Conjugacy Growth of Commutators

Peter S. Park

MAY 2017

Advisor: Professor Peter C. Sarnak

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts

Department of Mathematics
Princeton University

This thesis represents my own work in accordance with University regulations.

Peter S. Park

I authorize Princeton University to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize Princeton University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Peter S. Park

Abstract

We use the classification of commutators in free groups and in free products by Wicks [14] to asymptotically count for these groups the conjugacy classes of commutators with a given word length. Let F_{r} denote the free group on $r>1$ generators. We show that the number of conjugacy classes of commutators in F_{r} with word length k is given by 0 for odd k and

$$
\frac{(2 r-2)^{2}(2 r-1)^{\frac{k}{2}-1}}{96 r}\left(k^{2}+O_{r}(k)\right)
$$

for even k, where the implied constant depends only on r and is effectively computable. This result builds on the work of Rivin [9], who counted the conjugacy classes of commutatorsubgroup elements in F_{r} with a given word length.

Next, we show that the number of conjugacy classes of commutators in the free product $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z} \cong \mathrm{PSL}_{2}(\mathbb{Z})$ with word length k is given by 0 for $4 \nmid k$ and

$$
\frac{2^{\frac{k}{4}}}{384}\left(k^{2}+O(k)\right) .
$$

for $4 \mid k$, where the implied constant is effectively computable.
Finally, we give an algorithm to exhaustively compute all hyperbolic conjugacy classes of commutators of $\mathrm{PSL}_{2}(\mathbb{Z})$ with a given trace. We conclude by formulating several densitytype conjectures suggested by the data from this algorithm.

Acknowledgements

First of all, I would like to thank my family: Mom, Dad, and John. They have always been there for me to support my dream of becoming a mathematician, and to support me unconditionally. I am especially grateful to Mom and Dad for helping me cultivate the interest in numbers that I've had ever since I was a little boy, and for granting me so many vital educational opportunities, including my attendance at Princeton, that I never take for granted.

Next, I would like to thank my advisor, Professor Peter Sarnak for introducing me to this fun problem, for numerous helpful discussions regarding it, and for making time in his busy schedule to give feedback on this thesis even while he was off-campus giving a public lecture the week before the due date. Most importantly, I am grateful to him for believing in me in the face of unexpected challenges.

I would also like to thank my math professors for teaching me so much with great care: not just about math, but also about life. In particular, I would like to thank Professors Manjul Bhargava, Richard Ehrenborg, Robert Gunning, Sophie Morel, Ken Ono, Peter Ozsvath, Margaret Readdy, Jerry Wang, and Shou-Wu Zhang for their invaluable advising in the classroom and/or in research. Additionally, I would like to thank all my Princeton professors in information theory, computer science, music, economics, and history for helping me develop a broad perspective on life.

Moreover, I would like to thank my friends in Colonial Club for laughing at my corny humor (at least it's clean, sometimes), for all the late-night discussions about serious and not-so-serious subjects, and for always being there as a "home away from home." I would also like to thank my friends in the danjou pears board game group for being a constant
source of merriment in this polarized day and age; only we can save humanity from COdA403d. In addition, I would like to thank my problem-set partners and research collaborators, with whom I've spent many a night working, talking, and bonding. In fact, these three groups have nonempty pairwise intersections, so I am thanking some of my friends more than once. I would also like to thank my friends (you know who you are!) who happen to not be in any of these three sets.

Last but not least, I would like to thank Jenny for being such a dependable significant other in my life. She has brought nothing but joy into my life, and I can't thank her enough for always being optimistic and for always being there when I need her the most.

Contents

Abstract ii
Acknowledgements iii
1 Introduction 1
2 Commutators of the Free Group 8
2.1 Proof of Wicks' Theorem for the Free Group 8
2.2 Proof of Theorem 1.2 9
3 Commutators of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ 19
3.1 Proof of Wicks' Theorem for Free Products 19
3.2 Proof of Theorem 1.4 27
3.3 Algorithm to List Commutators of $\mathrm{PSL}_{2}(\mathbb{Z})$ by Trace 37
4 Concluding Remarks 51
References 53
Appendix: Code 55

Chapter 1

Introduction

Let G be a finitely generated group with a finite symmetric set of generators \mathfrak{S}. Any element $g \in G$ can then be written as a word in the letters of \mathfrak{S}, and one can define the length of g by

$$
\inf _{\substack{\in \in \mathbb{Z}_{\geq 0}: \exists c_{1}, \ldots, c_{k} \in \mathfrak{S} \\ g=c_{1} \cdots c_{k}}} k .
$$

Consider the closed ball $B_{k}(G, \mathfrak{S}) \subset G$ of radius k in the word metric, defined as the subset consisting of elements with length $\leq k$. One can then ask natural questions about the growth of G : how large is $\left|B_{k}(G, \mathfrak{S})\right|$ as $k \rightarrow \infty$, and more generally, what connections can be made between the properties of G and this notion of its growth rate? Since the middle of the 20th century, this group-theoretic question has been widely studied in various contexts largely arising from geometric motivations, such as characterizing the volume growth of Riemannian manifolds and Lie groups. One of the pioneering results on this question of geometric group theory is that of Gromov [6], who classified groups G with polynomial growth, i.e., those that satisfy $\left|B_{k}(G, \mathfrak{S})\right| \ll k^{O(1)}$. There are also groups with exponential growth, one of which is the free group F_{r} on $r>1$ generators; more precisely, after fixing a symmetric generating set $\mathfrak{S}:=\left\{x_{1}, \ldots, x_{r}, x_{1}^{-1}, \ldots, x_{r}^{-1}\right\}$, it is easy to see that

$$
B_{k}(G, \mathfrak{S})=1+\sum_{i=1}^{k} \partial B_{i}(G, \mathfrak{S})=1+\sum_{i=1}^{k} 2 r(2 r-1)^{i-1}=\frac{r\left((2 r-1)^{k}-1\right)}{r-1},
$$

where $\partial B_{k}(G, \mathfrak{S})$ denotes the subset of length- k elements.

In certain contexts, it is more natural to consider the growth rate of the conjugacy classes of G. For a given conjugacy class \mathcal{C} of G, define the length of \mathcal{C} by

$$
\inf _{g \in \mathcal{C}} \operatorname{length}(g),
$$

and define $\partial B_{k}^{\text {conj }}(G, \mathfrak{S})$ as the set of conjugacy classes of G with length k. In the case of F_{r}, the minimal-length elements of a conjugacy class are precisely its cyclically reduced elements, all of which are cyclic conjugates of each other. The conjugacy growth of F_{r} can be described as $\partial B_{k}^{\text {conj }}(G, \mathfrak{S}) \sim(2 r-1)^{k} / k$, which agrees with the intuition of identifying the cyclic conjugates among the $2 r(2 r-1)^{k-1}$ words of length k; for the full explicit formula, see [7, Proposition 17.8].

One context for which conjugacy growth may be a more natural quantity to study than the growth rate in terms of elements is when characterizing the frequency with which a conjugacy-invariant property occurs in G. An example of such a property is membership in the commutator subgroup $[G, G]$. On this front, Rivin [9] computed the number c_{k} of length- k cyclically reduced words in F_{r} that are in the commutator subgroup (i.e., have trivial abelianization) to be the constant term in

$$
(2 \sqrt{2 r-1})^{k} T_{k}\left(\frac{1}{2 \sqrt{2 r-1}} \sum_{i=1}^{r}\left(x_{i}+\frac{1}{x_{i}}\right)\right)
$$

where T_{k} denotes the k th Chebyshev polynomial of the first kind. This quantity can asymptotically be described as $c_{k} \sim C_{r}(2 r-1)^{k} / k^{r / 2}$ for some positive constant C_{r} depending only on r. Furthermore, from the number of cyclically reduced words with trivial abelianization, one can derive the growth of conjugacy classes with trivial abelianization by using Möbius inversion, due to the following relationships:

$$
c_{k}=\sum_{d \mid k} p_{d}
$$

where p_{d} denotes the number of primitive (i.e., not a proper power of any subword) length- d
words with trivial abelianization, and

$$
\left|\partial B_{k}^{\mathrm{conj}}(G, \mathfrak{S}) \cap[G, G]\right|=\sum_{d \mid k} \frac{p_{d}}{d},
$$

which together imply by Möbius inversion that

$$
\begin{align*}
\left|\partial B_{k}^{\mathrm{conj}}(G, \mathfrak{S}) \cap[G, G]\right| & =\sum_{d \mid k} \frac{1}{d} \sum_{e \mid d} \mu\left(\frac{d}{e}\right) c_{e}=\sum_{e \mid k} \frac{c_{e}}{e}\left(\sum_{d^{\prime} \left\lvert\, \frac{k}{e}\right.} \frac{\mu\left(d^{\prime}\right)}{d^{\prime}}\right) \\
& =\sum_{e \mid k} \frac{c_{e}}{e} \cdot \frac{\phi(k / e)}{k / e}=\sum_{e \mid k} c_{e} \frac{\phi(k / e)}{k} . \tag{1.1}
\end{align*}
$$

In the above, ϕ denotes the Euler totient function. For details on this derivation, the reader is directed to [7, Chapter 17].

In this paper, we answer the analogous question for commutators rather than for commutator-subgroup elements. This new inquiry is structurally different in that it aims to solve a Diophantine equation over a group G (whether there exist X and Y such that $\left.X Y X^{-1} Y^{-1}=W\right)$ for a given $W \in G$, rather than a subgroup-membership problem (whether W is in $[G, G]$). In particular, the set of commutators is not multiplicatively closed, so we cannot use primitive words as a bridge between counting cyclically reduced words and counting conjugacy classes as above. Instead, we use a theorem of Wicks [14], which states that an element of F_{r} is a commutator if and only if it is a cyclically reduced conjugate of a commutator satisfying the following definition.

Definition 1.1. A Wicks commutator of F_{r} is a word $W \in F_{r}$ of the form $A B C A^{-1} B^{-1} C^{-1}$, where the product is cyclically reduced; i.e., there are no cancellations between the subwords A, B, C, A^{-1}, B^{-1}, and C^{-1}, and the first and last letters are not inverses.

After proving this theorem for expository purposes, we count the number of conjugacy classes of commutators with length k in F_{r} by counting the number of Wicks commutators with length k.

Theorem 1.2. Let $k \geq 0$ be even. The number of distinct conjugacy classes of commutators in F_{r} with length k is given by

$$
\frac{(2 r-2)^{2}(2 r-1)^{\frac{k}{2}-1}}{96 r}\left(k^{2}+O_{r}(k)\right)
$$

where the implied constant depends only on r and is effectively computable.

Note that the number of conjugacy classes of commutators in F_{r} is roughly proportional to the square root of the number (1.1) of all conjugacy classes with trivial abelianization.

We also employ a similar argument, using Wicks' characterization of commutators in free products, to answer the analogous question for $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$. This group is of independent interest as the isomorphism class of $\mathrm{PSL}_{2}(\mathbb{Z})$; specifically, for the usual generators

$$
S:=\left(\begin{array}{cc}
0 & -1 \tag{1.2}\\
1 & 0
\end{array}\right) \quad \text { and } \quad T:=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)
$$

of $\mathrm{PSL}_{2}(\mathbb{Z})$, we have that S corresponds to a generator of the $\mathbb{Z} / 2 \mathbb{Z}$ factor and $S T$, to a generator of the $\mathbb{Z} / 3 \mathbb{Z}$ factor. Let $\mathfrak{S}:=\left\{r, r^{-1}, s\right\}$, where r denotes a generator of the $\mathbb{Z} / 3 \mathbb{Z}$ factor and s, the generator of the $\mathbb{Z} / 2 \mathbb{Z}$ factor. Then, a theorem of Wicks [14] analogous to the previous one, which we will again prove for expository purposes, implies that an element of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ is a commutator if and only if it is a cyclically reduced conjugate of a commutator satisfying the following definition.

Definition 1.3. A Wicks commutator of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ is a word $W \in \mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ either of the form $A B A^{-1} B^{-1}$ or of the form $A \alpha B \beta C \alpha A^{-1} \beta B^{-1} \alpha C^{-1} \beta$ for $\alpha, \beta \in\left\{r, r^{-1}\right\}$. Here, the product is fully cyclically reduced; i.e., adjacent letters are in different factors of the free product, as are the first and last letters.

A fully cyclically reduced element W with length k in $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ alternates between $k / 2$ letters in $\left\{r, r^{-1}\right\}$ and $k / 2$ letters equal to s, where $k / 2$ is necessarily an integer. Thus, the number of fully cyclically reduced elements with length k in $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ is 0 if k is odd and $2^{k / 2}$ if k is even. Furthermore, W has trivial abelianization if and only if $k / 2$ is an even integer (so that the product of all the s factors is trivial) and the product of all the letters
of W in $\left\{r, r^{-1}\right\}$ is trivial. In particular, this is necessary for W to be a Wicks commutator, so the length of any Wicks commutator of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ is divisible by 4 . Accordingly, for any k divisible by 4 , we obtain the number of length- k conjugacy classes in $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ comprised of commutators.

Theorem 1.4. Let $k \geq 0$ be a multiple of 4 . The number of distinct conjugacy classes of commutators in $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ with length k is given by

$$
\frac{2^{\frac{k}{4}}}{384}\left(k^{2}+O(k)\right),
$$

where the implied constant is effectively computable.

Suppose that $4 \mid k$. Then, the cyclically reduced elements of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ with length k are in bijection with the closed paths of length $k / 2$ on the triangle $P Q R$ with fixed basepoint P. Let p_{n} denote the number of paths with length n from P to itself and q_{n}, the number of paths with length n from Q to P. Then, note that $p_{n}=2 q_{n-1}$ for $n \geq 1$, and thus, q_{n} is the solution to the linear recurrence

$$
q_{0}=0, \quad q_{1}=1, \quad \text { and } \quad q_{n}=q_{n-1}+p_{n-1}=q_{n-1}+2 q_{n-2} \text { for } n \geq 2,
$$

which is $\left(2^{n}+(-1)^{n+1}\right) / 3$. It follows that $p_{n}=2 q_{n-1}=\left(2^{n}+2(-1)^{n}\right) / 3=2^{n} / 3+O(1)$. Thus, the number of cyclically reduced words with length k in $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ is $2^{k / 2} / 3+O(1)$, and applying Möbius inversion as done in (1.1), we see that the number of conjugacy classes of commutators in $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ is roughly comparable to the square root of the number of all conjugacy classes with trivial abelianization.

Counting conjugacy classes of commutators has a topological application. Let X be a connected CW complex with fundamental group G, and let \mathcal{C} be a conjugacy class of G with trivial abelianization, corresponding to the free homotopy class of a homologically trivial loop $\gamma: S^{1} \rightarrow X$. Then, the commutator length of \mathcal{C}, defined as the minimum number of commutators whose product is equal to an element of \mathcal{C}, is also the minimum genus of an orientable surface that continuously maps to X so that the boundary of the surface maps to γ [2, Section 2.1]. Thus, using the bijective correspondence between conjugacy classes
of the fundamental group and free homotopy classes of loops $S^{1} \rightarrow X$, our above results immediately yield the following corollaries.

Corollary 1.5. Let X be a connected $C W$ complex.

1. Suppose X has fundamental group F_{r} with a symmetric set of free generators \mathfrak{S}. Then, the number of free homotopy classes of loops $\gamma: S^{1} \rightarrow X$ with length k (in the generators of \mathfrak{S}) such that there exists a genus-1 orientable surface Y and a continuous map $f: Y \rightarrow X$ satisfying $f(\partial Y)=\operatorname{Im} \gamma$ is given by

$$
\frac{(2 r-2)^{2}(2 r-1)^{\frac{k}{2}-1}}{96 r}\left(k^{2}+O_{r}(k)\right)
$$

where the implied constant depends only on r and is effectively computable.
2. Suppose X has fundamental group $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ with the symmetric set of generators $\mathfrak{S}=\left\{r, r^{-1}, s\right\}$, where r is a generator of the $\mathbb{Z} / 3 \mathbb{Z}$ factor and s, the generator of the $\mathbb{Z} / 2 \mathbb{Z}$ factor. Then, the number of free homotopy classes of loops $\gamma: S^{1} \rightarrow X$ with length k (in the generators of \mathfrak{S}) such that there exists a genus- 1 orientable surface Y and a continuous map $f: Y \rightarrow X$ satisfying $f(\partial Y)=\operatorname{Im} \gamma$ is given by

$$
\frac{2^{\frac{k}{4}}}{384}\left(k^{2}+O(k)\right)
$$

where the implied constant is effectively computable.

In addition, counting conjugacy classes of $\mathrm{PSL}_{2}(\mathbb{Z})$ arises in the following geometric context. Consider the upper-half plane \mathbb{H} and a discrete subgroup $\Gamma \subset \mathrm{PSL}_{2}(\mathbb{R})$ which acts on \mathbb{H} by fractional linear transformations; in our case, $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$. Then, the quotient surface $\Gamma \backslash \mathbb{H}$ is a hyperbolic manifold, and every hyperbolic element $h \in \Gamma$ gives rise to a closed geodesic of $\Gamma \backslash \mathbb{H}$ by projecting the geodesic of \mathbb{H} connecting the fixed points of h to $\Gamma \backslash \mathbb{H}$. In fact, this gives a bijective correspondence between the closed geodesics of $\Gamma \backslash \mathbb{H}$ and the hyperbolic conjugacy classes of Γ. In this correspondence, the primitive hyperbolic conjugacy classes give rise to primitive closed geodesics. These are called prime geodesics because when ordered by trace, they satisfy equidistribution theorems analogous to those
of prime numbers, such as the prime number theorem (generally credited to Selberg [12], while its analogue for surfaces of varying negative curvature was proven by Margulis [8]) and Chebotarev's density theorem (proven by Sarnak [10]). Specifically, this analogue of the prime number theorem is called the prime geodesic theorem, which states that the number of prime geodesics of $\Gamma \backslash \mathbb{H}$ with norm $\leq N$ is asymptotically given by $\sim N / \log N$. Furthermore, Sarnak's analogue of Chebotarev's density theorem implies that the number of prime geodesics of $\Gamma \backslash \mathbb{H}$ with norm $\leq N$ that correspond to elements of Γ with trivial abelianization is asymptotically given by $\sim N /(6 \log N)$, since $[\Gamma, \Gamma]$ is an index- 6 subgroup (in fact, a congruence subgroup) of Γ; see (3.3) for details.

For this application, we present an algorithm, based on Gauss' reduction theory of indefinite binary quadratic forms and Wicks' theorem, to exhaustively compute the hyperbolic conjugacy classes of commutators of Γ with a given trace. Note that the trace t of a hyperbolic element of Γ is connected to the norm N of the corresponding geodesic by the relationship

$$
N=\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)^{2}
$$

A commutator of Γ is precisely a coset $\{C,-C\}$ for a commutator $C=A B A^{-1} B^{-1}$ of $\mathrm{SL}_{2}(\mathbb{Z})$, where $A, B \in \mathrm{SL}_{2}(\mathbb{Z})$. In light of this, one application of this algorithm arises from the fact that commutators $A B A^{-1} B^{-1}$ of $\mathrm{SL}_{2}(\mathbb{Z})$ with a given trace t give rise to integral solutions

$$
(\operatorname{Tr}(A), \operatorname{Tr}(B), \operatorname{Tr}(A B))
$$

of the Markoff-type surface $x^{2}+y^{2}+z^{2}-x y z=t+2$, since we have the trace identity

$$
\operatorname{Tr}(A)^{2}+\operatorname{Tr}(B)^{2}+\operatorname{Tr}(A B)^{2}-\operatorname{Tr}(A) \operatorname{Tr}(B) \operatorname{Tr}(A B)=\operatorname{Tr}\left(A B A^{-1} B^{-1}\right)+2 .
$$

Integral points on this Markoff-type surface are of independent number-theoretic interest and have been studied in [1] and [5].

Finally, we conclude our paper with a discussion of the data arising from the algorithm, along with several conjectures suggested by our work.

Chapter 2

Commutators of the Free Group

2.1 Proof of Wicks' Theorem for the Free Group

In this section, we give an exposition of Wicks' proof of his theorem [14] that every commutator in F_{r} is conjugate to a Wicks commutator, i.e., a word of the fully cyclically reduced form $A B C A^{-1} B^{-1} C^{-1}$. In fact, this is a full characterization, since a Wicks commutator is indeed a commutator, as seen from

$$
\begin{equation*}
\left(A C^{-1}\right)(C B)\left(A C^{-1}\right)^{-1}(C B)^{-1}=A B C A^{-1} B^{-1} C^{-1} . \tag{2.1}
\end{equation*}
$$

Suppose that W is a nontrivial commutator. Then, the set of commutators of the form $A B C A^{-1} B^{-1} C^{-1}$ (not necessarily cyclically reduced) that are conjugate to W is nonempty, and we can take the least-length such commutator $X Y Z X^{-1} Y^{-1} Z^{-1}$. We will show that this expression is cyclically reduced.

Suppose the contrary. If two of the factors X, Y, and Z are trivial, then we have that W is trivial, a contradiction. First, we suppose that one of X, Y, and Z is trivial. By conjugating, we may assume that Z is trivial. Then, in the expression $X Y X^{-1} Y^{-1}$, we must have that two cyclically adjacent letters in distinct subwords (among X, Y, X^{-1}, and Y^{-1}) are inverses. Again, by conjugating, we may assume that these two letters are the first letter of X and the last letter of Y^{-1}. Then, we must have $X=\alpha X_{1}$ and $Y=\alpha Y_{1}$. But then, $X_{1} \alpha Y_{1} X_{1}^{-1} \alpha^{-1} Y_{1}^{-1}$, which is also of the form $A B C A^{-1} B^{-1} C^{-1}$, is conjugate to
$\alpha X_{1} \alpha Y_{1} X_{1}^{-1} \alpha^{-1} Y_{1}^{-1} \alpha^{-1}$, and thus to W. This contradicts our minimality assumption.
Second, we suppose that none of X, Y, and Z are trivial. Then, in the expression $X Y Z X^{-1} Y^{-1} Z^{-1}$, we must have that two cyclically adjacent letters in distinct subwords (among X, Y, Z, X^{-1}, Y^{-1} and Z^{-1}) are inverses. By conjugating, we may assume that these two letters are the first letter of X and the last letter of Z^{-1}. Then, we must have $X=\alpha X_{1}$ and $Z=\alpha Z_{1}$. However, this implies that $X_{1} Y \alpha Z_{1} X_{1}^{-1} \alpha^{-1} Y^{-1} Z_{1}^{-1}=$ $X_{1}(Y \alpha) Z_{1} X_{1}^{-1}(Y \alpha)^{-1} Z_{1}^{-1}$, which is also of the form $A B C A^{-1} B^{-1} C^{-1}$, is conjugate to $\alpha X_{1} Y \alpha Z_{1} X_{1}^{-1} \alpha^{-1} Y^{-1} Z_{1}^{-1} \alpha^{-1}$, and thus to W. This contradicts our minimality assumption.

Thus, we have proven that a word in F_{r} is a commutator if and only if it is a conjugate of a Wicks commutator.

2.2 Proof of Theorem 1.2

Since the cyclically reduced conjugacy representative of F_{r} is unique up to cyclic permutation, it suffices to count equivalence classes (with respect to cyclic permutation) of Wicks commutators of length $k=2 X$. Let R_{X} denote the set of reduced words of length X, of which there are $2 r \cdot(2 r-1)^{X-1}$. For each such word W, the number of ways to decompose W into A, B, and C (i.e., $W=A B C$ without cancellation) is given by the number of ordered partitions p of X into three (not necessarily nontrivial) parts.

Let $p=\left(n_{1}, n_{2}, n_{3}\right)$. From this point, we suppose that $0<n_{1}, n_{2}, n_{3}$. Define a pair (W, p) to be viable if the resulting word $W^{\prime}:=A B C A^{-1} B^{-1} C^{-1}$ is a Wicks commutator. We now show that for a fixed p, the proportion of $W \in R_{X}$ such that (W, p) is viable is given by

$$
\frac{1}{2 r}+O\left(\frac{1}{(2 r-1)^{n_{1}-1}}+\frac{1}{(2 r-1)^{n_{2}-1}}+\frac{1}{(2 r-1)^{n_{3}-1}}\right)
$$

For $s \in \mathfrak{S}$, let $R_{n}^{s} \subset R_{n}$ denote the subset of words that begin with s, which gives us a decomposition of R_{n} into the disjoint union $R_{n}=\bigcup_{s \in \mathfrak{S}} R_{n}^{s}$. The number q_{n} of words in R_{n}^{s} whose final letter is s is the solution to the linear recurrence given by $q_{1}=1$ and
$q_{i+1}=(2 r-1)^{i-1}-q_{i}$, which is

$$
q_{n}=\frac{(2 r-1)^{n-1}+(-1)^{n-1} \cdot(2 r-1)}{2 r}
$$

Thus, we have that the proportion of words in R_{n}^{s} whose final letter is s is

$$
\frac{q_{n}}{\left|R_{n}^{s}\right|}=\frac{(2 r-1)^{n-1}+(-1)^{n-1} \cdot(2 r-1)}{2 r \cdot(2 r-1)^{n-1}}=\frac{1}{2 r}+O\left(\frac{1}{(2 r-1)^{n-1}}\right)
$$

while the proportion of words whose final letter is s^{-1} is

$$
\frac{1}{2 r-1}\left(1-\frac{q_{n}}{\left|R_{n}^{s}\right|}\right)=\frac{1}{2 r}+O\left(\frac{1}{(2 r-1)^{n-1}}\right) .
$$

Now, fix a partition p, and consider R_{X} with the uniform probability measure placed on its elements. Within the decomposition $W=A B C$ in accordance with p, let the first letter and last letter of A respectively be a_{0} and a_{1}, and define b_{0}, b_{1}, c_{0}, and c_{1} similarly. We will compute the probability that (W, p) is viable for a random $W \in R_{X}$, i.e., the probability that $b_{1} \neq a_{0}^{-1}, c_{0} \neq a_{0}, c_{1} \neq a_{1}$, and $c_{1} \neq b_{0}^{-1}$.

Suppose that the first letter of W is s. Then, by our work above, the set of possible candidates for $a_{1} b_{0}$ is the $2 r(2 r-1)$-element set $S=\left\{w z: w, z \in \mathfrak{S}, w \neq z^{-1}\right\}$, each of which has probability

$$
\frac{1}{2 r-1}\left(\frac{1}{2 r}+O\left(\frac{1}{(2 r-1)^{n_{1}-1}}\right)\right)=\frac{1}{2 r(2 r-1)}+O\left(\frac{1}{(2 r-1)^{n_{1}}}\right) .
$$

We fix a choice of $a_{1} b_{0}$ in S, and all probabilities from now on are conditional on this event. The set of possible candidates for $b_{1} c_{0}$ is also S, each of which has probability $1 / 2 r(2 r-1)+O\left(1 /(2 r-1)^{n_{2}}\right)$. Let $S^{\prime} \subset S$ be the subset of possible candidates for $b_{1} c_{0}$ that satisfy the conditions $a_{0} \neq b_{1}^{-1}$ and $a_{0} \neq c_{0}$. The cardinality of S^{\prime} can be computed as follows: there are $2 r-1$ choices for b_{1} satisfying $s \neq b_{1}^{-1}$, and conditional on this, there are $2 r-2$ choices for c_{0} satisfying $s \neq c_{0}$ and $b_{0} \neq c_{0}^{-1}$, for a total of $(2 r-1)(2 r-2)$ elements of S^{\prime}. Fix a choice of $b_{1} c_{0}$ in S^{\prime}, and all probabilities from now on are conditional on this event. Since $a_{1} \neq b_{0}^{-1}$, the conditions $c_{1} \neq a_{1}$ and $c_{1} \neq b_{0}^{-1}$ leave precisely $2 r-2$ (out of
$2 r)$ possible values for c_{1}, so the probability that c_{1} satisfies these conditions is

$$
\frac{2 r-2}{2 r}+O\left(\frac{1}{(2 r-1)^{n_{3}}}\right) .
$$

Overall, we have that the probability that (W, p) is viable is

$$
\begin{aligned}
& 2 r(2 r-1) \cdot\left(\frac{1}{2 r(2 r-1)}+O\left(\frac{1}{(2 r-1)^{n_{1}}}\right)\right) \\
& \cdot(2 r-1)(2 r-2)\left(\frac{1}{2 r(2 r-1)}+O\left(\frac{1}{(2 r-1)^{n_{2}}}\right)\right) \\
& \cdot(2 r-2)\left(\frac{1}{2 r}+O\left(\frac{1}{(2 r-1)^{n_{3}-1}}\right)\right) \\
& =\left(\frac{2 r-2}{2 r}\right)^{2} \cdot\left(1+O\left(\frac{1}{(2 r-1)^{n_{1}-2}}\right)\right) \cdot\left(1+O\left(\frac{1}{(2 r-1)^{n_{2}-2}}\right)\right) \\
& \cdot\left(1+O\left(\frac{1}{(2 r-1)^{n_{3}-2}}\right)\right) \\
& =\left(\frac{2 r-2}{2 r}\right)^{2}\left(1+O\left(\frac{1}{(2 r-1)^{n_{1}-2}}+\frac{1}{(2 r-1)^{n_{2}-2}}+\frac{1}{(2 r-1)^{n_{3}-2}}\right)\right)
\end{aligned}
$$

The number of (W, p) that are viable is then given by

$$
\left.\left.\begin{array}{rl}
& \sum_{\substack{0<n_{1}, n_{2}, n_{3} \\
n_{1}+n_{2}+n_{3}=X}} 2 r(2 r-1)^{X-1}\left(\frac{2 r-2}{2 r}\right)^{2} \\
\cdot & \left(1+O\left(\frac{1}{(2 r-1)^{n_{1}-2}}+\frac{1}{(2 r-1)^{n_{2}-2}}+\frac{1}{(2 r-1)^{n_{3}-2}}\right)\right) \\
= & \frac{(2 r-2)^{2}(2 r-1)^{X-1}}{2 r} \\
\cdot & \left(\frac{(X-2)(X-1)}{2}+\sum_{\substack{0<n_{1}, n_{2}, n_{3} \\
n_{1}+n_{2}+n_{3}=X}} O\left(\frac{1}{(2 r-1)^{n_{1}-2}}+\frac{1}{(2 r-1)^{n_{2}-2}}+\frac{1}{(2 r-1)^{n_{3}-2}}\right)\right) \\
= & \frac{(2 r-2)^{2}(2 r-1)^{X-1}}{2 r}\left(\frac{(X-2)(X-1)}{2}+3 \cdot O\left(\sum_{\sum_{0<n_{1}, n_{2}, n_{3}}} \frac{1}{(2 r-1)^{n_{1}-2}}\right)\right) \\
= & \frac{(2 r-2)^{2}(2 r-1)^{X-1}}{2 r}\left(\frac{(X-2)(X-1)}{2}+O\left(\sum _ { n _ { 1 } = 1 } ^ { X - 2 } \left(X-1-n_{2}+n_{3}=X\right.\right.\right.
\end{array}\right)\right)
$$

$$
\begin{aligned}
& =\frac{(2 r-2)^{2}(2 r-1)^{X-1}}{2 r} \\
& \cdot\left(\frac{(X-2)(X-1)}{2}+O\left(\frac{(2 r-1)^{2}\left((2 r-1)^{2-X}+X(2 r-2)-4 r+3\right)}{(2 r-2)^{2}}\right)\right) \\
& =\frac{(2 r-2)^{2}(2 r-1)^{X-1}}{4 r}\left(X^{2}+O\left(\frac{r^{2}}{(2 r-1)^{X}}+r X\right)\right)
\end{aligned}
$$

While all commutators arise from viable pairs (W, p), there could be a commutator $A B C A^{-1} B^{-1} C^{-1}$ arising from distinct viable pairs, say $\left(W, p_{1}\right)$ and (W, p_{2}) for $p_{1}=$ $\left(n_{1}, n_{2}, n_{3}\right)$, and $p_{2}=\left(m_{1}, m_{2}, m_{3}\right)$. We show that the number of such commutators is small.

Let $W=A B C$ be its decomposition with respect to p_{1}, and $W=A^{\prime} B^{\prime} C^{\prime}$ its decomposition with respect to p_{2}. Consider the function $f:\{1, \ldots, X\} \rightarrow\{1, \ldots, X\}^{2}$ that maps i to (j, k) in the following way: the i th letter of $A^{-1} B^{-1} C^{-1}$, when corresponding to p_{1}, is the inverse of the j th letter of W, and when corresponding to p_{2}, is the inverse of the k th letter of W. For example, the first letter of $A^{-1} B^{-1} C^{-1}$ is defined to be the inverse of the n_{1} th when the decomposition is in terms of p_{1}, and is defined to be the m_{1} th letter of W when in terms of p_{2}, so $f(1)=\left(n_{1}, m_{1}\right)$. We consider two cases: when the two entries of $f(i)$ are distinct for all i, and otherwise. In the first case, the following algorithm allows us to reduce the degrees of freedom for the letters of W by at least half:

1. Let $i=1$. For $f(i)=\left(j_{i}, k_{i}\right)$, do the following:

- If neither the j_{i} th or the k_{i} th position has an indeterminate variable assigned to it, then assign a new indeterminate variable simultaneously to the j_{i} th and k_{i} th positions. This increases the number of indeterminate variables by two.
- If just one of the j_{i} th and the k_{i} th positions has an indeterminate variable assigned to it, but the other does not, then assign this indeterminate variable to the former.
- If both the j_{i} th and the k_{i} th positions have the same indeterminate variable assigned to them, make no changes.
- If the j_{i} th and the k_{i} th positions have distinct indeterminate variables assigned to them, set these indeterminate variables equal to each other. This decreases the number of indeterminate variables by one.

2. Increment i by one and repeat this procedure for all $1 \leq i \leq X$.

By our hypothesis that the two entries of $f(i)$ are distinct for all i, the number of indeterminate variables, which precisely represents the number of degrees of freedom for the word W such that $\left(W, p_{1}\right)$ and $\left(W, p_{2}\right)$ give rise to the same commutator, is $\leq X / 2$. It follows that there are only $O\left((2 r-1)^{X / 2}\right)$ of such words for each pair p_{1}, p_{2}.

Now, consider the next case that there exists an i such that the two entries of $f(i)$ are equal. Then, we consider the following three cases for W, p_{1}, and p_{2} :

Case 1. Suppose the smallest i such that the two entries of $f(i)$ are equal satisfies that this entry is a position in A. Then, $n_{1}=m_{1}$ must be this entry and i must equal 1 , since otherwise we can continue to decrement i so that the two entries of $f(i)$ are incremented and remain equal, a contradiction. Next, the subwords $B^{-1} C^{-1}$ and $B^{\prime-1} C^{\prime-1}$ must be equal. Without loss of generality, suppose that $n_{2}>m_{2}$. Decompose $B=B^{\prime} D$ so that our condition $B^{-1} C^{-1}=B^{\prime-1} C^{\prime-1}$ is precisely $C B^{\prime} D=D C B^{\prime}$. Since $C B^{\prime}$ and D commute, we have that they are both powers of a common subword V; without loss of generality, the powers are positive, since otherwise there would be cancellation, which contradicts that the commutator is cyclically reduced. We can bound the number of (W, p) satisfying this case by counting, for each $i=X-n_{1}$ and for each proper divisor $d \mid i$ (denoting the length of V), the number of ways to place V in the right subword of length i and the number of degrees of freedom. Thus, the number of additional Wicks commutators arising from this case can be upper-bounded by

$$
\begin{aligned}
& \sum_{i=1}^{X-1} \sum_{\substack{d \mid i \\
d \neq i}}(i-d+1) \cdot(2 r-1)^{X-i+d} \\
& \leq(2 r-1)^{X} \cdot \sum_{i=2}^{X-1} \sum_{1 \leq d \leq \frac{i}{2}}(i-d+1) \cdot(2 r-1)^{-i+d}
\end{aligned}
$$

$$
\begin{aligned}
& =(2 r-1)^{X} \cdot \sum_{i=2}^{X-1}(2 r-1)^{-i} \sum_{1 \leq d \leq \frac{i}{2}}(i-d+1) \cdot(2 r-1)^{d} \\
& \leq(2 r-1)^{X} \cdot \sum_{i=2}^{X-1}(2 r-1)^{-i+1} \frac{i(2 r-2)\left((2 r-1)^{\frac{i}{2}}-2\right)+2(2 r-1)\left((2 r-1)^{\frac{i}{2}}-1\right)}{2(2 r-2)^{2}} \\
& \ll(2 r-1)^{X},
\end{aligned}
$$

which is dominated by our error term.
Case 2. Suppose the smallest i such that the two entries of $f(i)$ are equal satisfies that this entry is a position in C. An argument symmetric to that above can be given to show that the above expression is also an upper bound for the number of (W, p) satisfying this case.

Case 3. Suppose the smallest i such that the two entries of $f(i)$ are equal satisfies that this entry is a position in B. Without loss of generality, suppose $n_{1}>m_{1}$. Then, $f\left(m_{1}+1\right)=\left(n_{1}-m_{1}, m_{1}+m_{2}\right)$, and by an argument similar to that in Case (1), we have that the simultaneous entry of the aforementioned $f(i)$ must be $n_{1}+n_{2}$, with $n_{1}-m_{1}=$ $n_{3}-m_{3}$ so that $f\left(m_{1}+1\right)=\left(n_{1}-m_{1}, n_{1}+n_{2}+\left(n_{1}-m_{1}\right)\right)$. Thus, divide W into $D E F G H$ so that $|D|+|E|=n_{1},|G|+|H|=n_{3}$, and $|E|=|G|$. Then, $\left(W, p_{1}\right)$ gives rise to the commutator $W E^{-1} D^{-1} F^{-1} H^{-1} G^{-1}$, while (W, p_{2}) gives rise to the commutator $W D^{-1} G^{-1} F^{-1} E^{-1} H^{-1}$. Since these are equal, it follows that $D E=G D$ and $G H=$ $H E$. Note that if a word \square satisfies the equality $\square E=G \square$ without cancellation, then \square is uniquely determined, since one can inductively identify the letters of \square from left to right (or right to left). It follows that $D=H$. But this contradicts the assumption that $D E F G H D^{-1} G^{-1} F^{-1} E^{-1} H^{-1}$ is cyclically reduced.

Note that pairs (W, p) such that $n_{i}=0$ for some $i \in\{1,2,3\}$ are counted in the above cases, which justifies our assumption of $n_{1}, n_{2}, n_{3}>0$ in our earlier counting of the main term.

We have shown that the number of Wicks commutators having length X is

$$
\frac{(2 r-2)^{2}(2 r-1)^{X-1}}{4 r}\left(X^{2}+O_{r}(X)\right) .
$$

We need to count the number of conjugacy classes containing at least one such commutator. Consider the conjugacy class \mathcal{C} of the Wicks commutator $W^{\prime}=A B C A^{-1} B^{-1} C^{-1}$ arising from (W, p), where $p=\left(n_{1}, n_{2}, n_{3}\right)$. Note that the minimum-length elements in a conjugacy class are precisely the cyclically reduced words, and that two cyclically reduced words are conjugate if and only if they are cyclically conjugate. The Wicks commutators $B C A^{-1} B^{-1} C^{-1} A, C A^{-1} B^{-1} C^{-1} A B, A^{-1} B^{-1} C^{-1} A B C, B^{-1} C^{-1} A B C A^{-1}$, and $C^{-1} A B C A^{-1} B^{-1}$ are conjugates of W^{\prime}. We show that the number of other Wicks commutators in \mathcal{C} is on average negligible.

For an arbitrary $1 \leq \ell \leq n_{3} / 2$ denoting the number of letters of the conjugation, let $C=D E F$ be a decomposition without cancellation such that $|D|=|F|=\ell$. Label the letters of W^{\prime} by $A=a_{1} \cdots a_{n_{1}}, B=b_{1} \cdots b_{n_{2}}, D=d_{1} \cdots d_{\ell}, E=e_{1} \cdots e_{n_{3}-2 \ell}$, and $F=f_{1} \cdots f_{\ell}$. Consider the cyclic conjugate $W^{\prime \prime}:=D^{-1} A B D E F A^{-1} B^{-1} F^{-1} E^{-1}$ of W^{\prime}. We wish to show that on average, $W^{\prime \prime}$ is not a Wicks commutator. Suppose the contrary, that there exists a partition $p^{\prime}=\left(m_{1}, m_{2}, m_{3}\right)$ of X into three parts such that

$$
W^{\prime \prime}=D^{-1} A B D E F A^{-1} B^{-1} F^{-1} E^{-1}=w_{1} w_{2} w_{3} w_{1}^{-1} w_{2}^{-1} w_{3}^{-1}
$$

for subwords w_{1}, w_{2}, and w_{3} of lengths m_{1}, m_{2}, and m_{3}.
Label the letters of A from left to right as $a_{1}, \ldots, a_{n_{1}}$, and label the letters of B, C, D, E, and F similarly. We have that w_{1}, w_{2}, and w_{3} as subwords comprised of the letters

$$
\begin{equation*}
d_{\ell}^{-1}, \ldots, d_{1}^{-1}, a_{1}, \ldots, a_{n_{1}}, b_{1}, \ldots, b_{n_{2}}, d_{1}, \ldots, d_{\ell}, e_{1}, \ldots, e_{n_{3}-2 \ell} \tag{2.2}
\end{equation*}
$$

and we accordingly consider the subwords w_{1}^{-1}, w_{2}^{-1}, and w_{3}^{-1} as comprised of the inverses of these letters. Then, note that the second half of W^{\prime} can be considered in two forms:

$$
F A^{-1} B^{-1} F^{-1} E^{-1}=w_{1}^{-1} w_{2}^{-1} w_{3}^{-1} .
$$

Equivalently, this equality can be written as

$$
\begin{equation*}
E F B A F^{-1}=w_{3} w_{2} w_{1} \tag{2.3}
\end{equation*}
$$

Consider the function g mapping the ordered set of symbols of the left-hand side,

$$
\mathcal{A}:=\left\{e_{1}, \ldots, e_{n_{3}-2 \ell}, f_{1}, \ldots, f_{\ell}, b_{1}, \ldots, b_{n_{2}}, a_{1}, \ldots, a_{n_{1}}, f_{\ell}^{-1}, \ldots, f_{1}\right\}
$$

to the ordered set \mathcal{B} of symbols of the right-hand side (2.2). Specifically, g maps the i th leftmost letter of the left-hand side of (2.3) to the i th leftmost letter of the right-hand side.

First, suppose g has no fixed points (\mathfrak{i} such that $g(\mathfrak{i})=\mathfrak{i}$). Then, use an algorithm similar to the previous one to conclude that there are $\leq X / 2$ degrees of freedom for $A B D E F$, so W must be one of only $O\left((2 r-1)^{X / 2}\right)$ choices (for each choice of ℓ and p^{\prime}).

Now, suppose that there exists an \mathfrak{i} such that $g(\mathfrak{i})=\mathfrak{i}$. Such fixed points \mathfrak{i} must be letters of A, B, or E. We first consider the case that all the fixed points are letters of only one of A, B, and E. In this case, we consider the following subcases for W, p, and p^{\prime} :

Case 1. Suppose that the fixed points are letters of E. Then, all of the fixed points must be in one of w_{2} and w_{3}; they cannot be in w_{1}, since this would mean that w_{1} contains e_{1}, but e_{1} is necessarily located at different positions in the left-hand side and right-hand side of (2.3). Suppose that the fixed points of E are in w_{3}. Then, in order for the letters of E to match, we require that $w_{3}=E$. This means that $g\left(f_{1}\right)$ is the first letter of w_{2}, which is adjacent to the last letter of w_{1}. But the last letter of w_{1} is $g\left(f_{1}^{-1}\right)$, which shows that we have adjacent letters that are inverses. This contradicts the fact that W^{\prime} is cyclically reduced.

Next, suppose all the fixed points are in w_{2}. Then, we must have that $m_{3}+1=$ $n_{3}-2 \ell-\left(m_{2}+m_{3}\right)$ so that the first letter of w_{2} is at the same position in both the left-hand and right-hand side. Thus, $m_{2}+2 m_{3}=n_{3}-2 \ell-1$, which means there are $\leq\left(n_{3}-2 \ell-1\right) / 2$ choices for p^{\prime} parametrized by $m_{3} \leq\left(n_{3}-2 \ell-1\right) / 2$. For each such choice of p^{\prime}, there are $m_{2}=n_{3}-2 \ell-\left(1+m_{3}+m_{3}\right)=n_{3}-2 \ell-2 m_{3}-1$ fixed letters, from $e_{m_{3}+1}$ to $e_{n_{3}-2 \ell-m_{3}+1}$, and $\left(X-\left(n_{3}-2 \ell-2 m_{3}-1\right)\right) / 2$ non-fixed letters. Counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks
commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X} \sum_{n_{2}=0}^{X-n_{1}} \sum_{\ell=1}^{\left\lfloor\frac{X-n_{1}-n_{2}}{2}\right\rfloor} \sum_{m_{3}=0}^{2}(2 r-1)^{\frac{X+n_{3}-2 \ell-2 m_{3}-1}{2}} \ll(2 r-1)^{X}
$$

which is dominated by our error term.
Case 2. Suppose that the fixed points are letters of B. Then, all of the fixed points must be in one of w_{1}, w_{2}, and w_{3}. First, suppose they are in w_{1}. Then, note that $g\left(f_{\ell}\right)=a_{n_{1}}$, but we also have $g\left(a_{n_{1}}\right)$ is next to $g\left(f_{\ell}^{-1}\right)$, which leads to the contradiction that a letter cannot equal its inverse. Second, suppose the fixed letters are in w_{3}. Then, $g\left(d_{1}\right)=a_{1}$, but a_{1} is adjacent to d_{1}^{-1}, a contradiction.

Thus, the fixed points of B must be in w_{2}. We consider three subcases: $n_{2}>m_{2}$, $n_{2}<m_{2}$, and $n_{2}=m_{2}$. If $n_{2}>m_{2}$, then in order for the letters of B to match, we require
 $\left.g\left(f^{-1}\right)=b_{\frac{n_{2}+m_{2}}{2}-1}\right)$ and $e_{n_{3}-2 \ell}\left(\right.$ since $\left.g\left(b_{\frac{n_{2}+m_{2}}{2}-1}\right)=e_{n_{3}-2 \ell}\right)$), which contradicts the fact that f_{1} and $e_{n_{3}-2 \ell}$ are adjacent. If $n_{2}<m_{2}$, then $g\left(f_{\ell}\right)=a_{n_{1}}$, but also $g\left(a_{n_{1}}\right)$ is the letter in $D^{-1} A$ that is left of the letter $g\left(f_{\ell}^{-1}\right)$, giving us the contradiction that the value of f_{ℓ} is adjacent to f_{ℓ}^{-1}. This implies that $n_{2}=m_{2}$, from which we can use an argument similar to that in Case 1 of the previous casework (showing that W^{\prime} on average can be only decomposed as a commutator in one way) to conclude that A is a power of D^{-1} and E, a power of D. It follows that our original (W, p) is one of the pairs falling under Case 1 of the previous casework, which are negligible.

Case 3. Suppose that the fixed points are letters of A. Then, all of the fixed points must be in one of w_{1} and w_{2}; they cannot be in w_{3}, since then there must be more than ℓ letters right of A. Suppose the fixed letters of A are in w_{1}. Then, we must have $g\left(b_{n_{2}}\right)=d_{1}^{-1}$, which contradicts the fact that $b_{n_{2}}$ is adjacent to d_{1}. Therefore, the fixed points are necessarily in w_{2}. This requires that $m_{1}-\ell+1=n_{1}+\ell-\left(m_{1}-m_{2}\right)$ in order for the letters of A to be in matching positions. Thus, we have $m_{2}=n_{1}+2 \ell-2 m_{1}-1$. Note then that p^{\prime} is parametrized by $m_{1} \leq\left(n_{1}+2 \ell-1\right) / 2$. For each choice of p^{\prime}, we have n_{1} fixed letters (and $\left(X+n_{1}\right) / 2 \leq\left(X+n_{1}-m_{1}+\ell\right) / 2$ overall degrees of freedom $)$ if $m_{1} \leq \ell$, and $n_{1}-\left(m_{1}-\ell\right)$
fixed letters (and $\left(X+n_{1}-m_{1}+\ell\right) / 2$ overall degrees of freedom) if $m_{1}>\ell$. Thus, counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X} \sum_{n_{2}=0}^{X-n_{1}\lfloor } \sum_{\ell=1}^{\left\lfloor\frac{X-n_{1}-n_{2}}{2}\right\rfloor} \sum_{m_{1}=0}^{\left\lfloor\frac{n_{1}+2 \ell-1}{2}\right\rfloor}(2 r-1)^{\frac{X+n_{1}+\ell-m_{1}}{2}} \ll(2 r-1)^{X},
$$

which is dominated by our error term.
Next, consider the case where the fixed points are in two of A, B, and E. It is necessary that the fixed letters inside these two subwords must respectively be in two distinct subwords among w_{1}, w_{2}, and w_{3}. However, we have shown above that the subwords w_{1} and w_{3} cannot contain fixed points, a contradiction. Finally, the fixed letters cannot be in all of A, B, and E. Indeed, if this were true, then in order for the letters of A and E to match, we require $m_{1}=n_{1}+2 \ell$ and $m_{3}=n_{3}$. But then the letters of B cannot possibly match, a contradiction.

If $\ell \geq n_{3} / 2$, then we can think of our commutator as a cyclic conjugate of $C^{-1} A B C A^{-1} B^{-1}$ such that the letters are moved from left to right. A symmetric argument like above gives us the same conclusion for this case. We have thus shown that the number of conjugacy classes of commutators with length $2 X$ is given by

$$
\begin{aligned}
\frac{1}{6} & \cdot \frac{(2 r-2)^{2}(2 r-1)^{X-1}}{4 r}\left(X^{2}+O_{r}(X)\right) \\
& =\frac{(2 r-2)^{2}(2 r-1)^{X-1}}{24 r}\left(X^{2}+O_{r}(X)\right),
\end{aligned}
$$

as needed.

Chapter 3

Commutators of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$

3.1 Proof of Wicks' Theorem for Free Products

In addition to his theorem classifying commutators of free groups, Wicks [14] also proved the following analogous theorem characterizing all commutators of a free product of arbitrary groups.

Theorem 3.1 (Wicks). A word in $*_{i \in I} G_{i}$ is a commutator if and only if it is a conjugate of one of the following fully cyclically reduced products:

1. a word comprised of a single letter that is a commutator in its factor G_{i},
2. $X \alpha_{1} X \alpha_{2}^{-1}$, where X is nontrivial and α_{1}, α_{2} belong to the same factor G_{i} as conjugate elements,
3. $X \alpha_{1} Y \alpha_{2} X^{-1} \alpha_{3} Y^{-1} \alpha_{4}$, where X and Y are both nontrivial, $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ belong to the same factor G_{i}, and $\alpha_{4} \alpha_{3} \alpha_{2} \alpha_{1}$ is trivial,
4. $X Y Z X^{-1} Y^{-1} Z^{-1}$,
5. $X Y \alpha_{1} Z X^{-1} \alpha_{2} Y^{-1} Z^{-1} \alpha_{3}$, where Y and at least one of X and Z is nontrivial, $\alpha_{1}, \alpha_{2}, \alpha_{3}$ belong to the same factor G_{i}, and $\alpha_{3} \alpha_{2} \alpha_{1}$ is trivial,
6. $X \alpha_{1} Y \beta_{1} Z \alpha_{2} X^{-1} \beta_{2} Y^{-1} \alpha_{3} Z^{-1} \beta_{3}$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ belong to the same factor G_{i} and $\beta_{1}, \beta_{2}, \beta_{3}$, to $G_{j}, \alpha_{3} \alpha_{2} \alpha_{1}=\beta_{3} \beta_{2} \beta_{1}=1$, and either $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ are not all in the same factor or X, Y, Z are all nontrivial.

Note that in the above, the Greek letters are assumed to be nontrivial. This convention is used later in the proof of Theorem 3.1 as well, where when a Greek letter α is said to satisfy $\alpha \in G_{i}$, we mean that α is a nontrivial element of G_{i}.

Theorem 3.1 implies our claim in the introduction that all commutators of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ are conjugates of Wicks commutators defined in Definition 1.3. Indeed, the free factors of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ are abelian, so the commutators of the form (1) are trivial. Also, if C is a commutator of the form (2), then α_{1} and α_{2} are conjugate elements in an abelian free factor and thus equal, which means C is of the form $A B A^{-1} B^{-1}$.

Next, we consider commutators C of the form (3). Then, we have that the commutators

- $X r Y r^{-1} X^{-1} r^{-1} Y^{-1} r$, which is conjugate to

$$
r X r Y r^{-1} X^{-1} r^{-1} Y^{-1}=(r X r) Y(r X r)^{-1} Y^{-1}
$$

- $X r^{-1} Y r X^{-1} r Y^{-1} r^{-1}$, which is conjugate to

$$
r^{-1} X r^{-1} Y r X^{-1} r Y^{-1}=\left(r^{-1} X r^{-1}\right) Y\left(r^{-1} X r^{-1}\right)^{-1} Y,
$$

- $X r^{-1} Y r^{-1} X r Y^{-1} r=X\left(r^{-1} Y r^{-1}\right) X^{-1}\left(r^{-1} Y r^{-1}\right)^{-1}$,
- $X r Y r X r^{-1} Y^{-1} r^{-1}=X(r Y r) X^{-1}(r Y r)^{-1}$,
- $X r Y r^{-1} X^{-1} r Y^{-1} r^{-1}=X\left(r Y r^{-1}\right) X^{-1}\left(r Y r^{-1}\right)^{-1}$,
- $X r^{-1} Y r X^{-1} r^{-1} Y^{-1} r=X\left(r^{-1} Y r\right) X^{-1}\left(r^{-1} Y r\right)^{-1}$,
are of the form $A B A^{-1} B^{-1}$. Overall, we have that commutators of the form (3) must be of the cyclically reduced form $X Y X^{-1} Y^{-1}$.

If C is of the form (4), then the last letter of X is in different factors compared to the first letter of Y and the last letter of Z, which must also be in different factors, a contradiction. If C is of the form (5), then we must have $\alpha_{1}=\alpha_{2}=\alpha_{3} \in\left\{r, r^{-1}\right\}$. But this would imply that the last letter of Y is in different free factors compared to the first letter of Z and the first letter of X, which contradicts the similar implication that the first letter of Z and the
first letter of X are in different factors. Finally, if C is of the form (6), then we must have $\alpha_{1}=\alpha_{2}=\alpha_{3} \in\left\{r, r^{-1}\right\}$ and $\beta_{1}=\beta_{2}=\beta_{3} \in\left\{r, r^{-1}\right\}$. Thus, commutators of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ must be of the fully cyclically reduced form $X Y X^{-1} Y^{-1}$ or $X \alpha Y \beta Z \alpha X^{-1} \beta Y^{-1} \alpha Z^{-1} \beta$ for $\alpha, \beta \in\left\{r, r^{-1}\right\}$, as we have claimed.

We now exposit a proof of Theorem 3.1, Wicks' theorem for an arbitrary free product $G=*_{i \in I} G_{i}$. We follow the original proof in [14]. First, we check that the possible forms given in the statement of Theorem 3.1 are in fact commutators. (1) is clearly a commutator. Since $\alpha_{1}=\xi \alpha_{2} \xi^{-1}$ in (2) for some $\xi \in G_{i}$, we have that $X \alpha_{1} X^{-1} \alpha_{2}^{-1}=$ $X \xi \alpha_{2} \xi^{-1} X^{-1} \alpha_{2}^{-1}=(X \xi) \alpha_{2}(X \xi)^{-1} \alpha_{2}^{-1}$. Next, check that for (3), we have $\alpha_{4}=\alpha_{1}^{-1} \alpha_{2}^{-1} \alpha_{3}^{-1}$, which gives that $X \alpha_{1} Y \alpha_{2} X^{-1} \alpha_{3} Y^{-1} \alpha_{4}=X \alpha_{1} Y \alpha_{2} X^{-1} \alpha_{3} Y^{-1} \alpha_{1}^{-1} \alpha_{2}^{-1} \alpha_{3}^{-1}$ is conjugate to $\alpha_{3}^{-1} X \alpha_{1} Y \alpha_{2} X^{-1} \alpha_{3} Y^{-1} \alpha_{1}^{-1} \alpha_{2}^{-1}=\left(\alpha_{3}^{-1} X\right)\left(\alpha_{1} Y\right) \alpha_{2}\left(\alpha_{3} X\right)^{-1}\left(\alpha_{1} Y\right)^{-1} \alpha_{2}^{-1}$. (4) is a commutator, as shown in (2.1). (6) is a commutator because $\alpha_{3}=\alpha_{1}^{-1} \alpha_{2}^{-1}$ and $\beta_{3}=\beta_{1}^{-1} \beta_{2}^{-1}$, which shows that $X \alpha_{1} Y \beta_{1} Z \alpha_{2} X^{-1} \beta_{2} Y^{-1} \alpha_{3} Z^{-1} \beta_{3}=X \alpha_{1} Y \beta_{1} Z \alpha_{2} X^{-1} \beta_{2} Y^{-1} \alpha_{1}^{-1} \alpha_{2}^{-1} Z^{-1} \beta_{1}^{-1} \beta_{2}^{-1}$ is conjugate to the following commutator of form (4): $\beta_{2}^{-1} X \alpha_{1} Y \beta_{1} Z \alpha_{2} X^{-1} \beta_{2} Y^{-1} \alpha_{1}^{-1} \alpha_{2}^{-1} Z^{-1} \beta_{1}^{-1}$ $=\left(\beta_{2}^{-1} X\right)\left(\alpha_{1} Y\right)\left(\beta_{1} Z \alpha_{2}\right)\left(\beta_{2}^{-1} X\right)^{-1}\left(\alpha_{1} Y\right)^{-1}\left(\beta_{1} Z \alpha_{2}\right)^{-1}$. Finally, (5) is a commutator by substituting $\alpha_{1}=\alpha_{2}=\alpha_{3}=1$ in the above expression for (6) and its conjugate.

Next, we show the other direction that every commutator is in one of these six forms. Define a word in G to be fully reduced if no adjacent pair of letters is in the same free factor G_{i}. Let C be a nontrivial commutator of G, and let V be the shortest word conjugate to C and of the form $X Y Z X^{-1} Y^{-1} Z^{-1}$ such that X, Y, and Z are fully reduced. If V is fully cyclically reduced, then we are done, so suppose V is not fully cyclically reduced. If two subwords among X, Y, and Z are trivial, then C must be trivial. We thus consider two cases: Case 1 , that one of the subwords X, Y, and Z (without loss of generality, Z) is trivial; and Case 2, that none of them are trivial.

Case 1. Since V is not fully cyclically reduced, we can, by conjugation, assume that the first letter of X and the last letter of Y^{-1} are in the same free factor G_{i}. Let $X=\eta X_{1}$ and $Y=\xi Y_{1}$ for $\eta, \xi \in G_{i}$, and write $\zeta=\xi^{-1} \eta \in G_{i}$. Indeed, ζ cannot be trivial, since if this were true, then V would be conjugate to $X_{1} \xi Y_{1} X_{1}^{-1} \xi^{-1} Y_{1}^{-1}$, which contradicts the assumption that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ was taken to have minimum length. Thus, we have that V is conjugate to $V_{1}=X_{1} \xi Y_{1} X_{1}^{-1} \eta^{-1} Y_{1}^{-1} \zeta$. At this point, we consider four subcases:

Subcase 1, that both X_{1} and Y_{1} are trivial; Subcase 2, that only X_{1} trivial; Subcase 3, that only Y_{1} is trivial; and Subcase 4, that both X_{1} and Y_{1} are nontrivial.

Subcase 1. V is conjugate to $V_{1}=\xi \eta^{-1} \xi^{-1} \eta$, which reduces to a single-letter commutator in G_{i}.

Subcase 2. We have $V_{1}=X_{1} \xi X_{1}^{-1} \eta^{-1} \zeta$. Note that $\eta^{-1} \zeta$ reduces to some single-letter element $\nu \in G_{i}$ that is conjugate to ξ^{-1}, since $\eta^{-1} \zeta=\eta^{-1} \xi^{-1} \eta$. If the further reduced word $V_{2}=X_{1} \xi X_{1}^{-1} \nu$ is fully cyclically reduced, then we are done. On the other hand, the only way V_{2} is not fully cyclically reduced is if the last letter of X_{1} is in G_{i}. If this is true, say $X_{1}=X_{2} \epsilon$ for $\epsilon \in G_{1}$, we require that X_{2} be nontrivial, since otherwise X_{1} would begin with a letter in G_{i}, which contradicts that X is fully reduced. Thus, we have that $V_{2}=X_{2} \epsilon \xi \epsilon^{-1} X_{2}^{-1} \nu$. Then, $\epsilon \xi \epsilon^{-1}$ is conjugate to ξ, and thus conjugate to ν^{-1}, so $\epsilon \xi \epsilon^{-1}$ reduces to a single-letter element of G_{i} that is conjugate to ν^{-1}, which yields a commutator of one of the desired forms.

Subcase 3. We have $V_{1}=\xi Y_{1} \eta^{-1} Y_{1}^{-1} \zeta$, which is conjugate to $Y_{1} \eta^{-1} Y_{1}^{-1} \nu$ for $\nu=\zeta \xi=$ $\xi^{-1} \eta \xi$. Thus, the argument in Subcase 2 can be immediately applied to this subcase to obtain the same conclusion.

Subcase 4. We have $V_{1}=X_{1} \xi Y_{1} X_{1}^{-1} \eta^{-1} Y_{1}^{-1} \zeta$. If this is fully cyclically reduced, then we are done, so suppose not. We already have that the first letters of X_{1} and Y_{1} are in different free factors than G_{i}, so one of the following four must be true about the last letters of X_{1} and Y_{1} : Subcase 4.a, they are both in G_{i}; Subcase 4.b, they are both in G_{j} for $j \neq i$; Subcase 4.c, the last letter of X_{1} is in G_{i} while the last letter of Y_{1} is in G_{j} for $j \neq i$, and Subcase 4.d, the last letter of Y_{1} is in G_{i} while the last letter of X_{1} is in G_{j} for $j \neq i$. We go through each of these subcases.

Subcase 4.a. Let $X_{1}=X_{2} \nu$ and $Y_{1}=Y_{2} \epsilon$ for $\nu, \epsilon \in G_{i}$. Since the first letters of X_{1} and Y_{1} must be in a free factor different from G_{i}, it follows that X_{2} and Y_{2} are nontrivial. We have $V_{1}=X_{2} \epsilon \xi Y_{2} \nu \epsilon^{-1} X_{2}^{-1} \eta^{-1} \nu^{-1} Y_{2}^{-1} \zeta$. Note that $\zeta\left(\eta^{-1} \nu^{-1}\right)\left(\nu \epsilon^{-1}\right)(\epsilon \xi)=\zeta \eta^{-1} \xi=1$, so by reducing $\epsilon \xi, \nu \epsilon^{-1}$, and $\eta^{-1} \nu^{-1}$ each to single-letter elements, we reduce V_{1} to a commutator of one of the desired forms.

Subcase 4.b. Let $X_{1}=X_{2} \nu$ and $Y_{1}=Y_{2} \epsilon$ for $\nu, \epsilon \in G_{j}$. If $\nu=\epsilon$, then V_{1} is conjugate to

$$
\eta X_{2} \epsilon \xi Y_{2} X_{2}^{-1} \eta^{-1} \epsilon^{-1} Y_{2}^{-1} \xi^{-1}=\left(\eta X_{2}\right) \epsilon \xi Y_{2}\left(\eta X_{2}\right)^{-1} \epsilon^{-1}\left(\xi Y_{2}^{-1}\right)^{-1}
$$

which contradicts our assumption that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ was taken to have minimum length. Thus, $\nu \epsilon^{-1}=\mu \in G_{j}$, and we have that

$$
V_{1}=X_{2} \epsilon Z \xi Y_{2} \mu X_{2}^{-1} \eta^{-1} Z^{-1} \nu^{-1} Y_{2}^{-1} \zeta
$$

for $Z=1$. This commutator is in one of our desired forms.
Subcase 4.c. Let $X_{1}=X_{2} \nu$ for $\nu \in G_{i}$. If ν and ξ are inverses, then V_{1} is conjugate to

$$
\eta X_{2} Y_{1} \xi X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \xi^{-1}=\left(\eta X_{2}\right) Y_{1} \xi\left(\eta X_{2}\right)^{-1} Y_{1}^{-1} \xi^{-1}
$$

which contradicts our assumption that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ was taken to have minimum length. Thus, $\nu \xi=\mu \in G_{i}$, and we have that

$$
V_{1}=X_{2} \mu Y_{1} \nu^{-1} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \zeta .
$$

Since $\zeta \eta^{-1} \nu^{-1} \mu=\zeta \eta^{-1} \nu^{-1} \nu \xi=1$, this commutator is in one of our desired forms.
Subcase 4.d. Let $Y_{1}=Y_{2} \nu$ for $\nu \in G_{i}$. If ν and η are inverses, then V_{1} is conjugate to

$$
\eta X_{1} \xi Y_{2} \eta^{-1} X_{1}^{-1} Y_{2}^{-1} \xi^{-1}=\eta X_{1}\left(\xi Y_{2}\right) \eta^{-1} X_{1}^{-1}\left(\xi Y_{2}\right)^{-1}
$$

which contradicts our assumption that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ was taken to have minimum length. Thus, $\nu \eta=\mu \in G_{i}$, and we have that

$$
V_{1}=X_{1} \xi Y_{2} \nu X_{2}^{-1} \mu^{-1} Y_{2}^{-1} \zeta .
$$

Since $\zeta \mu^{-1} \nu \xi=\zeta \eta^{-1} \nu^{-1} \nu \xi=1$, this commutator is in one of our desired forms. This concludes our proof in Case 1.

Case 2. We assumed that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ is not fully cyclically reduced. By
conjugation, we can suppose that the first letter of X and the first letter of Z are in the same free factor, say $X=\eta X_{1}$ and $Z=\xi Z_{1}$. Let $\zeta=\xi^{-1} \eta \in G_{i}$, which cannot be trivial; if it were, then $V=X_{1}(Y \xi) Z_{1} X_{1}^{-1}(Y \xi)^{-1} Z_{1}^{-1}$, which contradicts our assumption that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ was taken to have minimum length. We then have that V is conjugate to

$$
\begin{equation*}
V_{1}=X_{1} Y \xi Z_{1} X_{1}^{-1} \eta^{-1} Y^{-1} Z_{1}^{-1} \zeta \tag{3.1}
\end{equation*}
$$

If V_{1} is fully cyclically reduced, then we are done. Consequently, suppose not. First, suppose for the sake of a contradiction that the last letter of Y is in G_{i}, say $Y=Y_{1} \nu$ for $\nu \in G_{i}$. Then,

$$
V_{1}=X_{1} Y_{1} \nu \xi Z_{1} X_{1}^{-1} \eta^{-1} \nu^{-1} Y^{-1} Z_{1}^{-1} \zeta=X_{1}\left(Y_{1} \mu\right)\left(\zeta Z_{1}\right) X_{1}^{-1}\left(Y_{1} \mu\right)^{-1}\left(\zeta Z_{1}\right)^{-1}
$$

for $\mu=\nu \eta$. We have used that $\mu \zeta^{-1}=\nu \eta \eta^{-1} \xi=\nu \xi$. This contradicts our assumption that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ was taken to have minimum length. Thus, the last letter of Y must be in a free factor different from G_{i}. In light of this, it follows from our assumption that V_{1} is not fully cyclically reduced that one of four subcases must hold: Subcase 1, that both X_{1} and Z_{1} are trivial; Subcase 2, that only X_{1} is trivial; Subcase 3 , that only Z_{1} is trivial; and Subcase 4, that both X_{1} and Z_{1} are nontrivial.

Subcase 1. We have $V_{1}=Y \xi \eta^{-1} Y^{-1} \zeta$, where $\xi \eta^{-1}$ is a conjugate of $\zeta^{-1}=\eta^{-1} \xi$. Thus, reducing $\xi \eta^{-1}$ to a single-letter element of G_{i}, we obtain one of our desired commutator forms.

Subcase 2. We have that $V_{1}=Y \xi Z_{1} \eta^{-1} Y^{-1} Z_{1}^{-1} \zeta$ is conjugate to $V_{2}=Z_{1} \eta^{-1} Y^{-1} Z_{1}^{-1} \zeta Y \xi$. Since $\left(\eta^{-1}\right)^{-1} \zeta^{-1}=\eta \eta^{-1} \xi=\xi$, this subcase is equivalent to Case 1 Subcase 4.

Subcase 3. We have that $V_{1}=X_{1} Y \xi X_{1}^{-1} \eta^{-1} Y^{-1} \zeta$ is conjugate to $V_{2}=Y^{-1} \zeta X_{1} Y \xi X_{1}^{-1} \eta^{-1}$. Since $\zeta^{-1} \xi^{-1}=\eta^{-1} \xi \xi^{-1}=\eta^{-1}$, this subcase is also equivalent to Case 1 Subcase 4.

Subcase 4. Since (3.1) is not fully cyclically reduced, one of the following must be true: the last letter of X_{1} and the first letter of Y are in the same free factor, the last letter of Z_{1} and the last letter of X_{1} are in the same free factor, or the first letter of Y and the last letter of Z_{1} are in the same factor. Given this, we consider the following four subcases: Subcase
4.a, that the first letter of Y, the last letter of X_{1}, and the last letter of Z_{1} are all in the same factor G_{j}; Subcase 4.b, that the first letter of Y and the last letter of X_{1}, but not the last letter of Z_{1}, are in the same factor G_{j}; Subcase 4.c, that the first letter of Y and the last letter of Z_{1}, but not the last letter of X_{1}, are in the same factor G_{j}; and Subcase 4.d, the last letters of X_{1} and Z_{1}, but not the first letter of Y, are in the same factor G_{j}.

Subcase 4.a. Let $Y=\epsilon Y_{1}, X_{1}=X_{2} \nu$, and $Z_{1}=Z_{2} \mu$ for $\epsilon, \nu, \mu \in G_{j}$. Then, we have

$$
V_{1}=X_{2} \nu \epsilon Y_{1} \xi Z_{2} \mu \nu^{-1} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \epsilon^{-1} \mu^{-1} Z_{2}^{-1} \zeta .
$$

Note that $\nu \epsilon, \mu \nu^{-1}$, and $\epsilon^{-1} \mu^{-1}$ each reduce to a single-letter element of G_{j}, say $\alpha_{1}=\nu \epsilon$, $\alpha_{2}=\mu \nu^{-1}$, and $\alpha_{3}=\epsilon^{-1} \mu^{-1}$. Indeed, none of these three can be trivial. For instance, suppose that $\nu \epsilon=1$. Then, $\alpha_{2}=\alpha_{3}^{-1}$, which means that

$$
V_{1}=X_{2} Y_{1} \xi Z_{2} \alpha_{2} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \alpha_{2}^{-1} Z_{2}^{-1} \zeta
$$

is conjugate to

$$
V_{2}=\eta X_{2} Y_{1} \xi Z_{2} \alpha_{2} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \alpha_{2}^{-1} Z_{2}^{-1} \xi^{-1}=\left(\eta X_{2}\right) Y_{1}\left(\xi Z_{2} \alpha_{2}\right)\left(\eta X_{2}\right)^{-1} Y_{1}^{-1}\left(\xi Z_{2} \alpha_{2}\right)^{-1},
$$

which contradicts our assumption that $V=X Y Z X^{-1} Y^{-1} Z^{-1}$ was taken to have minimum length. Analogous arguments show that α_{2} and α_{3} are also nontrivial. If $i \neq j$, then the further reduced expression for V_{1}, given by

$$
X_{2} \alpha_{1} Y_{1} \xi Z_{2} \alpha_{2} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \alpha_{3} Z_{2}^{-1} \zeta
$$

is fully cyclically reduced. Even if $j=i$, this expression must be fully cyclically reduced; this is because Y_{1}, X_{2}, and Z_{2} must be nontrivial, since the first letters of X_{1} and Z_{1} and the last letter of Y_{1} must not be in G_{i}. Since $\zeta \eta^{-1} \xi=1$ and $\alpha_{3} \alpha_{2} \alpha_{1}=1$, we have obtained one of our desired commutator forms.

Subcase 4.b. Let $Y=\epsilon Y_{1}$ and $X_{1}=X_{2} \nu$ for $\epsilon, \nu \in G_{j}$. Then, we have

$$
V_{1}=X_{2} \nu \epsilon Y_{1} \xi Z_{1} \nu^{-1} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \epsilon^{-1} Z_{1}^{-1} \zeta .
$$

By the argument used in Case 2 Subcase 4.a, $\nu \epsilon$ reduces to a (nontrivial) single-letter element of G_{j}, say $\alpha \in G_{j}$. If $i \neq j$, then the further reduced expression for V_{1}, given by

$$
X_{2} \alpha Y_{1} \xi Z_{1} \nu^{-1} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \epsilon^{-1} Z_{1}^{-1} \zeta
$$

is fully cyclically reduced. Even if $j=i$, this expression must be fully cyclically reduced; this is because Y_{1} and X_{2} must be nontrivial, since the first letter of X_{1} and the last letter of Y_{1} must not be in G_{i}. Since $\zeta \eta^{-1} \xi=1$ and $\epsilon^{-1} \nu^{-1} \alpha=1$, we have obtained one of our desired commutator forms.

Subcase 4.c. Let $Y=\epsilon Y_{1}$ and $Z_{1}=Z_{2} \mu$ for $\epsilon, \mu \in G_{j}$. Then, we have

$$
V_{1}=X_{2} \epsilon Y_{1} \xi Z_{2} \mu X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \epsilon^{-1} \mu^{-1} Z_{2}^{-1} \zeta .
$$

By the argument used in Case 2 Subcase 4.a, $\epsilon^{-1} \mu^{-1}$ reduces to a (nontrivial) single-letter element of G_{j}, say $\alpha \in G_{j}$. If $i \neq j$, then the further reduced expression for V_{1}, given by

$$
X_{2} \epsilon Y_{1} \xi Z_{2} \mu X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \alpha Z_{2}^{-1} \zeta
$$

is fully cyclically reduced. Even if $j=i$, this expression must be fully cyclically reduced; this is because Y_{1} and Z_{2} must be nontrivial, since the first letter of Z_{1} and the last letter of Y_{1} must not be in G_{i}. Since $\zeta \eta^{-1} \xi=1$ and $\alpha \mu \epsilon=1$, we have obtained one of our desired commutator forms.

Subcase 4.d. Let $X_{1}=X_{2} \nu$ and $Z_{1}=Z_{2} \mu$ for $\nu, \mu \in G_{j}$. Then, we have

$$
V_{1}=X_{2} \nu Y_{1} \xi Z_{2} \mu \nu^{-1} X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \mu^{-1} Z_{2}^{-1} \zeta
$$

By the argument used in Case 2 Subcase 4.a, $\mu \nu^{-1}$ reduces to a (nontrivial) single-letter
element of G_{j}, say $\alpha \in G_{j}$. If $i \neq j$, then the further reduced expression for V_{1}, given by

$$
X_{2} \nu Y_{1} \xi Z_{2} \alpha X_{2}^{-1} \eta^{-1} Y_{1}^{-1} \mu^{-1} Z_{2}^{-1} \zeta
$$

is fully cyclically reduced. Even if $j=i$, this expression must be fully cyclically reduced; this is because X_{2} and X_{2} must be nontrivial, since the first letter of X_{1} and the last letter of Y_{1} must not be in G_{i}. Since $\zeta \eta^{-1} \xi=1$ and $\mu^{-1} \alpha \nu=1$, we have obtained one of our desired commutator forms.

3.2 Proof of Theorem 1.4

By Wicks' theorem for free products, we need to count cyclic conjugacy classes of Wicks commutators of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$. As discussed before, a Wicks commutator of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ must, when going from left to right, alternate between letters of the $\mathbb{Z} / 3 \mathbb{Z}$ factor, r and r^{-1}, and the letter of the $\mathbb{Z} / 2 \mathbb{Z}$ factor, s. Thus, the occurrences of s provide no information when writing our word in terms of the generators in \mathfrak{S}, so from this point, we abuse notation by omitting all occurrences of s and writing all words and subwords in terms of only r and r^{-1}. For example, the element $s r s r^{-1}$ would be written as $r r^{-1}$.

Consider a Wicks commutator W of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ having length k, where k is a multiple of 4 . Let $X=k / 4$, so that the left-half subword of W contains X letters of the $\mathbb{Z} / 3 \mathbb{Z}$ factor and X letters of the $\mathbb{Z} / 2 \mathbb{Z}$ factor, which are placed in an alternating way. As seen from our work in Section 3.1, W can either be of the fully cyclically reduced form $A B A^{-1} B^{-1}$ or the fully cyclically reduced form $A \alpha B \beta C \alpha A^{-1} \beta B^{-1} \alpha C^{-1} \beta$, where $\alpha, \beta \in\left\{r, r^{-1}\right\}$ and A, B, and C are nontrivial. However, by using the arguments of Section 2.2, we see that the number of the former is $O\left(X \cdot 2^{X}\right)$, while the number of the latter is

$$
4 \cdot \frac{(X-5)(X-4)}{2} \cdot 2^{X-3}
$$

since we have four choices of $(d, e) \in\left\{r, r^{-1}\right\}^{2},(X-5)(X-4) / 2$ partitions of $X-3$ into three nontrivial parts giving the lengths of A, B, and C, and $X-3$ degrees of freedom for choosing the letters of A, B, and C, with no cancellation between the extremal letters of A,
B, and C (the key difference between counting commutators of $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ and counting those of a free group). Thus, the number of Wicks commutators of the form $A B A^{-1} B^{-1}$ is negligible.

Next, we need to count the number of conjugacy classes containing at least one Wicks commutator of the form $A \alpha B \beta C \alpha A^{-1} \beta B^{-1} \alpha C^{-1} \beta$. As before, let \mathcal{C} be the conjugacy class of the Wicks commutator $W:=A \alpha B \beta C \alpha A^{-1} \beta B^{-1} \alpha C^{-1} \beta$, with $|A|=n_{1}, B=n_{2}$, and $C=n_{3}$. We wish to show that on average, \mathcal{C} does not contain Wicks commutators other than the six obvious ones: $W, B \beta C \alpha A^{-1} \beta B^{-1} \alpha C^{-1} \beta A \alpha, C \alpha A^{-1} \beta B^{-1} \alpha C^{-1} \beta A \alpha B \beta$, $A^{-1} \beta B^{-1} \alpha C^{-1} \beta A \alpha B \beta C \alpha, B^{-1} \alpha C^{-1} \beta A \alpha B \beta C \alpha A^{-1} \beta$, and $C^{-1} \beta A \alpha B \beta C \alpha A^{-1} \beta B^{-1} \alpha$. Suppose the number of letters of the conjugation is $\ell \leq n_{3} / 2$, and accordingly decompose $C=D E F$ without cancellation so that $|D|=|F|=\ell$. Label the letters of W by $A=a_{1} \cdots a_{n_{1}}, B=b_{1} \cdots b_{n_{2}}, D=d_{1} \cdots d_{\ell}, E=e_{1} \cdots e_{n_{3}-2 \ell}$, and $F=f_{1} \cdots f_{\ell}$. Consider the cyclic conjugate $W^{\prime}:=D^{-1} \beta A \alpha B \beta D E F \alpha A^{-1} \beta B^{-1} \alpha F^{-1} E^{-1}$ of W. We wish to show that on average, W^{\prime} is not a Wicks commutator. Suppose the contrary, i.e., that there exists a partition $p^{\prime}=\left(m_{1}, m_{2}, m_{3}\right)$ of $X-3$ into three parts such that

$$
\begin{equation*}
W^{\prime}=D^{-1} \beta A \alpha B \beta D E F \alpha A^{-1} \beta B^{-1} \alpha F^{-1} E^{-1}=w_{1} \alpha^{\prime} w_{2} \beta^{\prime} w_{3} \alpha^{\prime} w_{1}^{-1} \beta^{\prime} w_{2}^{-1} \alpha^{\prime} w_{3}^{-1} \beta^{\prime} \tag{3.2}
\end{equation*}
$$

for subwords w_{1}, w_{2}, and w_{3} of lengths m_{1}, m_{2}, and m_{3}, and $\alpha^{\prime}, \beta^{\prime} \in\left\{r, r^{-1}\right\}$.
As before, label the letters of A as $a_{1}, \ldots, a_{n_{1}}$, and label the letters of B, C, D, E, and F similarly. Also, label the three incidences of α from left to right as α_{1}, α_{2}, and α_{3}, and similarly for β, α^{\prime}, and β^{\prime}. We have that w_{1}, w_{2}, and w_{3} are subwords comprised of the letters

$$
d_{\ell}^{-1}, \ldots, d_{1}^{-1}, \beta_{3}, a_{1}, \ldots, a_{n_{1}}, \alpha_{1}, b_{1}, \ldots, b_{n_{2}}, \beta_{1}, d_{1}, \ldots, d_{\ell}, e_{1}, \ldots, e_{n_{3}-2 \ell},
$$

and we accordingly consider the subwords w_{1}^{-1}, w_{2}^{-1}, and w_{3}^{-1} as comprised of the inverses of these letters. Then, note that the second half of W^{\prime} can be considered in two forms:

$$
F \alpha_{2} A^{-1} \beta_{3} B^{-1} \alpha_{3} F^{-1} E^{-1}=w_{1}^{-1} \beta_{2}^{\prime} w_{2}^{-1} \alpha_{3}^{\prime} w_{3}^{-1} \beta_{3}^{\prime} .
$$

Equivalently, this equality can be written as

$$
E F \alpha_{3}^{-1} B \beta_{3}^{-1} A \alpha_{2}^{-1} F^{-1}=\beta_{3}^{\prime-1} w_{3} \alpha_{3}^{\prime-1} w_{2} \beta_{2}^{\prime-1} w_{1}
$$

Consider the function g mapping the ordered set of symbols of the left-hand side,

$$
\mathcal{A}:=\left\{e_{1}, \ldots, e_{n_{3}-2 \ell}, f_{1}, \ldots, f_{\ell}, \alpha_{3}^{-1}, b_{1}, \ldots, b_{n_{2}}, \beta_{3}^{-1}, a_{1}, \ldots, a_{n_{1}}, \alpha_{2}^{-1}, f_{\ell}^{-1}, \ldots, f_{1}\right\}
$$

to the set \mathcal{B} of symbols of the right-hand side, which are given by replacing the $\left(m_{1}+1\right)$ th, $\left(m_{1}+m_{2}+2\right)$ th, and $\left(m_{1}+m_{2}+m_{3}+3\right)$ th letters of (3.2) (note that the $\left(m_{1}+m_{2}+m_{3}+3\right)$ th letter is always $e_{n_{3}-2 \ell}$) with $\beta_{2}^{\prime-1}, \alpha_{3}^{\prime-1}$, and $\beta_{3}^{\prime-1}$. Specifically, g maps the i th leftmost letter of the left-hand side of (3.2) to the i th leftmost letter of the right-hand side.

First, suppose g has no fixed points (i such that $g(\mathfrak{i})=\mathfrak{i}$). Then, use an algorithm similar to the one used in Section 2.2 to conclude that there are $\leq X / 2$ degrees of freedom for $A B D E F$, so W must be one of only $O\left(2^{X / 2}\right)$ choices (for each choice of ℓ and p^{\prime}).

Now, suppose that there exists an \mathfrak{i} such that $g(\mathfrak{i})=\mathfrak{i}$. Such fixed points \mathfrak{i} must be letters of A, B, or E. We first consider the case that all the fixed points are letters of only one of A, B, and E. In this case, we consider the following subcases for W, p, and p^{\prime} :

Case 1. Suppose that the fixed points are letters of E. Then, all of the fixed points must be in one of w_{2} and w_{3}; they cannot be in w_{1} since this would mean that w_{1} contains e_{1}, but e_{1} is necessarily located at different positions in the left-hand side and right-hand side of (3.2). If all the fixed points are in w_{2}, then we require that $2+m_{3}=n_{3}-2 \ell-\left(m_{2}+m_{3}+1\right)$ in order for the first letter of w_{2} to be at the same position in both the left-hand and righthand side. Hence, we have $m_{2}+2 m_{3}=n_{3}-2 \ell-3$, which means there are $\leq\left(n_{3}-2 \ell-3\right) / 2$ choices for p^{\prime} parametrized by $m_{3} \leq\left(n_{3}-2 \ell-3\right) / 2$. For each such choice of p^{\prime}, there are $n_{3}-2 \ell-\left(2+m_{3}+m_{3}\right)=n_{3}-2 \ell-2 m_{3}-2$ fixed letters, from $e_{m_{3}+3}$ to $e_{n_{3}-2 \ell-m_{3}}$, and $\left(X-\left(n_{3}-2 \ell-2 m_{3}-2\right)\right) / 2$ non-fixed letters. Thus, counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks commutators arising
from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor\left\lfloor\frac{n_{3}-2 \ell-3}{2}\right\rfloor} \sum_{\ell=0}^{m_{3}=0} 2^{\frac{X+n_{3}-2 \ell-2 m_{3}-2}{2}} \ll 2^{X}
$$

which is dominated by our error term.
Next, suppose the fixed letters are in w_{3}. Then, it is necessary that $\beta_{3}^{\prime-1}=e_{1}$ and $w_{3}=e_{2} \cdots e_{n_{3}-2 \ell-1}$. Thus, we have that $m_{3}=n_{3}-2 \ell-2$, so the number of possible choices for p^{\prime} is at most the number of partitions of $X-1-n_{3}+2 \ell$ into two nontrivial parts, which is $X-1-n_{3}+2 \ell$. For each choice of p^{\prime}, the non-fixed letters have $\leq\left(X-n_{3}+2 \ell+1\right) / 2$ degrees of freedom, along with the $n_{3}-2 \ell-1$ degrees of freedom from the letters $e_{2}, \ldots, e_{n_{3}-2 \ell}$. Counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\begin{aligned}
& \sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} \sum_{\ell=0}^{2}\left(X-1-n_{3}+2 \ell\right) \cdot 2^{n_{3}-2 \ell-1+\frac{X-n_{3}+2 \ell+1}{2}} \\
& =\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}}\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor \\
& \sum_{\ell=0}^{X}\left(n_{1}+n_{2}+2 \ell+2\right) \cdot 2^{\frac{2 X-n_{1}-n_{2}-2 \ell-4}{2}} \ll 2^{X}
\end{aligned}
$$

which is dominated by our error term.
Case 2. Suppose that the fixed points are letters of B. Then, all of the fixed points must be in one of w_{1}, w_{2}, and w_{3}. First, suppose they are in w_{1}. This requires that $w_{1}=D^{-1} \beta_{3} A \alpha_{1} B V$, where V is the left subword of $\beta_{1} D E$ having length $n_{1}+2+\ell$ (the length of $\left.A \alpha_{2}^{-1} F^{-1}\right)$. All letters of B are thus included in w_{1}. We have $m_{1}=\ell+1+n_{1}+$ $1+n_{2}+\left(n_{1}+2+\ell\right)=2 n_{1}+n_{2}+2 \ell+4$, so the number of possible choices for p^{\prime} is at most the number of partitions of $X-3-2 n_{1}-n_{2}-2 \ell-4$ into two nontrivial parts, which is $X-2 n_{1}-n_{2}-2 \ell-7 \leq X-3-n_{1}-n_{2}-2 \ell$ (the latter is guaranteed to be nonnegative for any choice of $p)$. For each choice of p^{\prime}, the non-fixed letters have $\leq\left(X-n_{2}\right) / 2$ degrees of freedom, along with the n_{2} degrees of freedom from the letters of B. Counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks
commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}} \sum_{\ell=0}^{\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor}\left(X-3-n_{1}-n_{2}-2 \ell\right) \cdot 2^{\frac{X+n_{2}}{2}} \ll 2^{X},
$$

which is dominated by our error term.
Next, suppose that the fixed points are in w_{2}. Then, we require that the difference between the lengths of $E F \alpha_{3}^{-1}$ (length $n_{3}-\ell+1$) and $\beta_{3}^{-1} A \alpha_{2}^{-1} F^{-1}$ (length $n_{1}+\ell+2$) is the same as that between $\beta_{3}^{\prime-1} w_{3} \alpha_{3}^{\prime-1}$ (length $m_{3}+2$) and $\beta_{2}^{\prime-1} w_{1}\left(\right.$ length $m_{1}+1$). Furthermore, the number of letters of B in w_{2} is n_{2} if $j=n_{1}+\ell+2-\left(m_{1}+1\right)=n_{3}-\ell+1-\left(m_{3}+2\right)$ is negative and $n_{2}-j$ if $j \geq 0$. First, suppose that $j \geq 0$. In this case, p^{\prime} is determined by the choice of $j \leq n_{2} / 2$, for which there are $n_{2}-2 j$ fixed letters of B. The non-fixed letters have $\leq\left(X-n_{2}+2 j\right) / 2$ degrees of freedom, so overall, we can count across all choices of values for the letters, p, j, and ℓ to get that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\begin{aligned}
& \sum_{n_{1}=0}^{X-3} \sum_{n_{3}=0}^{X-3-n_{1}} \sum_{\ell=0}^{\left\lfloor\frac{n_{3}}{2}\right\rfloor} \sum_{j=0}^{\left\lfloor\frac{X-3-n_{1}-n_{3}}{2}\right\rfloor} 2^{\frac{X+n_{2}-2 j}{2}} \\
& \leq \sum_{n_{1}=0}^{X-3} \sum_{n_{3}=0}^{X-3-n_{1}} \frac{n_{3}}{2} \sum_{j=0}^{\left\lfloor\frac{X-3-n_{1}-n_{3}}{2}\right\rfloor} 2^{\frac{X+n_{2}-2 j}{2}} \ll 2^{X},
\end{aligned}
$$

which is dominated by our error term.
Now, suppose that $j<0$. In this case, $-j=n_{1}-m_{1}+\ell+1=n_{3}-m_{3}-\ell-1$ is a positive integer less than or equal to $\min \left(n_{1}+\ell+1, n_{3}-\ell-1\right) \leq X-n_{2}$, and p^{\prime} is determined by the choice of $-j$, for which there are n_{2} fixed letters of B. The non-fixed letters have $\leq\left(X-n_{2}\right) / 2$ degrees of freedom, so overall, we can count across all choices of values for the letters, $p,-j$, and ℓ to get that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} \sum_{\ell=0}\left(X-n_{2}\right) \cdot 2^{\frac{X+n_{2}}{2}} \ll 2^{X}
$$

Finally, suppose that the fixed points are in w_{3}. This requires that $w_{3}=V B \beta_{1} D e_{1} \cdots e_{n_{3}-2 \ell-1}$, where V is the right subword of $D^{-1} \beta_{3} A \alpha_{1}$ having length $n_{3}-2 \ell+\ell+1-1=n_{3}-\ell$. All letters of B are thus included in w_{3}. We have $m_{3}=n_{3}-\ell+n_{2}+1+\ell+n_{3}-2 \ell-1=n_{2}+2 n_{3}-2 \ell$, so the number of possible choices for p^{\prime} is at most the number of partitions of $X-3-n_{2}-2 n_{3}+2 \ell$ into two nontrivial parts, which is $X-3-n_{2}-2 n_{3}+2 \ell \leq X-3-n_{2}+2 \ell$ (the latter is guaranteed to be nonnegative for any choice of p). For each choice of p^{\prime}, the non-fixed letters have $\leq\left(X-n_{2}\right) / 2$ degrees of freedom, along with the n_{2} degrees of freedom from the letters of B. Counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}} \sum_{\ell=0}^{\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor}\left(X-3-n_{2}+2 \ell\right) \cdot 2^{\frac{X+n_{2}}{2}} \ll 2^{X}
$$

which is dominated by our error term.
Case 3. Suppose that the fixed points are letters of A. Then, all of the fixed points must be in one of w_{1} and w_{2}; they cannot be in w_{3}, since then there must be more than $\ell+1$ letters right of A. First, suppose they are in w_{1}. This requires that $w_{1}=D^{-1} \beta_{3}^{-1} A V$, where V is the left subword of $\alpha_{1}^{-1} B \beta_{1}^{-1} D E$ having length $\ell+1$. All letters of A are thus included in w_{1}. The number of possible choices for p^{\prime} is at most the number of partitions of $X-3-m_{1}=X-3-\left(\ell+1+n_{1}+\ell+1\right)=X-5-2 \ell-n_{1}$ into two nontrivial parts, which is $X-5-2 \ell-n_{1} \leq X-3-2 \ell-n_{1}$ (the latter is guaranteed to be nonnegative for any choice of p). For each choice of p^{\prime}, the non-fixed letters have $\leq\left(X-n_{1}\right) / 2$ degrees of freedom, along with the n_{1} degrees of freedom from the letters of A. Counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} \sum_{\ell=0}\left(X-3-2 \ell-n_{1}\right) \cdot 2^{\frac{X+n_{1}}{2}} \ll 2^{X}
$$

which is dominated by our error term.

Finally, suppose the fixed points are in w_{2}. This requires that w_{2} is the word between the $\left(m_{1}+2\right)$ th letter and the $\left(n_{1}+2 \ell+1-m_{1}\right)$ th letter, so that the letters of A will be in matching positions. Thus, we have $m_{2}=n_{1}+2 \ell-2 m_{1}-2$. Note then that p^{\prime} is parametrized by $m_{1} \leq\left(n_{1}+2 \ell-2\right) / 2$. For each choice of p^{\prime}, we have n_{1} fixed letters (and $\left(X+n_{1}\right) / 2 \leq\left(X+n_{1}-m_{1}+\ell\right) / 2$ overall degrees of freedom) if $m_{1} \leq \ell$, and $n_{1}-\left(m_{1}-\ell\right)$ fixed letters (and $\left(X+n_{1}-m_{1}+\ell\right) / 2$ overall degrees of freedom) if $m_{1}>\ell$. Thus, counting across all choices of values for the letters, p, p^{\prime}, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}} \sum_{\ell=0}^{\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor\left\lfloor\frac{n_{1}+2 \ell-2}{2}\right\rfloor} \sum_{m_{1}=0}^{\frac{X+n_{1}+\ell-m_{1}}{2}} \ll 2^{X}
$$

which is dominated by our error term.
Next, we suppose that the fixed letters of g are in two of the three subwords A, B, and E. Consider the following subcases:

Case 1. Suppose the fixed letters of g are in A and B. It is necessary that the fixed letters of A and those of B are in w_{i} and w_{j}, respectively, such that $i<j$; otherwise, the fixed letters of A would come before the fixed letters of B, a contradiction. First, suppose that the fixed letters of B are in w_{2}, which implies that the fixed letters of A are in w_{1}. Then, we require that $w_{1}=D^{-1} \beta_{3}^{-1} A V$, where V is the left subword of $\alpha_{1} B \beta_{1} D E$ having length $\ell+1$. Furthermore, since we have fixed letters of B, we require that V does not include all of B, i.e., $n_{2}>\ell$. Next, for the fixed letters of B to match in position, we require that w_{2} ends at the letter $b_{n_{2}-\ell}$, which gives us $m_{2}=n_{2}-\ell-\ell-1-1=n_{2}-2 \ell-2>0$. It follows that w_{3} is the subword of $b_{n_{2}-\ell+1} \cdots b_{n_{2}} \beta_{1} D E$ omitting the leftmost letter. In particular, m_{3} is automatically determined, and for this p^{\prime} corresponding to p, we have n_{1} fixed letters of A and $n_{2}-2 \ell-2$ fixed letters of B. Next, we upper-bound the degrees of freedom of the non-fixed letters. Note that $E F \alpha_{3}^{-1} b_{1} \cdots b_{\ell}=\beta_{3}^{\prime-1} b_{n_{2}-\ell+2} \cdots b_{n_{2}} \beta_{1} D E$, but g maps $f_{\ell}^{-1}, \ldots, f_{1}^{-1}$ to b_{1}, \ldots, b_{ℓ} and $b_{n_{2}-\ell+1}, \ldots, b_{n_{2}}$, to $d_{\ell}^{-1}, \ldots, d_{1}^{-1}$. Thus, arguing inductively by translation, we see that that choosing the letters of F determines the letters of E, and thus also determines those of D, thereby determining all non-fixed letters (while
not caring about the constant number of α and β letters). Counting across all choices of values for the letters, p, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}} \sum_{\ell=0}^{\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} 2^{n_{1}+n_{2}-2 \ell-2+\ell} \ll X \cdot 2^{X},
$$

which is dominated by our error term.
Next, suppose that the fixed letters of B are in w_{3}. Then, we require that $w_{3}=$ $V B \beta_{1} D E$, where V is the right subword of $D^{-1} \beta_{3} A \alpha_{1}$ having length $n_{2}-\ell$. Furthermore, since we have fixed letters of A, we require that V does not include all of A, i.e., $n_{1}>n_{2}-\ell-1$. Next, for the fixed letters of A to match in position, we require that they are in w_{2}, and specifically that $w_{2}=a_{n_{3}-\ell+1} \cdots a_{n_{1}-n_{3}+\ell}$. This gives us $m_{2}=n_{1}-2 n_{3}+2 \ell-2>0$, and it follows that w_{1} is the subword of $D^{-1} \beta_{3} a_{1} \cdots a_{n_{3}-\ell}$ omitting the rightmost letter. In particular, m_{1} is automatically determined, and for this p^{\prime} corresponding to p, we have n_{2} fixed letters of B and $n_{1}-2 n_{3}+2 \ell-2$ fixed letters of A. Next, we upper-bound the degrees of freedom of the non-fixed letters. Note that $a_{n_{1}-n_{3}+\ell+2} \cdots a_{n_{1}} \alpha_{2}^{-1} F^{-1}=D^{-1} \beta_{3} a_{1} \cdots a_{n_{3}-\ell-1}$, but g maps $d_{1}, \ldots, d_{\ell}, e_{1}, \ldots, e_{n_{3}-2 \ell}$ to $a_{1}, \ldots, a_{n_{3}-\ell}$ and $a_{n_{1}-n_{3}+\ell+1} \cdots a_{n_{1}}$, to $e_{1}, \ldots, e_{n_{3}-2 \ell}, f_{1}, \ldots, f_{\ell}$. Thus, arguing inductively by translation, we see that that choosing the letters of F determines the letters of E, and thus also determines those of D, thereby determining all non-fixed letters (while not caring about the constant number of α and β letters). Counting across all choices of values for the letters, p, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} \sum_{\ell=0}^{n^{n_{2}+\left(n_{1}-2 n_{3}+2 \ell-2\right)+\ell} \ll X \cdot 2^{X}, ., ~}
$$

which is dominated by our error term.
Case 2. Suppose the fixed letters of g are in B and E. Similarly to before, it is necessary that the fixed letters of B and those of E are in w_{i} and w_{j}, respectively, such
that $i<j$. First, suppose that the fixed letters of B are in w_{1}. Then, we require that $w_{1}=$ $D^{-1} \beta_{3} A \alpha_{1} B V$, where V is the left subword of $\beta_{1} D E$ having length $2+n_{1}+\ell$. Then, w_{2} must start with $e_{n_{1}+3}$, which means in order to have the letters of E match, we must have $m_{3}+2=$ $n_{1}+2$. Since $m_{2}+m_{3}+2+n_{1}+\ell=n_{3}-\ell$, there are $m_{2}=n_{3}-2 n_{1}-2 \ell-2>0$ fixed letters of E in w_{2}, and n_{2} fixed letters of B. Next, we upper-bound the degrees of freedom of the nonfixed letters. Note that $A \alpha_{2}^{-1} F^{-1}=D e_{1} \cdots e_{n_{1}+1}$ and $e_{n_{3}-n_{1}-2 \ell} \cdots e_{n_{3}-2 \ell} F=D^{-1} \beta_{3} A$. However, we also have $e_{1} \cdots e_{n_{1}+1}=\beta_{3}^{\prime-1} e_{n_{3}-n_{1}-2 \ell} \cdots e_{n_{3}-2 \ell-1}$, which overall gives us that $A \alpha_{2}^{-1} F^{-1} e_{n_{3}-2 \ell} F=D \beta_{3}^{\prime-1} D^{-1} \beta_{3} A$. Thus, arguing inductively by translation, we see that that choosing the letters of F determines the letters of A, and thus also determines those of D, thereby determining all non-fixed letters (while not caring about the constant number of α and β letters, including $e_{n_{3}-2 \ell}=b_{3}^{\prime}$). Counting across all choices of values for the letters, p, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} \sum_{\ell=0}^{n_{2}+\left(n_{3}-2 n_{1}-2 \ell-2\right)+\ell} \ll X \cdot 2^{X}
$$

which is dominated by our error term.
Next, suppose that the fixed letters of B are in w_{2}, which implies the fixed letters of E are in w_{3}. Then, we require that $w_{3}=e_{2} \cdots e_{n_{3}-2 \ell-1}$. Furthermore, in order for the letters of B to match in position, we must have that $w_{2}=V \alpha_{1} B \beta_{1} D$, where V is the right subword of $D^{-1} \beta_{3} A$ having length ℓ. We thus have $n_{3}-2 \ell-2$ fixed letters in E and n_{2} fixed letters in B. Now, we upper-bound the degrees of freedom of the non-fixed letters. First, suppose that $n_{1}>\ell$. Note then that $F=a_{n_{1}-\ell+1} \cdots a_{n_{1}}$ and $A \alpha_{2}^{-1} F^{-1}=D \beta_{2}^{\prime-1} D^{-1} \beta_{3} a_{1} \cdots a_{n_{1}-\ell-1}$. Thus, we have $a_{1} \cdots a_{n_{1}-\ell-1} a_{n_{1}-\ell} F \alpha_{2}^{-1} F^{-1}=D \beta_{2}^{\prime-1} D^{-1} \beta_{3} a_{1} \cdots a_{n_{1}-\ell-1}$. Thus, arguing inductively by translation, we see that that choosing the letters of F determines the letters of $a_{1} \cdots a_{n_{1}-\ell-1}$, and thus also determines those of the rest of A and of D, thereby determining all non-fixed letters (while not caring about the constant number of α and β letters). In the other case of $n_{1} \leq \ell$, the notation above for $a_{1} \cdots a_{n_{1}-\ell-1}$ becomes inviable, but nevertheless we can use a similar argument as above to conclude that F determines all the non-fixed
letters. Counting across all choices of values for the letters, p, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}} \sum_{\ell=0}^{\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} 2^{n_{2}+\left(n_{3}-2 \ell-2\right)+\ell} \ll X \cdot 2^{X}
$$

which is dominated by our error term.
Case 3. Finally, suppose the fixed letters of g are in A and E. Similarly to before, it is necessary that the fixed letters of A and those of E are in w_{i} and w_{j}, respectively, such that $i<j$. First, suppose that the fixed letters of E are in w_{3}. Then, we require that $w_{3}=e_{2} \cdots e_{n_{3}-2 \ell-1}$. Furthermore, in order for the letters of A to match in position, we need that the fixed letters of A are contained in w_{1}, and in particular, that $w_{1}=$ $D^{-1} \beta_{3} A \alpha_{1} V$, where V is the left subword of $B \beta_{1} D E$ having length ℓ. We thus have $n_{3}-$ $2 \ell-2$ fixed letters in E and n_{1} fixed letters in A. Now, we upper-bound the degrees of freedom of the non-fixed letters. First, suppose that $n_{2}>\ell$. Note then that $F^{-1}=$ $b_{1} \cdots b_{\ell}$ and $F \alpha_{3}^{-1} B=\alpha_{3}^{\prime-1} b_{\ell+2} \cdots b_{n_{2}} \beta_{1} D \beta_{2}^{\prime-1} D^{-1}$. Thus, we have $F \alpha_{3}^{-1} F^{-1} b_{\ell+1} \cdots b_{n_{2}}=$ $\alpha_{3}^{\prime-1} b_{\ell+2} \cdots b_{n_{2}} \beta_{1} D \beta_{2}^{\prime-1} D^{-1}$. Arguing inductively by translation, we see that that choosing the letters of F determines the letters of B of D, thereby determining all non-fixed letters. In the other case of $n_{2} \leq \ell$, the notation above for $b_{1} \cdots b_{\ell}$ becomes inviable, but nevertheless we can use a similar argument as above to conclude that F determines all the non-fixed letters. Counting across all choices of values for the letters, p, and ℓ, we have that the number of additional Wicks commutators arising from this case is upper-bounded by

$$
\sum_{n_{1}=0}^{X-3} \sum_{n_{2}=0}^{X-3-n_{1}} \sum_{\ell=0}^{\left\lfloor\frac{X-3-n_{1}-n_{2}}{2}\right\rfloor} 2^{n_{1}+\left(n_{3}-2 \ell-2\right)+\ell} \ll X \cdot 2^{X}
$$

which is dominated by our error term.
Next, suppose that the fixed letters of E are in w_{2}. Then, the fixed letters of A are contained in w_{1}, which requires that $w_{1}=D^{-1} \beta_{3} A \alpha_{1} V$, where V is the left subword of $B \beta_{1} D E$ having length ℓ. But then w_{2} must start on a letter not in E, which makes it impossible for the letters of E to match in position.

Finally, if there are fixed letters in A, B, and C, then it is necessarily that $\ell=0$ and $p=p^{\prime}$, which does not need to be considered.

If $\ell \geq n_{3} / 2$, then we can think of our commutator as a cyclic conjugate of $C^{-1} A B C A^{-1} B^{-1}$ such that the letters are moved from left to right. A symmetric argument like above gives us the conclusion that $W^{\prime}=D^{-1} \beta A \alpha B \beta D E F \alpha A^{-1} \beta B^{-1} \alpha F^{-1} E^{-1}$ is on average not a Wicks commutator of the form $w_{1} \alpha^{\prime} w_{2} \beta^{\prime} w_{3} \alpha^{\prime} w_{1}^{-1} \beta^{\prime} w_{2}^{-1} \alpha^{\prime} w_{3}^{-1} \beta^{\prime}$. Note that this entire argument can then be repeated mutatis mutandis to show that W^{\prime} is on average also not a Wicks commutator of the form $w_{1} w_{2} w_{1}^{-1} w_{2}^{-1}$. Indeed, the only difference from the previous case is that w_{3} is taken to be trivial there are no extra letters α or β, and the latter only affects error bounds by at most a multiplicative constant.

Thus, W^{\prime} is on average not a Wicks commutator, and furthermore, the $\ell=0$ case shows that W^{\prime} is on average only decomposable as a Wicks commutator in one way.We have thus shown that the number of conjugacy classes of commutators with length $4 X$ is given by

$$
\frac{2^{X}}{24}\left(X^{2}+O(X)\right),
$$

as needed.

3.3 Algorithm to List Commutators of $\operatorname{PSL}_{2}(\mathbb{Z})$ by Trace

In this section, we give an algorithm that exhaustively computes all hyperbolic (i.e., having trace greater than 2) commutators of $\mathrm{PSL}_{2}(\mathbb{Z})$ with a given trace. The algorithm uses a bijective correspondence between the hyperbolic conjugacy classes of $\mathrm{PSL}_{2}(\mathbb{Z})$ whose traces have absolute value $t>2$ and the $\mathrm{SL}_{2}(\mathbb{Z})$-orbits of binary quadratic forms with discriminant $t^{2}-4$, where the action of $\mathrm{SL}_{2}(\mathbb{Z})$ is defined as follows: for a binary quadratic form $q(x, y)$ and $M \in \mathrm{SL}_{2}(\mathbb{Z})$,

$$
M \cdot q(x, y)=q\left((x, y) M^{t}\right)
$$

We now describe this correspondence, following the exposition in [11]. Let t be an integer greater than 2. Define $\mathrm{PSL}_{2}(\mathbb{Z})_{t}$ to be the set of elements in $\mathrm{PSL}_{2}(\mathbb{Z})$ that contain a matrix of trace t as a coset element, and define Q_{D} to be the set of quadratic forms of
discriminant D. We first construct a bijective correspondence $\Phi: \mathrm{PSL}_{2}(\mathbb{Z})_{t} \rightarrow Q_{t^{2}-4}$ as follows.

Let $\sigma=\overline{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)} \in \operatorname{PSL}_{2}(\mathbb{Z})$ be the coset containing the given matrix such that the trace $a+d$ is equal to t. Then, σ is an automorphism of \mathbb{H} with two hyperbolic fixed points, given by the solutions to $\sigma z=z$. Rewriting this equation as $(a z+b) /(c z+d)=z$, we see that the fixed points are roots of the quadratic $c z^{2}+(d-a) z-b$, which has discriminant

$$
(d-a)^{2}+4 b c=a^{2}-2 a d+d^{2}+4 b c=a^{2}+2 a d+d^{2}-4(a d-b c)=(a+d)^{2}-4 .
$$

By projectivizing the coordinates, we obtain $q(x, y)=c x^{2}+(d-a) x y-b y^{2}$, the binary quadratic form corresponding to σ.

Next, we define a map $\Psi: Q_{t^{2}-4} \rightarrow \mathrm{PSL}_{2}(\mathbb{Z})_{t}$ and show that it is the inverse of Φ. Suppose we have a binary quadratic form $q(x, y)=A x^{2}+B x y+C y^{2}$ of discriminant $t^{2}-4$. Then, define $\Psi(q(x, y)) \in \mathrm{PSL}_{2}(\mathbb{Z})_{t}$ as the coset containing the matrix

$$
\left(\begin{array}{cc}
\frac{-B+t}{2} & -C \\
A & \frac{B+t}{2}
\end{array}\right) .
$$

Note that B and t have the same parity, as one can see from reducing $B^{2}-4 A C=t^{2}-4$ to $B^{2} \equiv t^{2}(\bmod 2)$. This shows that the above matrix is integral. Furthermore, it has determinant

$$
\frac{t^{2}-B^{2}}{4}+A C=\frac{t^{2}-\left(B^{2}-4 A C\right)}{4}=1
$$

which shows that Ψ is well-defined. It is straightforward to check that Φ and Ψ are inverses, so Φ is bijective, as claimed.

We next show that two elements of $\mathrm{PSL}_{2}(\mathbb{Z})_{t}$ are conjugate if and only if their corresponding binary quadratic forms are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit. Consider $\overline{M_{1}}, \overline{M_{2}} \in$ $\operatorname{PSL}_{2}(\mathbb{Z})_{t}$, where the matrix representatives $M_{1}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ and $M_{2}=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ are chosen so that $a_{1}+d_{1}=a_{2}+d_{2}=t$. We have that $\overline{M_{1}}$ is conjugate to $\overline{M_{2}}$ if and only if there
exists $S \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $M_{1}=S^{-1} M_{2} S$. However, we have
$\exists S \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $M_{1}=S^{-1} M_{2} S$
$\Longleftrightarrow \exists S \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\overline{S^{-1} M_{2} S} z=z$ gives the same quadratic form as $\overline{M_{1}} z=z$
$\Longleftrightarrow \exists S \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\overline{M_{2}} \cdot \bar{S} z=\bar{S} z$ gives the same quadratic form as $\overline{M_{1}} z=z$
$\Longleftrightarrow \exists S \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\overline{M_{2}} \cdot \bar{S} \frac{x}{y}=\bar{S} \frac{x}{y}$ gives the same quadratic form as $\overline{M_{1}} \frac{x}{y}=\frac{x}{y}$
$\Longleftrightarrow \exists S \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\Phi\left(\overline{M_{1}}\right)=S \cdot \Phi\left(\overline{M_{2}}\right)$.

Thus, we have shown that the conjugacy classes of $\mathrm{PSL}_{2}(\mathbb{Z})$ with trace $\pm t$ correspond to the $\mathrm{SL}_{2}(\mathbb{Z})$-orbits of binary quadratic forms with discriminant $t^{2}-4$. This allows us to use Gauss' reduction theory of indefinite binary quadratic forms, which yields a full set of representatives for the $\mathrm{SL}_{2}(\mathbb{Z})$-orbits of binary quadratic forms of any positive discriminant, to exhaustively list matrix representatives for the conjugacy classes of $\mathrm{PSL}_{2}(\mathbb{Z})$ with any given trace.

Next, we check whether or not each conjugacy class $\bar{M} \in \operatorname{PSL}_{2}(\mathbb{Z})_{t}$ is in the commutator subgroup $\left[\mathrm{PSL}_{2}(\mathbb{Z}), \mathrm{PSL}_{2}(\mathbb{Z})\right]$. Doing this is straightforward, since $\left[\mathrm{PSL}_{2}(\mathbb{Z}), \mathrm{PSL}_{2}(\mathbb{Z})\right]$ is precisely

$$
\begin{align*}
\left\{\begin{array}{ll}
\left\{\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & :\left(1-c^{2}\right)(b d+3(c-1) d+c+3)+c(a+d-3) \equiv 0 \quad(\bmod 12) \\
& \text { or } \left.\left(1-c^{2}\right)(b d+3(c+1) d-c+3)+c(a+d+3) \equiv 0 \quad(\bmod 12)\right\}
\end{array}, \quad .\right. \tag{3.3}
\end{align*}
$$

a congruence subgroup of index 6 . This follows from the fact that $\left[\mathrm{SL}_{2}(\mathbb{Z}), \mathrm{SL}_{2}(\mathbb{Z})\right]=\operatorname{ker} \chi$ for the surjective homomorphism $\chi: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathbb{Z} / 12 \mathbb{Z}$ defined by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(1-c^{2}\right)(b d+3(c-1) d+c+3)+c(a+d-3),
$$

as shown in [3, Proof of Theorem 3.8]. Note that this step is done to save time that would otherwise be spent unnecessarily on combinatorially checking whether conjugacy classes that
are not even in the commutator subgroup are commutators. If M satisfies the condition (3.3), then it is a commutator in $\mathrm{SL}_{2}(\mathbb{Z})$, whereas if M satisfies the condition (3.4), then $-M$ is a commutator in $\mathrm{SL}_{2}(\mathbb{Z})$. Exactly one of these two possibilities is true if and only if \bar{M} is a commutator in $\mathrm{PSL}_{2}(\mathbb{Z})$.

Afterwards, our algorithm writes the representative \bar{M} of each conjugacy class of $\mathrm{PSL}_{2}(\mathbb{Z})_{t}$ in terms of the generators in $\mathfrak{S}=\left\{r, r^{-1}, s\right\}$. Here, s denotes the coset containing S and is a generator of the $\mathbb{Z} / 2 \mathbb{Z}$ factor of $\mathrm{PSL}_{2}(\mathbb{Z}) \cong \mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$, while r is the coset containing $S T$ and is a generator of the $\mathbb{Z} / 3 \mathbb{Z}$ factor; the matrices S and T are defined in (1.2). We use the well-known reduction process to write any matrix in $\mathrm{SL}_{2}(\mathbb{Z})$ in terms of S and T; for a reference, see [3, Section 2]. First, note that

$$
S\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-c & -d \\
a & b
\end{array}\right) \quad \text { and } \quad T^{n}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+n c & b+n d \\
c & d
\end{array}\right) .
$$

In light of this, we follow the following steps to reduce $M=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$, which we can assume to have trace t, to a product of powers of S and of T.

1. If $c=0$, then skip this step. Otherwise, consider whether $|a|$ is less than $|c|$ or not. If $|a| \geq|c|$, then write $a=c q+\tau$ for $0 \leq \tau<|c|$. Then, $T^{-q} M=\binom{a-q c b-q c}{c}$ has its upper-left entry equal to τ. Then, we apply S to $T^{-q} M$ (or to M, if $|a|<|c|$), which switches the absolute values of the upper-left and lower-left entries, yielding a matrix with the upper-left entry having a greater absolute value than the lower-left entry. We repeat this process, and every iteration of this process decreases $\min (a, c)$, so eventually we obtain that M is equal to a product of powers of S and of T, rightmultiplied by a matrix with lower-left entry 0 .
2. A matrix with lower-left entry 0 and determinant 1 must be either of the form $\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)=$ T^{n} or of the form $\left(\begin{array}{cc}-1 & n \\ 0 & -1\end{array}\right)=-T^{n}=S^{2} T^{n}$. Thus, we overall have that M is a product of powers of S and of T.

Since $\bar{T}=\overline{S^{-1}} r=s r$, we can substitute s for S and $s r$ for T to get an expression for \bar{M} that is a product of powers of s and of r. By repeatedly canceling adjacent entries that
are in the same free factor, we can, without loss of generality, assume that this product expression W is fully cyclically reduced.

Finally, the algorithm checks whether there is a cyclic conjugate of W that is of the form $X Y X^{-1} Y^{-1}$ or of the form $X \alpha Y \beta Z \alpha X^{-1} \beta Y^{-1} \alpha Z^{-1} \beta$ for $\alpha, \beta \in\left\{r, r^{-1}\right\}$, which have been shown in Section 3.1 to be the only possible Wicks commutator forms for $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$. If $\bar{M}=W$ is a commutator in $\mathrm{PSL}_{2}(\mathbb{Z})$, then we can conclude that either M or $-M$ is a commutator, depending on whether M satisfies the condition (3.3) or the condition (3.4).

We have run the above algorithm for $3 \leq t \leq 3000$. For each such t, our program computes the conjugacy classes (and their matrix representatives with trace t) in $\mathrm{PSL}_{2}(\mathbb{Z})_{t}$, determines which of these conjugacy classes are in the commutator subgroup by checking the congruence condition (3.3), and determines which of the conjugacy classes in the commutator subgroup are in fact commutators. First, below is a table of our full set of data for $3 \leq t \leq 100$, which displays any conjugacy classes of trace t and $-t$ that have trivial abelianization, whether each such conjugacy class is comprised of commutators (say, containing $A B A^{-1} B^{-1}$ for $\left.A, B \in \mathrm{SL}_{2}(\mathbb{Z})\right)$, and the matrices A and B in this description.

Trace	Conj. class representative	Commutator?	A	B
3	$\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$	true	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$
6	$\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$	true	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)$
7	$\left(\begin{array}{lll}2 & 3 \\ 3 & 5\end{array}\right)$	true	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right)$
-9	$\begin{aligned} & \left(\begin{array}{cc} -1 & -7 \\ -1 & -8 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 7 \\ 1 & -8 \end{array}\right) \end{aligned}$	true true	$\begin{gathered} \left(\begin{array}{cc} 4 & 1 \\ -1 & 0 \end{array}\right) \\ \left(\begin{array}{cc} 0 & 1 \\ -1 & -4 \end{array}\right) \end{gathered}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \end{aligned}$
11	$\left(\begin{array}{ll}1 & 3 \\ 3 & 10\end{array}\right)$	true	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}3 & 1 \\ -1 & 0\end{array}\right)$
15	$\left.\begin{array}{c} \left(\begin{array}{cc} 2 & 5 \\ 5 & 13 \end{array}\right) \\ \left(\begin{array}{c} 2 \\ -5 \end{array} \frac{-5}{-5}\right. \\ -1 \end{array}\right)$	true true false false	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 1 \\ -3 & -2 \end{array}\right) \end{aligned}$	$\begin{gathered} \left(\begin{array}{cc} -2 & -3 \\ 1 & 1 \end{array}\right) \\ \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{gathered}$
18	$\begin{aligned} & \left(\begin{array}{ll} 1 & 4 \\ 4 & 17 \end{array}\right) \\ & \left(\begin{array}{ll} 5 & 8 \\ 8 & 13 \end{array}\right) \end{aligned}$	true true	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 4 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} -3 & -2 \\ 2 & 1 \end{array}\right) \end{aligned}$

-18	$\begin{aligned} & \left(\begin{array}{cc} -1 & 8 \\ 2 & -17 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -8 \\ -2 & -17 \end{array}\right) \end{aligned}$	true true	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 5 \end{array}\right) \\ & \left(\begin{array}{cc} 5 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \end{aligned}$
-21	$\begin{aligned} & \left(\begin{array}{ll} -1 & -19 \\ -1 & -20 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 19 \\ 1 & -20 \end{array}\right) \end{aligned}$	false false		
-25	$\begin{aligned} & \left(\begin{array}{ll} -2 & -15 \\ -3 & -23 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 15 \\ 3 & -23 \end{array}\right) \end{aligned}$	true true	$\begin{aligned} & \left(\begin{array}{cc} 4 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & 1 \\ -1 & -4 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \end{aligned}$
27	$\left.\begin{array}{c} \left(\begin{array}{ll} 4 & 13 \\ 7 & 23 \end{array}\right) \\ \left(\begin{array}{c} 4 \\ -7 \end{array}-13\right. \\ -13 \end{array}\right)$	true true true false false	$\begin{gathered} \left(\begin{array}{cc} -1 & 1 \\ -2 & 1 \end{array}\right) \\ \left(\begin{array}{cc} -1 & -1 \\ 2 & 1 \end{array}\right) \\ \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{gathered}$	$\begin{aligned} & \left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 5 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$
-29	$\begin{aligned} & \left(\begin{array}{cc} -1 & -9 \\ -3 & -28 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 9 \\ 3 & -28 \end{array}\right) \end{aligned}$	true true	$\begin{gathered} \left(\begin{array}{cc} 6 & 1 \\ -1 & 0 \end{array}\right) \\ \left(\begin{array}{cc} 0 & 1 \\ -1 & -6 \end{array}\right) \end{gathered}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \end{aligned}$
30	$\left.\begin{array}{c} \left(\begin{array}{cc} 7 & -16 \\ -10 & 23 \end{array}\right) \\ \left(\begin{array}{cc} 7 & 16 \\ 10 & 23 \end{array}\right) \\ \left(\begin{array}{c} 1 \\ 2 \end{array} \frac{24}{24}\right. \\ 2 \end{array}\right)$	true true false false	$\begin{gathered} \left(\begin{array}{cc} -2 & -1 \\ 3 & 1 \end{array}\right) \\ \left(\begin{array}{cc} 2 & -1 \\ 3 & -1 \end{array}\right) \end{gathered}$	$\begin{aligned} & \left(\begin{array}{ll} -1 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ll} 1 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$
-30	$\begin{aligned} & \left(\begin{array}{cc} -3 & -20 \\ -4 & -27 \end{array}\right) \\ & \left(\begin{array}{cc} -3 & 20 \\ 4 & -27 \end{array}\right) \end{aligned}$	true true	$\begin{aligned} & \left(\begin{array}{cc} -7 & -4 \\ 2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 2 \\ -4 & -7 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \end{aligned}$
-33	$\begin{aligned} & \left(\begin{array}{ll} -1 & -31 \\ -1 & -32 \end{array}\right) \\ & \left(\begin{array}{cc} -6 & -7 \\ -23 & -27 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 31 \\ 1 & -32 \end{array}\right) \\ & \left(\begin{array}{cc} -6 & 7 \\ 23 & -27 \end{array}\right) \end{aligned}$	false false false false		
34	$\left(\begin{array}{cc}5 & 12 \\ 12 & 29\end{array}\right)$	true	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}2 & 5 \\ -1 & -2\end{array}\right)$
-34	$\begin{aligned} & \left(\begin{array}{cc} -5 & 24 \\ 6 & -29 \end{array}\right) \\ & \left(\begin{array}{cc} -5 & -24 \\ -6 & -29 \end{array}\right) \end{aligned}$	true true	$\begin{aligned} & \left(\begin{array}{cc} 1 & 3 \\ -3 & -8 \end{array}\right) \\ & \left(\begin{array}{cc} -8 & -3 \\ 3 & 1 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \end{aligned}$
38	$\begin{gathered} \left(\begin{array}{cc} 1 & 6 \\ 6 & 37 \end{array}\right) \\ \left(\begin{array}{cc} 7 & -18 \\ -12 & 31 \end{array}\right) \\ \hline \end{gathered}$	true true	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 2 \\ -2 & -3 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 6 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ll} -1 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$
39	$\left(\begin{array}{lll}5 & 13 \\ 13 & 34\end{array}\right)$	true	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}-5 & -3 \\ 2 & 1\end{array}\right)$

	$\begin{gathered} \left(\begin{array}{cc} 5 & -13 \\ -13 & 34 \end{array}\right) \\ \left(\begin{array}{cc} 1 & 37 \\ 1 & 38 \end{array}\right) \\ \left(\begin{array}{cc} 1 & -37 \\ -1 & 38 \end{array}\right) \end{gathered}$	true false false	$\left(\begin{array}{cc}-1 & -2 \\ 3 & 5\end{array}\right)$	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
-42	$\begin{aligned} & \left(\begin{array}{cc} -1 & 4 \\ 10 & -41 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -4 \\ -10 & -41 \end{array}\right) \\ & \left(\begin{array}{ll} -1 & -20 \\ -2 & -41 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 20 \\ 2 & -41 \end{array}\right) \end{aligned}$	true true false false	$\begin{aligned} & \left(\begin{array}{cc} 7 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 7 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \end{aligned}$
43	$\begin{gathered} \left(\begin{array}{cc} 2 & 9 \\ 9 & 41 \end{array}\right) \\ \left(\begin{array}{cc} 2 & -9 \\ -9 & 41 \end{array}\right) \\ \left(\begin{array}{cc} 2 & 27 \\ 3 & 41 \end{array}\right) \\ \left(\begin{array}{cc} 2 & -27 \\ -3 & 41 \end{array}\right) \end{gathered}$	true true false false	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 1 \\ -5 & -4 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -4 & -5 \\ 1 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{aligned}$
-45	$\begin{aligned} & \left(\begin{array}{cc} -2 & -17 \\ -5 & -43 \end{array}\right) \\ & \left(\begin{array}{cc} -17 & -19 \\ -25 & -28 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 17 \\ 5 & -43 \end{array}\right) \\ & \left(\begin{array}{cc} -17 & 19 \\ 25 & -28 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -43 \\ -1 & -44 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 43 \\ 1 & -44 \end{array}\right) \end{aligned}$	true true true true false false	$\begin{gathered} \left(\begin{array}{cc} 5 & 1 \\ -1 & 0 \end{array}\right) \\ \left(\begin{array}{cc} 0 & 1 \\ -1 & -4 \end{array}\right) \\ \left(\begin{array}{cc} 0 & -1 \\ 1 & 5 \end{array}\right) \\ \left(\begin{array}{cc} 4 & 1 \\ -1 & 0 \end{array}\right) \end{gathered}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} -4 & 1 \\ 3 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 3 \\ 1 & -4 \end{array}\right) \end{aligned}$
47	$\begin{aligned} & \left(\begin{array}{ll} 13 & 21 \\ 21 & 34 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 3 \\ 15 & 46 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & -3 \\ -15 & 46 \end{array}\right) \end{aligned}$	true false false	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}3 & 5 \\ -2 & -3\end{array}\right)$
51	$\begin{gathered} \left(\begin{array}{cc} 4 & 17 \\ 11 & 47 \end{array}\right) \\ \left(\begin{array}{c} 9 \\ 13 \end{array} \frac{42}{4}\right) \\ \left(\begin{array}{cc} 4 & -17 \\ -11 & 47 \end{array}\right) \\ \left(\begin{array}{cc} 9 & -29 \\ -13 & 42 \end{array}\right) \\ \left(\begin{array}{cc} 1 & 7 \\ 7 & 50 \end{array}\right) \\ \left(\begin{array}{cc} 1 & -49 \\ -1 & 50 \end{array}\right) \\ \left(\begin{array}{cc} 1 & 49 \\ 1 & 50 \end{array}\right) \end{gathered}$	true true true true true false false	$\begin{aligned} & \left(\begin{array}{ll} -1 & 1 \\ -3 & 2 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & -1 \\ 3 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 1 \\ -3 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & -1 \\ 3 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ll} 2 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 7 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$
54	$\begin{aligned} & \left(\begin{array}{ll} 1 & 26 \\ 2 & 53 \end{array}\right) \\ & \left(\begin{array}{ll} 13 & 38 \\ 14 & 41 \end{array}\right) \end{aligned}$	false false		

	$\begin{aligned} & \left(\begin{array}{cc} 1 & -26 \\ -2 & 53 \end{array}\right) \\ & \left(\begin{array}{cc} 13 & -38 \\ -14 & 41 \end{array}\right) \end{aligned}$	false false		
-57	$\begin{aligned} & \left(\begin{array}{ll} -8 & -23 \\ -17 & -49 \end{array}\right) \\ & \left(\begin{array}{ll} -1 & -11 \\ -5 & -56 \end{array}\right) \\ & \left(\begin{array}{cc} -15 & -37 \\ -17 & -42 \end{array}\right) \\ & \left(\begin{array}{cc} -8 & 23 \\ 17 & -49 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 11 \\ 5 & -56 \end{array}\right) \\ & \left(\begin{array}{cc} -15 & 37 \\ 17 & -42 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -55 \\ -1 & -56 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 55 \\ 1 & -56 \end{array}\right) \end{aligned}$	true true true true true true false false	$\begin{aligned} & \left(\begin{array}{cc} 5 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 8 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 4 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 5 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & 1 \\ -1 & -8 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & 1 \\ -1 & -4 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 2 & -1 \\ -3 & 2 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -3 & 1 \\ 5 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 3 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 5 \\ 1 & -3 \end{array}\right) \end{aligned}$
-61	$\begin{aligned} & \left(\begin{array}{cc} -2 & -39 \\ -3 & -59 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 39 \\ 3 & -59 \end{array}\right) \end{aligned}$	false false		
63		true true true true false false false false	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ -2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -1 \\ 2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & 1 \\ -7 & -2 \end{array}\right) \end{aligned}$	$\begin{gathered} \left(\begin{array}{cc} 4 & 1 \\ -1 & 0 \end{array}\right) \\ \left(\begin{array}{cc} -2 & -7 \\ 1 & 3 \end{array}\right) \\ \left(\begin{array}{cc} 4 & -1 \\ 1 & 0 \end{array}\right) \\ \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{gathered}$
-65	$\begin{aligned} & \left(\begin{array}{ll} -1 & -21 \\ -3 & -64 \end{array}\right) \\ & \left(\begin{array}{ll} -4 & -27 \\ -9 & -61 \end{array}\right) \\ & \left(\begin{array}{ll} -4 & -9 \\ -27 & -61 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 21 \\ 3 & -64 \end{array}\right) \\ & \left(\begin{array}{cc} -4 & 27 \\ 9 & -61 \end{array}\right) \\ & \left(\begin{array}{cc} -4 & 9 \\ 27 & -61 \end{array}\right) \end{aligned}$	false false false false false false		
66	$\begin{aligned} & \left(\begin{array}{ll} 1 & 8 \\ 8 & 65 \end{array}\right) \\ & \left(\begin{array}{ll} 9 & 32 \\ 16 & 57 \end{array}\right) \\ & \left(\begin{array}{ll} 1 & 16 \\ 4 & 65 \end{array}\right) \end{aligned}$	true true false	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{ll} -1 & 2 \\ -2 & 3 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{ll} 8 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$

	$\left(\begin{array}{cc}1 & -16 \\ -4 & 65\end{array}\right)$	false		
-66	$\begin{aligned} & \left(\begin{array}{cc} -17 & -32 \\ -26 & -49 \end{array}\right) \\ & \left(\begin{array}{cc} -17 & 32 \\ 26 & -49 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -32 \\ -2 & -65 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 32 \\ 2 & -65 \end{array}\right) \end{aligned}$	true true false false	$\begin{aligned} & \left(\begin{array}{cc} 5 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ccc} 0 & -1 \\ 1 & 5 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 1 & -2 \\ -2 & 5 \end{array}\right) \\ & \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \end{aligned}$
-69	$\left.\left.\begin{array}{l} \left(\begin{array}{cc} -9 & -49 \\ -11 & -60 \end{array}\right) \\ \left(\begin{array}{cc} -2 & 19 \\ 7 & -67 \end{array}\right) \\ \left(\begin{array}{cc} -2 & 7 \\ 19 & -67 \end{array}\right) \\ \left(\begin{array}{cc} -9 & -11 \\ -49 & -60 \end{array}\right) \\ \binom{-9}{11}-60 \end{array}\right), \begin{array}{l} -2 \end{array}\right)$	true true true true true true true true false false	$\begin{aligned} & \left(\begin{array}{cc} 10 & 3 \\ -7 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} 0 \\ -1 & 1 \\ -6 \end{array}\right) \\ & \left(\begin{array}{cc} 7 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & 5 \\ -5 & -12 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & 7 \\ -3 & -10 \end{array}\right) \\ & \left(\begin{array}{cc} 6 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 7 \end{array}\right) \\ & \left(\begin{array}{cc} 12 & 5 \\ -5 & -2 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & -1 \\ -2 & 3 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} -3 & 2 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \end{aligned}$
70	$\left.\begin{array}{c} \left(\begin{array}{cc} 11 & 36 \\ 18 & 59 \end{array}\right) \\ \left(\begin{array}{cc} 11 & -36 \\ -18 & 59 \end{array}\right) \\ \left(\begin{array}{c} 5 \\ \hline \end{array} 5_{4}\right. \\ 6 \end{array}\right)$	true true false false	$\begin{aligned} & \left(\begin{array}{cc} 1 & 2 \\ -4 & -7 \end{array}\right) \\ & \left(\begin{array}{cc} -7 & -4 \\ 2 & 1 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{aligned}$
-74	$\begin{aligned} & \left(\begin{array}{cc} -1 & -12 \\ -6 & -73 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 12 \\ 6 & -73 \end{array}\right) \end{aligned}$	true true	$\begin{aligned} & \left(\begin{array}{cc} 9 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 9 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \end{aligned}$
75		true true true true false false false false	$\begin{aligned} & \left(\begin{array}{cc} -5 & -3 \\ 2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 3 \\ -2 & 5 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -2 \\ 3 & 5 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -3 \\ 2 & 5 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{ll} -1 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ll} 1 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ccc} 0 & -1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{ll} -1 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$

	$\left.\begin{array}{c} \left(\begin{array}{cc} 1 & -73 \\ -1 & 74 \end{array}\right) \\ \left(\begin{array}{c} 2 \\ -5 \end{array}-29\right. \\ -29 \end{array}\right) .$	false false false false		
78	$\left.\begin{array}{c} \left(\begin{array}{cc} 3 & 16 \\ 14 & 75 \end{array}\right) \\ \left(\begin{array}{cc} 11 & 16 \\ 46 & 67 \end{array}\right) \\ \left(\begin{array}{cc} 3 & -16 \\ -14 & 75 \end{array}\right) \\ \left(\begin{array}{cc} 11 & -16 \\ -46 & 67 \end{array}\right) \\ \left(\begin{array}{c} 1 \\ 2 \end{array} \frac{38}{}\right. \end{array}\right)$	true true true true false false false false	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ -5 & 4 \end{array}\right) \\ & \left(\begin{array}{ll} 0 & -1 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 1 \\ -5 & -4 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 3 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 3 \\ -1 & -2 \end{array}\right) \\ & \left(\begin{array}{ll} -1 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ll} -1 & 3 \\ -1 & 2 \end{array}\right) \end{aligned}$
-78	$\begin{aligned} & \left(\begin{array}{cc} -3 & -8 \\ -28 & -75 \end{array}\right) \\ & \left(\begin{array}{cc} -3 & 8 \\ 28 & -75 \end{array}\right) \\ & \left(\begin{array}{cc} -3 & -56 \\ -4 & -75 \end{array}\right) \\ & \left(\begin{array}{cc} -3 & 56 \\ 4 & -75 \end{array}\right) \end{aligned}$	true true false false	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 7 \end{array}\right) \\ & \left(\begin{array}{cc} 7 & 1 \\ -1 & 0 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -4 & 3 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 1 \\ 3 & -4 \end{array}\right) \end{aligned}$
79	$\left.\left.\begin{array}{c} \left(\begin{array}{cc} 2 & 51 \\ 3 & 77 \end{array}\right) \\ \left(\begin{array}{cc} 8 & -27 \\ -21 & 71 \end{array}\right) \\ \left(\begin{array}{c} 2 \\ -3 \end{array}-57\right. \\ -51 \end{array}\right) . \begin{array}{cc} 8 & 27 \\ 21 & 71 \end{array}\right) .$	false false false false false false		
-81	$\begin{aligned} & \left(\begin{array}{ll} -1 & -79 \\ -1 & -80 \end{array}\right) \\ & \left(\begin{array}{cc} -7 & -47 \\ -11 & -74 \end{array}\right) \\ & \left(\begin{array}{c} -15 \\ -23 \\ -23 \\ \hline \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 79 \\ 1 & -80 \end{array}\right) \\ & \left(\begin{array}{cc} -7 & 47 \\ 11 & -74 \end{array}\right) \\ & \left(\begin{array}{cc} -15 & 43 \\ 23 & -66 \end{array}\right) \end{aligned}$	false false false false false false		
83	$\binom{1651}{21}$	true	$\left(\begin{array}{ll}-3 & 1 \\ -4 & 1\end{array}\right)$	$\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)$

	$\left.\begin{array}{c} \left(\begin{array}{cc} 16 & -51 \\ -21 & 67 \end{array}\right) \\ \left(\begin{array}{cc} 1 & 9 \\ 9 & 82 \end{array}\right) \\ \left(\begin{array}{l} 10 \\ 27 \\ 27 \\ 73 \end{array}\right) \\ \left(\begin{array}{c} 1 \\ 3 \end{array} 27\right. \\ 3 \end{array}\right)$	true true true false false	$\begin{aligned} & \left(\begin{array}{cc} -3 & -1 \\ 4 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 2 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 9 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} -8 & -3 \\ 3 & 1 \end{array}\right) \end{aligned}$
87	$\left.\begin{array}{c} \left(\begin{array}{cc} 2 & 13 \\ 13 & 85 \end{array}\right) \\ \left(\begin{array}{c} 29 \\ 41 \\ 41 \\ 58 \end{array}\right) \\ \left(\begin{array}{cc} 2 & -13 \\ -13 & 85 \end{array}\right) \\ \left(\begin{array}{cc} 29 & -41 \\ -41 & 58 \end{array}\right) \\ \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} 85\right. \\ \left(\begin{array}{c} 1 \\ 5 \end{array}\right. \\ \hline \end{array}\right)$	true true true true false false false false	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 1 \\ -7 & -6 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & -5 \\ 3 & 7 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -6 & -7 \\ 1 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 7 & 3 \\ -5 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \end{aligned}$
-90		true false false false false	$\begin{aligned} & \left(\begin{array}{cc} 1 & 2 \\ -6 & -11 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 4 \\ -2 & -7 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & 5 \\ -8 & -13 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & 4 \\ -10 & -13 \end{array}\right) \\ & \left(\begin{array}{cc} -11 & -6 \\ 2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} -7 & -2 \\ 4 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 13 & 8 \\ -5 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} -13 & -10 \\ 4 & 3 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 5 & -1 \\ -4 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 4 \\ 1 & -5 \end{array}\right) \end{aligned}$
-93	$\begin{gathered} \left(\begin{array}{cc} -1 & -13 \\ -7 & -92 \end{array}\right) \\ \left(\begin{array}{cc} -14 & -65 \\ -17 & -79 \end{array}\right) \\ \left(\begin{array}{cc} -1 & 13 \\ 7 & -92 \end{array}\right) \\ \left(\begin{array}{cc} -14 & 65 \\ 17 & -79 \end{array}\right) \end{gathered}$	true true true true	$\begin{aligned} & \left(\begin{array}{cc} 10 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 13 & 5 \\ -8 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & 1 \\ -1 & -10 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & 8 \\ -5 & -13 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 1 \\ 1 & -2 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) \end{aligned}$

	$\begin{aligned} & \left(\begin{array}{ll} \left(\begin{array}{ll} -1 & -91 \\ -1 & -92 \end{array}\right) \\ \left(\begin{array}{cc} -4 & -71 \\ -5 & -89 \end{array}\right) \\ \left(\begin{array}{cc} -1 & 91 \\ 1 & -92 \end{array}\right) \\ \left(\begin{array}{cc} -4 & 71 \\ 5 & -89 \end{array}\right) \end{array}\right. \end{aligned}$	false false false false		
-97	$\begin{aligned} & \left(\begin{array}{ll} -2 & -21 \\ -9 & -95 \end{array}\right) \\ & \left(\begin{array}{ll} -20 & -57 \\ -27 & -77 \end{array}\right) \\ & \left(\begin{array}{ll} -5 & -51 \\ -9 & -92 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 21 \\ 9 & -95 \end{array}\right) \\ & \left(\begin{array}{cc} -20 & 57 \\ 27 & -77 \end{array}\right) \\ & \left(\begin{array}{cc} -5 & 51 \\ 9 & -92 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & -63 \\ -3 & -95 \end{array}\right) \\ & \left(\begin{array}{cc} -2 & 63 \\ 3 & -95 \end{array}\right) \end{aligned}$	true true true true true true false false	$\begin{aligned} & \left(\begin{array}{cc} 7 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} -9 & -5 \\ 2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 4 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & -1 \\ 1 & 7 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & -2 \\ 5 & 9 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & 1 \\ -1 & -4 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} -1 & 2 \\ 1 & -3 \end{array}\right) \\ & \left(\begin{array}{cc} 2 & -3 \\ -3 & 5 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 5 \\ 1 & -6 \end{array}\right) \\ & \left(\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 5 & -3 \\ -3 & 2 \end{array}\right) \\ & \left(\begin{array}{cc} -6 & 1 \\ 5 & -1 \end{array}\right) \end{aligned}$
99	$\left.\begin{array}{c} \left(\begin{array}{cc} 19 & 31 \\ 49 & 80 \end{array}\right) \\ \left(\begin{array}{c} 19 \\ -49 \\ -30 \end{array}\right) \\ \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} 97\right. \\ 97 \end{array}\right)$	true true false false false false false false	$\begin{aligned} & \left(\begin{array}{ll} 0 & -1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{ll} 0 & -1 \\ 1 & 1 \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{cc} 3 & 5 \\ -2 & -3 \end{array}\right) \\ & \left(\begin{array}{ll} 3 & -5 \\ 2 & -3 \end{array}\right) \end{aligned}$

Table 3.1: Full set of data for $3 \leq t \leq 100$ outputted by our algorithm. The provided commutator decomposition $A B A^{-1} B^{-1}$ is of an element in the corresponding conjugacy class \mathcal{C}, but this element is not necessarily the matrix representative listed in the table.

Second, below is table of summarized data for $3 \leq t \leq 3000$. For $n \in 100 \mathbb{Z} \cap[3,3000]$,
the table displays the ratios

$$
R_{1}(n):=\frac{\mid\left\{t: 3 \leq|t| \leq n \text { and } t \text { is the trace of a commutator of } \mathrm{SL}_{2}(\mathbb{Z})\right\} \mid}{|\{t: 3 \leq|t| \leq n\}|},
$$

$R_{2}(n):=\frac{\mid\left\{t: 3 \leq|t| \leq n \text { and } t \text { is the trace of a commutator of } \mathrm{SL}_{2}(\mathbb{Z})\right\} \mid}{\mid\left\{t: 3 \leq|t| \leq n \text { and } t \text { is the trace of a commutator-subgroup element of } \mathrm{SL}_{2}(\mathbb{Z})\right\} \mid}$, and

$$
R_{3}(n):=\frac{\mid\left\{\text { conj. class } \mathcal{C} \text { of commutators in } \mathrm{SL}_{2}(\mathbb{Z}): 3 \leq|\operatorname{Tr} \mathcal{C}| \leq n\right\} \mid}{\mid\left\{\text { conj. class } \mathcal{C} \text { of commutator-subgroup elements in } \mathrm{SL}_{2}(\mathbb{Z}): 3 \leq|\operatorname{Tr} \mathcal{C}| \leq n\right\} \mid},
$$

rounded to three decimal places. This information is also sufficient to obtain the ratio between $\mid\left\{t: 3 \leq|t| \leq n\right.$ and t is the trace of a commutator-subgroup element of $\left.\mathrm{SL}_{2}(\mathbb{Z})\right\} \mid$ and $\mid\left\{t: 3 \leq|t| \leq n\right.$ and t is the trace of a commutator of $\left.\mathrm{SL}_{2}(\mathbb{Z})\right\} \mid$, which is given by the ratio $R_{2}(n) / R_{1}(n)$.

n	$R_{1}(n)$	$R_{2}(n)$	$R_{3}(n)$
100	0.232	0.844	0.524
200	0.242	0.779	0.418
300	0.244	0.752	0.341
400	0.242	0.750	0.300
500	0.243	0.739	0.277
600	0.243	0.734	0.255
700	0.242	0.725	0.236
800	0.243	0.724	0.226
900	0.244	0.714	0.209
1000	0.242	0.716	0.200
1100	0.243	0.720	0.192
1200	0.244	0.714	0.185
1300	0.243	0.712	0.177
1400	0.242	0.708	0.168
1500	0.243	0.709	0.164

1600	0.243	0.706	0.158
1700	0.243	0.702	0.154
1800	0.243	0.703	0.149
1900	0.243	0.700	0.144
2000	0.243	0.701	0.141
2100	0.243	0.701	0.137
2200	0.243	0.698	0.133
2300	0.243	0.693	0.130
2400	0.243	0.694	0.128
2500	0.243	0.693	0.125
2600	0.243	0.694	0.122
2700	0.243	0.695	0.120
2800	0.243	0.696	0.118
2900	0.243	0.695	0.116
3000	0.243	0.689	0.112

Table 3.2: Summarized data for $3 \leq t \leq 3000$.

Chapter 4

Concluding Remarks

The data of Table 3.2 suggest that $R_{1}(n)$ and $R_{2}(n)$ are each converging to a nonzero proportion. In light of this, we conjecture that the set of $t \geq 3$ that are absolute values of traces of commutators appear to be a positive-proportion subset within the set of all $t \geq 3$, with a proportion close to 0.243 . We similarly conjecture that the set of $t \geq 3$ that are absolute values of traces of commutator-subgroup elements also seem to be a positiveproportion subset within the set of all $t \geq 3$, with a proportion somewhere within or close to the interval $\left[R_{2}(2000), R_{2}(3000)\right]=[0.689,0.701]$. If these conjectures were to be proven true, then it would follow that the values of $t \geq 3$ that are absolute values of traces of commutators would have positive density within the set of $t \geq 3$ that are absolute values of traces of commutator-subgroup elements.

On the other hand, it is less clear from the data of Table 3.2 whether $R_{3}(n)$ is converging to a positive proportion or to 0 . We observed in Section 1 that the number of conjugacy classes of commutators in $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z} \cong \operatorname{PSL}_{2}(\mathbb{Z})$ with a given word length k is roughly comparable to the square root of the number of all conjugacy classes with trivial abelianization, and we expect the same to occur when counting by trace rather than word length, which, if true, would imply that $R_{3}(n)$ converges to 0 as $n \rightarrow \infty$. We anticipate collecting more data from our algorithm to investigate the asymptotic behavior of $R_{3}(n)$.

To check which conjugacy classes are comprised of commutators, our algorithm represents each conjugacy-class representative \bar{M} in terms of the generators of $\mathrm{PSL}_{2}(\mathbb{Z})$ and group-theoretically determines whether or not it is a commutator. A natural question to
ask on this front is: does there exist a purely number-theoretic criterion (i.e., one which only uses the matrix entries of M) that is necessary and sufficient for \bar{M} to be a commutator in $\operatorname{PSL}_{2}(\mathbb{Z})$? Such a criterion could both improve the speed of the algorithm and help explain some of the asymptotic phenomena shown by our data, such as the asymptotic behavior of the ratios $R_{1}(n), R_{2}(n)$, and $R_{3}(n)$.

While we have solved the problem of counting conjugacy classes of commutators ordered by word length for any free group and for $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$, there are a number of directions in which Theorems 1.2 and 1.4 can be generalized. First, one can ask: how many conjugacy classes of commutators with word length k are in an arbitrary finitely-generated free product $G=*_{i \in I} G_{i}$? While one can define the word length in this context to be with respect to an arbitrary generating set \mathfrak{S}, a natural notion of length to use in this setting would be the free product length, which can be defined as the word length with respect to

$$
\mathfrak{S}:=\left\{g \in G \backslash\{1\}: g \in G_{i} \text { for some } i \in I\right\} .
$$

Note that word length with respect to our choice of \mathfrak{S} for $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ coincides with the free product length.

Also, let the n-commutators of a given group be defined by the elements with trivial abelianization and commutator length n. A second direction for generalizing Theorems 1.2 and 1.4 is to, for any n, count the number of conjugacy classes of n-commutators with word length k in a free group or free product (such as $\mathbb{Z} / 3 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$, or more generally, an arbitrary finitely-generated free product $G=*_{i \in I} G_{i}$). This is natural to ask, given that Culler [4] has classified the possible forms of n-commutators for a free group and Vdovina [13] has done this for an arbitrary free product. In fact, Culler has also classified the possible forms that a product of n square elements can take for a free group, so an analogous question can be asked for the number of conjugacy classes comprised of products of n square elements.

References

[1] Jean Bourgain, Alexander Gamburd, and Peter Sarnak, Markoff triples and strong approximation, C. R. Math. Acad. Sci. Paris 354 (2016), no. 2, 131-135. MR 3456887
[2] Danny Calegari, Stable commutator length is rational in free groups, J. Amer. Math. Soc. 22 (2009), no. 4, 941-961. MR 2525776
[3] Keith Conrad, $\mathrm{SL}_{2}(\mathbb{Z})$, expository notes, http://www.math.uconn.edu/kconrad/ blurbs/grouptheory/SL(2,Z).pdf, 2016.
[4] Marc Culler, Using surfaces to solve equations in free groups, Topology 20 (1981), no. 2, 133-145. MR 605653
[5] Amit Ghosh and Peter Sarnak, Integral points on Markoff-type cubic surfaces, unpublished preprint, 2017.
[6] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981), no. 53, 53-73. MR 623534
[7] Avinoam Mann, How groups grow, London Mathematical Society Lecture Note Series, vol. 395, Cambridge University Press, Cambridge, 2012. MR 2894945
[8] Grigory A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen. 3 (1969), no. 4, 89-90. MR 0257933
[9] Igor Rivin, Growth in free groups (and other stories)—twelve years later, Illinois J. Math. 54 (2010), no. 1, 327-370. MR 2776999
[10] Peter Sarnak, Prime geodesic theorems, ProQuest LLC, Ann Arbor, MI, 1980, Thesis (Ph.D.)-Stanford University. MR 2630950
[11]_, Reciprocal geodesics, Analytic number theory, Clay Math. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 2007, pp. 217-237. MR 2362203
[12] Atle Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87. MR 0088511
[13] Alina Vdovina, Products of commutators in free products, Internat. J. Algebra Comput. 7 (1997), no. 4, 471-485. MR 1459623
[14] Malcolm J. Wicks, Commutators in free products, J. London Math. Soc. 37 (1962), 433-444. MR 0142610

Appendix: Code

```
Subs:=function(str,pos,length)
    if length ge 1 then
        return Substring(str,pos,length);
    else
        return "";
    end if;
end function;
negatee:=function(str)
    if str eq "r" then
        return "i";
    elif str eq "i" then
        return "r";
    else
        return "s";
    end if;
end function;
concat:=function(str1,str2)
    n:=1;
    length1:=#str1;
    length2:=#str2;
    length1p1:=length1+1;
    while n le length1 and n le length2
        and negatee(str1[length1p1-n])
            eq str2[n] do
            n:=n+1;
    end while;
    if n gt length2 then
        return Substring(str1,1,length1p1-n);
    else
        x:=length1p1-n;
            if x gt 0 and str1[x] eq "r" and str2[n] eq "r" then
            return Subs(str1,1,x-1) cat "i"
                cat Substring(str2,n+1,length2);
```

```
        elif x gt 0 and str1[x] eq "i" and str2[n] eq "i" then
        return Subs(str1,1,x-1) cat "r"
            cat Substring(str2,n+1,length2);
        else
        return Subs(str1,1,x) cat Substring(str2,n,length2);
        end if;
    end if;
end function;
genform := function(A, B, C,D)
    a:=A;
    b:=B;
    c:=C;
    d:=D;
    str:="";
    while c ne 0 do
        if a*a ge c*c then
            q:=a div c;
            a:=a mod c;
            b:=b-q*d;
            if q gt 0 then
                str:=concat(str,"sr"^q);
            else
                    str:=concat(str,"is"^(-q));
            end if;
        end if;
        temp:=d;
        d:=b;
        b:=-temp;
        temp:=c;
        c:=a;
        a:=-temp;
        strlength:=#str;
        if strlength gt 0 and str[strlength] eq "s" then
            str:=Substring(str,1,strlength-1);
        else
            str:=str cat "s";
        end if;
    end while;
    if a eq 1 then
        if b ge 0 then
            str:=concat(str,"sr"^b);
        else
            str:=concat(str,"is"^(-b));
        end if;
    else
        if b ge 0 then
            str:=concat(str,"is"^b);
```

```
        else
        str:=concat(str,"sr"^(-b));
        end if;
    end if;
    return str;
end function;
SSubstring:=function(str,length)
    if length ge 1 then
        return Substring(str,1,length);
    else
        return "";
    end if;
end function;
Checkinvv:=function(str1,str2)
    length1:=#str1;
    length1p1:=length1+1;
    if length1 ne #str2 then
        return false;
    end if;
    count:=1;
        while count le length1 do
        if str1[count] ne negatee(str2[length1p1-count]) then
                return false;
            end if;
            count:=count+1;
        end while;
    return true;
end function;
matrixform:=function(str)
    M:=Matrix(IntegerRing(), 2, 2, [1,0,0,1]);
        for n in [1..#str] do
            if str[n] eq "s" then
                M:=M*Matrix(IntegerRing(), 2, 2, [0,-1,1,0]);
            elif str[n] eq "r" then
                M:=M*Matrix(IntegerRing(), 2, 2, [0,-1,1,1]);
            elif str[n] eq "i" then
                M:=M*Matrix(IntegerRing(), 2, 2, [1,1,-1,0]);
            end if;
        end for;
    return M;
end function;
checkcommdetailed:= function(string2)
    latest:=string2;
    seclength:=#string2;
```

```
lastbit:=latest[seclength];
if lastbit eq "s" then
    if latest[1] eq "s" and seclength gt 1 then
        latest:=Substring(latest,2,seclength-2);
    end if;
elif lastbit eq "r" then
    if latest[1] eq lastbit and seclength gt 1 then
        latest:= "i" cat Substring(latest,2,seclength-2);
    elif latest[1] eq "i" and seclength gt 1 then
        latest:= Substring(latest,1,seclength-1);
    end if;
else
    if latest[1] eq lastbit and seclength gt 1 then
        latest:= "r" cat Substring(latest,2,seclength-2);
    elif latest[1] eq "r" and seclength gt 1 then
        latest:= Substring(latest,1,seclength-1);
    end if;
end if;
length:=#latest;
list2:=[latest];
for n in [1..length] do
    tempstr:= Substring(latest,length,1)
        cat Substring(latest,1,length-1);
    list2:=Append(list2,tempstr);
    latest:=tempstr;
end for;
for str in list2 do
    if length mod 2 eq 1 then
        return false;
    end if;
    if length mod 4 eq 0 then
        hlength:=length div 2;
        hlengthp1:=hlength+1;
        qlength:=hlength div 2;
        for a in [1..qlength] do
            x:=Substring(str,1,a*2-1);
            y:=Substring(str,a*2,hlengthp1-a*2);
            if Checkinvv(x,Substring(str,hlengthp1,a*2-1))
                    and Checkinvv(y,
                    Substring(str,a*2+hlength,hlengthp1-a*2)) then
                mattx:=matrixform(x);
                matty:=matrixform(y);
                return <true, ";", mattx[1,1], ";", mattx[1,2],";",
                    mattx[2,1], ";", mattx[2,2], ";", matty[1,1], ";",
                        matty[1,2],";", matty[2,1], ";", matty[2,2]>;
            end if;
        end for;
    end if;
```

```
    lengthm6:=length-6;
    if str[length] ne "s" and lengthm6 mod 4 eq 2 then
        v:=str[hlength];
        hlength:=lengthm6 div 2;
    qlength:=lengthm6 div 4;
    for a in [1..qlength] do
    if str[a*2] eq v and str[hlength+3+a*2] eq str[length] then
        for b in [1..qlength-a+1] do
            if str[a*2+b*2] eq str[length]
                    and str[hlength+3+a*2+b*2] eq v then
        x:=Substring(str,1,a*2-1);
        y:=Substring(str,a*2+1,b*2-1);
        z:=Substring(str,a*2+b*2+1,hlength-a*2-b*2+2);
        zinv:=Substring(str,hlength+a*2+b*2+4,hlength-a*2-b*2+2);
        if Checkinvv(x,Substring(str,4+hlength,a*2-1))
            and Checkinvv(y,Substring(str,hlength+a*2+4,b*2-1))
            and Checkinvv(z,zinv) then
                mattx:=matrixform(negatee(str[length]) cat x cat negatee(v)
                    cat zinv cat negatee(str[length]));
                matty:=matrixform(str[length] cat z cat negatee(v) cat y);
                return <true, ";", mattx[1,1], ";", mattx[1,2],";",
                mattx[2,1], ";", mattx[2,2], ";", matty[1,1], ";",
                matty[1,2],";", matty[2,1], ";", matty[2,2]>;
        end if;
    end if;
    end for;
end if;
    end for;
        end if;
    end for;
    return false;
end function;
```

```
checkcomm:= function(string2)
    latest:=string2;
    seclength:=#string2;
    lastbit:=latest[seclength];
    if lastbit eq "s" then
        if latest[1] eq "s" and seclength gt 1 then
        latest:=Substring(latest,2,seclength-2);
    end if;
    elif lastbit eq "r" then
    if latest[1] eq lastbit and seclength gt 1 then
        latest:= "i" cat Substring(latest,2,seclength-2);
    elif latest[1] eq "i" and seclength gt 1 then
        latest:= Substring(latest,1,seclength-1);
    end if;
```

```
else
    if latest[1] eq lastbit and seclength gt 1 then
        latest:= "r" cat Substring(latest,2,seclength-2);
    elif latest[1] eq "r" and seclength gt 1 then
        latest:= Substring(latest,1,seclength-1);
    end if;
end if;
length:=#latest;
list2:=[latest];
for n in [1..length] do
    tempstr:= Substring(latest,length,1)
        cat Substring(latest,1,length-1);
    list2:=Append(list2,tempstr);
    latest:=tempstr;
end for;
for str in list2 do
    if length mod 2 eq 1 then
        return false;
    end if;
    if length mod 4 eq 0 then
        hlength:=length div 2;
        hlengthp1:=hlength+1;
        qlength:=hlength div 2;
        for a in [1..qlength] do
            x:=Substring(str,1,a*2-1);
            y:=Substring(str,a*2,hlengthp1-a*2);
            if Checkinvv(x,Substring(str,hlengthp1,a*2-1))
                    and Checkinvv(y,
                    Substring(str,a*2+hlength,hlengthp1-a*2)) then
                return true;
            end if;
        end for;
    end if;
    lengthm6:=length-6;
    if str[length] ne "s" and lengthm6 mod 4 eq 2 then
        v:=str[hlength];
        hlength:=lengthm6 div 2;
qlength:=lengthm6 div 4;
for a in [1..qlength] do
    if str[a*2] eq v and str[hlength+3+a*2] eq str [length] then
        for b in [1..qlength-a+1] do
            if str[a*2+b*2] eq str[length]
                and str[hlength+3+a*2+b*2] eq v then
        x:=Substring(str,1,a*2-1);
        y:=Substring(str,a*2+1,b*2-1);
        z:=Substring(str,a*2+b*2+1,hlength-a*2-b*2+2);
        zinv:=Substring(str,hlength+a*2+b*2+4,hlength-a*2-b*2+2);
        if Checkinvv(x,Substring(str,4+hlength,a*2-1))
```

```
            and Checkinvv(y,Substring(str,hlength+a*2+4,b*2-1))
            and Checkinvv(z,zinv) then
                return true;
            end if;
        end if;
    end for;
end if;
    end for;
        end if;
    end for;
    return false;
end function;
for t in [3..100] do
    D:=t*t-4;
    modt:=t mod 12;
    for dd in Divisors(D) do
        Disc:=Round(D/dd);
        if IsSquare(dd) ne false and (Disc mod 4) le 1 then
                mult:=Round(SquareRoot(dd));
                Q := BinaryQuadraticForms(Disc);
        QQ:=ReducedForms(Q);
        for quad in QQ do
            a:=mult*quad[1];
            b:=mult*quad [2];
            c:=mult*quad [3];
            ma:=Round((-b+t)/2);
            mb:=-c;
            mc:=a;
            md:=Round((b+t)/2);
            a:=ma mod 12;
            b:=mb mod 12;
                    c:=mc mod 12;
                    d:=md mod 12;
                    if modt in [0, 2, 3, 4, 6, 7, 8, 10, 11]
                and ((1-c*c)*(b*d+3*(c-1)*d+c+3)+c*(a+d-3)) mod }1
                eq 0 then
                    thegenform:=genform(ma,mb,mc,md);
                    answer:=checkcommdetailed(thegenform);
                    t, ";", ma, ";", mb, ";", mc, ";", md , ";", answer;
                    elif modt in [0,1,2, 4,5 ,6, 8,9, 10]
                    and ((1-c*c)*(b*d+3*(-c-1)*(-d)-c+3)-c*(-a-d-3)) mod 12
                    eq 0 then
                    thegenform:=genform(-ma,-mb,-mc,-md);
                    answer:=checkcommdetailed(thegenform);
                    -t, ";", -ma, ";", -mb, ";", -mc, ";", -md , ";", answer ;
                    end if;
        end for;
```

```
        end if;
    end for;
end for;
num:=0;
den:=0;
for t in [3..3000] do
    D:=t*t-4;
    modt:=t mod 12;
    cnumberplus:=0;
    cnumberminus:=0;
    mnumberplus:=0;
    mnumberminus:=0;
    for dd in Divisors(D) do
        Disc:=Round(D/dd);
        if IsSquare(dd) ne false and (Disc mod 4) le 1 then
                mult:=Round(SquareRoot(dd));
                Q := BinaryQuadraticForms(Disc);
                QQ:=ReducedForms(Q);
                for quad in QQ do
                    a:=mult*quad[1];
                    b:=mult*quad [2];
                    c:=mult*quad [3];
                    ma:=Round((-b+t)/2);
                    mb:=-c;
                    mc:=a;
                    md:=Round((b+t)/2);
                    a:=ma mod 12;
                    b:=mb mod 12;
                    c:=mc mod 12;
                    d:=md mod 12;
                    if modt in [0, 2, 3, 4, 6, 7, 8, 10, 11]
                and ((1-c*c)*(b*d+3*(c-1)*d+c+3)+c*(a+d-3)) mod }1
                eq 0 then
                    thegenform:=genform(ma,mb,mc,md);
                    answer:=checkcomm(thegenform);
                        if answer cmpne false then
                    mnumberplus:=mnumberplus+1;
                    end if;
                cnumberplus:=cnumberplus+1;
                    elif modt in [0,1,2, 4,5 ,6, 8,9, 10]
                    and ((1-c*c)*(b*d+3*(-c-1)*(-d)-c+3)-c*(-a-d-3)) mod 12
                    eq 0 then
                    thegenform:=genform(-ma,-mb,-mc,-md);
                    answer:=checkcomm(thegenform);
                    if answer cmpne false then
                    mnumberminus:=mnumberminus+1;
                    end if;
```

```
                                    cnumberminus:=cnumberminus+1;
                    end if;
                end for;
        end if;
    end for;
    num:=num+mnumberplus+mnumberminus;
    den:=den+cnumberplus+cnumberminus;
    if cnumberplus ne 0 then
        t,";",D,";", mnumberplus,";",
            cnumberplus,";", mnumberplus ne 0,";", num, ";", den;
    end if;
    if cnumberminus ne O then
        -t,";",D,";", mnumberminus,";",
            cnumberminus,";", mnumberminus ne 0 ,";", num, ";", den;
    end if;
end for;
```

