −95
)

true
(
0 −1
1 7

) (
3 −1
−2 1

)
(−20 57

27 −77
)

true
(−1 −2

5 9

) (
5 −3
−3 2

)
(−5 51

9 −92
)

true
(

0 1
−1 −4

) (−6 1
5 −1

)
(−2 −63
−3 −95

)
false(−2 63

3 −95
)

false

99 ( 19 31
49 80 ) true

(
0 −1
1 −1

) (
3 5
−2 −3

)
(

19 −31
−49 80

)
true

(
0 −1
1 1

) (
3 −5
2 −3

)
( 1 97
1 98 ) false

( 5 67
7 94 ) false(
3 −41
−7 96

)
false(

1 −97
−1 98

)
false(

5 −67
−7 94

)
false

( 3 41
7 96 ) false

Table 3.1: Full set of data for 3 ≤ t ≤ 100 outputted

by our algorithm. The provided commutator decomposition

ABA−1B−1 is of an element in the corresponding conjugacy

class C, but this element is not necessarily the matrix repre-

sentative listed in the table.

Second, below is table of summarized data for 3 ≤ t ≤ 3000. For n ∈ 100Z ∩ [3, 3000],
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the table displays the ratios

R1(n) ··=
|{t : 3 ≤ |t| ≤ n and t is the trace of a commutator of SL2(Z)}|

|{t : 3 ≤ |t| ≤ n}|
,

R2(n) ··=
|{t : 3 ≤ |t| ≤ n and t is the trace of a commutator of SL2(Z)}|

|{t : 3 ≤ |t| ≤ n and t is the trace of a commutator-subgroup element of SL2(Z)}|
,

and

R3(n) ··=
|{conj. class C of commutators in SL2(Z) : 3 ≤ |Tr C| ≤ n}|

|{conj. class C of commutator-subgroup elements in SL2(Z) : 3 ≤ |Tr C| ≤ n}|
,

rounded to three decimal places. This information is also sufficient to obtain the ratio be-

tween |{t : 3 ≤ |t| ≤ n and t is the trace of a commutator-subgroup element of SL2(Z)}| and

|{t : 3 ≤ |t| ≤ n and t is the trace of a commutator of SL2(Z)}|, which is given by the ratio

R2(n)/R1(n).

n R1(n) R2(n) R3(n)

100 0.232 0.844 0.524

200 0.242 0.779 0.418

300 0.244 0.752 0.341

400 0.242 0.750 0.300

500 0.243 0.739 0.277

600 0.243 0.734 0.255

700 0.242 0.725 0.236

800 0.243 0.724 0.226

900 0.244 0.714 0.209

1000 0.242 0.716 0.200

1100 0.243 0.720 0.192

1200 0.244 0.714 0.185

1300 0.243 0.712 0.177

1400 0.242 0.708 0.168

1500 0.243 0.709 0.164
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1600 0.243 0.706 0.158

1700 0.243 0.702 0.154

1800 0.243 0.703 0.149

1900 0.243 0.700 0.144

2000 0.243 0.701 0.141

2100 0.243 0.701 0.137

2200 0.243 0.698 0.133

2300 0.243 0.693 0.130

2400 0.243 0.694 0.128

2500 0.243 0.693 0.125

2600 0.243 0.694 0.122

2700 0.243 0.695 0.120

2800 0.243 0.696 0.118

2900 0.243 0.695 0.116

3000 0.243 0.689 0.112

Table 3.2: Summarized data for 3 ≤ t ≤ 3000.
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Chapter 4

Concluding Remarks

The data of Table 3.2 suggest that R1(n) and R2(n) are each converging to a nonzero

proportion. In light of this, we conjecture that the set of t ≥ 3 that are absolute values

of traces of commutators appear to be a positive-proportion subset within the set of all

t ≥ 3, with a proportion close to 0.243. We similarly conjecture that the set of t ≥ 3 that

are absolute values of traces of commutator-subgroup elements also seem to be a positive-

proportion subset within the set of all t ≥ 3, with a proportion somewhere within or close

to the interval [R2(2000), R2(3000)] = [0.689, 0.701]. If these conjectures were to be proven

true, then it would follow that the values of t ≥ 3 that are absolute values of traces of

commutators would have positive density within the set of t ≥ 3 that are absolute values of

traces of commutator-subgroup elements.

On the other hand, it is less clear from the data of Table 3.2 whether R3(n) is converging

to a positive proportion or to 0. We observed in Section 1 that the number of conjugacy

classes of commutators in Z/3Z ∗ Z/2Z ∼= PSL2(Z) with a given word length k is roughly

comparable to the square root of the number of all conjugacy classes with trivial abelian-

ization, and we expect the same to occur when counting by trace rather than word length,

which, if true, would imply that R3(n) converges to 0 as n→∞. We anticipate collecting

more data from our algorithm to investigate the asymptotic behavior of R3(n).

To check which conjugacy classes are comprised of commutators, our algorithm rep-

resents each conjugacy-class representative M in terms of the generators of PSL2(Z) and

group-theoretically determines whether or not it is a commutator. A natural question to
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ask on this front is: does there exist a purely number-theoretic criterion (i.e., one which only

uses the matrix entries of M) that is necessary and sufficient for M to be a commutator in

PSL2(Z)? Such a criterion could both improve the speed of the algorithm and help explain

some of the asymptotic phenomena shown by our data, such as the asymptotic behavior of

the ratios R1(n), R2(n), and R3(n).

While we have solved the problem of counting conjugacy classes of commutators ordered

by word length for any free group and for Z/3Z ∗Z/2Z, there are a number of directions in

which Theorems 1.2 and 1.4 can be generalized. First, one can ask: how many conjugacy

classes of commutators with word length k are in an arbitrary finitely-generated free product

G = ∗i∈I Gi? While one can define the word length in this context to be with respect to

an arbitrary generating set S, a natural notion of length to use in this setting would be the

free product length, which can be defined as the word length with respect to

S ··= {g ∈ G \ {1} : g ∈ Gi for some i ∈ I} .

Note that word length with respect to our choice of S for Z/3Z ∗ Z/2Z coincides with the

free product length.

Also, let the n-commutators of a given group be defined by the elements with trivial

abelianization and commutator length n. A second direction for generalizing Theorems 1.2

and 1.4 is to, for any n, count the number of conjugacy classes of n-commutators with word

length k in a free group or free product (such as Z/3Z∗Z/2Z, or more generally, an arbitrary

finitely-generated free product G = ∗i∈I Gi). This is natural to ask, given that Culler [4]

has classified the possible forms of n-commutators for a free group and Vdovina [13] has

done this for an arbitrary free product. In fact, Culler has also classified the possible forms

that a product of n square elements can take for a free group, so an analogous question can

be asked for the number of conjugacy classes comprised of products of n square elements.
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Appendix: Code

Subs:=function(str,pos,length)

if length ge 1 then

return Substring(str,pos,length);

else

return "";

end if;

end function;

negatee:=function(str)

if str eq "r" then

return "i";

elif str eq "i" then

return "r";

else

return "s";

end if;

end function;

concat:=function(str1,str2)

n:=1;

length1:=#str1;

length2:=#str2;

length1p1:=length1+1;

while n le length1 and n le length2

and negatee(str1[length1p1-n])

eq str2[n] do

n:=n+1;

end while;

if n gt length2 then

return Substring(str1,1,length1p1-n);

else

x:=length1p1-n;

if x gt 0 and str1[x] eq "r" and str2[n] eq "r" then

return Subs(str1,1,x-1) cat "i"

cat Substring(str2,n+1,length2);
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elif x gt 0 and str1[x] eq "i" and str2[n] eq "i" then

return Subs(str1,1,x-1) cat "r"

cat Substring(str2,n+1,length2);

else

return Subs(str1,1,x) cat Substring(str2,n,length2);

end if;

end if;

end function;

genform := function(A,B,C,D)

a:=A;

b:=B;

c:=C;

d:=D;

str:="";

while c ne 0 do

if a*a ge c*c then

q:=a div c;

a:=a mod c;

b:=b-q*d;

if q gt 0 then

str:=concat(str,"sr"^q);

else

str:=concat(str,"is"^(-q));

end if;

end if;

temp:=d;

d:=b;

b:=-temp;

temp:=c;

c:=a;

a:=-temp;

strlength:=#str;

if strlength gt 0 and str[strlength] eq "s" then

str:=Substring(str,1,strlength-1);

else

str:=str cat "s";

end if;

end while;

if a eq 1 then

if b ge 0 then

str:=concat(str,"sr"^b);

else

str:=concat(str,"is"^(-b));

end if;

else

if b ge 0 then

str:=concat(str,"is"^b);
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else

str:=concat(str,"sr"^(-b));

end if;

end if;

return str;

end function;

SSubstring:=function(str,length)

if length ge 1 then

return Substring(str,1,length);

else

return "";

end if;

end function;

Checkinvv:=function(str1,str2)

length1:=#str1;

length1p1:=length1+1;

if length1 ne #str2 then

return false;

end if;

count:=1;

while count le length1 do

if str1[count] ne negatee(str2[length1p1-count]) then

return false;

end if;

count:=count+1;

end while;

return true;

end function;

matrixform:=function(str)

M:=Matrix(IntegerRing(), 2, 2, [1,0,0,1]);

for n in [1..#str] do

if str[n] eq "s" then

M:=M*Matrix(IntegerRing(), 2, 2, [0,-1,1,0]);

elif str[n] eq "r" then

M:=M*Matrix(IntegerRing(), 2, 2, [0,-1,1,1]);

elif str[n] eq "i" then

M:=M*Matrix(IntegerRing(), 2, 2, [1,1,-1,0]);

end if;

end for;

return M;

end function;

checkcommdetailed:= function(string2)

latest:=string2;

seclength:=#string2;
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lastbit:=latest[seclength];

if lastbit eq "s" then

if latest[1] eq "s" and seclength gt 1 then

latest:=Substring(latest,2,seclength-2);

end if;

elif lastbit eq "r" then

if latest[1] eq lastbit and seclength gt 1 then

latest:= "i" cat Substring(latest,2,seclength-2);

elif latest[1] eq "i" and seclength gt 1 then

latest:= Substring(latest,1,seclength-1);

end if;

else

if latest[1] eq lastbit and seclength gt 1 then

latest:= "r" cat Substring(latest,2,seclength-2);

elif latest[1] eq "r" and seclength gt 1 then

latest:= Substring(latest,1,seclength-1);

end if;

end if;

length:=#latest;

list2:=[latest];

for n in [1..length] do

tempstr:= Substring(latest,length,1)

cat Substring(latest,1,length-1);

list2:=Append(list2,tempstr);

latest:=tempstr;

end for;

for str in list2 do

if length mod 2 eq 1 then

return false;

end if;

if length mod 4 eq 0 then

hlength:=length div 2;

hlengthp1:=hlength+1;

qlength:=hlength div 2;

for a in [1..qlength] do

x:=Substring(str,1,a*2-1);

y:=Substring(str,a*2,hlengthp1-a*2);

if Checkinvv(x,Substring(str,hlengthp1,a*2-1))

and Checkinvv(y,

Substring(str,a*2+hlength,hlengthp1-a*2)) then

mattx:=matrixform(x);

matty:=matrixform(y);

return <true, ";", mattx[1,1], ";", mattx[1,2],";",

mattx[2,1], ";", mattx[2,2], ";", matty[1,1], ";",

matty[1,2],";", matty[2,1], ";", matty[2,2]>;

end if;

end for;

end if;
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lengthm6:=length-6;

if str[length] ne "s" and lengthm6 mod 4 eq 2 then

v:=str[hlength];

hlength:=lengthm6 div 2;

qlength:=lengthm6 div 4;

for a in [1..qlength] do

if str[a*2] eq v and str[hlength+3+a*2] eq str[length] then

for b in [1..qlength-a+1] do

if str[a*2+b*2] eq str[length]

and str[hlength+3+a*2+b*2] eq v then

x:=Substring(str,1,a*2-1);

y:=Substring(str,a*2+1,b*2-1);

z:=Substring(str,a*2+b*2+1,hlength-a*2-b*2+2);

zinv:=Substring(str,hlength+a*2+b*2+4,hlength-a*2-b*2+2);

if Checkinvv(x,Substring(str,4+hlength,a*2-1))

and Checkinvv(y,Substring(str,hlength+a*2+4,b*2-1))

and Checkinvv(z,zinv) then

mattx:=matrixform(negatee(str[length]) cat x cat negatee(v)

cat zinv cat negatee(str[length]));

matty:=matrixform(str[length] cat z cat negatee(v) cat y);

return <true, ";", mattx[1,1], ";", mattx[1,2],";",

mattx[2,1], ";", mattx[2,2], ";", matty[1,1], ";",

matty[1,2],";", matty[2,1], ";", matty[2,2]>;

end if;

end if;

end for;

end if;

end for;

end if;

end for;

return false;

end function;

checkcomm:= function(string2)

latest:=string2;

seclength:=#string2;

lastbit:=latest[seclength];

if lastbit eq "s" then

if latest[1] eq "s" and seclength gt 1 then

latest:=Substring(latest,2,seclength-2);

end if;

elif lastbit eq "r" then

if latest[1] eq lastbit and seclength gt 1 then

latest:= "i" cat Substring(latest,2,seclength-2);

elif latest[1] eq "i" and seclength gt 1 then

latest:= Substring(latest,1,seclength-1);

end if;
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else

if latest[1] eq lastbit and seclength gt 1 then

latest:= "r" cat Substring(latest,2,seclength-2);

elif latest[1] eq "r" and seclength gt 1 then

latest:= Substring(latest,1,seclength-1);

end if;

end if;

length:=#latest;

list2:=[latest];

for n in [1..length] do

tempstr:= Substring(latest,length,1)

cat Substring(latest,1,length-1);

list2:=Append(list2,tempstr);

latest:=tempstr;

end for;

for str in list2 do

if length mod 2 eq 1 then

return false;

end if;

if length mod 4 eq 0 then

hlength:=length div 2;

hlengthp1:=hlength+1;

qlength:=hlength div 2;

for a in [1..qlength] do

x:=Substring(str,1,a*2-1);

y:=Substring(str,a*2,hlengthp1-a*2);

if Checkinvv(x,Substring(str,hlengthp1,a*2-1))

and Checkinvv(y,

Substring(str,a*2+hlength,hlengthp1-a*2)) then

return true;

end if;

end for;

end if;

lengthm6:=length-6;

if str[length] ne "s" and lengthm6 mod 4 eq 2 then

v:=str[hlength];

hlength:=lengthm6 div 2;

qlength:=lengthm6 div 4;

for a in [1..qlength] do

if str[a*2] eq v and str[hlength+3+a*2] eq str[length] then

for b in [1..qlength-a+1] do

if str[a*2+b*2] eq str[length]

and str[hlength+3+a*2+b*2] eq v then

x:=Substring(str,1,a*2-1);

y:=Substring(str,a*2+1,b*2-1);

z:=Substring(str,a*2+b*2+1,hlength-a*2-b*2+2);

zinv:=Substring(str,hlength+a*2+b*2+4,hlength-a*2-b*2+2);

if Checkinvv(x,Substring(str,4+hlength,a*2-1))

60



and Checkinvv(y,Substring(str,hlength+a*2+4,b*2-1))

and Checkinvv(z,zinv) then

return true;

end if;

end if;

end for;

end if;

end for;

end if;

end for;

return false;

end function;

for t in [3..100] do

D:=t*t-4;

modt:=t mod 12;

for dd in Divisors(D) do

Disc:=Round(D/dd);

if IsSquare(dd) ne false and (Disc mod 4) le 1 then

mult:=Round(SquareRoot(dd));

Q := BinaryQuadraticForms(Disc);

QQ:=ReducedForms(Q);

for quad in QQ do

a:=mult*quad[1];

b:=mult*quad[2];

c:=mult*quad[3];

ma:=Round((-b+t)/2);

mb:=-c;

mc:=a;

md:=Round((b+t)/2);

a:=ma mod 12;

b:=mb mod 12;

c:=mc mod 12;

d:=md mod 12;

if modt in [0, 2, 3, 4, 6, 7, 8, 10, 11]

and ((1-c*c)*(b*d+3*(c-1)*d+c+3)+c*(a+d-3)) mod 12

eq 0 then

thegenform:=genform(ma,mb,mc,md);

answer:=checkcommdetailed(thegenform);

t, ";", ma, ";", mb, ";", mc, ";", md , ";", answer;

elif modt in [0,1,2, 4,5 ,6, 8,9, 10]

and ((1-c*c)*(b*d+3*(-c-1)*(-d)-c+3)-c*(-a-d-3)) mod 12

eq 0 then

thegenform:=genform(-ma,-mb,-mc,-md);

answer:=checkcommdetailed(thegenform);

-t, ";", -ma, ";", -mb, ";", -mc, ";", -md , ";", answer ;

end if;

end for;
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end if;

end for;

end for;

num:=0;

den:=0;

for t in [3..3000] do

D:=t*t-4;

modt:=t mod 12;

cnumberplus:=0;

cnumberminus:=0;

mnumberplus:=0;

mnumberminus:=0;

for dd in Divisors(D) do

Disc:=Round(D/dd);

if IsSquare(dd) ne false and (Disc mod 4) le 1 then

mult:=Round(SquareRoot(dd));

Q := BinaryQuadraticForms(Disc);

QQ:=ReducedForms(Q);

for quad in QQ do

a:=mult*quad[1];

b:=mult*quad[2];

c:=mult*quad[3];

ma:=Round((-b+t)/2);

mb:=-c;

mc:=a;

md:=Round((b+t)/2);

a:=ma mod 12;

b:=mb mod 12;

c:=mc mod 12;

d:=md mod 12;

if modt in [0, 2, 3, 4, 6, 7, 8, 10, 11]

and ((1-c*c)*(b*d+3*(c-1)*d+c+3)+c*(a+d-3)) mod 12

eq 0 then

thegenform:=genform(ma,mb,mc,md);

answer:=checkcomm(thegenform);

if answer cmpne false then

mnumberplus:=mnumberplus+1;

end if;

cnumberplus:=cnumberplus+1;

elif modt in [0,1,2, 4,5 ,6, 8,9, 10]

and ((1-c*c)*(b*d+3*(-c-1)*(-d)-c+3)-c*(-a-d-3)) mod 12

eq 0 then

thegenform:=genform(-ma,-mb,-mc,-md);

answer:=checkcomm(thegenform);

if answer cmpne false then

mnumberminus:=mnumberminus+1;

end if;
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cnumberminus:=cnumberminus+1;

end if;

end for;

end if;

end for;

num:=num+mnumberplus+mnumberminus;

den:=den+cnumberplus+cnumberminus;

if cnumberplus ne 0 then

t,";",D,";", mnumberplus,";",

cnumberplus,";", mnumberplus ne 0,";", num, ";", den;

end if;

if cnumberminus ne 0 then

-t,";",D,";", mnumberminus,";",

cnumberminus,";", mnumberminus ne 0 ,";", num, ";", den;

end if;

end for;
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