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We study the aspects of quasilocal energy associated with a 2-surface Σ bounding a spacelike domain Ω
of a physical (3þ 1)-dimensional spacetime in the regime of gravity coupled to a gauge field. The Wang-
Yau quasilocal energy together with an additional term arising due to the coupling of gravity to a gauge
field constitutes the total energy (QLE) contained within the membrane Σ ¼ ∂Ω. We specialize in the Kerr-
Newman family of spacetimes which contains a U(1) gauge field coupled to gravity and an outer horizon.
Through explicit calculations, we show that the total energy satisfies a weaker version of a Bekenstein-type

inequalityQLE > Q2

2R for large spherical membranes, Q is the charge, and R is the radius of the membrane.

Turning off the angular momentum (Reissner Nordström) yields QLE > Q2

2R for all constant radii
membranes containing the horizon, and in such a case the charge factor appearing in the right-hand
side exactly equals that of Bekenstein’s inequality. Moreover, we show that the total quasilocal energy
monotonically decays from 2Mirr þ VQ (Mirr is the irreducible mass, and VQ is the electric potential
energy) at the outer horizon toM (M is the Arnowitt-Deser-Misner mass) at the spacelike infinity under the
assumption of a small angular momentum of the black hole.

DOI: 10.1103/PhysRevD.105.104068

I. INTRODUCTION

The notion of a local mass density of pure gravity is
nonexistent due to the equivalence principle. For an
isolated self-gravitating system where the spacetime is
asymptotically flat, one defines the notion of mass as a
flux integral over a spacelike topological 2-sphere located
at infinity. For such a system, this so-called ADM mass
satisfies the desired positivity property [1–3]. One also
defines a notion of mass at the null infinity [4,5]. On the
other hand, a notion of mass in between scales is of extreme
importance due to the fact that most physical models extend
over a finite region. For example, if one were to study the
kinematics of a black hole on a curved background, the first
entity that one would require is the mass associated with a
topological 2-sphere that encloses the black hole. There are
several problems in classical general relativity that require a
notion of quasilocal mass as well. Penrose’s singularity
theorem [6] essentially entails the study of the dynamics of
spacelike 2-surfaces foliating the future null cone of an
arbitrary point in the spacetime. In other words, the
formation of a black hole is hinted at by the congruence
of the future null geodesics measured by the trace of the
null second fundamental form of topological 2-spheres
foliating the outgoing null hypersurfaces generated by such
null geodesics (later the author of Ref. [7] proved the
dynamical formation of such trapped surfaces from initial
data that did not contain the “trapped” characteristics in the

case of pure vacuum gravity). In such a case, one would
want to study the evolution of the gravitational energy that
is contained within such topological 2-spheres and under-
stand if such an evolution exhibits any special character-
istics that hint toward a possible singularity formation. To
even study such an evolution problem, one would need an
expression of the energy contained within the surface of
interest necessitating a formulation of quasilocal mass/
energy. In addition, a formulation (let alone proof) of the
hoop conjecture [8,9] of general relativity requires a notion
of quasilocal mass since this conjecture essentially deals
with the question of the implosion of an object to a limit
where a circular hoop of circumference 2πrs (rs being the
Schwarzschild radius) can be placed around it. Such a limit
corresponds to a point of no return or eventual black hole
formation similar to the formation of a trapped surface.
One requires a notion of mass of the object under study that
can be formulated as a quasilocal mass of a topological
2-sphere bounding the object to address such a conjecture.
In addition, the study of black hole collision and merging
also requires an appropriate notion of quasilocal mass.
Motivated by the aforementioned physically relevant

questions, several authors defined different notions of
quasilocal mass over the years. A necessary property of
such a quasilocal mass would be that it should be positive
for a spacelike 2-surface embedded in a curved spacetime
and vanishes identically for any such 2-surface in the
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Minkowski space. In addition, it should encode the
information about pure gravitational energy (the Weyl
curvature effect) as well as the stress-energy tensor of
any source fields present in the spacetime. Based on a
Hamilton-Jacobi analysis, Brown-York [10,11] and Li-Yau
[12,13] defined a quasilocal mass by isometrically embed-
ding the 2-surface into the reference Euclidean 3-space and
comparing the extrinsic geometry (the formulation relied
on the embedding theorem of Pogorelov [14]; i.e., the
topological 2-sphere needed to possess everywhere non-
negative sectional curvature). However, the authors of
Ref. [15] discovered surfaces in Minkowski space that
do have strictly positive Brown-York and Li-Yau mass. It
appeared that these formulations were lacking a prescrip-
tion of momentum information. This led Wang and Yau
[16,17] to define the most consistent notion (till today to the
best of our knowledge) of the quasilocal mass associated
with a spacelike topological 2-surface. It involves isometric
embedding of the topological 2-sphere bounding a space-
like domain in the physical spacetime satisfying the
dominant energy condition (energy cannot flow into a past
light cone of an arbitrary point in spacetime; essentially
finite propagation speed) into the Minkowski spacetime
instead of the Euclidean 3-space. This formulation relies
on a weaker condition on the sectional curvature of the
2-surface of interest and solvability of Jang’s equation [18]
with the prescribed Dirichlet boundary data. TheWang-Yau
quasilocal mass is then defined as the infimum of the
Wang-Yau quasilocal energy among all physical observers
that is found by solving an optimal isometric embedding
equation. This Wang-Yau quasilocal mass possesses several
good properties that are desired on a physical ground. This
mass is strictly positive for 2-surfaces bounding a spacelike
domain in a curved spacetime that satisfies the dominant
energy condition, and it identically vanishes for any
such 2-surface in the Minkowski spacetime. In addition,
it coincides with the ADM mass at spacelike infinity [19]
and the Bondi mass at null infinity [20], and it reproduces
the time component of the Bel-Robinson tensor (a pure
gravitational entity) together with the matter stress energy
at the small sphere limit, that is, when the 2-sphere of
interest is evolved by the flow of its null geodesic
generators and the vertex of the associated null cone is
approached [21]. In addition, explicit conservation laws
were also discovered at the asymptotic infinity [22].
These physically desired features led to the belief that the

Wang-Yau quasilocal mass may be the one to consider as an
appropriate notion of a quasilocal mass modulo few
technicalities such as the mean curvature vector of the
2-surface of interest is restricted to be spacelike [16,17].
Therefore, it is important to apply the Wang-Yau formalism
to physically interesting spacetimes, explicitly compute the
mass of a spacelike domain bounded by a topological
2-surface, and understand its properties. In this article, we
are interested in spacetimes where an additional gauge field

is coupled to gravity. The gauge fields are particularly
interesting since their evolution is not free due to gauge
invariance, and therefore constraints must be solved on
each Cauchy hypersurface (spatial hypersurface that is met
exactly once by every inextendible causal curve) much as
the pure gravity problem itself. Because of these con-
straints, additional boundary terms appear in the expression
of quasilocal energy through Hamilton-Jacobi analysis that
is not controlled by the Wang-Yau quasilocal energy
expression (unlike sources with nongauge degrees of
freedom where the Wang-Yau quasilocal energy is suffi-
cient to control their energy content in addition to pure
gravitational energy). This additional contribution arises as
a consequence of the nonvanishing charge associated with
the gauge field. Therefore, it turns out to be extremely
important in the context of charged black holes (electro-
magnetic or Yang-Mills) since we expect there must be a
charge-mass inequality in order for the interior singularity
to be hidden or, in technical terms, the black holes should
be of subextremal-type since exposing the interior singu-
larity to a causal observer located in the domain of outer
communication signals a pathological breakdown of the
classical general relativity. Since we consider the notion of
mass to be the Wang-Yau (W-Y) quasilocal mass, this
translates to obtaining a suitable inequality relating the
charge of the gauge field and the W-Y quasilocal mass of
membranes enclosing the black hole.
In addition, one of the other main motivations of the

current study is Bekenstein’s inequality relating the total
energy of a relativistic object bounded by a membrane, its
charge, and the angular momentum. Based on physical
arguments, Bekenstein proposed an upper bound of the
entropy of the object which takes the following form in the
natural unit ℏ ¼ c ¼ κ ¼ 1 [23]:

S ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2R2 − J 2

p
−
Q2

2
; ð1Þ

where S, E, J , Q, and R are the objects entropy, total
energy, angular momentum, charge, and size (the radius of
the smallest sphere containing it), respectively. This
inequality proves to be difficult to establish in a rigorous
way. Nevertheless, if one simply assumes the non-
negativity of the entropy, then a weaker version of the
above inequality reads

E2 ≥
J 2

R2
þ Q4

4R2
; ð2Þ

and for an object with non-negative angular momentum

E ≥
Q2

2R
: ð3Þ

As the first step of the proof of this inequality, one requires
a physically reasonable definition of the energy contained
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within a region of nonzero charge bounded by a membrane
in the fully general relativistic setting. A natural choice
would be to consider the Wang-Yau quasilocal energy and
try to establish the previous inequality. We note that
recently the authors of [24] studied this inequality for
several definitions of the quasilocal energy.
The structure of the article is as follows. Starting with the

classical Hilbert action of the Einstein-Yang-Mills system
[including a Uð1Þ Yang-Mills as well], we derive the
boundary contribution to the quasilocal energy that arises
solely due to the gauge fields through an ADM Hamilton-
Jacobi analysis. Later, we specialize in the Kerr-Newman
spacetime and explicitly compute the boundary contribu-
tion. Simultaneously, we compute the Wang-Yau energy
functional and establish the necessary condition for it to be
well behaved. We later show that the trivial data solve the
optimal isometric embedding equation and the associated
mass is positive by construction if the angular momentum
of the black hole is not too large. This yields an inequality
between the charge of the black hole and the quasilocal
energy of membranes enclosing it. This total quasilocal
energy is shown to exhibit monotonic decay in the radially
outward direction from the outer horizon under the
assumption of a small angular momentum. A few physical
conclusions are drawn on the basis of our results and a few
additional problems are discussed that are to be handled in
the potential future.

II. QUASILOCAL ENERGY EXPRESSION
INCLUDING A GAUGE FIELD

In this section, we derive the contribution of the gauge
field to the expression of the quasilocal mass. We consider a
(1þ 3)-dimensional C∞ globally hyperbolic spacetime
R ×M, where M is diffeomorphic to a Cauchy hypersur-
face, equipped with a Lorentzian metric ĝ. Since this
globally hyperbolic spacetime is foliated by the spacelike
submanifolds Mt (t is a time function that is well-defined
for a globally hyperbolic spacetime), we may use a lapse
function N and aM-parallel shift vector field Y to represent
ĝ in the following ADM form [25]:

ĝ ≔ −N2dt ⊗ dtþ gijðdxi þ YidtÞ ⊗ ðdxj þ YjdtÞ; ð4Þ

where g is the Riemannian metric induced on M by the
embedding i∶M ↪ R ×M. The second fundamental
form K measuring the extrinsic geometry of M in
R ×M is defined by KðX; ZÞ ≔ −ĝð∇½ĝ�Xn; ZÞ, for all
X, Z being the sections of TM. Here n is the t ¼ const
hypersurface orthogonal unit time-like vector field defined
as n∶ 1

N ð∂t − YÞ.
To formulate the Yang-Mills theory over the spacetime

R ×M, we first choose a compact semisimple Lie groupG.
If a section of the principleG-bundle defined overR ×M is
chosen and the connection is pulled back to the base

manifold, then it yields a 1-form field on the base which
takes values in the Lie algebra g of G. Let us consider the
dimension of the group G to be dimG, and since g ≔ TeG,
it has a natural vector space structure. Assume that the
vector space g has a basis fχAgdimG

A¼1 given by a set of k × k
real-valued matrices (k being the dimension of the repre-
sentation V of the Lie algebra g). The connection 1-form
field is then defined to be

Â ≔ ÂA
μ χAdxμ ¼ ÂA

μ ðχAÞabdxμ
¼ Âa

bμdxμ; a; b ¼ 1; 2; 3;…; k: ð5Þ

From now on by the connection 1-form field Âμ, we will
always mean Âa

bμ. In the current setting Â ∈ Ω1ðR ×M;

EndðVÞÞ, where EndðVÞ denotes the space of endomor-
phisms of the vector space V. The curvature of this
connection is defined to be the Yang-Mills field
F ∈ Ω2ðR ×M;EndðVÞÞ,

F̂a
bμν ≔ ∂μÂ

a
bν − ∂νÂ

a
bμ þ ½Â; Â�abμν; ð6Þ

where the bracket is defined on the Lie algebra g and given
by the commutator of matrices under multiplication. The
Yang-Mills coupling constant is set to unity. Since G is
compact, it admits a positive definite adjoint invariant
metric on g. We choose a basis of g such that this adjoint
invariant metric takes the Cartesian form δAB and works
with representations for which the bases satisfy

−trðχAχBÞ ¼ ðχAÞabðχAÞba ¼ δAB: ð7Þ

One may for convenience decompose the 1þ 3 g-valued
connection 1-form field Aa

bμ into its component parallel
and perpendicular to M as follows:

Âa
b ¼ Aa

b − ĝðAa
b;nÞn; ð8Þ

where Aa
b is a g valued 1-form field parallel to the spatial

manifold M, i.e., A ∈ Ω1ðM;EndðVÞÞ. Importantly note
that Âa

bi ¼ Aa
bi but Â

a i
b ≠ Aa i

b unless the shift vector field
Y vanishes. Similarly, we decompose the Yang-Mills field
strength F̂ as follows:

F̂a
b ¼

1

μg
ðEa

b ⊗ n − n ⊗ Ea
bÞ þ Fa

b; ð9Þ

where E ∈ Ω1ðM;EndðVÞÞ is the electric field, F ∈
Ω2ðM;EndðVÞÞ is related to the magnetic field, and μg ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

p
. Once again note F̂a

bij¼Fa
bij but F̂

a
b
ij ≠ Fa

b
ij.

The Einstein-Hilbert action for a gauge-gravity system in
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the natural unit G ¼ 1 ¼ ℘ (℘ is the Yang-Mills coupling
constant) may be written as follows [26]:

8πS ≔
1

2

Z
I×M

RðĝÞμĝ −
1

4

Z
I×M

F̂a
bμνFb

aαβĝαμĝβνμĝ

þ
Z
Mt−Mt0

trgKμĝjM; ð10Þ

where I ⊂ R denotes a closed interval on the real
line, i.e., I ≔ ½t0; t�, μĝ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðĝμνÞj
p

, trgK is the
mean extrinsic curvature of the constant time
hypersurface M, and μĝjM is the volume form induced on
M. Mt −Mt0 denotes the difference of the integrals
over hypersurfaces t ¼ t and t ¼ t0. Through the ADM
decomposition (4), one may introduce the canonical
pairs [gij; πij ≔ −μgðKij − trgKgijÞ] for the gravity and
½Aa

bi; Ea
b
i ≔ μg

N gikðF̂a
b0k − F̂a

bjkYjÞ� for the Yang-Mills
theory. Now, using the same ADM formalism, we may
obtain an expression for the quasilocal energy associated
with a 2-surface bounding a domain in M for this gauge-
gravity coupled system through the Hamilton-Jacobi analy-
sis. The following lemma describes the result.
Lemma 1: Let Σ be a 2-surface bounding a domain Ω

in M; i.e., ∂Ω ¼ Σ and ν is its spacelike outward unit
normal vector. Also assume that the Einstein-Hilbert action
(10) for a gauge-gravity coupled system is defined on
½t0; t� ×Ω. Then the quasilocal Hamiltonian defined by
Hql ≔ −∂tS for this Einstein-Yang-Mills system with a
compact semisimple gauge group verifies the following
expression:

Hql≔−
∂S
∂t

¼−
1

8π

Z
Σt

�
kN−

πij

μΣ
νiYj−

Ea
b
i

μΣ
Ab

a0νi

�
μΣd2x; ð11Þ

where k ¼ trgK and μΣ is the induced volume form on Σ.
Proof.—Let us start with the Einstein-Hilbert action

S ≔ 1
2

R
½t0;t�×Ω RðĝÞμĝ − 1

4

R
½t0;t�×Ω F̂a

bμνFb
aαβĝαμĝβνμĝ þR

Ωt−Ωt0
trgKμĝjΩ and reduce it utilizing the ADM splitting

(4). Straightforward calculations yield

RðĝÞ ¼ RðgÞ þ KijKij − ðtrgKÞ2
− 2ð∇μðnν∇νnμÞ −∇νðnν∇μnμÞÞ ð12Þ

and

1

4
F̂a

bμνFb
aαβ¼−

1

2N2
gikðF̂a

b0i−Fa
bjiXjÞðF̂b

a0k−Fb
ajkXjÞ

þ1

4
gikgjmFa

bijFb
akm; ð13Þ

where we have used the fact that F̂a
bij ¼ Fa

bij. Now recall
the definitions of the gravitational and Yang-Mills momenta

πij ≔ −μgðKij − trgKgijÞ;
Eai
b ≔

μg
N
gikðF̂a

b0k − Fa
bjkYjÞ; ð14Þ

the substitution of which yields the following expression for
the action SðtÞ:

8πSðtÞ ¼ 1

2

Z
½t0;t�

Z
Ω
ðπij∂tgij − NμgðjKj2g − ðtrgKÞ2 − RðgÞÞ − 2πij∇iYjÞd3xdt

þ
Z
I

Z
Ω

�
Ea

b
i∂tAb

ai − Ea
biFb

ajiYj þ Ea
b
i½A0; Ai�ba −

N
2μg

Ea
b
iEb

ai−
1

4
Fa

bijFb
a
ijNμg − Ea

b
i∂iAb

a0

�
d3xdt

þ
Z
½t0;t�

Z
Ω
kNμΣd2xdt:

Here we have used the definition of the second fundamental
form Kij ¼ ĝð∇½ĝ�∂in; ∂jÞ ¼ − 1

2N ð∂tgij − LYgijÞ and inte-
gration by parts of ð∇μðnν∇νnμÞ −∇νðnν∇μnμÞÞNμg
to obtain the last boundary term since the first term
cancels out by

R
Ωt−Ωt0

trgKμĝjΩ. Now notice the following

calculations:Z
Ω
πij∇iYjd3x¼

Z
Ω
∇iðπijYjÞd3x−

Z
Ω
Yj∇iπ

ijd3x; ð15Þ

where we may integrate the first term since π is a density
and therefore ∇iðπijYjÞ ¼ ∂iðπijYjÞ yielding

Z
Ω
πij∇iYjd3x ¼

Z
Σ
πijYjνid2x −

Z
Ω
Yj∇iπ

ijd3x: ð16Þ

In an exact similar way we may reduce the similar term of
the Yang-Mills sectorZ
Ω
Ea i

b∂iAb
a0d3x¼

Z
Ω
∂iðEa i

bA
b
a0Þd3x−

Z
Ω
∂iEa i

bA
b
a0d3x

¼
Z
Ω
Ea

b
iAb

a0νid2x−
Z
Ω
∂iEa i

bA
b
a0d3x:

ð17Þ
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Notice that the terms
R
Ω Yj∇iπ

ijd3x and
R
Ω ∂iEa i

bA
b
a0d3x give rise to the momentum constraint and the Gauss law

constraint, respectively. Assembling all the terms together, we obtain the final expression for the action functional

8πSðtÞ ¼ 1

2

Z
½t0;t�

Z
Ω
ðπij∂tgij − NμgðjKj2g − k2 −RðgÞ þ 1

μ2g
Ea

biEb
ai

þ 1

2
Fa

bijFb
a
ijÞ þ ð2∇iπ

i
j − Ea i

bF
b
ajiÞYjÞd3xdtþ

Z
½t0;t�

Z
Σ

�
kN −

πij

μΣ
νiYj

�
μΣd2x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gravitational energy modulo a reference term

dt

þ
Z
½t0;t�

Z
Ω
ðEa

bið∂tAb
ai þ ½A0; Ai�baÞ þ ∂iEa

biAb
a0Þd3xdt −

Z
½t0;t�

Z
Σ
Ea

biAb
a0νid2x|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

surface energy from gauge field

dt:

Therefor, using the Hamilton-Jacobi equation ∂tSþHq:l ¼
0, we obtain

Hql¼−
1

8π

Z
Σ

�
kN−

πij

μΣ
νiYj−

Ea
b
i

μΣ
Ab

a0νi

�
μΣd2x: ð18Þ

This concludes the proof of the lemma. ▪
Wang and Yau [16,17] dealt with the pure gravitational

and nongauge part of the quasilocal energy by subtracting a
well-defined reference contribution (by isometrically
embedding Σ into Minkowski space). Therefore, we will
use their expression to handle the first term −

R
ΣðkN −

πij

μΣ
νiYjÞμΣd2x while computing the quasilocal energy for a

given spacetime. They have shown with a suitable choice of
the lapse functionN and the shift vector field Y that one can
define a notion of quasilocal mass which satisfies several
properties that are desired on the physical ground. Let us
now describe the Wang-Yau quasilocal mass which we
wish to evaluate. Let us assume that the mean curvature
vector H of Σ is spacelike. Let J be the reflection of H
through the future outgoing light cone in the normal bundle
of Σ. The data that Wang and Yau use to define the

quasilocal energy are the triple (σ; jHjĝ; αH) on Σ, where σ
is the induced metric on Σ by the Lorentzian metric ĝ or
R ×M, jHjĝ is the Lorentzian norm of H, and αH is the
connection 1-form of the normal bundle with respect to the
mean curvature vector H and is defined as follows:

αHðXÞ ≔ ĝ

�
∇½ĝ�X

J
jHj ;

H
jHj

�
: ð19Þ

Choose a basis pair (e3, e4) for the normal bundle of Σ in
the spacetime that satisfies ĝðe3; e3Þ ¼ 1; ĝðe4; e4Þ ¼ −1,
and ĝðe3; e4Þ ¼ 0. Now embed the 2-surface Σ isometri-
cally into the Minkowski space with its usual metric
η; i.e., the embedding map X∶xa ↦ XμðxaÞ satisfies
σð ∂

∂xa ;
∂
∂xbÞ ¼ h∂X∂xa ; ∂X∂xbiη, where fxag2a¼1 are the coordinates

on Σ. Now identify a basis pair (e30, e40) in the normal
bundle of XðΣÞ in the Minkowski space that satisfies the
exact similar property as ðe3; e4Þ. In addition, the timelike
unit vector e4 is chosen to be future directed, i.e.,
ĝðe4; ∂tÞ < 0. Let τ ≔ −hX; ∂tiη, a function on Σ be the
time function of the embedding X. The Wang-Yau quasi-
local energy is defined as follows:

QLEgravity ¼
1

8π

Z
Σt

ð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

q
hH0; e30i − h∇½η�∇τe30; e40iÞμΣ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I≔Contribution from theMinkowski space

−
1

8π

Z
Σt

ð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

q
hH; e3i − h∇½ĝ�∇τe3; e4iÞμΣ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II≔contribution from the physical spacetime

: ð20Þ

However, there is still a gauge redundancy due to the
boost transformations in the normal bundle of Σ. In
other words, one is left with the freedom of choosing e3
and e4 since one may apply a hyperbolic rotation
(boost) to yield another pair ðê3; ê4Þ. Wang and Yau

[16,17] consider the following minimization procedure
to get rid of this extra gauge freedom. Choose a fixed
basis ðê3; ê4Þ of the fibers of the normal bundle of Σ
such that the spacelike mean curvature vector H is
expressible as
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H ¼ −jHjĝê3; ð21Þ

where hê3; ê3iĝ ¼ 1 and hê4; ê4iĝ ¼ −1. Write any gen-
eral basis ðe3; e4Þ through a boost transformation in the
normal bundle as follows:

e3 ¼ coshψ ê3 − sinhψ ê4; ð22Þ

e4 ¼ − sinhψ ê3 þ coshψ ê4; ð23Þ

substitute these expressions of e3 and e4 in the ex-
pression of II, and use the fact that ĝð∇½ĝ�e3 ê4; e3Þ þ
ĝð∇½ĝ�e4 ê4; e4Þ ¼ 0 (by construction) to yield

II ¼
Z
Σt

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

q
jHjĝ coshψ − αê3ð∇τÞ þ ψΔτ

�
μΣ:

ð24Þ

This is a convex functional of ψ and therefore is
minimized for the following boost:

ψ ¼ sinh−1
�
−

Δτ
jHj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

p �
: ð25Þ

One repeats the same procedure for the surface with
metric σ embedded in the Minkowski space and writes
the Wang-Yau quasilocal energy as follows:

QLEgravity ¼
1

8π

Z
Σ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

q
jH0jη coshψ0

− αê30ð∇τÞ þ ψ0Δτ
�
μΣ

−
1

8π

Z
Σ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

q
jHjĝ coshψ

− αê3ð∇τÞ þ ψΔτ
�
μΣ: ð26Þ

The quasilocal mass is defined to be the minimum of
QLEgravity in the space of the residual embedding
function τ. This is so because the isometric embedding
of a 2-surface into a four-dimensional manifold provides
three constraints out of a total of 4 degrees of freedom.
Therefore, the additional leftover degrees of freedom (in
this case τ) need to be obtained by other physical
means. In the current context, therefore, the mass is
defined through a minimization procedure in the space
of τ motivated by the definition of the rest mass which
is the minimum in the space of observers. Through a
variational argument, the authors of Ref. [16] obtained
the following fourth-order elliptic equation for τ:

− ðĤσ̂ab− σ̂acσ̂bdĥcdÞ
∇½σ�a∇bτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

p
þ∇½σ�a

�∇aτcoshψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

p jHjĝ−∇aψ − ðαê3Þa
�
¼ 0; ð27Þ

where ĥ is the second fundamental form of Σ̂
while viewed as a surface in R3. From now
on we will use the term mass and energy interchange-
ably if there is no confusion. The compatible condition
that is required to guarantee the isometric embedding is
the positivity of the Gauss curvature of Σ̂, i.e.,
KΣ þ ð1þ j∇τj2σÞ−1 detð∇½σ�a∇bτÞ > 0, where KΣ is
the Gauss curvature of Σ.
Including the contribution from the pure gauge (Yang-

Mills) part, we define the total quasilocal energy as follows:

QLE≔QLEgravityþQLEgauge

¼ 1

8π

Z
Σ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

q
jH0jη coshψ0

−αê30ð∇τÞþψ0Δτ
�
μΣ

−
1

8π

Z
Σ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

q
jHjĝ coshψ −αê3ð∇τÞþψΔτ

�
μΣ

−
1

8π

Z
Σ
F̂a

bðê3; ê4ÞAb
a0μΣ: ð28Þ

Luckily, because of the antisymmetry as a 2-form on the
spacetime, F̂a

bðe3;e4Þ¼F̂ðcoshψ ê3−sinhψ ê4;−sinhψ ê3þ
coshψ ê4Þ¼F̂a

bðê3;ê4Þ and therefore is boost invariant.
However, notice that the term

R
Σ F̂

a
bðê3; ê4ÞAb

a0μΣ heavily
depends on the Yang-Mills gauge choice. Nevertheless, for
a stationary spacetime, this term is fixed. In addition, this
term can be made to vanish if the spacetime does not
contain a horizon. This is due to the fact that in the absence
of a horizon, Aa

b0 can always be gauged to zero (such a
choice is temporal gauge). However, this term does not
vanish for a black-hole spacetime that is electrically
charged since a gauge transformation that sets Aa

b0 to
zero would be singular at the horizon. The reference
contribution to the gauge part vanishes since Aa

b0 may
be set to zero on a reference spacetime (Minkowski
spacetime in this case), which does not contain any horizon.

III. COMPUTATION OF QUASILOCAL ENERGY
FOR KERR-NEWMAN SPACETIME

In this section, we explicitly compute the Wang-Yau
quasilocal energy functional as well as the energy con-
tribution arising from the U(1) gauge sector of the
Kerr-Newman spacetime. In Boyer-Lindquist coordinates,
the Kerr-Newman metric reads
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ĝ ¼ −
r2 − 2rM þ a2 cos2 θ þQ2

r2 þ a2 cos2 θ
dt ⊗ dtþ r2 þ a2 cos2 θ

r2 − 2rM þ a2 þQ2
dr ⊗ dr

þ ðr2 þ a2 cos2 θÞdθ ⊗ dθ þ a sin2 θðQ2 − 2rMÞ
r2 þ a2 cos2 θ

ðdt ⊗ dφþ dφ ⊗ dtÞ

þ
�ðr2 þ a2Þðr2 þ a2 cos2 θÞ þ 2rMa2 sin2 θ − a2Q2 sin2 θ

r2 þ a2 cos2 θ

�
sin2 θdφ ⊗ dφ; ð29Þ

whereM, a, andQ are the mass, angular momentum, and electric charge, respectively. They are defined in such a way as to
have the same dimensions. Let us recognize the important surfaces associated with this spacetime. The horizons are
obtained by solving the equation 1

ĝrr
¼ 0, i.e., r2 − 2rM þ a2 þQ2 ¼ 0, which yields

Rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
; R− ¼ M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
: ð30Þ

The equation of the ergosphere ĝtt ¼ 0 yields

Rþ
e ðθÞ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2cos2θ −Q2

p
; R−

e ðθÞ ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2cos2θ −Q2

p
;

and the ergo region is the region between Rþ and Rþ
e . The outer horizon is the surface r ¼ Rþ. Throughout this article, we

will be interested in the region outside of the outer horizon.
Wewant to understand the quasilocal energy associated with the constant radius surface Σ given by t ¼ const, r ¼ R. The

induced metric σ on Σ is explicitly written as follows:

σ ¼ ðR2 þ a2cos2θÞdθ ⊗ dθ þ
�ðR2 þ a2ÞðR2 þ a2cos2θÞ þ 2rMa2sin2θ − a2Q2sin2θ

R2 þ a2cos2θ

�
sin2θdφ ⊗ dφ: ð31Þ

Fix a basis ð∂θ; ∂φÞ of the tangent space of Σ at each point.
We will denote the elements of this basis set by ∂a
(a ¼ θ;φ). The corresponding solution of the Maxwell
equations yields the connection

A ¼ Qr
r2 þ a2cos2θ

dt −
aQrsin2θ

r2 þ a2cos2θ
dφ: ð32Þ

Notice that on these fixed stationary spacetimes, A0 is
nonvanishing, and therefore the quasilocal energy contri-
bution from the Uð1Þ gauge sector is nonvanishing as well.
The curvature F̂ of the connection A is found to be

F̂ ¼ −
Qða2 cos2 θ − r2Þ
ðr2 þ a2 cos2 θÞ2 dt ∧ dr −

Qra2 sin 2θ
ðr2 þ a2Þ2 dt ∧ dθ

−
Qa sin2 θða2 cos2 θ − r2Þ

ðr2 þ a2 cos2 θÞ2 dr ∧ dφ

−
Qarðr2 þ a2Þ sin 2θ
ðr2 þ a2 cos2 θÞ2 dθ ∧ dφ: ð33Þ

To compute the quasilocal energy of a surface Σ defined by
t ¼ const, r ¼ R that arises from the Uð1Þ sector, we need
to fix a pair ðê3; ê4Þ of normal vectors to Σ satisfying
ĝðê3; ê3Þ ¼ 1; ĝðê4; ê4Þ ¼ −1; ĝðê3; ê4Þ ¼ 0,

ê3 ¼
1ffiffiffiffiffiffi
grr

p ∂r; ð34Þ

ê4 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝφφðĝ2tφ − ĝφφĝttÞ
q ðĝφφ∂t − ĝtφ∂φÞ: ð35Þ

Clearly they satisfy hê3; ∂aiĝ ¼ hê4; ∂aiĝ ¼ 0. An explicit
computation yields the following expression for F̂ðê4; ê3Þ
on Σ:

F̂ðê4; ê3ÞjΣ ¼ 1ffiffiffiffiffiffi
ĝrr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝφφðĝ2tφ − ĝttĝφφÞ

q ðĝφφF̂ð∂t; ∂rÞ − ĝtφF̂ð∂φ; ∂rÞÞ

¼ 1ffiffiffiffiffiffi
ĝrr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝφφðĝ2tφ − ĝttĝφφÞ

q �
ĝφφQðR2 − a2cos2θÞ
ðR2 þ a2cos2θÞ2 −

ĝtφQasin2θða2cos2θ − R2Þ
ðR2 þ a2cos2θÞ2

�
;
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which together with A0jΣ ¼ QR
R2þa2 cos2 θ leads to the following expression for the energy density arising from theUð1Þ sector:

Fðê4; ê3ÞA0 ¼ −
Q2Rffiffiffiffiffiffi

ĝrr
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝφφðĝ2tφ − ĝttĝφφÞ
q ð36Þ

�
−
ðR2 − a2cos2θÞfðR2 þ a2ÞðR2 þ a2cos2θÞ þ ð2rM −Q2Þa2sin2θg

ðR2 þ a2cos2θÞ4 þ a2sin2θða2cos2θ − R2ÞðQ2 − 2rMÞ
ðR2 þ a2cos2θÞ4

�
sin2θ

¼ Q2Rsin2θffiffiffiffiffiffi
ĝrr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝφφðĝ2tφ − ĝttĝφφÞ

q ðR2 þ a2ÞðR2 − a2cos2θÞ
ðR2 þ a2cos2θÞ3 : ð37Þ

We could simply use ê3 and ê4 because F̂ðê3; ê4Þ is boost
invariant as mentioned previously and therefore any or-
thonormal basis pair ðe3; e4Þ of the normal bundle would
suffice. However, while computing the Wang-Yau quasi-
local energy functional that arises from the gravity sector,
one needs to make sure that ðê3; ê4Þ satisfy the desired
property (21); otherwise, we have to choose a different
basis that does. Collecting all the terms together, we obtain

8πQLEgauge¼Q2

Z
Σ

RðR2þa2ÞðR2−a2cos2θÞsinθ
ðR2þa2cos2θÞ3 dθdφ

¼2πQ2RðR2þa2Þ
Z

π

0

ðR2−a2cos2θÞsinθ
ðR2þa2cos2θÞ3 dθ:

ð38Þ

QLEgauge is manifestly positive and behaves as ∼ Q2

2R as
R → ∞. Therefore, one may retrieve the electrical charge
as follows:

Q ≔ lim
R→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RQLEgauge

q
: ð39Þ

If we set a ¼ 0 (the solution reduces to the Reissner
Nordstrom solution), then the expression for QLEgauge

simplifies tremendously yielding

QLEgauge ¼
Q2

2R
∀ R ≥ Rþ: ð40Þ

We can, in fact, evaluate the integral exactly for any
0 ≠ a < M. Direct integration yields

QLEgauge ¼
1

8
Q2RðR2 þ a2Þ

×

�
a2 þ 3R2

R2ða2 þ R2Þ2 þ
1

aR3
tan−1

�
a
R

��
: ð41Þ

Later we evaluate this term on the outer horizon R ¼ Rþ,
assuming a small angular momentum a.
Now that we have explicitly computed the contribution

of the Uð1Þ sector, we move on to the computation of the
quasilocal energy expression for the gravity part. Recall the
expression for the quasilocal energy (28)

QLEgravity¼
1

8π

Z
Σ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

q
jH0jη coshψ0−αê30ð∇τÞþψ0ΔτÞμΣ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MS

−
1

8π

Z
Σ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

q
jHjĝ coshψ −αê3ð∇τÞþψΔτÞμΣ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KN

:

ð42Þ

We will explicitly compute each term for the physical
spacetime (Kerr-Newman spacetime in the current context)
contribution KN. For the contribution MS that arises from
the Minkowski space, we will use a more direct approach
since the authors of Ref. [16] derived the following simpler
expression for MS:

MS¼ 1

8π

Z
Σ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

q
jH0jη coshψ0−αê30ð∇τÞþψ0ΔτÞμΣ

¼ 1

8π

Z
Σ̂
ĤμΣ̂; ð43Þ

where Σ̂ is the convex shadow of Σ onto the complement
of ∂t, i.e., on a τ ¼ const Euclidean slice R3, Ĥ
is the mean curvature of Σ̂ while realized as a 2-surface
in R3, and μΣ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

p
μΣ is the volume form

induced on Σ̂. Now we proceed to compute the physical
space contribution to the Wang-Yau quasilocal energy
functional.
Lemma 2: For the Kerr-Newman spacetimes, the basis

pair ðê3; ê4Þ defined in Eqs. (34) and (35) is the canonical
pair for which H ¼ −jHjĝê3 and hH; ê4iĝ ¼ 0.
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Proof.—Using the definition ofH and the expressions of
ðê3; ê4Þ from (34) and (35), we obtain

hH; ê4iĝ ¼ σabh∇∂a ê4; ∂biĝ ¼ −σabh∇∂a∂b; ê4iĝ
¼ −σabΓμ

abðê4Þμ

¼ σabΓt
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĝ2tφ − ĝφφĝttÞ

ĝφφ

s
: ð44Þ

Explicit calculation shows that Γt
θθ and Γt

φφ vanish for Kerr-
Newman spacetime (since ∂t and ∂φ are two Killing fields),
yielding

hH; ê4iĝ ¼ 0. ð45Þ

▪
As a consequence of Lemma 2, we do have the necessary
ingredients to compute the quasilocal energy corresponding
to the gravity sector. The hyperbolic angle ψ is given by

ψ ¼ sinh−1
�
−

Δτ
jHjĝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

p �
; ð46Þ

where jHjĝ is explicitly computed as follows:

jHjĝ ¼ −hH; ê3iĝ ¼ σabh∇∂a ê3; ∂bi
¼ −σabhê3;∇½ĝ�∂a ; ∂biĝ
¼ −

σabffiffiffiffiffiffi
ĝrr

p h∂r;Γ
μ
ab∂μiĝ ¼ −

σabffiffiffiffiffiffi
ĝrr

p Γμ
abĝμr

¼ −
ffiffiffiffiffiffi
ĝrr

p
ðΓr

θθσ
θθ þ Γr

φφσ
φφÞ; ð47Þ

where we have used the fact that ê3 ¼ 1ffiffiffiffi
ĝrr

p ∂r (35) and

hê3; ∂ai ¼ 0. Therefore, jHjĝ may be computed by sub-

stituting Γr
φφ ¼ð r

r2þa2 cos2 θþ
a2frðQ2−rmÞþa2mcos2 θgsin2 θ

ðr2þa2 cos2 θÞ3 Þðr2−
2rmþa2þQ2Þsin2 θ and Γr

θθ ¼ − rðr2−2rmþa2þQ2Þ
r2þa2 cos2 θ . Next

we want to compute the connection 1-form of the normal
bundle of Σ, i.e., αê3 .
Lemma 3: For an axis-symmetric embedding of a

constant radius surface of Kerr-Newman spacetimes into
Minkowski spacetime, the contribution of the connection of
the normal bundle of Σ to the physical energy vanishes, i.e.,

αê3ð∇τÞ ¼ 0: ð48Þ

Proof.—A simple calculation using the definition of αê3
yields

αê3ð∇τÞ ¼ h∇½ĝ�∇τê3; ê4i ¼ h∇σab∂bτ∂a ê3; ê4i

¼ σab∂bτðĝφφΓμ
arĝμt − ĝtφΓ

μ
arĝμφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝrrĝφφðĝ2tφ − ĝφφĝttÞ
q

¼ −
σφφ∂φτΓt

φr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĝ2tφ − ĝφφĝttÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝrrĝφφ

p ; ð49Þ

where we have used the fact that Γt
θr ¼ 0. This term

vanishes identically since ∂φτ ¼ 0 for an axis-symmetric
embedding. ▪
To compute the corresponding expression for the iso-

metrically embedded surface Σ in the Minkowski space, we
first need an embedding. Because of the lack of all 4 degrees
of freedom while embedding a 2-surface isometrically (and
therefore three constraints) into Minkowski space, the time
function τ is left as a free variable. Therefore, we have to
solve for τ at the end. Wang and Yau [16] considered the
quasilocal mass to be the minimum among all timelike
observers (compatible with the notion of rest mass in
relativity). This amounts to minimizing the Wang-Yau
quasilocal energy in the space of τ, which yields an elliptic
equation for τ. As mentioned previously (43), Wang-Yau
[16] showed that the reference (Minkowski) contribution
(42) may be expressed in the following alternative form:

MS ¼ 1

8π

Z
Σ̂
ĤμΣ̂; ð50Þ

where Σ̂ is the projection of the embedding on to the τ ¼
const hypersurface in the Minkowski space and Ĥ is the
total mean curvature of Σ̂ in R3. The metric σ̂ of this
projected surface reads

σ̂ ¼ σ þ∇τ ⊗ ∇τ: ð51Þ

Now we consider the isometric embedding of Σ into the
Minkowski space and compute the embedding functions.
Assuming axis symmetry, the embedding may be written as
follows:

X0 ¼ τðθÞ; X1 ¼ AðθÞ cosφ;
X2 ¼ AðθÞ sinφ; X3 ¼ BðθÞ; ð52Þ

which through the isometric condition σab ¼ h∂aX; ∂bXiη
yields the following set of ordinary differential equations:

½AðθÞ0�2 þ ½BðθÞ0�2 ¼ ð∂θτÞ2 þ σθθ; ð53Þ

AðθÞ2 ¼ σφφ: ð54Þ

In terms of the embedding variables AðθÞ and BðθÞ, Ĥ may
be computed explicitly. Through an explicit computation,
the complete expression for the quasilocal energy reads

ASPECTS OF QUASILOCAL ENERGY FOR GRAVITY COUPLED … PHYS. REV. D 105, 104068 (2022)

104068-9



QLE≔QLEgravityþQLEgauge

¼ 1

4

Z
π

0

�2½ð∂θτÞ2þσθθ−
ðσ0φφÞ2
4σφφ

�2þ σ0φφ
2
ð2∂θτ∂2

θτþσ0θθ−
½2σφφσ0φφσ00φφ−σ03φφ�

4σ2φφ
Þ

2½ð∂θτÞ2þσθθ�½ð∂θτÞ2þσθθ−
σ02φφ
4σφφ

�1=2
þ
½ð∂θτÞ2þσθθ−

ðσ0φφÞ2
4σφφ

�1=2½σ02φφ−σφφσ
00
φφ�

2σφφð½ð∂θτÞ2þσθθÞ�
�
dθ

−KNþ1

4
Q2RðR2þa2Þ

Z
π

0

ðR2−a2cos2θÞsinθ
ðR2þa2cos2θÞ3 dθ; ð55Þ

where KN is the contribution of the physical spacetime in
Eq. (42) with each term evaluated in terms of τ and σ. It is
impossible to exactly solve this integral and obtain a
closed-form solution for the total quasilocal energy. How-
ever, one may evaluate this on special surfaces such as the
outer event horizon (R ¼ Rþ) and on the sphere at spatial
infinity with some assumption on the charge and mass of
the black hole. However, before moving to explicit asymp-
totic expansion, we need to solve the isometric embedding
equation in order to fix τ, the time function of the
embedding. The following lemma states that τ ¼ const is
a solution to the optimal embedding equation.
Lemma 4: τðθ;φÞ ¼ const is a solution to the optimal
isometric embedding equation (27).
Proof.—The optimal isometric embedding equation reads

− ðĤσ̂ab− σ̂acσ̂bdĥcdÞ
∇½σ�a∇bτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

p
þ∇½σ�a

�∇aτcoshψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2σ

p jHjĝ−∇aψ − ðαê3Þa
�
¼ 0; ð56Þ

where ψ is given by the usual expression (46)

ψ ¼ sinh−1
�
−

Δτ
jHjĝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2σ

p �
: ð57Þ

It is obvious that for τ ¼ const, all of these terms except the
last term ∇½σ�aðαê3Þa vanishes. Therefore, it is sufficient to
show that∇½σ�aðαê3Þa ¼ 0 for an axis-symmetric spacetime
such as the one in the current context. Using the definition
(19) of the connection 1-form ðαê3Þ of the normal bundle of
Σ in the Kerr-Newman spacetime, we may write

ðαê3Þa ¼h∇½ĝ�∂a ê3; ê4iĝ ¼
ðĝφφΓμ

arĝμt− ĝtφΓ
μ
arĝμφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝrrĝφφðĝ2tφ− ĝφφĝttÞ
q : ð58Þ

Componentwise these read

ðαê3Þθ ¼
ĝφφΓt

θrĝtt þ ĝφφΓ
φ
θrĝφt − ĝtφΓt

θrĝtφ − ĝtφΓ
φ
θrĝφφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝrrĝφφðĝ2tφ − ĝφφĝttÞ
q ;

ð59Þ

ðαê3Þφ ¼ ĝφφΓt
φrĝtt þ ĝφφΓ

φ
φrĝφt − ĝtφΓt

φrĝtφ − ĝtφΓ
φ
φrĝφφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝrrĝφφðĝ2tφ − ĝφφĝttÞ
q :

ð60Þ

Explicit calculations yield Γt
θr ¼ Γφ

θr ¼ 0 for Kerr-Newman
spacetime, yielding

ðαê3Þθ ¼ 0: ð61Þ

Now since Kerr-Newman spacetime is axis symmetric, we
have

ðαê3Þφ ¼ ðαê3ÞφðR; θ; a;M;QÞ ð62Þ

or

∂φðαê3Þφ ¼ 0: ð63Þ

Therefore, the last term yields

∇½σ�aðαê3Þa ¼ σab∇½σ�aðαê3Þb
¼ σabð∂aðαê3Þb−Γ½σ�cabðαê3ÞcÞ
¼ σθθð∂θðαê3Þθ−Γ½σ�cθθðαê3ÞcÞþσφφð∂φðαê3Þφ
−Γ½σ�cφφðαê3ÞcÞ; ð64Þ

and since ðαê3Þθ ¼ 0 ¼ ∂φðαêeÞφ, we obtain

∇½σ�aðαê3Þa ¼ −σθθΓ½σ�φθθðαê3Þφ − σφφΓ½σ�φφφðαê3Þφ ¼ 0

ð65Þ

since Γ½σ�φθθ ¼ Γ½σ�φφφ ¼ 0. This concludes the proof of the
lemma. ▪
However, this does not imply that τ ¼ 0 is either a local

or a global minimum of the Wang-Yau quasilocal energy
functional (see [27] for a detailed analysis). It was proven
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in [27] that an optimal isometric embedding is locally
unique if the quasilocal mass density is pointwise positive
(which is the case here since the Maxwell field satisfies the
dominant energy condition). At any rate, the energy
corresponding to τ ¼ const is a valid quasilocal energy.
One may always perturb τ about a fixed τ ¼ const to obtain
a local minimum for the Wang-Yau quasilocal energy
functional. Since we focus on the τ ¼ const solution
now, we need to ensure that the compatibility condition
KΣ þ detð∇½σ�a∇bτÞ

1þj∇τj2σ > 0, which for τ ¼ const reduces to

KΣ > 0 (such that the theorem of Pogorelov [14] applies).
This is not obvious since the constant radii surfaces in Kerr-
Newman spacetime may develop cone singularity at the
pole if the black hole starts rotating rapidly. In such a
scenario, the embedding of a closed 2-surface into the τ ¼
const Euclidean slice may not be possible since the region
near the pole develops negative Gauss curvature. We
explicitly compute the Gauss curvature of Σ to obtain

the necessary condition for which such a problem is
avoided. We observe that if a < Rffiffi

3
p for any constant radius

surface Σ, thenKΣ > 0 for that surface. We are interested in

the region R≥Rþ ¼Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2−Q2

p
>M for physical

subextremal black holes. Therefore, if we simply choose
a < Mffiffi

3
p , then KΣ > 0 everywhere, allowing an embedding

into a τ ¼ const Euclidean slice R3. This makes the Wang-
Yau quasilocal energy for τ ¼ const well-defined.
Of course, as mentioned previously, the Wang-Yau

quasilocal energy for τ ¼ const is impossible to evaluate
exactly. However, if we assume the smallness condition
a ≪ M (which satisfies the compatibility condition
a < Mffiffi

3
p ), then we may expand several entities such as

the metric components and their derivatives in powers of
a=R (R ≥ Rþ > M). On R ¼ Rþ, several metric compo-
nents and their derivatives may be expressed in powers of
a=Rþ as follows:

σφφjR¼Rþ ¼ ðRþ2 þ a2Þ2sin2θ
Rþ2

�
1 −

a2

Rþ2
cos2θ þOða4=Rþ4Þ

�
; ð66Þ

∂σφφ
∂θ

����
R¼Rþ

¼ ðR2 þ a2Þ3 sin 2θ
R4

�
1 −

2a2cos2θ
Rþ2

þOða4=Rþ4Þ
�
; ð67Þ

∂2σφφ
∂θ2

����
R¼Rþ

¼ ðRþ2 þ a2Þ2ð2a
2sin22θ
Rþ4

�
1 −

2a2cos2θ
Rþ2

þOða4=Rþ4Þ
�

þ 2 cos 2θ
Rþ2

�
1 −

a2cos2θ
Rþ2

þOða4=Rþ4Þ
�
þ sin2θ

Rþ2

�
2a2 cos 2θ

Rþ2
þOða4=Rþ4Þ

�
: ð68Þ

Utilizing this expansion and the equation of the horizon
2RþM −Q2 ¼ Rþ2 þ a2 (and therefore replacing Q in
favor of a, Rþ, and M), we evaluate the quasilocal energy
expression. For the Schwarzschild black hole, the quasi-
local energy is globally minimized by τ ¼ const and equals
2M (where M is the ADM mass) at the horizon. In such a
case, it monotonically decays to the usual ADM massM at
infinity. However, in the current context, one would not
expect the quasilocal energy to be equal to 2M at the
horizon (for τ ¼ const) due to the presence of the ergo
region (or equivalently due to the nonzero charge
and angular momentum of the black hole). From the
physical ground, one would expect that at the outer
horizon, the gravitational part of the quasilocal energy
(i.e., QLEgravity) should equal twice the irreducible mass

2Mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2 −Q2 þ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

pq
[28,29] of the

black hole, and it should decay to the usual ADM mass M
at infinity (note that 2Mirr ≥ M for subextremal and
extremal black holes). Assuming a small angular momen-
tum approximation, we indeed obtain that such a result

holds. For a ≪ M, utilizing (66)–(68), we obtain the
following asymptotic expansion for the quasilocal energies:

QLEgravityjR¼Rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ2 þ a2

p
ð1þOða4=Rþ4ÞÞ; ð69Þ

QLEgaugejRþRþ ¼Q2ðRþ2þa2Þ
2Rþ3

�
1−

4a2

3Rþ2
þOða4=Rþ4Þ

�
;

ð70Þ

and therefore QLEgravity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ2 þ a2

p
modulo higher-

order terms on the outer horizon. On the outer horizon,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
is equal to twice the irreducible mass Mirr.

Therefore, for a sufficiently small angular momentum a,
the Wang-Yau quasilocal energy corresponding to τ ¼
const is approximately equal to twice the irreducible mass
at the outer horizon. At spatial infinity, we recover the usual
ADM mass, i.e.,

QLE ¼ M as R → ∞: ð71Þ
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Since 2Mirr ≥ M, a natural expectation would be that the
total energy exhibits monotonic decay for subextremal
Kerr-Newman black holes at least in the small angular
momentum approximation. This is indeed the case. The
QLEgauge satisfies

∂RQLEgaugeðRÞ < 0; R ∈ ðRþ;∞Þ ð72Þ

for all values of angular momentum a < M. Since it is in
general difficult to evaluate the gravity contribution of the
quasilocal energy functional (even for trivial embedding
function τ ¼ const as we have seen previously), we make
the approximation a ≪ M. Using the expansions of type
(68), we explicitly evaluate ∂RQLEgravity to yield

∂RQLEgravityðRÞ < 0; R ∈ ðRþ;∞Þ: ð73Þ

From a physical ground, one obvious obstruction to the
monotonicity of the Wang-Yau quasilocal energy is the
negativity of the gravitational binding energy (true for a
general spacetime) and the presence of an ergo region.
However, since at the outer horizon (which already lies
within the ergo sphere), the Wang-Yau quasilocal energy
already accounts for the possible energy loss at the ergo
region by assuming a value of 2Mirr instead of 2M (which
would be the case for the Schwarzschild black hole where
an ergo region is absent). In other words, the Wang-Yau
quasilocal energy essentially encodes the information of the
energy that cannot be extracted from a Kerr-Newman (or
Kerr) black hole via the Penrose-type process. Once this
negative energy contribution is accounted for, it is natural
to expect that the Wang-Yau quasilocal energy should
exhibit a monotonic decay, and we confirm such a notion.
Now if we specialize to the case of zero angular

momentum, i.e., the spherically symmetric static solution
(Reissner Nordstrom), then τ ¼ const is a global minimizer
of the Wang-Yau quasilocal energy, and in such a case, the
total energy can be explicitly evaluated and expressed as

QLEja¼0 ¼ R

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

þQ2

R2

r �
þQ2

2R

∀R ≥ Rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð74Þ

Since Rð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
Þ > 0,

QLEja¼0 >
Q2

2R
ð75Þ

for all values of R on or outside the horizon. Therefore, In
the limit of zero angular momentum, we recover the exact
form of a weak Bekenstein inequality. One may compute
explicitly on the horizon

QLEðRþÞja¼0 ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −Q2

p
þQ2

2R
≥ QþQ2

2R
ð76Þ

since Q ≤ M for physical black holes. Therefore, the

equality QLEja¼0 ¼ Q2

2R is never attained. The results
obtained so far yield the following theorem regarding
the energy content of a Kerr-Newman black hole.
Theorem. Let Σ be a surface of constant radius R in

the Kerr-Newman spacetime (29) such that R ≥ Rþ ¼
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
; a2 þQ2 ≤ M2. Then the total qua-

silocal energy associated with the membrane Σ satisfies the
following strict inequality for all R ∈ ½Rþ;∞Þ:

QLEðRÞ

>
1

8
Q2RðR2 þ a2Þ

�
a2 þ 3R2

R2ða2 þ R2Þ2 þ
1

aR3
tan−1

�
a
R

��
;

ð77Þ

which for large R reduces to

QLEðRÞ > Q2

2R
þ a2Q2OðR−3Þ: ð78Þ

Moreover, the residual embedding parameter τ ¼ const
satisfies the optimal isometric embedding equation (27). In
such a case, the total quasilocal energy (QLE) is express-
ible in the following form at the outer horizon R ¼ Rþ:

QLEðRþÞ¼2Mirrð1þOða4=Rþ4ÞÞþQ2ðRþ2þa2Þ
2Rþ3

×

�
1−

4a2

3Rþ2
þOða4=Rþ4Þ

�
for a≪M ð79Þ

and

lim
R→∞

QLE ¼ M for all a <
Mffiffiffi
3

p : ð80Þ

In particular, ∂QLE
∂R < 0 for all R ∈ ðRþ;∞Þ and a ≪ M.

Here Mirr ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2 −Q2 þ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

pq
is the

irreducible mass of the black hole. In addition, if the
angular momentum vanishes, then τ ¼ const globally
minimizes the total quasilocal energy, and in such a case,
it is exactly evaluated as

QLEja¼0 ¼ R

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

þQ2

R2

r �
þQ2

2R
;

R ≥ Rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
:

PUSKAR MONDAL and SHING-TUNG YAU PHYS. REV. D 105, 104068 (2022)

104068-12



IV. CONCLUDING REMARKS

Here we have explicitly obtained an expression of the
Wang-Yau quasilocal energy for constant radii surfaces in
Kerr-Newman black holes. As we have mentioned pre-
viously, obtaining a closed-form expression for the Wang-
Yau quasilocal mass for a general constant radial surface is
almost impossible due to the presence of the embedding
function τ that is to be obtained through solving an elliptic
equation, the so-called optimal embedding equation. In this
particular case, if one assumes an axis-symmetric embed-
ding, one can obtain τ ¼ const as a solution to the optimal
isometric embedding equation. However, such a solution
may not be a global or even a local minimum for the
quasilocal energy functional [27]. However, since τ ¼
const is rigorously obtained as a solution, the associated
energy functional the Liu-Yau mass [12,13] still describes a
notion of energy bounded by the constant radius mem-
brane. Since τ ¼ const essentially implies the isometric
embedding into a Euclidean slice of the Minkowski space,
one needs to ensure that the Gauss curvature of the 2-
surface Σ is everywhere positive. This is indeed guaranteed
for an angular momentum that is bounded from above by a
suitable factor of the ADM mass.
Since we are unable to find an explicit meaningful

formula for the quasilocal mass for any constant radius
surface, we evaluate it on the event horizon and for a large
sphere. The total energy contained within the membrane
constitutes the pure gravitational energy (may be described
by the time component of the Bel-Robinson tensor), the
energy of the gauge field coming from its stress-energy
tensor, as well as the additional pure gauge contribution.
For a charged black hole such as the one in the current
context, this additional pure gauge contribution does not
vanish. This energy is positive everywhere outside the outer
horizon (and on it) of the Kerr-Newman black hole and
proportional to the square of the charge of the black hole.
This contribution essentially provides evidence toward the
validity of a weaker version of the Beckenstein-type
inequality for the Kerr-Newman family of black holes.

Even though such an inequality demands E2 ≥ Q4

4R2 þ J 2

R2 ,
where J is the angular momentum, we are able to deduce a
version QLEtotal>1

8
Q2RðR2þa2Þð a2þ3R2

R2ða2þR2Þ2þ 1
aR3 tan−1ðaRÞÞ

since QLEgravity > 0 for a spacetime satisfying the dom-
inant energy condition (which is satisfied in the current
context) [16]. Moreover, on a special surface such
as the outer event horizon, we obtain an improved

inequality such as QLEtotal ≥ M þ Q2ðRþ2þa2Þ
2Rþ3 ð1 − 4a2

3Rþ2 þ
Oða4=Rþ4ÞÞ (assuming a ≪ M) since for a physical black
hole, a2 þQ2 ≤ M2 and M ≥ 0 by the positive mass
theorem of Schoen and Yau [1,2]. While a weaker version
of Bekenstein’s inequality is really a non-negative definite-
ness of the entropy of a physical object, the definition of the
energy involved is certainly nonunique. In fact, different

notions of energy give rise to different coefficients multi-
plied by the square of the charge. Therefore, a safe
conclusion on the physical basis would be that the total
energy dominates the square of the charge multiplied by a
suitable positive function (of the size of the object under
consideration) of the appropriate dimension. A drawback of
our study is that we still need to compute the angular
momentum contribution in the inequality. However, since
Chen, Wang, and Yau [22] have defined a generalized
notion of angular momentum associated with a 2-surface
enclosing a spacelike domain in a physical spacetime, we
intend to extend this study in the future by adopting their
technique to explicitly compute the angular momentum
contribution. We note that recently the authors of Ref. [24]
proved several weak versions of the Bekenstein-type
inequalities through studying different notions of quasilo-
cal energy.
Assuming a certain smallness condition on the angular

momentum, we obtained an asymptotic expression of the
total quasilocal energy on the outer horizon. This total
energy remarkably agrees (to leading order) with twice the
irreducible mass of the black hole (Mirr [28]) and the pure
gauge contribution arising due to the electric charge. This
result is promising since the notion of quasilocal energy
that we adopt here provides a notion of the true energy of
the black hole that cannot be extracted modulo the pure
gauge contribution. At asymptotic spacelike infinity, the
total energy only recovers the ADM mass M as expected
(rigorously proven by [19] for asymptotically flat
Einsteinian spacetimes). If, for the moment, we compare
the current scenario with that of Schwarzschild spacetime,
then for the latter the quasilocal energy (the one we adopt
here) is 2M on the horizon and M as one approaches the
spatial infinity and decays monotonically from the event
horizon to the spacelike infinity. In the current context, too,
we find that the total quasilocal energy monotonically
decays from its value 2Mirr at the outer horizon to the ADM
mass M at spacelike infinity (notice that 2Mirr > M for
a;Q < M). Unlike the Schwarzschild black hole, it does
not decay from 2M at infinity but rather from 2Mirr, which
provides an indication that the adopted quasilocal energy
encodes the evolution of the true gravitational energy since
the irreducible mass (Mirr) accounts for the energy that the
black hole may lose due to the Penrose process [30] in the
ergo region. Since τ ¼ 0 is a solution to the optimal
isometric embedding equation that may be perturbed to
a local minimum, it is tempting to conjecture that theWang-
Yau quasilocal mass (that for τ that truly minimizes the
Wang-Yau energy functional) for the Kerr-Newman space-
time monotonically decays from the outer horizon to the
spatial infinity as well. A further involved study in this
direction is left for the future.
Another important point we note here is that the addi-

tional contribution to the quasilocal energy that arises due
to the presence of a gauge field is not a gauge independent
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entity (in the sense of the Yang-Mills gauge). In the current
context of a fixed stationary spacetime, this gauge depen-
dent property does not make any difference since the
nonphysical gauge variable A0 of the Maxwell theory
[U(1) gauge theory] is fixed and the presence of a horizon
does not allow one to set it to zero through a gauge
transformation. It would be worth studying this pure gauge
contribution in greater detail in the future and attempting to

define a suitable gauge invariant energy functional
for general spacetime with sources that are electrically
charged.
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