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1 (9/1) Course Overview

Score breakdown: 50% homework, 50% exams. Homework will be fortnightly, tentatively released on Tues-
days or Thursdays. You are free to take a couple of late days here and there.

Puskar’s office hours will be 8-9:30pm on Tuesdays and 7:30-9:00 pm Thursdays. Mine are TBD, but I will
confirm them hopefully by end of next week. We will begin office hours starting the week of 12th Sept, once
the first homework is released.

Here are some topics and questions that we will study over this course:

1.1 Curves in Rn

A curve in Rn is a map I ⊂ R −→ Rn. Can think of this as taking the unit interval, inserting it into Rn,
and deforming it in some fashion.

Physical interpretation. A curve can be treated as the trajectory of a point particle. Let x(t) be this path.
The derivative at any point ẋ(t) is the velocity of the particle. Taken over the entire space, ẋ(t) can be treated
as a vector field. One important property is the fixed point, or where the velocity vanishes (ẋ(t) = 0). It
turns out that studying these fixed points can reveal properties about the topology of the global space.

Let’s look at the sphere S2 (note: this is the 2-dimensional boundary of the unit solid sphere). An interesting
theorem is the following:

Theorem 1.1 (Hairy ball theorem). On the sphere S2, any vector field must vanish at at least 1 point on

the sphere. i.e. for any vector field F⃗ , there exists a point x ∈ S2 such that F⃗ (x) = 0⃗.

Remark. This isn’t the precise statement of the Hairy ball theorem. In particular, we will require that F⃗ is
always tangent to the sphere.
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Physical interpretation: A point particle living in Rn is described by its position and velocity, the pair
(x(t), ẋ(t)).

Example 1.2. If we have a force field F⃗ and a particle moving inside the force field. What does it mean in
this context when ẋ(t) = 0?

Physically, this means that the particle has run out of energy.

Another scenario: particle on a sinusoidal surface. From classical mechanics, we know that a particle starting
on the slope will oscillate.

How does the particle’s trajectory look like in position-velocity space? It should be a circle (or more generally
an ellipse) - see Figure 1.

What happens if we give the particle just enough energy to overcome the potential energy and pass over the
crest? For example we can start the particle moving from the top of the crest with 0 velocity. Then when
we release it, when it reaches the next peak it will just have enough energy to cross over and keep moving
to the right. Let’s see how this particle looks in phase space (also Figure 1).

Figure 1: This is a plot of velocity (ẋ) against position (x). The red curves are the trajectories of particles
which have insufficient energy to cross the crest. The brown curves (which periodically meet the ẋ = 0 line)
are the trajectories of particles with just enough energy to cross the crest. Image taken from this page

Question 1.3. Are the intersections with the position-axis considered equilibrium points?

No, because those points are in phase space. These intersections are points where ẋ(x(t)) = 0, which is not
the same as the condition for equilibrium (which is ẋ(t) = 0).

The confusion from above is essentially the cause of us looking at different spaces. The phase space is the
space of pairs (x, ẋ). For the example considered earlier, the phase space is R2 × R2. We can project this
onto configuration space, which gives the physical trajectory x of the particle, and this space in our example
is R2.

One interesting thing to note is that curves in these particular phase spaces are non-intersecting. Physical
explanation: Given a force field, a particle’s trajectory is uniquely determined by (x, ẋ). Therefore given
any point in phase space, there is only one possible direction it can travel in. Contrast this to the trajectory
in configuration space, which are clearly allowed to intersect.

5
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1.2 Surfaces in Rn

We saw previously that we can think of curves as maps I −→ Rn. We can treat surfaces similarly. For
clarify we define surfaces to be 2-dimensional objects (in some precise sense that we will eventually see) in
Rn. Then, we can think of surfaces as maps

F : U ⊂ R2 −→ Rn

(u, v) 7−→ (x1(u, v), x2(u, v), · · ·xn(u, v))

where each xi is a function R2 −→ R.
Sphere

We know that algebraically the sphere S2 ∈ R3 is the set

S2 := {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1}

This formulation, we will see, is not very useful for differential geometry.

1.3 Intrinsic versus extrinsic geometry

There are a number of questions we can ask. If we are in R3, we can easily answer the question of what
the distance is between two points. The same question is not as obvious if we constrain the two points to
be on a sphere. What “distance” are we talking about? Of course, we could still consider the straight-line
distance that passes into the interior of a sphere. But a more interesting question is: what if we constrained
the path to lie on the sphere? Then the answer is not so clear.

Well, some might know the solution to this question already. The shortest distance is given by the arclength
of the great circle that contains both endpoints. But what about an arbitrary surface? What is the distance
in this case? Here is how we can define the distance. Let p be a path between the endpoints x and y, and
let P be the set of all possible paths. Then we can simply define the distance to be the minimum length of
all such paths:

d(x, y) = inf
p∈P
∥p∥

Definition 1.4. The path that minimizes the distance is called a geodesic.

But we have just deferred the problem: how do we calculate the length of any such path p? Here is where the
notion of intrinsic geometry comes into play. We don’t have the luxury of using the calculus of Rn, instead
we have to do calculus on the manifold itself.

Definition 1.5 (Informal). An n-dimensional manifold is something that looks like Rn locally, in the sense
that for every point on the manifold, if we zoom in enough, then we should see something that looks like Rn.

Take a curve in R2. It looks curved. But we will see that a curve is really in fact flat in an intrinsic sense,
and that the curvature only exists in an extrinsic sense. Roughly speaking, the extrinsic curvature depends
on how we embed an object (curve, surface, etc) into a larger Euclidean space.

1.4 Geometry of Submanifolds

Once we set up the machinery for doing calculus on manifolds, we will see that it is not difficult to extend
the tools to deal with submanifolds, which can be thought of simply as subsets of manifolds. We will see
that the intrinsic perspective will be very helpful here.
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1.5 What’s after this class?

This class will serve as a solid foundation for Math 230A/B. 230A will focus on bundles over manifolds, and
230B will focus on general relativity.

2 (9/6) Curves in Rn

As promised, we will start from the basics: parametrized and integral curves in Rn.
We will use the following notation: A point P ∈ Rn has the coordinates (x1, x2, · · · , xn) ≡ x.

2.1 Parameterized Curves

Let’s begin with a preliminary definition:

Definition 2.1 (First attempt). Let I ⊆ Rn. A parameterized curve is a map

I −→ Rn

t 7−→ (x1(t), x2(t), · · · , xn(t)) ≡ x(t)

What’s wrong with this definition? We haven’t said anything about even the continuity of the functions.
We could end up with a bunch of discontinuous segments and it would count as a curve under our definition.
To restrict ourselves to this nicer family of curves, we should demand that each of the coordinate functions
x1, · · · , xn are continuous.

Are we done yet? THe revised definition still allows curves with “sharp” corners, where the curve abruptly
changes directions. While these curves are certainly interesting to study, we will not deal with them in this
course.

Definition 2.2. A curve is said to be:

• C0, if the curve is continuous (eg: the graph (x, |x|) ⊂ R2.

• C1, if the curve once-differentiable (note that this implies continuity).

• Ck if the curve is k-times differentiable

• C∞ if the curve is infinitely differentiable, aka “smooth”

So we adjust our definition of a parameterized curve to the following:

Definition 2.3. Let I ⊆ Rn be a connected set (see Qn 2.5). A parameterized curve is a smooth map

I −→ Rn

t 7−→ (x1(t), x2(t), · · · , xn(t)) ≡ x(t)

Question 2.4. Why do we write subscripts in superscript?

Answer. The superscripts denote a contravariant elements, and subscripts are reserved for covariant ele-
ments. This will make a difference when we get to manifolds, but that is for later.

Question 2.5. Can I be the integers Z in the above definition?
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Answer. Well, because we are dealing with notions of continuity and differentiable, we want I to be an open
interval (we want to be able to take left/right limits). Z ⊂ R is closed, so that is not an interval. Definition
2.3 amended to reflect this.

Let’s see if we need to further refine this definition. The current definition still allows self-intersections! This
will be a problem if we want the curve to have a well-defined tangent at every point.

Definition 2.6. The velocity vector v(t) at a point x(t) is the derivative of the parameterized curve:

v(t) :=
dx(t)

dt

=

(
dx1(t)

dt
, · · · , dx

n(t)

dt

)
Remark. Note that the derivatives are all well-defined since we imposed smoothness.

2.2 Integral Curves

Let’s leave the notion of parameterized curves behind for a while and look at integral curves. To define this
notion we need to look at vector fields in Rn.
Let’s recall: Given two vectors in Rn, based at different points, how do you find their vector sum? You can
do parallel transport and move the base of one of the vectors to the base of the other. Once they are at the
same base you acn use the parallelogram rule.

Notion of parallel transport: The transport is really given by a vector field, which tells us how the vector
changes as we move it from one base point to another. For the spaces we are used to, this vector field is
uninteresting (it is just the same vector everywhere)

Definition 2.7. A vector field on Rn (or a subset U ⊂ Rn) is an assignment of a vector to each point
x ∈ Rn (or x ∈ U). In other words, it is a function y that looks like the following:

y : U ⊆ Rn −→ Rn

(x1, · · · , xn) 7−→ (y1(x1, · · · , xn), · · · , yn(x1, · · · , xn))

and also satisfies the condition that each yi is C∞ in each of the components xj .

Now we can ask the following:

Given a vector field y, can we construct a curve such that at each point x of the curve, y(x) is the velocity
vector to the curve at that point? Is this even possible locally, in a small interval?

To answer this, we return to the definition of parameterized curves momentarily. Since y is smooth it is in
particular integrable. We see that we can let

dx1(t)

dt
= y1(x1(t), · · · , xn(t))

...

dxn(t)

dt
= yn(x1(t), · · · , xn(t)) (*)

Further given some initial condition (the coordinates of x(0)), the question reduces to the question of whether
this system of differential equations is solvable. We will see (and prove) that the answer is yes, but only
locally.
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Remark. We would like/expect the following conditions:

1. Existence (locally)

2. Uniqueness (each initial condition produces exactly one solution)

3. Cauchy stability: Smooth dependence of the curve on the initial condition (If we change the initial
condition slightly, we expect the curves to be similar, at least for a sufficiently small time interval)

Theorem 2.8 (Local well-posedness of integral curves, or LWT). Let x(0) = α be the initial data/condition
for the system of differential equations (∗) such that |x(0)| <∞. Then there exists a solution to (∗) on the
interval t ∈ [0, t∗) such that

(x1(0), · · · , xn(0)) 7→ (x1(t), · · · , xn(t))

is continuous. Furthermore, either t∗ =∞ or at least one of the functions blows up: lim sup
t→t∗

(
max

j=1,··· ,n
∥xj(t)∥

)
=

∞. t∗ is called the lifetime of the solution.

We conclude by giving a formal definition of integral curves.

Proof. We will see, maybe next class. Sneak peek: It uses the contraction mapping principle and Picard
iterations

Question 2.9. Is the condition of Cauchy stability necessary given that we are already assuming C∞ of the
curve?

Answer. Smoothness on the vector field of course tell you that you can’t have arbitrary curves given two
initial data close to each other. Think of this as a technical point at the moment: This is provable but
really quite painful, since taking n-th derivatives of multivariate functions gets out of hand quickly. We shall
see later that this is tied to the issue of Chaos i.e., given two initial data that are close to each other, the
corresponding curves stay close for short time (locally) but can diverge in long time.

Question 2.10. Could you define lim sup?

Answer. The limit supremum lim supt→∞ f is the limit of sup f over the domain (t,∞) as t goes to ∞.

Remark. the construction of integral curves automatically forbids self-intersections.

Definition 2.11 (Integral curves). Add to the definition of a parameterized curve, the requirement that it
is tangent to some vector field.

2.3 Examples

Example 2.12 (Finite blow-up). Consider the vector field y = x2 in R. Then we want to solve the DE
dx
dt = x2, with the initial condition α. By separation of variables, we have∫ x(T )

x(0)

dx

x2
=

∫ T

0

dt

=⇒ T =
1

α
− 1

x(T )

=⇒ x(T ) =
α

1− αT
Assume α > 0. Then this solution blows up at T = 1/α. Formally, take a sequence of points {x(Tk)}∞k=1

such that limk→∞ Tk = 1/α. Then limk→∞ x(Tk) =∞. Another way to state this: the sequence leaves every
compact set. (Compact = closed and bounded in Rn)
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Remark. This shows that a finite time interval can map to an “infinite”, unbounded curve.

Let’s end of with and example, while introducing the concepts of phase space and configuration space.

Example 2.13 (Newton’s Law on R). Recall that a useful picture is to think of a curve as the trajectory
of a point particle. Let’s think of the potential V (x) = −E cosx (this arises from a sinusoidal surface).

Newton’s Law: F = ma = md2x(t)
dt2 . Now, given a potential, the force is F = −∂V (x)

∂x . So considering our
scenario, we have

m
d2x

dt2
= −∂V (x)

dx
= −E sinx =⇒ d2x

dt2
= −E

m
sinx

We want to construct an integral curve from this. But what is the issue here? We have a second-order DE!
How do we convert this into a form we can use?

We can define u := dx
dt . This allows us to write the second-order DE as a system of two first-order DEs:

dx

dt
= u (by definition)

d2x

dt2
=
du

dt
= −E

m
sinx (by F = ma)

What have we done? We increased the dimension of the target space (where the curve lives) from 1 to 2.
This, we will see in the next class, is a lift from configuration space into phase space (to be defined).

3 (9/8) Phase Space, Fixed Points and Regular Curves

3.1 Recap

So far we have looked at parameterized curves and integral curves. We have also seen that integral curves
have nicer properties than a parameterized curve.

Let t 7→ (x1(t), · · · , xn(t)) be a curve and y : U ⊆ Rn → Rn which sends

(x1, · · · , xn) 7→ (y1(x1, · · · , xn), · · · , yn(x1, · · · , xn))

be a vector field. Then we have seen that the integral curve must satisfy the system of differential equations

dx1

dt
= y1, · · · , dx

n

dt
= yn

We have also seen (but not proven) that given an initial condition x(0) = α, a unique solution always exists
to this system, for some time interval [0, t∗).

3.2 (Con’t) Particle in a Potential

Let us return to the last example from the previous class. Recall the setup: t 7→ x(t) is a point particle in
the potential V (x) = −E cosx (see Figure 2). Newton’s law gives us the 2nd-order DE

m
d2x

dt2
= −E sinx

We can transform this into a system of 1st-order DEs by defining dx
dt = u. This gives us the system

10



Figure 2: Picture

dx

dt
= u,

du

dt
= −E

m
sinx

We have increased the dimension of the curve by 1. Instead of a map t 7→ x(t), now we have a map
t 7→ (x(t), u(t)), which is a map I → R2.

Remark. Intuitively, why don’t we want to work with higher order differential equations? One way to
think about it is that we want to avoid ugly self-intersections as much as possible (consider the fact that
the trajectory on the x-axis will intersect itself many times). To “unwrap” the curve, we necessarily must
introduce more dimensions.

Let us re-frame the system in terms of our integral curves definition: We have (x1, x2) = (x, u) and y =
(y1, y2) = (u,−E

m sinx). How do we know that y is a well-defined, smooth vector field? Well, each component
is a smooth function of x (and u, trivially, since each component has no u-dependence), so it satisfies the
requirements.

Remark. For those of you who are reading ahead, what happened is that we started from a curve on a
manifold (t 7→ x(t)) and we constructed a curve on the tangent bundles of the manifold. For those of you
who haven’t encountered this terminology, it’s ok! We will get there in class eventually, and it is not all that
scary.

We can plot this qualitatively (Figure 3) (aka not solving the system of differential equations, just relying
on intuition) (I missed the exposition related to how the diagram was plotted, but hopefully most of it is
clear/makes intuitive sense)

Remark. In this scenario, what makes the first curve t 7→ x(t) only a parameterized curve and not an
integral curve? Each point (other than the left/right bounds) has two velocities associated to it (leftwards
and rightwards). Then the tangents cannot come from a vector field, since a vector field is in particular a
function.

Remark. It is worth stating that integral curves are a subset of parameterized curves! (One way to see this:
note that an integral curve must satisfy the definition of a parameterized curve, but also has additional
properties)

Question 3.1. Let’s take a step back: why are we doing this? Aren’t we trying to do differential geometry?

Answer. Curves are the simplest, well, curved objects. We will need to get comfortable with the simple
case before we can start handling higher-dimensional curved objects. In particular, we will be able to handle
more interesting manifolds such as the (n-) holed torus.

11



Figure 3: The 3 curves in phase space corresponding the scenarios we discussed

Let’s put a particle (almost) at rest at x(0) = −π, with very small initial velocity towards the right. What
happens now? It will roll down, reach the next peak at (essentially) 0 velocity, and then continue to the
next valley. This is the blue curve in Figure 3.

Lastly, let’s consider if we give it a good shove starting at the peak. This gives rise to the green curve in
Figure 3.

Question 3.2. But what is going on where the blue curves intersect? Aren’t there 2 different vector fields
there? Does that mean that this isn’t actually an integral curve?

Answer. Well, let’s take a look. Recall that y = (y1, y2) = (u,−E
m sinx). What happens if y = (0, 0)? This

means u = 0 and sinx = 0, which has solution (x, u) = (nπ, 0), n ∈ Z. If we now look at the phase plot, we
see that for n even, these correspond exactly to the intersection points of the blue curve!

This is a good segway into our next important definition:

3.3 Fixed Points, Regular Curves

Definition 3.3 (Fixed points). A fixed point of an integral curve is a zero of its associate vector field.

Remark. We can unpack this a bit. Let y = (y1, · · · , yn). Recall that the integral curve is defined by the

system dxi

dt = yi. If y vanishes, then this implies that each xi is constant, and so the particle is fixed at that
point.

Remark. How is this consistent with Cauchy stability (the condition that nearby initial conditions lead to
similar curves)? Well, it is kind of a special case, because a fixed point doesn’t even give rise to a curve.

Definition 3.4 (Regular (integral) curve). A regular curve is an integral curve whose vector field never
vanishes.

Remark. So the blue curves are regular only if the fixed points are excluded.

4 (9/13) Reparameterization, Length Framework

4.1 Reparameterizations

For the past few lectures we have been working with parameterizations of curves: functions c : I ⊂ R→ Rn
mapping t 7→ (x1(t), · · · , xn(t)). Also recall that t is called the parameter. By assumption of smoothness,
we can take as many derivatives with respect to t we want.

12



What is the purpose of t? It allows us to keep track of where along the curve we are at. But we don’t always
have to stick to the same parameterization. Define S := s(t), where s : R→ R. This is a change of variables
for the parameterization of the curve. Under certain conditions, this change of parameters does not change
the geometric properties of the curve (eg. length).

The key intuition is that the parameter is just a way of labelling the points. This labelling does not (and
should not) affect the geometry of the curve!

Formally, consider two curves given by the parameterizations

c1 : I ⊆ R→ Rn, t 7→ c1(t)

c1 : J ⊆ R→ Rn, s 7→ c2(s)

along with a function that sends s 7→ t(s).

Definition 4.1 (Reparameterization). Formally, consider two curves given by the parameterizations:

c1 : I ⊆ R→ Rn, t 7→ c1(t)

c2 : J ⊆ R→ Rn, s 7→ c2(s)

A reparamaterization of a regular curve c2 : s 7→ c2(s) is a change of variables s 7→ t(s) such that the
following diagram commutes: (TODO: draw diagram)

In other words, the identity c2(s) = c1(t(s)) holds.

Question 4.2. When we say that length is preserved, is that an extrinsic or intrinsic property of the curve?

Answer. We will see. Currently we have not even defined length yet.

Example 4.3. Consider the curve t 7→ (t, t) for the parameter interval t ∈ (0, 1). Suppose we now reparam-
eterize by s(t) = tan

(
πt
2

)
. Solving for t, this is the same as t(s) = 2

π tan−1(s). The curve can now be given

as s 7→ (t(s), t(s)) =
(
2
π tan−1(s), 2

π tan−1(s)
)
. Applying s(t) to the interval itself, we see that the interval

for the new parameterization is s ∈ (0,∞).

Question 4.4. What if the function looks like s(t) = |t|?

Answer. We will put some restrictions on s such that these cases are not allowed. (Intuitively, we want to
ensure that the reparameterization is also smooth)

We want the resulting parameterization to be smooth. Start with c1(t(s)) = c2(s). Taking derivatives, we

have dc1(t)
ds = c′1 ·

dt(s)
ds , where we write c′1 := dc1

dt . Taking norms, we have∣∣∣∣dc1(t(s))ds

∣∣∣∣ = |c′1| · ∣∣∣∣dt(s)ds

∣∣∣∣ =⇒
∣∣∣∣dt(s)ds

∣∣∣∣ = 1

|c′1|

∣∣∣∣dc1(t)ds

∣∣∣∣
Since we want the derivative to always exist, |c′1| can never vanish. This is always true since c1 is required
by the definition to be a regular curve (the derivative wrt the parameter is given by the vector field). We
also want

1.
∣∣∣dt(s)ds

∣∣∣ <∞
2. dt(s)

ds ̸= 0

3. t is a continuously differentiable function J → I.

If these conditions hold, we see that dc1(t(s))
ds never vanishes, and so c1(t(s)) := c2(s) will also be a regular

curve. Here, t is an example of a “C1-diffeomorphism”, or a C1 change of variables. If the first two conditions

are replaced with 0 <
∣∣∣dnt(s)dsn

∣∣∣ <∞, then t would be a Cn-diffeomorphism/change of variables.

13



Remark. The reparameterized curve can be as smooth as the original smooth curve, depending on the
smoothness of the change of variables function t.

Question 4.5. Can we still say that the two curves are the same if the paramaterizations belong to different
Ck?

Answer. The condition that two curves are the same are just the fact that the images of the parameteri-
zations coincide (they map their corresponding intervals to the same subset of space). It does not require
anything about their derivatives.

4.2 Invariant Property: Curve Length

From now on, we stay in the world where all parameterizations, as well as changes of variables, are C∞.

Question: how many smooth, bijective functions s 7→ t(s) are there in C∞(R)? Uncountably many.

(Fun functional-analytical fact: LetHk be the space of functions whose k th derivatives are square-integrable.
The space C∞

0 (R) of compactly-supported smooth functions (functions that vanish except on a closed
bounded subset) is dense in Hk.)

This is not very helpful for us. We want an invariant property of a curve: some property that is unchanged
after taking any smooth reparameterizations. The first such property is the length of the curve.

Let I ⊆ R → Rn acting by t 7→ c1(t) = (x1(t), · · · , xn(t)). How do you measure distances between two
points? Pythagoras. But to calculate the length of the curve, you cannot just calculate the distance between
the endpoints. How do we deal with this? At every point on the curve, the curve locally looks like a straight
line!

If we zoom in to a small line segment with start point (x1, x2) and endpoint (x1 + dx1, x2 + dx2) (why are
we allowed to do this? Smoothness assumption), we can write the length of the segment as

dℓ =
√
(dx1)2 + (dx2)2 =

√(
dx1

dt

)2

+

(
dx2

dt

)2

dt

Remark. We will see once we move to doing more complicated manifolds, we can repeat a similar procedure
to define the length, but the expression for the infinitesimal length will differ.

Definition 4.6 (Length). Let Curve be the space of (smooth) curves. The length of a curve c : I ⊆ R→ Rn
is a function

ℓ : Curve −→ R≥0

c 7−→ ℓ(c) :=

∫
I

∣∣∣∣dcdt
∣∣∣∣ dt

Well, we claimed that the length is an invariant property. Let’s prove it:

Proposition 4.7. The length function is invariant under reparameterization

Proof. Let c1 : (0, T ) ⊆ R → Rn sending s 7→ c1(s), and let s 7→ t(s) be a reparameterization. The “new”
curve is given by c2 : s 7→ c2 ◦ t(s). The length of c2 is

ℓ(c2) =

∫ s(t=T )

s(t=0)

∣∣∣∣dc2ds
∣∣∣∣ ds = ∫ s(t=T )

s(t=0)

∣∣∣∣dc1dt dtds
∣∣∣∣ ds

=

∫ s(t=T )

s(t=0)

∣∣∣∣dc1dt
∣∣∣∣ ∣∣∣∣ dtds

∣∣∣∣ ds
14



There are two cases: dt
ds > 0 and dt

ds < 0. In the first case, we can infer s(0) < s(T ) (the change of variables
is orientation-preserving), and in the second case we have s(0) > s(T ) (orientation reversing). Assuming the
first case, we can further simplify:∫ s(t=T )

s(t=0)

∣∣∣∣dc1dt
∣∣∣∣ ∣∣∣∣ dtds

∣∣∣∣ ds = ∫ s(t=T )

s(t=0)

∣∣∣∣dc1dt
∣∣∣∣ dtds ds

=

∫ t=T

t=0

∣∣∣∣dc1dt
∣∣∣∣ dt

In the second case, we flip sign twice (once when we drop the | · |, once to swap the integration limits; note
we integrate from s(t = T ) to s(t = 0) since s(t = 0) > s(t = T ) in the second case)∫ s(t=0)

s(t=T )

∣∣∣∣dc1dt
∣∣∣∣ ∣∣∣∣ dtds

∣∣∣∣ ds = ∫ s(t=0)

s(t=T )

∣∣∣∣dc1dt
∣∣∣∣ (− dtds

)
ds

= −
∫ s(t=T )

s(t=0)

∣∣∣∣dc1dt
∣∣∣∣ (− dtds

)
ds

=

∫ t=T

t=0

∣∣∣∣dc1dt
∣∣∣∣ dt

5 (9/15): Invariants (Con’t)

5.1 Arclength

Recall the setup:

I ⊆ R Rn

J ⊆ R

c1

c2
t

This diagram summarizes what we want from a change of variables: the diagram above commutes, aka
c1 ◦ t = c2.

We proved last lecture that the length is an invariant that is preserved by a change of variables. There was
some confusion regarding the case, where s flips the orientation of the interval. Since s(0) > s(T ), in the
length integral we must first flip the limits of integration:

ℓ(c2) =

∫ s(0)

s(T )

∣∣∣∣dc1dt
∣∣∣∣ ∣∣∣∣ dtds

∣∣∣∣ ds
After replacing

∣∣ dt
ds

∣∣ = − dt
ds , we arrive at the same result as the first case.

Q: Why can’t we have dt
ds > 0 on parts of the interval, and dt

ds < 0 elsewhere? That’s because if that’s the

case, then there exists some point where dt
ds = 0 (direct consequence of the intermediate value theorem),

which contradicts our definition for a change of variables (violates the regularity assumption).

Definition 5.1. When dt
ds > 0, we call such a change of variables orientation-preserving. When dt

ds < 0, it
is orientation-reversing

Remark. The objects dt, ds are called differential forms. We will see that the orientation of the change of
variables is related to certain positivity property of these differential forms.
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We have now seen that length is something that is preserved by change of variables. Now we can ask, is
there a special parameterization that “encodes” this invariant? Could we choose a parameterization c on
the interval I = (0, s′) such that s is the length of the curve from c(0) to c(s)?

Yes! Looking at the length formula

ℓ(c) =

∫ s2

s1

∣∣∣∣dcds
∣∣∣∣ ds

if we choose c such that
∣∣ dc
ds

∣∣ = 1 identically, this will give us a parameterization by arclength. Let’s see this
formally:

Lemma 5.2 (Parameterization by Arclength). Every regular curve can be parameterized (in an orientation-
preserving manner) by its arclength, and such a parameterization has unit speed (

∣∣ dc
ds

∣∣ = 1).

Proof. We can prove this constructively. Suppose we have a regular curve parameterized by the function c2
on the interval J = (0, s). We want to use this to construct an arclength parameterization.

The arclength of the curve from the endpoints c2(0) and c2(s) is given by
∫ s
0

∣∣dc2
ds

∣∣ ds. We can define the
new parameterization

t(s) =

∫ s

0

∣∣∣∣dc2ds′

∣∣∣∣ ds′
Clearly, if this is a valid parameterization, then it is an arclength parameterization. However, this is only the
case if

∣∣dc2
ds

∣∣ is integrable over the entire interval. As an example, if
∣∣dc2
ds

∣∣ = 1/s and the parameter interval
is (0,∞), then the integral will not converge. Formally, we require that∣∣∣∣dc2ds

∣∣∣∣ ∈ L1(J ⊆ R)

the space of L1-integrable functions over the interval J .

Clarification: we are not saying that infinite-length curves are not allowed. The issue with the 1/s example
is that the function t(s) will be ill-defined for any s > 0, since the blowup happens at s = 0.

Now, we want to show that this parameterization has unit speed. Since c2 = c1 ◦ t

dc2
ds

=
dc1
dt

dt

ds
=⇒

∣∣∣∣dc2(s)ds

∣∣∣∣ = ∣∣∣∣dc1dt
∣∣∣∣ dtds

By the fundamental theorem of calculus, dtds =
∣∣dc2
ds

∣∣. So, the equation becomes∣∣∣∣dc2ds
∣∣∣∣ = ∣∣∣∣dc1dt

∣∣∣∣ dc2ds
Since dc2

ds ̸= 0 by the regularity of c2, we can cancel both sides to get dc1
dt = 1.

Example 5.3. Let c2 : J −→ R3 be given by s 7→ (as, bs, s). The speed is∣∣∣∣dc2ds
∣∣∣∣ =√a2 + b2 + 1 ≥ 1

How do we convert this to an arc-length parameterization? Following the steps of the proof, we can define
the change of variables

s 7→ t(s), t(s) =

∫ s

0

∣∣∣∣dc2ds′
∣∣∣∣ ds′ = s

√
a2 + b2 + 1
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Then, the map

t 7→ c2(t(s)) =

(
at√

a2 + b2 + 1
,

bt√
a2 + b2 + 1

,
t√

a2 + b2 + 1

)
is an arclength parameterization.

Example 5.4. Let c2 : J −→ R3 be given by s 7→ (a sin(αs), a cos(αs), αs). The derivative is∣∣∣∣dc2ds
∣∣∣∣ =√a2α2 + α2

So we can define the change of variables

t(s) =

∫ s

0

∣∣∣∣dc2ds′
∣∣∣∣ ds′ = s|α|

√
a2 + 1

5.2 Energy

Let us consider an integral curve c : I ⊂ R → Rn, t 7→ c(t). The energy (or the total energy) Ec of this
integral curve is defined as follows

Ec :=
1

2

∫
I

|dc
dt
|2dt (1)

Lemma 5.5. The energy of a curve c : I ⊂ R→ Rn, t 7→ c(t) is not invariant under reparametrization

Proof. Consider the following smooth reparametrization (diffeomorphism of the interval I) of the curve c1(t)

s : I ⊂ R→ J ⊂ R (2)

t 7→ s(t) (3)

The new curve is c2(s(t)) = c1(t) and therefore by chain rule

dc1
dt

=
dc2
ds

ds

dt
(4)

which yields

Ec1 :=
1

2

∫
I

|dc1
dt
|2dt = 1

2

∫
I

|dc2
ds
|2|ds
dt
|2dt = 1

2

∫
J

|dc2
ds
|2 ds
dt
ds ̸= 1

2

∫
J

|dc2
ds
|2ds = Ec2 (5)

Lemma 5.6. consider an integral curve c : I ⊂ R→ Rn, t 7→ c(t) that has a fixed length lc. The energy Ec
of the integral curve verifies the following

lim
|I|→0

Ec =∞ (6)

Remark. Let f, g be two functions on Rn i.e., f, g : Rn → R. The Cauchy-Schwartz inequality reads∫
Rn

fgdnx ≤
(∫

Rn

f2dnx

) 1
2
(∫

Rn

g2dnx

) 1
2

(7)

which is a special case of the Hölder’s inequality∫
Rn

fgdnx ≤
(∫

Rn

|f |pdnx
) 1

p
(∫

Rn

|g|qdnx
) 1

q

, p−1 + q−1 = 1, 0 < p, q <∞ (8)

with p = q = 2. Notice that this is nothing but scaling.
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Proof. Let us recall the expression for the length of a curve c

lc :=

∫
I

|dc
dt
|dt. (9)

Now use the Cauchy-Schwartz inequality on lc after choosing f = |dcdt | and g = 1 to yield

lc =

∫
I

|dc
dt
|dt ≤

(∫
I

|dc
dt
|2dt

) 1
2
(∫

I

12dt

) 1
2

= (2Ec)
1
2 |I| 12 (10)

and since both left and right-hand sides are positive, we can square it to obtain

l2c ≤ 2|I|Ec =⇒ Ec ≥
l2c
2|I|

. (11)

since the length lc is fixed we may write

lim
|I|→0

Ec ≥ l2c lim
|I|→0

1

|I|
=∞ (12)

Remark. The equality holds in Cauchy-Schwartz when f and g are proportional to each other (check it by
substituting f = αg for a non-zero constant α). Therefore in the current example, if we have |dcdt | = 1
(choosing the proportionality constant to be 1) i.e., make the curve parametrized by arclength, we obtain
the equality. More precisely

lc =

∫
I

dt = |I|, Ec =
l2c
2|I|

=
|I|
2
. (13)

5.3 More Invariants

Let’s imagine the path from the SC507 to Annenberg. What about the path is invariant? Certainly not
the speed. Sometimes we run, sometimes we walk etc. If we think about it, the curvature of the path is an
invariant. Another invariant that is a bit harder to state is the orientation of the frame: for instance, if you
left e1 be the tangent vector, e2 be the vector pointing towards the left (along your outstretched left arm, for
example), and e3 be upwards. Then moving along the curve, the orientation of this frame is invariant. We
will see next lecture how to define such a frame at every point along the curve and see that it is an invariant.
(Spoiler: this involves Gram-Schmidt normalization)

Note that if we consider the frames along the same line, all the vectors remain parallel. However, along an
arbitrary curve, even though the orientation is preserved, it still rotates in space. Why? Well, the straight
line is straight, and the curved line is curved. Informally, if e is the frame, then “deds” encodes information
about the curvature of the curve.

6 (9/20): Invariants: Frames

6.1 Recap

Last class, we constructed a special parameterization called the arclength parameterization (see Lemma 5.2).
From this point forward, we will only consider curves parameterized by their arclength. In other words, we
demand

∣∣dc
dt

∣∣ = 1. This turns out to be a convenient choice, as we will see.

Remark. The condition
∣∣dc
dt

∣∣ = 1 comes automatically if we choose an arclength parameterization.

18



6.2 Frames

Let’s begin with the usual setup. Let c : I ⊆ R → Rn be an (integral, arclength-parameterized) curve.
Pictorially, the frames along the curve look like Figure 4.

Figure 4: Two frames along some integral curve.

Let’s try to arrive at a formal definition. We can start with e1(t), which is just tangent to the curve at each
point. This is something we are familiar with: it is just the tangent vector field to the curve c(t). In this
scenario we don’t need the whole tangent vector field, just the restriction of it to the integral curve. Next,
we can consider e2(t), · · · , en(t). These too can be thought of as vector fields restricted to the curve.

We thus have the following definition:

Definition 6.1 (Frames). A moving frame is a collection of smooth maps

A = 1, 2, · · · , n : eA : I ⊆ R −→ Rn

t 7−→ (e1A(t), · · · , enA(t))

such that the inner product ⟨eA(t), eB(t)⟩ = δAB (δAB is the Kroenecker delta, which is 1 if A = B and 0
otherwise)

Remark. This essentially is a moving orthonormal basis that everywhere on the curve looks the same to an
observer on the curve.

Question 6.2. Isn’t the frame generated by Gram-Schmidt not unique?

Answer. Yes, there is a lot of redundancy. We will later see that some interesting properties concerning
frames are invariant under isometries, or rigid rotations/reflections.

We have one of the vectors for free: as we observed, we can just let e1(t) be the tangent vector field of x(t)
(why does this work? in particular, how do we know ⟨e1(t), e1(t)⟩ = 1?). So we let e1(t) = (ẋ1(t), · · · , ẋn(t)).
What happens if we take more derivatives? We can obtain the vectors

(new)1 =

(
d2x1

dt2
, · · · , d

2xn

dt2

)
...

(new)n−1 =

(
dn−1x1

dtn
, · · · , d

n−1xn

dtn

)
The question now is: can we use this as a basis of Rn? Yes, if they are linearly independent.

Definition 6.3 (Frenet curves). A curve which has n linearly independent derivatives dc
dt , · · · ,

dnc
dtn along the

whole curve is called a Frenet curve.
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Remark. Fun fact: in infinite dimensional spaces, a closed bounded set (such as the unit ball) is not compact.

Assuming that we have a Frenet curve, we can use Gram-Schimdt in order to compute a frame:

Proposition 6.4. On every Frenet curve, one can construct a moving frame.

Proof. Let t 7→ c(t) := (x1(t), · · · , xn(t)) be a Frenet curve. By its definition, we can construct n independent
vectors by taking derivatives:

ẽ1 =
dc

dt
=

(
dx1

dt
, · · · ,

)
ẽ2 =

d2c

dt2
=

(
d2x1

dt2
, · · · ,

)
...

ẽn =
dnc

dtn
=

(
dnx1

dtn
, · · · ,

)
Since c was chosen to be an arclength parameterization, we have ∥ẽ1∥ = 1, so we can set e1 = ẽ1.

We can construct the rest by Gram-Schmidt. Let’s consider how to get e2. Given the vector ẽ2 that is
different from e1, we can calculate the projection onto e1 to be ⟨ẽ2, e1⟩e1. Subtracting this from ẽ2 gives a

vector ˜̃e2 = ẽ2 − ⟨ẽ2, e1⟩e1 that is orthogonal to e1 (you can check this by computing their inner product to

be 0). However, this doesn’t mean that the norm of ˜̃e2 is 1. To fix that, we can simply normalize this vector

and define e2 =
˜̃e2

∥ ˜̃e2∥ . To compute the rest of the orthonormal basis, we simply extend the Gram-Schmidt

process. For example,

˜̃e3 = ẽ3 − ⟨ẽ3, e1⟩e1 − ⟨ẽ3, e2⟩e2, e3 =
˜̃e3
∥ ˜̃e3∥

and in general,

˜̃ek = ẽk −
k−1∑
i=1

⟨ẽk, ei⟩ei, ek =
˜̃ek
∥ ˜̃ek∥

Question 6.5. Is the converse true? Given a moving frame, can we conclude that the underlying curve is
Frenet?

Answer. Not necessarily. Consider a moving frame going in the straight line t 7→ (t/
√
3, t/
√
3, t/
√
3). In

this case, the underlying curve is a straight line, whose 2 and 3 derivatives are all 0. But we can under
”certain” restriction fit a ”curve” through a moving frame (we’ll shortly see what these are).

Question 6.6. Isn’t it possible to always construct a moving frame, if we let {ei} just be the standard basis
on Rn?

Answer. Yes, but this frame is useless since it doesn’t encode any information about the curve. By carefully
constructing moving frames, we can use these frames to understand invariant properties of the curve, like
curvature.
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6.3 Change of Frame Along the Curve

Consider the frame {eA(t)}A=1,··· ,n. How do we understand how the frame changes? Our intuition demands
that we take derivatives, and our intuition is correct.

Teaser for next class:

Proposition 6.7. Assuming that {eA(t)}A=1,··· ,n is the moving frame constructed as in the previous section
for a Frenet curve.

dc

dt
=

n∑
i=1

αiei

deA
dt

=

n∑
B=1

ωABeB

where ωAB = −ωBA and ωAB = 0 for all B > A+ 1.

7 (9/22): Frames (Con’t)

Recall that frames are simply a set of vector fields that together assign an orthonormal basis at each point
along the curve. One type of frame we are particularly interested in is a frame where the first vector field
e1(t) is set to be the velocity of the curve (arclength parameterized)

For a class of curves c known as Frenet curves, the n time derivatives {d
kc
dtk
}k∈[n] are linearly independent.

Using Gram-Schimdt, we can turn these derivatives into a moving frame of the curve.

7.1 Derivative of a Frame

Proposition 7.1. Let c : I ⊆ R −→ Rn be a Frenet curve, (and the eI be the moving frame constructed
from last time). Then the following holds:

dc

dt
=

n∑
I=1

αIeI

deI
dt

=

n∑
J=1

ωIJej ,

where ωIJ = −ωJI and ωJI = 0 for all J > I + 1 and αI are to be determined.

Proof. From our moving frame construction, α1 = 1 and αi>1 = 0, since we chose e1 = dc
dt .

Linear algebra fact: every vector (in a finite-dimensional space) can be written as a linear combination of
the basis vectors. Also, derivatives of vectors are just vectors. Since {eI} are a basis, we can always write

deI
dt

=

n∑
J=1

βIJeJ

How do we determine the coefficients βIJ? We can take the inner product of the LHS with each of the basis
vectors!

Linear algebra recap: the inner product is bilinear: aka for scalars a, b and vectors u, v, w, we have ⟨au +
bv, w⟩ = a⟨u,w⟩+ b⟨v, c⟩, and analogously for the second argument.
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So choose an index k ∈ [n], we can take the dot product of both sides with ek to get:〈
deI
dt
, ek

〉
=

〈
n∑
J=1

βIJeJ , ek

〉

=

n∑
J=1

βIJ⟨eJ , ek⟩ (linearity)

= βIk

So we can rewrite original vector, replacing the βJ ’s with this new expression:

deI
dt

=

n∑
J=1

〈
deI
dt
, eJ

〉
eJ

Let us define ωIJ :=
〈
deI
dt , eJ

〉
. We shall prove that it satisfies the properties stated in the proposition.

ωIJ = −ωJI : Recall that ⟨eI , eJ⟩ = δIJ , which is constant for any choice of indices. Therefore its derivative
is 0. We can use the bilinearity of the dot product to obtain

d

dt
⟨eI , eJ⟩ =

〈
deI
dt
, eJ

〉
+

〈
eI ,

deJ
dt

〉
= ωIJ + ωJI = 0

Moving the second term to the RHS gives us exactly what we want.

Remark. The above derivation involving the dot product is not guaranteed to work if we are not in Euclidean
Rn. Fortunately, that is where we are right now.

ωIJ = 0, ∀J > I + 1: We use the shorthand cI = dIc
dtI

. Recall the construction of our frame:

eI =
cI −

∑I−1
J=1⟨cI , eJ⟩eJ

∥cI −
∑I−1
J=1⟨cI , eJ⟩eJ∥

(*)

We can rearrange this to get something of the form cI =
∑I
J=1 α

JeJ , which in particular implies cI ∈
span{e1, · · · , eI}.
At the same time, using an inductive argument, we have that eI ∈ span(c1, · · · , cI) (Assume that this is
true for indices up to I − 1. Then we can substitute this into (*) to express eI as a linear combination of
c1, · · · , cI). Taking one more derivative, we have

deI

dt
∈ span{c1, · · · , cI , cI+1}

Since cI+1 ∈ span(e1, · · · , eI+1), this implies deI
dt ∈ span(e1, · · · , eI+1). Taking the dot products with the

basis vectors, we have ωIJ = 0 if J > I + 1.

Here is a visualization of the coefficient matrix (ωIJ):

(ωIJ) =



0 ω1,2 0 · · · 0
−ω1,2 0 ω2,3 · · · 0

0 −ω2,3 0
. . . 0

...
...

. . .
. . . 0

ωn−1,n

0 0 0 · · · −ωn−1,n 0


Remark. Note that all of these coefficients depend on t: really, ωIJ(t) =

〈
deI(t)
dt , eJ(t)

〉
.
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7.2 Curvature

So recall why we went through all this trouble to work with frames: we wanted to define curvature.

Definition 7.2 (Curvature). The curvature of a curve c : I ⊆ R→ Rn is defined as

κI =
ωI,I+1

|dc/dt|
= ωI,I+1 (for an arclength param)

κI is the curvature in the direction of eI+1.

Why are there different curvatures in different directions? You can imagine that viewing a curve from
different points of view, you would see the curve bending in a different way.

8 (9/27): Curvature

8.1 Wrapping up curvature

To clarify, we are restricting once again to considering only Frenet curves and the associated construction of
the moving frame.

Definition 8.1 (Curvature). Let t 7−→ c(t) be a Frenet curve. The curvature functions are defined by

κI(t) =
ωI,I+1

|dc/dt|
, 1 ≤ I ≤ n− 1

Remark. In the coefficient matrix for (ωij) for a curve parameterized by arclength, we can substitute kI for
ωI,I+1 to get the following coefficient matrix:

K :=


0 k1 0 · · ·
−k1 0 k2 · · ·
0 −k2 0 · · ·
...

...
...

. . .


Question 8.2. Can we build a curve given the information of its curvature? i.e. given the functions
t 7→ (k1(t), k2(t), · · · , kn−1(t)) on the interval t ∈ [0, 1], can we fit a curve with those curvatures?

Intuitively, if we are given a rope curved in some form, and then we are asked to take another rope and make
it of the same shape, what would you do? One could imagine taking the start of your rope, putting it next
to the rope, and then start “matching” your rope to the reference rope.

This intuition can extend to the mathematical case. We first have to be given an initial condition for the
start position of the curve. Once we do that, we can fit the rest of the curve by solving the differential
equations of the frame!

But another question arises: can we always solve the system of frame equations? Well, we have seen this
type of equations before in integral curves, in particular the definition of the tangent vector field! However
there is a catch here: the coefficients ωIJ do not have to be constant with time. Another difference we have:
how do we know that the frame vectors remain orthonormal throughout?

8.2 Going from Curvature back to the Curve

Theorem 8.3. Let t 7→ (k1(t), k2(t), · · · , kn−1(T )) be a smooth function R → Rn−1. Then there exists a
curve t 7→ c(t) ⊂ Rn for the parameter interval t ∈ [0, t∗), t∗ > 0, such that the functions k1(t), · · · , kn−1(t)
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are its curvatures. In other words, the system of ODEs

deI
dt

=

n∑
J=1

ωI,JeJ

with initial condition eI(0) has a solution for t ∈ [0, t∗). Furthermore the basis {eI(t)} remains orthonormal
for all t ∈ [0, t∗).

Proof. Consider a canonical basis {1̂, 2̂, · · · , n̂} ⊂ Rn, where

1̂ =


1
0
...
0

 , 2̂ =


0
1
...
0

 , · · · , n̂ =


0
0
...
0


Then we can write each frame vector as a linear combination of this canonical basis:

e1(t) = e11(t)1̂ + e21(t)2̂ + · · ·+ en1 (t)n̂

...

en(t) = e1n(t)1̂ + e2n(t)2̂ + · · ·+ enn(t)n̂

Recall we have the system of ODEs:

de1
dt

= ω1,1e1 + ω1,2e2 + · · ·+ ω1,nen

...

den
dt

= ωn,1e1 + ωn,2e2 + · · ·+ ωn,nen

Just like in the bonus of the first HW, we can rewrite this in matrix form:

d

dt


e1
e2
...
en

 =


0 ω1,2 · · · 0
−ω1,2 0 · · · 0

...
...

. . .
...

0 0 · · · 0



e1
e2
...
en


We can expand the left hand side by writing each frame vector in its components:

E :=
d

dt


e11 e21 · · · en1
e12 e22 · · · en2
...

...
. . .

...
e1n e2n · · · enn


Substituting this and noting that each ω is the corresponding curvature multiplied by |ċ|, we have the system

dE

dt
= |ċ|KE

along with the initial condition E(0). Then, we have the first part of the result:
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1. There exists a solution t 7→ eI(t) in the interval t ∈ [0, t∗), t∗ > 0 from ODE theory (local well-
foundedness theorem)

Intuition: for a short enough time, K is constant, and so the above system of equations have a canonical
exponential solution. However, this niceness is not guaranteed to hold for long times.

Question 8.4. Why must we work in the canonical basis rather than the frame basis itself?

Answer. We don’t actually know that the frame vectors actually form a basis for time > 0. That is what
we are trying to prove!

With that done, we still need to show that the solutions eI(t) form an orthonormal set for all t ∈ [0, t∗).
This is equivalent to showing that each pair of rows of the matrix E are orthonormal to each other. Such a
matrix is known as an orthogonal matrix.

A well-known result from linear algebra says that E consisting of orthonormal rows is equivalent to the
statement that ETE = id (write out small matrices and try it out if this fact is unfamiliar to you). So we
want to show that

ET (t)E(t) = ET (t)E(t) = id, ∀t ∈ [0, t∗)

We know that ET (0)E(0) = id. How do we show that this remains true for all subsequent times? We
can take the derivative! Just like in HW1 where we showed that the energy was constant, if the derivative
vanishes then ET (t)E(t) will remain equal to id for all time. So, dropping the explicit t dependence,

d

dt
(ETE) =

dET

dt
E + ET

dE

dt

= (|ċ|ETKT )E + ET (|ċ|KE)

= |ċ|(ET (KT +K)E)

= |ċ|(ET (−K +K)E) (since KT = −K)

= 0

9 (9/28): Curvature, Pt. 2: The case of R2

Over the past few lectures we set up the machinery for dealing with curvature of a curve in a general space
Rn. The major result from Tuesday: given a set of functions (k1(t), · · · , kn−1(t)) describing the curvature
and an initial condition E(0), we can always fit a curve for time t ∈ [0, t∗) such that the moving frame E(t)
satisfies the differential equation dE

dt = |ċ|KE. Today we will restrict our attention to n = 3 to get some
concrete results.

9.1 Curvature in R2

Recall the general setup of the moving frame. We assume an arc-length parameterization of the curve. In 2
dimensions the frame is described by E(t) = (e1(t), e2(t)). The matrix ωIJ is given simply by

ωIJ =

(
0 ω1,2

−ω1,2 0

)
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Recalling our definition of ki = ωi,j , this means a curve in 2 dimensions only has 1 curvature. This should
make intuitive sense, because in 2 dimensions the only information we need is the magnitude of the curvature
(for eg how concave/convex it is). And the general frame equation dE

dt = |ċ|KE reduces to:

d

dt

(
e1
e2

)
=

(
0 ω1,2

−ω1,2 0

)(
e1
e2

)
=⇒ de1

dt
= ω1,2e2,

de2
dt

= −ω1,2e1

In order to understand the rotation of the frame, we need to choose some external reference frame (it would
make no sense to consider the rotation of the frame with respect to itself - a frame is always stationary from
its own point of view).

We can take the canonical basis on R2 as a reference. But the canonical basis is for a vector space centered
at the origin, whereas the origin of the frame moves along the curve. So as vector spaces they are not directly
commensurable. However, since we are in R2 (in particular a flat euclidean space), we can perform parallel
transport of our canonical basis so that their origin coincides with that of the moving frame. Explicitly, we
will perform the following steps:

1. Choose a fixed basis (v1, v2), for example the standard basis {(0, 1), (1, 0)}.

2. Translate the basis along the curve in such a way that it remains the same (parallel to its initial state).
See Figure 5 for an illustration.

3. Compute the angle θ(t) between the chosen basis and the frame.

Figure 5: The standard basis and some of its parallel transports

To compute the angle between the reference basis and the frame, we can just compute dot products:

cos θ(t) =
⟨v1, e1(t)⟩
|v1||e1(t)|

=
⟨v1, e1(t)⟩
|v1|

sin θ(t) = · · · = ⟨v1, e2(t)⟩
|v1|

Question 9.1. Why do we not just choose a reference basis with unit length?

Answer. We certainly could!

So what do we do in differential geometry? We take derivatives!

d

dt
cos θ(t) = − sin θ(t)

dθ(t)

dt
=
⟨v1, ddte1(t)⟩
|v1|

= ⟨ v1
|v1|

,
d

dt
e1(t)⟩

cos θ(t)
dθ(t)

dt
= · · · = ⟨ v1

|v1|
,
d

dt
e2(t)⟩
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Here we used the fact that the differential operator commutes with the dot product in Euclidean space:

d

dt
⟨·, ·⟩ = ⟨ d

dt
·, ·⟩+ ⟨·, d

dt
·⟩

Back to the derivation. We can substitute de1(t)
dt = ω1,2 and likewise to get

− sin θ(t)
dθ(t)

dt
= ⟨ v1
|v1|

, ω1,2e2(t)⟩ = ⟨
v1
|v1|

, e2(t)⟩ω1,2

cos θ(t)
dθ(t)

dt
= ⟨ v1
|v1|

,−ω1,2e1(t)⟩ = −⟨
v1
|v1|

, e1(t)⟩ω1,2

But recall our definitions for cos θ(t) and sin θ(t). Replacing the dot products with the trig terms gives us

− sin θ(t)
dθ(t)

dt
= sin θ(t)ω1,2

− cos θ(t)
dθ(t)

dt
= cos θ(t)ω1,2

Cancelling out the trig factor in either term leads to the conclusion that dθ(t)
dt = ω1,2. The only potential

issue is when sin θ(t) = cos θ(t) = 0 simultaneously, because in that case we would have division by 0 for both
equations. Fortunately, sin θ(t) and cos θ(t) cannot vanish at the same time. Therefore, we are guaranteed
that the curvature satisfies

dθ(t)

dt
= −ω1,2

Theorem 9.2 (Frame rotation in 2D). The rate of rotation of the moving frame of a curve c : R → R2 is
exactly the curvature.

Remark. Note that θ(t), ·θ(t) are both C∞ by assumption that ω1,2(t) is C
∞.

Example 9.3. Let ω1,2 = 1. Then dθ
dt = −1 =⇒ θ(t) = −t+ θ(0)

Question 9.4. What changes when we start considering plane curves (curves that lie entirely on a plane)
embedded in Rn?

Answer. For a plane curve in particular, the frame can be constructed such that only the first two vectors
are in the plane, and so these are the ones are rotation The rest of the frame vectors are orthogonal to the
plane. and do not change in time. So if we reformulate our theorem with more specificity it also applies in
this place. However we will need a more general theorem if we are not considering plane curves.

Question 9.5. So this analysis doesn’t say anything about where the curve is located, just its shape?

Answer. Yes, in Rn that is okay because of parallel transport.

9.2 Curves of Constant, Non-zero Curvature in R2

We will see that in R2, a curve has constant non-zero curvature iff it is a circle. (Technically the case where
k = 0 can be included in the statement if we consider a straight line as a degenerate circle with infinite
radius.)

If the curve has constant curvature, then ω1,2(t) = const. = ε
r where ε = ±1 and r > 0. Let us compute the

curve that it defines. Theorem 8.3 suggests we can try to fit a curve to this curvature function by writing
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the frame equations.

dc

dt
= e1

de1
dt

=
ε

r
e2

de2
dt

= −ε
r
e1

With the above notation, we can write the proposition proper:

Proposition 9.6. Let c : I ⊆ R→ R2 be a Frenet curve with constant curvature with magnitude 1
r . Then

c(t) is a parameterization of a circle. i.e., there exists a constant vector y0 such that

∥c(t)− y0∥ = r =
√

(x1(t)− y10(t))2 + (x2(t)− y21(t))2

Proof. Consider the vector c(t) + εre2. Taking its derivative, we have

d

dt
(c(t) + εr

de2
dt

) =
dc

dt
+ εr

−εe1
r

= e1 − ε2e1 = 0

This implies c(t) + εre2 = y0 for some constant vector y0 ∈ R2. So we have c(t) − y0 = −εre2. Taking
magnitudes, we have

∥c(t)− y0∥ = | − ε||r|∥e2∥ = r

and we are done.

Question 9.7. Isn’t a hyperbola a surface of negative curvature?

Answer. That refers to the Gaussian curvature (intrinsic) of hyperboloids (dimension greater than or equal
to 2). In a plane, the curvature (that we have been dealing with) of a hyperbola is not constant - as we
travel towards the asymptote, the curvature tends towards 0.

Random fact about Kerr black holes: one can travel backwards in time by traveling in circles around the
origin.

Next class we will look at curves in 3D, where we will start to see how to generalize the methods today to
compute the rate of change of the moving frame.

10 (10/4): Some logistics, Curves in R3

10.1 Midterm Format

Around 3 weeks from now. Exact date to be confirmed. Open notes.

Questions will be similar to homework, not going to be calculation heavy Eg. Modified potential, deformation
of the disk in the phase plots.

Practice questions to be released around 1.5 weeks before midterm.

Extra points from the homework can be used to compensate for other homeworks/exam.
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10.2 Space Curves (Curves in R3)

Recall the familiar setup: We have a Frenet curve c : I → Rn given by c(t) = (x1(t), · · · , xn(t)), its moving
frame {eI}I∈1,··· ,n, and the frame equations

deI(t)

dt
=

n∑
J=1

ωI,J(t)eJ(t)

satisfying ωI,J = −ωJ,I , ωI,J = 0 for J > I + 1, and e1(t) =
dc
dt has unit length.

Today we will specialize to the case n = 3, one dimension up from plane curves, and see what we can learn.

In 3 dimensions, the frame equations are

de

dt
=

 0 k1(t) 0
−k1(t) 0 k2(t)

0 −k2(t) 0

 e

Let’s consider a special case: what if the curve lies entirely on the plane x1− x2? We would expect that the
frame vector orthogonal to the x1 − x2 plane does not change. How does this affect the matrix ω? We must
have k2(t) = 0, resulting in

ω =

 0 k1(t) 0
−k1(t) 0 0

0 0 0


We see that the matrix reduces to that of a plane curve!

Based on this, what is the role of k2(t)? Intuitively, we would expect k2(t) to measure the failure of the
curve to be a plane curve. One could think of it as related to the “torque” that lifts a curve off of the plane
it was on. You can treat it analogous to the role of k1(t) measuring the failure of the curve to be a straight
line.

For n = 3, the two k-terms have special names:

- k1: curvature

- k2: torsion

Remark. What happens if we choose a different sort of orthonormal frame (eg by using Gram-Schmidt in
a different order)? We will see that even though the individual curvatures will change, the total curvature
(which we will define soon) is invariant.

10.3 Representing the curve locally

We continue with the notation as before. Pick some time t0. Our goal is to represent the curve locally
around the time t = t0. We can do that by Taylor expanding:

c(t) = c(t0) +
dc

dt
(t0)(t− t0) +

d2c

dt2
(t0)

(t− t0)2

2
+
d3c

dt3
(t0)

(t− t0)3

6
+O((t− t0)4)

But what is a possible danger? Not all smooth functions are analytic.

Definition 10.1. An analytic function f is a smooth function such that its Taylor series has a non-zero
radius of convergence.
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So let’s impose the additional assumption that c(t) is analytic. This will allow us to work with the Taylor
series in some small neighborhood of t0. Now, how do we relate this back to the curvatures? Recall that the
frame vectors were constructed by applying Gram-Schmidt to the derivatives.

We have the frame equations

dc

dt
= e1(t)

de1
dt

= k1(t)e2(t)

de2
dt

= −k1(t)e2(t) + k2(t)e3(t)

de3
dt

= −k2(t)e3(t)

Let’s recover the derivatives from here. We already have the first derivative. Taking derivatives, we have

d2c

dt2
=
de1(t)

dt
= k1(t)e2(t)

d3c

dt3
=
dk1
dt

e2(t) + k1(t)
de2
dt

=
dk1
dt

e2(t) + k1(t)(−k1(t)e1(t) + k2(t)e3(t))

So we can just substitute this into the Taylor series

c(t) = c(t0) + (t− t0)e1(t0) +
1

2
k1(t0)e2(t0)(t− t0)2 +

1

6
(−dk1

dt
(t0)e2(t0) + k1(t0)(−k1(t0)e1(t0) + k2(t0)e3(t0)))

Collecting terms by the frame vectors, we have the following proposition:

Proposition 10.2 (Normal form of a curve). Every analytic Frenet curve can be represented as follows:

c(t) = c(t0) +

(
(t− t0)−

k1(t0)
2

6
(t− t0)3

)
e1(t0) +

(
k1(t0)

2
(t− t0)2 −

k̇1(t0)

6
(t− t0)3

)
e2(t0)

+

(
k1(t0)k2(t0)

6
(t− t0)3

)
e3(t0) +O(|t− t0|4)

in some neighborhood of c(t0).

10.4 Projections onto planes in the frame

Let us now consider what happens if we project onto the e1 − e2, e1 − e3 and e2 − e3 planes? (Figure 6)

e1 − e2 plane: Locally looks like a graph of y = x2

e1 − e3 plane: Locally looks like a graph of y = x3

e2 − e3 plane: Locally looks like y2 = x3 (the graph has a kink at c(t0)).

The planes are called the osculating, rectifying, and normal planes respectively.
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Figure 6: (Left) A space curve, its frame, and the 3 planes (green = e1 − e2, blue = e1 − e3, red = e2 − e3)
(Right): Projections onto each of the planes (osculating, rectifying, and normal) in a small neighborhood of
c(t0)

11 (10/6): Wrapping up Curvature; Transformations

11.1 More on the Taylor Expansion

We continue exploring Proposition 10.2. Recall the Taylor expansion

c(t) = c(t0) +

(
(t− t0)−

k1(t0)
2

6
(t− t0)3

)
e1(t0) +

(
k1(t0)

2
(t− t0)2 −

k̇1(t0)

6
(t− t0)3

)
e2(t0)

+

(
k1(t0)k2(t0)

6
(t− t0)3

)
e3(t0) +O(|t− t0|4)

as well as the 3 projections in Figure 6. How do we understand the shape of each of these graphs?

e1 − e2: By making this projection we are setting the e3 component to be 0. Since we are looking in a small
neighborhood of c(t0), for each remaining component e1, e2, we can keep only the leading order term. Our
expansion thus becomes

c(t) ≈ e1(t0)(t− t0) + e2(t0)(t− t0)2
k1(t0)

2
+ · · ·

From this, letting y be the e2 component and x be the e1 component, then y ∝ x2. This explains the
parabolic shape of the projection onto the osculating plane.

Question 11.1. What is the difference between smooth and analytic functions?

Answer. A smooth function f is a function which is infinitely differentiable. I.e. dkf
dxk is continuous for all

k ∈ N. An analytic function is a smooth function f such that its Taylor series T (f) converges to f over some
neighborhood.

An example of a smooth but non-analytic function f(x) = e−1/x. We can compute its first couple of
derivatives

f ′(x) =
1

x2
e−1/x, f ′′(x) = − x

x3
e−1/x +

1

x4
e−1/x

and so on. Now let’s look at the Taylor expansion around x = 0. Using the fact that limx→0
1
xn e

−1/x = 0,
we see that the in the Taylor expansion

f(x) = f(0) + f ′(0)x+ f ′′(0)x2 + · · ·

each term in the right hand side just evaluates to 0, and so the Taylor expansion converges to zero polynomial.
But e−1/x is clearly not the zero polynomial.
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Back to the osculating plane: it is the plane that “best approximates” the space curve, in the sense that the
projection onto the osculating plane looks the most similar to the space curve.

e1 − e3: Dropping the e2 term and keeping only terms up to quadratic, we have

c(t) ≈ c(t0) + (t− t0)e1(t0) +O((t− t0)3)

Question 11.2. Why is the normal plane not very useful?

Answer. The projection onto the normal plane has a cusp. So we lose the smoothness property of our
curve.

Question 11.3. What is the motivation for studying these kinds of projections?

Answer. We can use it in a number of ways. Projecting onto the osculating plane, we can determine if the
space curve is really a plane curve by checking if the projection is the same as the original. Another thing
we can do is to calculate the quadratic term of the projection onto the osculating plane to determine the k1
curvature term.

11.2 Transformations

Given a curve c : R→ Rn, we can calculate its length, curvature, and frame. What happens if the curve is
rigidly translated in space? Nothing will change.

What happens if the curve is rigidly rotated around some point? The length and curvature do not change.
The frame changes by a rotation.

However, what happens if we take some section of the curve and deform it? Then none of the properties will
remain the same.

What is an equivalent transformation that has the same effect as translating the curve? We can equally shift
the axes of the graph to obtain the same effect! Likewise, to rotate a curve, we can equally rotate the axes
instead. In other words, you can either

1. Rotate or translate or otherwise change the curve, or

2. You can transform the underlying space

We will focus on the second type. But how does one transform the underlying space?

11.3 Topology Fundamentals

Let’s consider translating all of the points in R2 which are ℓ units in the positive y direction. Instead of
moving “all” the points, what is a simpler way? One observation is that we do not need to translate all the
points “at the same time”. So rather than translating the whole space, we can choose some covering of the
space by subsets, translating each piece individually, and then taking the union.

In other words, we want to perform the mathematical operations (corresponding to translation, rotation,
etc) on subsets of the whole space. Afterwards, we can “glue” the results together, across their intersections,
to get the transformed space.

But we need to make precise the notion of “gluing”.

What is the simplest subset in the plane? Circular disks! (Squares are almost good enough, but at the
corners the square is not smooth)
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Definition 11.4. A ball Br(x0) with radius r centered at x0 in Rn is defined as the subset

Br(x0) := {x ∈ Rn : ∥x− x0∥ ≤ r}

The ball can be further split into two subsets: the interior B◦
r (x0) and the boundary ∂Br(x0), defined by

B◦
r (x0) := {x ∈ Rn : ∥x− x0∥ < r}

∂Br(x0) := {x ∈ Rn : ∥x− x0∥ = r} ∼= Sn−1

where Sn−1 is the n− 1-sphere in Rn. The interior is also called the open ball

Let’s look closer at the interior B◦
r (0):

Question 11.5. Take any point x ∈ B◦
r (0). Is it always possible to construct a smaller ball Br′(x) that lies

entirely in B◦
r (0)?

Answer. Yes! Intuitively, regardless of how close to the “outside” of the open ball, we can always fit a very
small ball,

Now let’s consider an arbitrary open set. We can define it similarly, using the property we noted about the
open ball.

Definition 11.6 (Open subsets of Rn). Let U be a subset of Rn. Then it is open if for allx ∈ U , there
exists a ball centered at x which lies entirely in U . Formally,

∀x ∈ U, ∃r > 0 st. Br(x) ⊂ U

Definition 11.7. (Interior of an open subset) The Interior of an open subset U is defined as the union of
all open subsets contained in U

Question 11.8. Can you make an open subset closed?

Answer. Yes, by “filling in the outside”, or equivalently adding the boundary.

Definition 11.9 (Closure). The closure of a set U ⊂ Rn is the union U := U ∪ ∂U .

Definition 11.10. (Closure) Another way to define the closure U of a set U is the intersection of all the
closed sets containing U .

Definition 11.11. (Boundary of a set) Once we have defined the closure and interior of a set U , we can
define the boundary as the formal subtraction (at the level of sets) ∂U := U − Interior(U)

Remark. To avoid conflict of notation, use a superscript c to denote set complements rather than an overline.

12 (10/11) : Topology Fundamentals, Con’t

12.1 Point-Set Topology on Rn

Recall that we defined:

1. The open balls B◦
1(x0) := {x ∈ Rn : ∥x− x0∥ < 1}

2. The boundaries of the open balls ∂B◦
1(x0) := {x ∈ Rn : ∥x− x0∥ = 1}

3. The closed ball, defined in terms of the closure of the open ball: B1(x0) := B◦
1(x0) ∪ ∂B1(x0)
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Question 12.1. How can we compare two sets at the most basic level?

Answer. We could for example look at which elements are in the intersection of the two sets, or the number
of points in the set difference.

But how about uncountable sets, like intervals on the real line? We wouldn’t be able to just count up the
elements. Instead, we will have to determine the relative size of sets in terms of functions from one set to
the other.

12.2 Injectivity, Surjectivity, Bijectivity

Definition 12.2. A map f : A→ B is injective if ∀x1, x2 ∈ A, f(x1) = f(x2) =⇒ x1 = x2.

Example 12.3. An integral curve is an injective map from R to Rn. This comes from the observation that
an integral curve cannot have self-intersections (If it did, then there would be two times t1 ̸= t2 such that
c(t1) = c(t2))

Definition 12.4. A map f : A→ B is surjective if ∀y ∈ B, ∃x ∈ A such that f(x) = y.

Definition 12.5. A map f : A→ B is bijective if it is both injective and surjective.

Bijectivity is a useful tool in comparing the sizes of sets. If there is a bijection between two sets A and B,
then we say that they are sets of the same size.

Definition 12.6 (Isomorphism of sets). If A and B are thought of as sets of points, a bijection between A
and B is called an isomorphism. We say that A and B are isomorphic to each other as sets.

However, we want to talk about maps that have more structure, such as continuous or differentiable maps.
The notion of isomorphism of sets is too weak, as we see in the following example:

Example 12.7. The intervals (0, 1) and (0,∞) are isomorphic at the level of sets. To show that they are
isomorphic sets, we just need to exhibit a bijection. Some examples are

x 7→ tan
(xπ

2

)
x 7→ − log x

x 7→ 1

x
− 1

Question 12.8. In the example of stretching the jacket, how do we do so without introducing new points?
Doesn’t the area/volume change when we do so?

Answer. We can do so, because area/volume is a geometrical concept, not a topological one. In topology,
we only care about shapes.

Example 12.9. Is the interval (0, 1) isomorphic (at the level of sets) to two disjoint copies of (0,∞)? It turns
out that the answer is yes. However, this requires constructing a bijection that has very nasty properties.
In particular it is discontinuous.

12.3 Homeomorphisms, Simply-connectedness

We want to restrict our attention to maps between sets that do not “delete” points, or “break apart” the
set into disjoint pieces. Formally, we want bijections that are continuous. This leads us to the definition of
a homeomorphism.
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Definition 12.10 (Homeomorphism). Let f : A→ B where A,B ⊂ Rn are open subsets. Then f : A→ B
is a homeomorphism if:

• f is a bijection of sets

• f , f−1 are both continuous maps.

Question 12.11. Is the condition that f−1 is continuous implied by the conditions that f is a continuous
bijection?

Answer. f : [0, 1] ∪ (2, 3] → [0, 2] s.t f(x) = x, x ∈ [0, 1] and x − 1, otherwise would be such an example
where f continous bijection while f−1 is not continouos.)

Question 12.12. Can we use this definition to identify open subsets of Rn? Can we claim that every open
connected subset is homeomorphic to an open ball?

Answer. No. Some counterexamples: 1) ∅ 2) Open balls of different dimension. These are good counterex-
amples, but let us consider the following:

Example 12.13. Consider the sets {x : ∥x− x0∥ < 1} and {x : 0.5 < ∥x− x0∥ < 1 in R2}. One of them is
the open disk, and the other is an open annulus. We claim that these two sets are not homeomorphic.

One way to see this: Consider the loop defined by the equation ∥x − x0∥ = 0.75. On the open disk, there
is a continuous deformation (that stays on the disk) of this loop onto a single point. No such continuous
deformation exists on the annulus. See Figure 7

Figure 7: A disk is simply connected while an annulus is not

The notion of shrinking a loop to a point is a central one in topology. We have a definition for this:

Definition 12.14 (Simply connected aka. no holes). A subset U ⊂ Rn is called simply connected if every
closed loop (a curve with the same start and end point) in U can be continuously shrunk to a point.

Example 12.15. The subset R2−{0} ⊂ R2 is not simply-connected, because a loop that encloses the origin
cannot be contracted onto a point. Is it homeomorphic to an annulus? turns out yes!

Example 12.16. The subset R3 − {0} ⊂ R3 is simply-connected.

13 (10/13) : Diffeomorphisms

13.1 Announcements

1. PSET 3 will be dropped sometime before tomorrow night
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2. Mitderm practice PSET: next week

3. Nov 3: In-class midterm.

13.2 Wrapping up Topology

Clearing up some confusion between isomorphisms and homeomorphisms:

• An isomorphism is a bijection at the level of sets.

• A homeomorphism is an isomorphism that has the additional property that: both the map and its
inverse is continuous.

Example 13.1. The interval (0, 1) is isomorphic to [0,∞). However, they are not homeomorphic, because
there is no bijection from (0, 1)→ [0,∞) that are both continuous and have continuous inverse.

13.3 Differentials, Diffeomorphisms

Let us start with another example:

Example 13.2. Consider the closed unit square U ⊂ R2 and the closed unit disk V ⊂ R2.

• Are U and V homeomorphic to each other? Yes. Without going into the technicalities, one can
construct a bijection f : U → V that is continuous and has continuous inverse.

• Are f : U → V and f−1 : V → U differentiable? No. It turns out that we will run into trouble at the
corners of the square. (Think: absolute value function)

Things that are not differentiable are useless for doing calculus. So we want to consider homeomorphisms
that are also differentiable both ways.

Let’s take a step back and define differentials, starting from a low-dimensional case: Let U, V ⊂ R2 be
open sets of the same dimension, and f : U → V be a map given by (x1, x2) 7→ (f1(x1, x2), f2(x1, x2)).
Recall the case of single-variable calculus: the derivative gives the best linear approximation to a curve.
f(x) = f(x0) + f ′(x0)(x − x0) + O((x − x0)2). To define differentiability, we need to extend the idea of a
linear approximation to higher dimensions.

Definition 13.3 (Differentiability at a point). A map f : U → V is said to be differentiable at y = (y1, y2)
if there exists a linear map Df |y, such that:

∀∥x− y∥ < ε(δ),
∥f(x)− f(y)−Df |y(x− y)∥

∥x− y∥
< δ

This is just Taylor’s theorem but reformulated. Now let us understand what the differential is doing.

f1(x) ≈ f1(y) + (Df |y(x− y))1

f2(x) ≈ f2(y) + (Df |y(x− y))2

Df |y(x− y) has two components, so it lies in R2.
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Example 13.4. Consider the map (x1, x2) 7→ (f1(x1, x2), f2(x1, x2)). Then,

df1 =
∂f1

∂x1
dx1 +

∂f1

x2
dx2

df2 =
∂f2

∂x1
dx1 +

∂f2

∂x2
dx2

We can write this in matrix form as (
df1

df2

)
=

(
∂f1

∂x1
∂f1

∂x2

∂f2

∂x1
∂f2

∂x2

)(
dx1

dx2

)
The matrix here is our linear map Df . Then, the value of the differential at the point y looks like:

Df |y =

(
∂f1

∂x1 |y ∂f1

∂x2 |y
∂f2

∂x1 |y ∂f2

∂x2 |y

)

Taking stock, given open sets of the same dimension U, V ⊂ R2 and a map f : U → V which acts by
(x1, x2) 7→ (f1(x1, x2), f2(x1, x2)), we obtain a family of maps indexed by x0 ∈ U :

Df |x0
: R2 → R2 :

(
h1

h2

)
7→ Df|x0

(
h1

h2

)
Note that we do not need to specify the domain of Df |x0

since it is a linear map. Generalizing, we are now
in a position to state the definition of a diffeomorphism

Definition 13.5 (Diffeomorphism). Let f : U ⊂ Rn → V ⊂ Rn be a homeomorphism. f is a diffeomorphism
if in addition f, f−1 are continuously differentiable.

Definition 13.6. A map f satisfying the above conditions is also called a C1−diffeomorphism.

Definition 13.7. A diffeomorphism f is a C∞−diffeomorphism if both f, f−1 are smooth.

Example 13.8. Consider the map f : x 7→ x3. Then we can compute

Df |0 · y = 3x2 · y
=⇒ Df |0 = 0

f−1(z) = z1/3

Df−1 · k =
1

3
z−2/3 · k

=⇒ Df−1|0 =∞

So what prevented this map from being a diffeomorphism? Here we see 2 extremes: Df |0 = 0 and Df−1|0 =
∞. It turns out that their inverse relation is not a coincidence. Before we proceed to the statement and
proof, it would be useful to state the chain rule for the differential:

Definition 13.9. Let f : U → V and g :W → U . Then the chain rule is

D(f ◦ g)(x) = Df(g(x)) ·Dg(x)

Now, we are ready:

Proposition 13.10. Let f : U → V be a diffeomorphism. Then the following equality of Jacobians hold

Df−1|f(x) = (Df |x)−1
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Proof. Let x ∈ U be an arbitrary point. Then we have f−1 ◦ f(x) = x by definition. Taking the differential
on both sides, we have

D(f−1 ◦ f)(x) = id

where the right hand side is the differential of the identity map x 7→ x. We simplify the left hand side using
the chain rule to get

D(f−1 ◦ f)(x) = Df−1(f(x)) ·Df(x) = id =⇒ Df−1(f(x)) = (Df(x))−1

(Notation: Here we use Df(x) to denote Df |x to emphasize the fact that Df is a function that returns the
Jacobian at a point, and also to make the chain rule clearer.

To summarize, for f to be a diffeomorphism,

• f is a homeomorphism

• Df is continuous and invertible (i.e. det(Df) ̸= 0).

Finally, let us set up some concepts for next time:

Definition 13.11 (General linear group). The space GLn(R) is the set of n × n invertible matrices with
real coefficients.

So another way to state our definition is:

Definition 13.12 (Diffeomorphism). A map f : U ⊂ Rn → V ⊂ Rn is a diffeomorphism if Df |x ∈ GLn(R)
for all x ∈ U .

14 (10/18) : More on Diffeo/Homeos, Topological Spaces

14.1 Diffeomorphisms

Recall the definition from last week: of a diffeomorphism. From now on, when we say that something is a
diffeomorphism, we also impose the requirement that it is smooth.

Example 14.1. Here are some diffeomorphisms from R to R:

1. The identity map

f : R −→ R
x 7−→ x

is a diffeomorphism because Df = 1.

2. Reparamaterizations that have non-vanishing derivatives.

f : I ⊂ R −→ J ⊂ R
x 7−→ f(x)

Df ̸= 0

So another way we can think of reparameterizations of curves is that they are diffeomorphisms of open
intervals.
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Examples of diffeomorphisms from R2 → R2

1. Flows along smooth vector fields. (eg. the HW1 problem)

2. Shrinking or expanding an open set.

Example 14.2. Transforming an open square with corners (±1,±1) to all of R2 using the map

(x, y) 7−→ (
x

1− x2
,

y

1− y2
)

is a diffeomorphism

Proof sketch. The function is continuous because it is a composition of continuous functions. We can ignore
the blowup at (±1,±1) because those points are not in the open square.

Now we want to check that Df |x,y ̸= 0 for all points in the open square. We can compute:

Df =

∣∣∣∣∣
(

1+x2

(1−x2)2 0

0 1+y2

(1−y2)2

)∣∣∣∣∣ = 1 + x2

(1− x2)2
1 + y2

(1− y2)2

This is well-defined on the open square and does not vanish for any real (x, y).

14.2 Homeomorphisms and Diffeomorphisms: The Bigger Picture

Now is a good time to ask: why did we bother defining these concepts of homeomorphisms and diffeomor-
phisms?

Here is a practical example: transferring solution vector fields

Example 14.3. Consider an open square with a vector field, and suppose that the vector field is the solution
of some differential equation (for example). Now, if we asked to solve the same system of equations for an
arbitrary open subset on the plane, it is much harder. But if we have a diffeomorphism f from the open
square to the open subset, we have a much easier route. Since Df is a linear map, we can apply Df to the
vector field to get the solution on the open set!

On a more abstract level, homeomorphisms and diffeomorphisms “preserves nice properties”. Because they
have the same nice properties, we can just choose to work with one of them and use the homeo/diffeo to
transport to the other set. This identifies open sets “in some sense”. Homeomorphisms identify sets that
have the same topology.

Remark. If we have two diffeomorphisms f1, f2, then f1 ◦f2 is a diffeomorphism! This follows from the chain
rule: D(f1 ◦ f2) = Df1 ·Df2, so if neither of those are 0, then the product is also non-zero.

14.3 Topology

Consider two open sets: U a simply connected set and V an annulus-shaped set. Suppose also we are given
a number of open sets {Ui}ni=1 and {Vi}ni=1 and you are asked to “patch” the corresponding set with these
smaller open sets. Can you always perform this patching? Yes. Will you perform the same way of patching
for the set U and the set V ? No, because if you did you would achieve exactly the same shape.

Definition 14.4 (Topological space). A topological space is a set S and a collection of subsets of S called
O, or the open subsets, such that the following holds

1. ∅ ∈ O, S ∈ O
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2. For U1, U2 ∈ O, then U1 ∩ U2 ∈ O (Finite intersections of open sets are open)

3. For any collection T ⊂ O, we have
⋃
Ui∈T Ui ∈ O (Arbitrary unions of open sets are open)

Remark. The choice of O ⊂ 2S determines the topology imposed on S.

Example 14.5. R with the “usual topology”, where O = {all open intervals}. Then one can check that the
3 properties of a topological space are obeyed.

Example 14.6. R2 with the “usual topology”

Example 14.7. The unit sphere S2 = {(x, y, z) ∈ R3 : ∥(x, y, z)∥ = 1}. We can give S2 a topology by
taking the open subsets of S2 to be the intersection of the open subsets of R3 with S2.

15 (10/20) : Manifolds

15.1 Wrapping up topological spaces

Recall the definition of a topology from the previous lecture. Let’s revisit some simple examples to illustrate
some properties

Example 15.1 (Infinite intersections need not be open). Let R be the real line with open sets O given by
all open intervals. Then as one can check, arbitrary unions of open sets are open. So are finite intersections.
However, are infinite intersections always open? No. Consider the family of open intervals (− 1

n ,
1
n ) for

n ∈ Z+. Then the infinite intersection⋂
n∈Z+

(− 1

n
,
1

n
) = (−1, 1) ∩ (−1

2
,
1

2
) ∩ · · · = {0}

which is not open.

Example 15.2 (Subspace topology). Consider the unit sphere S2 = {(x, y, z) ∈ R3 | x2+y2+z2 = 1} ⊂ R3.
How can one give S2 a topology? One way is to define the open sets OS2 in reference to the open sets OR3

of R3. For every x0 ∈ S2, we construct the open balls Bε(x0) ⊂ R3. Now we can let the open sets on S2 be
S2 ∩Bε(x0).

Remark. On a tangential note, the sphere has no boundary. The reason for this is that it itself is the
boundary of another shape (the unit ball). If we let ∂ be the boundary operator, then it is a very important
result that ∂ ◦ ∂ = 0 (i.e. the boundary of a boundary is empty). Take Algebraic Topology to learn more
about this! There is also an analog with differential forms (the differential of a differential is 0).

Remark. The intersection of a closed-without-boundary set U with an open set V is always open when
restricted to U .

15.2 Manifolds: Motivation

Let’s begin with a concrete scenario. Suppose we had a unit sphere in S2 ⊂ R3 and we had a particle on
the sphere. Suppose also that the particle is restricted to move on the sphere. If you were asked to solve for
the motion on the sphere, what would you do? One natural option would be to use spherical coordinates,
(θ, φ) ∈ (0, π)× (0, 2π).

How many parameters are needed to described a curve? We need just 1, the “time” parameter. What about
the unit sphere? We need two parameters, just as in spherical coordinates.
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How does this work? Really, we identified the unit sphere with the open rectangle (0, π) × (0, 2π) ⊂ R2.
When we work with spherical coordinates, we are really transporting the problem back into R2 and then
applying our mathematical machinery there (e.g. doing calculus).

Another intuition for why we say S2 is a 2-dimensional manifold: Locally, the land looks flat, or homeo-
morphic to an open disk in R2! Without advanced technology and just looking around us, we would have
thought that the Earth was flat! So another approach for doing calculus on the sphere is to chop it up into
little open sets, which each look like R2. Then, we do the calculations of each of these little open sets and
glue them back together to reassemble the sphere.

We are now ready to introduce the formal definition of a topological and differential manifolds.

Definition 15.3 (Topological Manifold). A topological n-manifold is a topological space that is locally
homeomorphic to open subsets of Rn.
Remark. The dimension of a manifold can be thought of as the number of degrees of freedom a particle
moving on the manifold has.

In the same vein:

Definition 15.4 (Differential Manifold). A differential n-manifold is a topological space that is locally
diffeomorphic to open subsets of Rn.

Let M be an n-dimensional manifold. Let x ∈ M and U ∋ x be an open subset. Then we can construct a
homeomorphism φ : U −→ V ⊂ Rn where V is an open set (Figure 8). We repeat this for more open subsets
on M until the whole of M is covered by open subsets. We also keep track of all the φ’s that map each of
these open subsets homeomorphically to open subsets of Rn.

Figure 8: A chart on M

Question 15.5. For two U1, U2 ⊂M , what happens in the intersection (Figure 9)? Recall that we are using
these maps (charts) as convenience tools: so that we can do calculus on it. However, we must choose these
charts φ1, φ2 such that their images are consistent in the following informal sense: Let x, y ∈ U1 ∩U2. Then
it cannot be the case that φ1(x) and φ1(y) are nearby whereas φ2(x) and φ2(y) are far apart.

Formally, we require that whenever there are two charts φ1 : U1 → V1 and φ2 : U2 → V2 such that the
intersection of their domains U1 ∩U2 is non-empty, then the image of this intersection under each of φ1 and
φ2 are homeo/diffeomorphic to each other. I.e. there exists a homeo/diffeomorphism:

f : φ1(U1 ∩ U2)
∼−→ φ2(U1 ∩ U2)

Such a map is given by φ2 ◦ φ−1
1 .

16 (10/25) : Charts and Atlases

16.1 Charts, Atlases

Question 16.1. Suppose you are given a globe and are asked to identify different countries. What would
you do?
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Figure 9: The intersection should map to homeo/diffeomorphic sets

Answer. We would identify the different countries with different flat pieces and try to stick them onto the
globe. Intuitively, we are trying to cover the globe with these little charts.

Definition 16.2 (Charts). A chart of a topological (differential) manifold is an ordered pair (U,φ) such
that φ : U −→ imφ ⊂ Rn is a homeomorphism (diffeomorphism).

Definition 16.3 (Atlas). The family of charts {(Ui, φi)}i∈Z+ is an atlas of a T/D manifold M if the sets

cover M . In other words,
⋃
i∈Z+

Ui ⊃M .

Question 16.4. Can the atlas be uncountable?

Answer. Technically yes depending on topology you choose, but defining an atlas with uncountably many
sets poses some problems down the road when defining things like integration. Ideally we want as simple an
atlas as possible.

16.2 Atlas of S2, Stereographic Projection

Let’s see some examples.

Example 16.5 (Atlas of S2). Recall that we define the unit sphere as S2 = {(x, y, z) ∈ R3 | x2+y2+z2 = 1}.
Is S2 homeomorphic to R2? No. So 1 chart is insufficient to form an atlas of S2. But it turns out that we
can construct an atlas with 2 charts. A well-known construction involves using stereographic projections.

Figure 10 shows that the sphere without the north pole is homeomorphic to R2. If we let U1 = S2−{(0, 0, 1)}
and φ1 be this stereographic projection, we can let (U1, φ1) be a chart of S2. Similarly, we can let U2 =
S2 − {0, 0,−1} and φ2 be its associated stereographic projection, and construct another chart (U2, φ2).
For the two charts to be consistent, we need to ensure that φ1 and φ2 map the intersection U1 ∩ U2 to
homeomorphic sets!

We can do so by constructing the projections explicitly. We use the notation N = (0, 0, 1) and S = (0, 0,−1).
Consider a point (x, y, z) ∈ S2 and let (p, q, 0) be its stereographic projection from N onto the plane z = 0.
By construction, the points N , (x, y, z) and (p, q, 0) are all collinear. Therefore,

p− 0

x− 0
=
q − 0

y − 0
=

0− 1

z − 1
=⇒ p =

x

1− z
, q =

y

1− z
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Figure 10: Stereographic projection of the punctured sphere to the whole plane (Red: on the plane, Black:
on the sphere).

This means we can construct a map (and inverse too)

iN : S2 −N −→ R2

(x, y, z) 7−→ (
x

1− z
,

y

1− z
)

We claim that iN is a homeomorphism from S2−N ∼= R2. There are several ways to argue this. One way is
to show that iN is a composition of continuous maps z 7→ 1− z 7→ 1

1−z 7→
x

1−z away from z = 1, and so the
composite is a continuous map (technically you also should compute the inverse and show that inverse in
continuous but that’s easy since these are rational functions with no infinities). By a similar argument, we
can actually show that iN is a diffeomorphism by computing the differential and showing it does not vanish.

In a similar way, we can define the second chart as the stereographic projection from S2 − S → R2.

Question 16.6. Going back to the motivation of using charts (solving differential equations on manifolds),
how does this make life easier?

Answer. Because we defined the charts to be homeomorphisms to patches of Rn such that they agree on
the intersection, the corresponding differential equations (i.e. vector fields) are also transformed accordingly.
We will see that by the way we constructed the atlas, the solutions to the differential equations match up
automatically.

Remark. This result that S2 −N ∼= R2 is somewhat related to the hairy ball theorem.

Lemma 16.7. S2 is a topological (differential) manifold of dimension 2 equipped with two charts: (S2 −
N, iN ) and (S2 − S, iS).

Next lecture: if we have a map f between manifolds, what does the map Df do? It maps vectors to vectors,
but on an arbitrary manifold how do we understand how these vectors look like? We will need to introduce
the concept of tangent spaces

17 (10/27) : Maps between Manifolds, “Bootstrapping”

Last time we defined what charts and atlases are, and gave an explicit construction for S2.

17.1 Maps between Manifolds

We have already been talking about them without referring to them explicitly:
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1. R2 −→ {manifolds}, i.e. charts, are maps between manifolds

2. The stereographic projection S2 −N −→ R2 is a map between manifolds

LetM be an m-manifold and N be an n-manifold, with m,n ≥ 1. Does it make sense to talk about a map f :
M −→ N? If we drop any requirements about the map (i.e. homeo/diffeo, or even injectivity/surjectivity),
of course we can! We just need to send every point in M to points in N .

However, we understand our manifolds using the atlases on them. How do we understand what the map f
is doing?

Idea 1: Since M is an m-manifold, we can describe it in m coordinates. if x = (x1, · · · , xm), then maybe we
can describe f in the following form:

f : (x1, · · · , xm) 7→ (f1(x1, · · · , xm), · · · , fn(x1, · · · , xm))

That is a good idea. However, how do we make sense of the components f i(x1, · · · , xm)? These functions
don’t make sense on their own. We need to define these functions in relation to the charts on M and N .

We want the domain and range of f to be something well understood. In particular it would be nice if these
spaces were Euclidean space. Therefore, in order to make sense of how f acts on a small patch U ⊂ M ,
we send it to Rm via a chart on M , and we also send its image f(U) = V ⊂ N to Rn. We can definitely
understand maps Rm → Rn! In Figure 11, we give a definition to f by defining the maps ψ ◦ f ◦ φ−1 for
every pair of charts.

Figure 11: Defining maps between manifolds in terms of maps between their charts

In other words, we have the following commutative diagram on local objects (at the level of charts)

M N

Rm Rn

f

φ ψ

ψ◦f◦φ−1

Remark. At this point, we still do not have any requirements on f .

Question 17.1. How is this useful since the definition of f is self-referential?

Answer. Say we want to define the function f : S2 → R which tells us the population density at any point
on the globe. How would we do this? We would define f in terms of polar coordinates. But this is exactly
defining how f acts on the charts of S2, since the choice of using polar coordinates (θ, ϕ) is exactly using a
chart φ to bring a hemisphere of S2 to R2, and then defining the function f ◦ φ : R2 → R which tells us the
density as a function of the polar coordinates.
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17.2 Homeo/Diffeomorphisms of Manifolds

Now, suppose we want to impose the nice properties of f .

Question 17.2. What are the conditions for f to be homeomorphic?

Answer. We need n = m, since the map ψ ◦ f ◦φ−1 is a map between open subsets of Rm and open subsets
of Rn. We must have n = m for this to be a homeomorphism.

Of course, there are other conditions.

Question 17.3. When is f diffeomorphic?

Answer. Of course we need all the conditions for f to be homeomorphic. But we also needD(ψ◦f◦φ−1)|φ(x)
to be invertible for all x ∈M .

Recall that if g : U ⊂ Rn → V ⊂ Rn, then the linear map Dg|x is a map Rn → Rn. In particular, the
domain of Dg is the whole of Rn: It maps vectors at x to vectors at g(x).

In the same way, the notion that D(ψ ◦ f ◦ φ−1)φ(x) has to be invertible is well defined. Referring to
Figure 11 again, we see that ψ ◦ f ◦ φ−1 is a map Rn → Rn (recalling that we require n = m. Therefore,
D(ψ ◦ f ◦ φ−1)|φ(x) is a linear map between vectors at φ(x) and vectors at ψ ◦ f(x).

Question 17.4. Now we have a way of mapping vectors from charts to charts. Is there a way to “lift” these
vectors and speak of vectors on the manifold themselves?

Answer. To do so, we first need a well-defined procedure of constructing a vector space at each point on
M . We do a similar bootstrapping as before. We construct “fictitious” vectors in M , and send them down
to Rn via the differential of the chart maps. Here, we have the advantage that Rn has all the nice vector
space properties. If we show that the “fictitious” vectors behave nicely when mapped down to Rn, then we
can infer indirectly that these “fictitious” vectors obey a vector space structure.

17.3 Road map for next few lectures

So, the key question we have to answer is the following:

Question 17.5. How do we define a vector at a base point x ∈M .

Answer. We can try doing so in terms of Frenet curves. If we have a Frenet curve passing through x, then
the moving frame of this curve at x defines a vector space.

Consider a curve c : I ⊂ R→M . How do we make sense of this curve? The same way we understand maps
between manifolds, by looking at the charts φ of M . The maps t 7→ φ ◦ c(t) are then curves on Rn which we
can make sense of.

In Rn, the tangent of the curve c is given by d
dt (φ ◦ c). In order to build up a vector space, we can think

about considering the tangents of all the different curves passing through x. This gives us a number of
problems. The space of possible curves is very large, and we could end up with a lot of “redundant” curves
that define the same vector. We will see that we can define an equivalence relation to get rid of these extra
curves, which will give us a well-defined procedure of building the tangent space. The basis vectors will end

up being of the form
∂

∂xj
.
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18 (11/1) : Tangent Spaces, Equivalence Relation on Integral
Curves

18.1 Recap

Recall that last week, we discussed what it means to define a map g between manifolds, and we did so in
terms of the atlases of these manifolds. We also began discussing how to define the differential dg of a map
between manifolds. Such a map should send vectors on a manifold to vectors on the other manifold (just
as it does in the case of maps from Rn to Rn). In order to do so, we need a well-defined way of defining a
vector space at each point on the manifolds.

18.2 Tangent Spaces

Before going into definitions, let’s motivate things with an example.

Example 18.1 (Tangents on a Sphere). Recall our favorite space S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.
Suppose we draw the meridian and equator of the sphere. We can easily construct a vector field along the
meridian that lies on the sphere.

Let us consider the vector field at the North pole N . Since the vector lies on the sphere, it in particular lies
on the tangent plane to the sphere at N . And we can let the vector field at N be one of the basis vectors of
this plane!

How do we obtain the rest of the basis? We can consider more curves that pass through N , and repeat this
construction to obtain a full basis of the tangent space. (Figure 12)

Figure 12: Left: Vector field along the meridian. Right: Constructing the tangent plane at the north pole
by taking tangents of curves.

Question 18.2. What is the problem with this approach?

Answer.

1. The vectors we get by considering tangents can be linearly dependent. This happens because of there
are many curves on a sphere that share the same tangent vector at a point.

2. The directional derivatives can be undefined. (We will see more of this at a later point)
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18.3 Equivalence of Curves by Tangency

Let’s address the first point. We want to come up with a way to get rid of the redundancy that comes
with having multiple curves with the same tangent at N . What we want to do is to define an equivalence
relation such that two curves are considered equivalent if their tangents at N are identical. Let us set up
this equivalence relation formally.

Definition 18.3 (Equivalence of Curves). LetM be an m-manifold, and (U,φ) be a chart ofM . Let P ∈ U
be a point on the manifold, and consider 2 curves (integral, parameterized by arc-length) passing through
P :

c1 : I1 ⊆ R −→M

c2 : I2 ⊆ R −→M

WLOG let c1(0) = c2(0) = P . We define two curves to be tangent to each other at P if they have the same
derivative at t = 0. This works because φ is a diffeomorphism, so tangency is preserved by the chart. In
other words, two curves are equivalent if

d

dt
(φ ◦ c1)(t)

∣∣∣∣
t=0

=
d

dt
(φ ◦ c2)(t)

∣∣∣∣
t=0

(*)

For the above equation to make sense, we also require that the curves are related to each other by orientation-
preserving diffeomorphisms, and that φ itself is orientation-preserving. Otherwise, the derivatives of two
curves tangent to each other are only equal up to sign.

Proposition 18.4. (*) defines an equivalence relation among the curves passing through P . In particular,
this equivalence relation is independent of the chart containing P .

Proof. We first verify the properties of an equivalence relation:

1. Reflexivity (c ∼ c) : Since c is an integral curve, it has a unique tangent at P . Clearly it is tangent to
itself.

2. Symmetry (c1 ∼ c2 ⇐⇒ c2 ∼ c1) : Equality of the derivatives is symmetric.

3. Transitivity (c1 ∼ c2, c2 ∼ c3 =⇒ c1 ∼ c3) : Equality of the derivatives is transitive.

Now, let us show that this equivalence relation is independent of the chart. Formally, if we let (U,φ) and
(V, ψ) be two charts such that P ∈ U, V , then we want to show the following:

d

dt
(ψ ◦ c1)(t)

∣∣∣∣
t=0

=
d

dt
(ψ ◦ c2)(t)

∣∣∣∣
t=0

⇐⇒ d

dt
(φ ◦ c1)(t)

∣∣∣∣
t=0

=
d

dt
(φ ◦ c2)(t)

∣∣∣∣
t=0

Suppose that we know c1 and c2 are tangent on the chart (V, ψ). Since φ is a diffeomorphism, we have
φ−1 ◦ φ = id . Therefore, composing by identity between ψ and c, and afterwards applying the chain rule,
we have

d

dt
(ψ ◦ c1)

∣∣∣∣
t=0

=
d

dt
(ψ ◦ c2)

∣∣∣∣
t=0

=⇒ d

dt
(ψ ◦ φ−1)(φ ◦ c1)

∣∣∣∣
t=0

=
d

dt
(ψ ◦ φ−1)(φ ◦ c2)

∣∣∣∣
t=0

=⇒ d(ψ ◦ φ−1)

∣∣∣∣
φ◦c1(0)

d

dt
(ψ ◦ c1)

∣∣∣∣
t=0

= d(ψ ◦ φ−1)

∣∣∣∣
φ◦c2(0)

d

dt
(ψ ◦ c2)

∣∣∣∣
t=0

(1)
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Since φ ◦ c1(0) = φ ◦ c2(0), we have that

d(ψ ◦ φ−1)

∣∣∣∣
φ◦c1(0)

= d(ψ ◦ φ−1)

∣∣∣∣
φ◦c2(0)

:= J

In particular, since J is the Jacobian of a composite of diffeomorphisms, J satisfies det J ̸= 0, and J−1 exists.
Rewriting (1), we now have

J · d
dt

(ψ ◦ c1)
∣∣∣∣
t=0

= J · d
dt

(ψ ◦ c2)
∣∣∣∣
t=0

Applying J−1 on the left on both sides, we get the desired conclusion.

19 (11/8) : Defining the Tangent Space

19.1 Midterms, Other logistics

Range of scores is [38, 52] out of 55. Will have 2 more psets (4 and 5) before the end of the semester.

19.2 Tangent Vectors

Recall the setup from last week: Suppose we have an n-manifold M . For a chart (U,φ) and a point
P ∈ U , we defined an equivalence relation of curves passing through P in M . WLOG let the curves
c1 : I →M ∼ c2 : J →M pass through P at t = 0. Then the equivalence relation is

c1 ∼ c2 ⇐⇒
d

dt
(φ ◦ c1)(0) =

d

dt
(φ ◦ c2)(0) (*)

Definition 19.1 (Tangent vector). A tangent vector at a point P ∈ M is an equivalence class under the
equivalence given by (*).

If M is n-dimensional, we should be able to find n linearly independent tangent vectors at any point P ∈M .
This is not necessarily true, of course we can choose tangent vectors that are linearly dependent. We are
now going to look at how we can find this independent set. We also saw that the definition of the tangent
vectors is independent of the choice of chart! This is a very important property as it allows us to transform
our local basis.

19.3 Construction of the Tangent Space

Our goal now is to construct a vector space at each P ∈ M . Consider curves c1, c2 which have the same
orientation and are parameterized by arclength. Also assume that they are in different equivalence classes.
Note that c1, c2 are currently abstract objects with no definition. For a curve c, let ξc denote its tangent
vector on M . Given a chart (U,φ) , we can look at the images of c1 and c2 under φ. We can construct a
map θφ that takes a tangent vector and maps it to the tangent to the image of the curve in Rn. Concretely,

θφ : ξc 7→
d

dt
(φ ◦ c)

∣∣∣∣
t=0

We would like to use θφ to define the tangent vectors ξc upstairs. And so we will need to show that this
map is a bijection.
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Proposition 19.2. θφ is a bijection if the equivalence relation (*) is imposed.

Proof. Note that ξc is really the same as dc
dt |t=0.

Injectivity: Consider curves c, c1 such that θφ(ξc) = θφ(ξc1). Then we need to show that ξc = ξc1 . Expanding
definitions, we have

d

dt
(φ ◦ c)

∣∣∣∣
t=0

= θφ(ξc) = θφ(ξc1) =
d

dt
(φ ◦ c1)

∣∣∣∣
t=0

But this is precisely the same expression as the equivalence relation. Therefore the tangents ξc and ξc1 that
the curves define are the same.

Surjectivity: Given a vector downstairs, can we construct a curve upstairs that maps to it under θφ? We

can construct a curve downstairs and lift it up to M via φ−1.

Given a vector v ∈ Rn, let us consider the curve t 7→ tv + φ(0). Lifting it, we have the curve α : t 7→
φ−1(tv + φ(0)). Let’s check that the tangent of this curve is mapped to v under θφ:

θφ(ξα) =
d

dt
(φ ◦ α)

∣∣∣∣
t=0

=
d

dt
(φ ◦ (φ−1(tv + φ(0))))

∣∣∣∣
t=0

= dφ|φ−1◦φ(0) · dφ−1|φ(0) · v
= Iv = v.

Therefore θφ is a bijection between the tangent vectors at P and the unit vectors in Rn.

We will eventually show that θφ is a diffeomorphism. But for now, bijection will suffice. Now we can impose
a vector space structure on the tangent space by simply imposing the vector space relations:

Definition 19.3 (Vector space structure of the tangent space). Let ξ, η be two distinct tangents at P ∈M
and λ ∈ R. Then define

1. ξ + η := θ−1
φ (θφ(ξ) + θφ(η))

2. λξ = θ−1
φ (λθφ(ξ))

Using this, we can construct a basis at each point:

Definition 19.4 (Tangent space at a point). The tangent space at P ∈ M , denoted by TPM , is the set of
tangent vectors defined through (*).

So far we have been working with the tangents to a specific point. But how do we do so in a consistent
manner over the entire manifold? We will see eventually that this will involve the concept of directional
derivatives!

20 (11/10) : Tangent Bundles, Derivations

20.1 More on Tangent Spaces

Recall the new definition of TPM : it is the set of tangent vectors at a point P ∈ M under the equivalence
relation (*) in last class. Let’s look at some examples:
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Example 20.1. Consider the unit circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} and a point P = (z1, z2) on the
circle. What is the tangent space TPS

1?

In this example, we can explicitly write down the tangent space. Since S1 is a 1-manifold, the tangent space
is 1-dimensional, and so has only 1 basis vector. If we let r⃗ = (z1, z2) and v⃗ be the basis of TPS

1, then the
tangent space is defined by ⟨v⃗, r⃗⟩ = 0.

Remark. We have the general fact that TPM ∼= Rm, where dimM = m. Is this circular? No. Recall that
the dimension of the manifold is defined in terms of the charts: If the charts on M give diffeomorphisms to
Rm, then we define dimM = m. Then it makes sense for dimTPM = m since the tangents are just linear
approximations on the manifold.

20.2 Tangent Bundles

Let’s begin with a question:

Question 20.2. Where do the vectors lie on a manifold?

Answer. By construction, they lie in the tangent spaces of the manifold.

Notice that the tooling we have set up so far only allows us to compare vectors that lie in the same tangent
space. For example, if we have two points P,Q in the same chart (U,φ), the vector difference φ(P )−φ(Q) in
Rm does not translate directly back to a vector difference in the manifold, because we currently don’t have
the machinery to compare the tangent spaces TPM and TQM !. It turns out that we will have to generalize
the notion of parallel transport of vectors, and this will lead to the concept of connections.

So we want to ultimately be able to treat the vectors in all the different tangent spaces as belonging to the
same overall “space”. Well, what happens if we take the union of all the tangent spaces?

Definition 20.3 (Tangent Bundle). The tangent bundle TM is defined by the following:

TM :=
⊔
P∈M

(P, TPM)

The union is disjoint: each pair is disjoint different because the base point (the first coordinate) is different.

Example 20.4 (Tangent Bundle of S1). What does TS1 look like? We have the disjoint union of (P,R) for
each point P on the circle. If we keep the picture flat on the plane, we get a mess. But if we lift the picture
into 3-dimensional space, we can rotate each tangent space by a quarter turn so that they are normal to the
plane of the circle. In this way, it is clear that TS1 is isomorphic to the cylinder S1 × R. (Figure 13)

Question 20.5. Seeing the tangent bundle as a cylinder seems weird. If you travel along the cylinder, it
can lead to arbitrary and discontinuous changes in the actual tangent spaces.

Answer. That is indeed a problem. We will later define the concept of a section which will turn out to be
a way of selecting a vector field from the tangent bundle.
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Figure 13: Thinking about TS1

20.3 Constructing a basis, Derivations

Let’s consider a euclidean space U ⊂ R2 and a function f : R2 → R. How would you compute the directional
derivative in the direction of a vector v at a point (x, y) ∈ U? From multivariate calculus this is simply

∂v⃗f = ∇f · v = v1∂xf + v2∂yf

=

2∑
i=1

vi
∂f

∂xi
(writing x1 = x, x2 = y)

=

(
2∑
i=1

vi
∂

∂xi

)
f (since differentials act linearly)

Here is where it gets interesting. There is a bijective identification between the sets

{vectors in R2} ←→ {directional derivatives on R2}

ie, each v ∈ R2 can be uniquely associated with a directional derivative

2∑
i=1

vi
∂

∂xi
.

Definition 20.6. C∞(M) is the space of smooth functions on M , ie the set of f :M −→ R.

Definition 20.7 (Vectors as derivations). A tangent vector v ∈ TPM is a linear map

v : C∞(M) R

f v(f)

and satisfies the product rule

vp(fg) = vp(f)g + fvp(g)

vp(cf) = cvp(f), c ∈ R

vp is called a derivation.

We can easily check that the directional derivatives satisfy the above definition. We say that the usual
directional derivative is one such derivation of a vector.
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Remark. Notice that we use v both to describe a vector in the usual sense, as well as to describe the
directional derivative associated with it. They are strictly speaking different objects, but they can be
identified isomorphically.

Notice that vp(1) = 0 (use the product rule with f = g = 1), and by extension vp(c) = 0 (use scalar
multiplication).

20.4 Teaser for next week

Notice how we ordinarily express a vector w in terms of its basis as
∑
wie

i. Looking at the identification

v ∼=
∑

vi
∂

∂xi
, we might want to consider the partial operators as the basis of the tangent space!

Here is a theorem we will prove:

Theorem 20.8. Let P ∈M . Then, the set

{
∂

∂xi

∣∣∣∣
P

}m
i=1

forms a basis of TPM . Furthermore,

v|P =

m∑
i=1

vi(P )
∂

∂xi

∣∣∣∣
P

21 (11/15): Basis of the Tangent Space, Dual Space

Confusion from last time: We defined the tangent bundle as

TM =
⋃
P∈M

(P, TPM)

where the union is disjoint. In the case of S1, this gives us that the tangent bundle TS1 is homeomorphic to
S1×R, a cylinder. Some people were confused because this the tangent lines of the circle intersect each other,
and these intersections are not reflected in the cylindrical structure. However, note that in our treatment,
the intersections between these tangent lines is meaningless: it doesn’t make sense to compare two vectors
from different tangent spaces directly.

21.1 Differentials as the Basis of the Tangent Space

We begin by restating the theorem at the end of last lecture:

Theorem 21.1. Let M be a m-manifold and P ∈ M . Let {xi} = (x1, · · · , xm) be a local chart (aka

coordinates). Then, a basis of TPM (which is isomorphic to Rm) can be given by the set { ∂

∂xi
|P } and any

vector v ∈ TPM can be written as

v|P =
∑

vi(P )
∂

∂xi

∣∣∣∣
P

Proof. Let f : M −→ R be a smooth function, ie. f ∈ C∞(M). Take P = (0, 0, · · · , 0) (under the chart),
and let U ∋ P be an open set.

Given a smooth function, we can always take its Taylor series. However, there are functions that have 0
radius of convergence. But we can always write, given x ∈ U :

f(x) = f(0) +

∫ 1

0

d

dt
f(tx)dt
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Check that the right hand side agrees by applying the fundamental theorem of calculus. Now, using the
chain rule, we have

d

dt
f(tx) =

d

dt
(tx1, tx2, · · · , txm)

=
d

dt
(y1, y2, · · · , ym) (letting yj = txj)

=
∂f

∂y1
dy1

dt
+ · · ·+ ∂f

∂ym
dym

dt

=

m∑
i=1

∂if(tx) · xi (Using ∂i =
∂
∂yi )

Plugging it back, we have

f(x) = f(0) +

∫ 1

0

(
m∑
i=1

xi∂if(tx)

)
dt

= f(0) +

∫ 1

0

(
m∑
i=1

xifi

)
dt (Letting fj = ∂jf(tx))

Now, recall we saw last lecture that vP (1) = 0 and vP (c) = 0. We can thus act on the last equation by vP ,
making use of the product rule to obtain:

vP f = vP f(0) +

∫ 1

0

m∑
i=1

(
vP (x

i)fi(tx)
∣∣
P
+ xi

∣∣
P
vP fi(tx)

)
dt

(Note: this is differentiating under the integral sign. But all the integrals converge, so this is fine).

The first term is 0 because we are applying vP to a constant. Also, the xi|P = 0 since we set P to be the
origin under the chart (xi gives the i-th chart coordinate of P ). This simplifies the expression to

vP f =

∫ 1

0

(
m∑
i=1

vP (x
i)∂if

∣∣
P

)
dt =

m∑
i=1

vP (x
i)∂if

∣∣
P

(Integrand has no t dependence)

=

(
m∑
i=1

vP (x
i)
∂

∂xi

)∣∣∣∣
p

f

The equality holds for arbitrary f ∈ C∞(M). So, we have the vector equality

vP =

m∑
i=1

vP (x
i)
∂

∂xi

∣∣∣∣
p

Now, recall that vP is a vector in the tangent space. This therefore shows that { ∂

∂xi
|P } is a spanning set

of the tangent space. To show that it is a basis, it remains to show that it is linearly independent. In other
words, we want the following:

m∑
i=1

ai
∂

∂xi
= 0 =⇒ ai = 0 ∀i

We can see what happens if we apply both sides to the coordinate functions:(
m∑
i=1

ai
∂

∂xi

)
xj =

m∑
i=1

ai
∂xj

∂xi
= aj = 0

Letting j vary from 1 to m, this forces all the coefficients to be 0, as desired.
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Remark. vi(P ) = vP (x
i) is the i-th component of the vector v at P .

Question 21.2. But this only works at a point P right?

Answer. Yes. To extend it to the whole manifold, we will have to create a vector field that gives the basis
at any point.

Question 21.3. So does this work on Rn?

Answer. Yes. For example, ∂
∂x1 =

(
1 0 · · · 0

)
.

21.2 Dual Space

Now that we have set up a vector space and its basis, we turn our attention to its dual space. This for
example, will help us set up the inner product.

Here is a refresher:

Definition 21.4 (Dual Space). Let V be an R-vector space. Then the dual space V ∗ is defined as the set
of linear operators V → R.

V ∗ = {w : w(v) ∈ R, v ∈ V }

In other words, the dual space is the space of linear functionals on V .

Example 21.5. On R3, the dual is (R3)∗, the set of vectors that send vectors R3 → R. Canonically, if
w ∈ (R3)∗, then w(1, 1, 1) = 1 · w1 + 1 · w2 + 1 · w3, for example.

Next class, we will define the dual space T ∗
PM of the tangent space TPM , otherwise known as the cotangent

space. We will also see that a basis of T ∗
PM is given by {dxi|P }.

22 Co-tangent spaces, co-vectors, Tensors,......

Let us denote the tangent space of M at p by TpM . We proved that TpM is a vector space of dimension m
and moreover using the notion of ‘derivation’ we constructed a basis of TpM that is given by { ∂

∂xi }mi=1 in a
local chart {xi}mi=1. Once we have constructed the tangent space, we can talk about its dual vector space.
First, we define the notion of a linear functional.

Definition 22.1 (Linear Functional). A linear functional on TpM is a linear map φ : TpM → R, v 7→ φ(v).

Let us denote the space of linear functional on Tp(M) as L(TpM,R). Cotangent space T ∗
pM , the dual space

of TpM is defined as follows.

Definition 22.2 (Cotangent Space). The co-tangent space T ∗
pM is L(TpM,R).

In finite dimensions, we know that the dimension of a vector space (tangent space) is same as the that of
its dual space (co-tangent space). More precisely, T ∗

pM and TpM are isomorphic as vector spaces. But
there is no canonical way to construct this isomorphism. We will see soon enough that we can construct an
isomorphism once we define a metric on M . The next thing we want to do is to define a basis on TpM .

Theorem 22.3. Let { ∂
∂xi }mi=1 be a basis of TpM . For each i = 1, 2, 3, · · · ·m define the linear functionals

on the basis { ∂
∂xi }mi=1 as follows

dxj(
∂

∂xi
) = δji , δ

j
i = 1 if i = j, δji = 0, if i ̸= j, (14)

then {dxj}mj=1 is a basis of T ∗
pM .
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Proof. The first thing we want to show that {dxj}mj=1 are linearly independent. To prove this, we have to
show that if the following linear combination vanishes i.e.,

m∑
j=1

αjdx
j = 0, (15)

then αj = 0∀j ∈ 1, ....m. How do we do this? We need to somehow use the condition 14 i.e., act
∑m
j=1 αjdx

j

on ∂
∂xi i.e.,

m∑
j=1

αjdx
j(

∂

∂xi
) = 0(

∂

∂xi
) (16)

=⇒
m∑
j=1

αjδ
j
i = 0 =⇒ αi = 0,

where we have used the linearity of the maps dxj : T ∗
pM → R. Therefore we have a proof that {dxj}mj=1 are

linearly independent. Now we prove that {dxj}mj=1 spans T ∗
pM . Let β ∈ T ∗

pM and for each j, let βj denotes

β( ∂
∂xj ). We claim that the following holds

β =

m∑
j=1

βjdx
j . (17)

What this means is that both sides should produce the same result when acting on any arbitrary vector
W ∈ TpM . We can check this on a basis since by appropriate linear combinations, we can get any vector.
Therefore if we act both sides by ∂

∂xi , we get

β(
∂

∂xi
) = βi (18)

on the left-hand side. On the right-hand side, we get by linearity

m∑
j=1

βjdx
j(

∂

∂xi
) =

∑
j

βjδ
j
i = βi. (19)

Therefore, 17 agrees on the basis. Therefore it agrees on any vector belonging to TpM . Therefore we are
done.

Remark. An element of T ∗
pM is called a co-vector.

Remark. Any vector V ∈ TpM can be written as V =
∑m
i=1 V

i(x) ∂
∂xi and any co-vector α in T ∗

pM can be

written as α =
∑m
j=1 αj(x)dx

j . This is simple linear algebra. V is are the components of the vector V along

the vectors ∂
∂xi . Similarly, αjs are the components of α along the co-vectors dxj .

Remark. (T ∗
pM)∗ ≃ TpM and canonically the basis of TpM are { ∂

∂xi }mi=1. Therefore
∂
∂xi (dx

j) = δji .

Example 22.4 (vectors and co-vectors on R2). Let us consider the manifold R2 equipped with a standard
coordinate chart (x, y). In this chart, we have the two usual basis vectors ∂

∂x and ∂
∂y of the tangent space

Tx,yR2. The basis of co-tangent space T ∗
(x,y)R

2 is given by dx and dy. Consider the vector V = 2x ∂
∂x + ∂

∂y

and a co-vector α = 2dx+ ydy. We can explicitly compute V (α) and α(V )

V (α) = (2x
∂

∂x
+

∂

∂y
)(2dx+ dy) = 4x+ 1 (20)

α(V ) = (2dx+ dy)(2x
∂

∂x
+

∂

∂y
) = 4x+ 1 (21)

In particular, α(V ) = V (α).
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Once we have defined the tangent space TpM and its dual space the co-tangent space T ∗
pM , we can start

constructing new spaces by taking the Cartesian product of these spaces. Define the following Cartesian
product of of r copies of the tangent space TpM i.e.,

TpM × TpM × TpM × · · · · ×TpM︸ ︷︷ ︸
r copies

(22)

:= {(V1, V2, V3, · · ·, Vr)|V1 ∈ TpM,V2 ∈ TpM,V3 ∈ TpM, · · ··, Vr ∈ TpM}.

Similarly define the Cartesian product of s copies of T ∗
pM

T ∗
pM × T ∗

pM × T ∗
pM × · · · · ×T ∗

pM︸ ︷︷ ︸
s copies

(23)

:= {(α1, α2, α3, · · ·, αs)|α1 ∈ T ∗
pM,α2 ∈ T ∗

pM,α3 ∈ T ∗
pM, · · ··, αr ∈ T ∗

pM}.

Now construct the following map

Q : TpM × TpM × TpM × · · · · ×TpM︸ ︷︷ ︸
r copies

×T ∗
pM × T ∗

pM × T ∗
pM × · · · · ×T ∗

pM︸ ︷︷ ︸
s copies

→ R (24)

(V1, ··, Vr, α1, ··, αs) 7→ Q(V1, ··, Vr, α1, ··, αs) (25)

that verifies the multi-linearity property i.e., linearity property in each slot. More explicitly

Q(V1, V2, · · ··, aVi + bV̂i, · · · · Vr, α1, ··, αs) (26)

= aQ(V1, ··, Vi, · · Vr, α1, ··, αs) + bQ(V1, ··, V̂i, ··, Vr, α1, ··, αs)

true for any slot of Q (both V and α slots). Q is called a multilinear functional on
TpM × TpM × TpM × · · · · ×TpM︸ ︷︷ ︸

r copies

×T ∗
pM × T ∗

pM × T ∗
pM × · · · · ×T ∗

pM︸ ︷︷ ︸
s copies

. If you restrict to r = 1 and s = 0,

you simply recover the co-vectors and if you restrict to r = 0 and s = 1, then you recover vectors. This leads
to the definition of tensors on a manifold.

Definition 22.5 (Tensors). The multilinear functional Q is called a tensor of type
(
s
r

)
. We denote the space

of tensors of type
(
s
r

)
by T sr .

Remark. In particular,
(
0
1

)
tensors are co-vectors and

(
1
0

)
tensors are vectors.

Intuition: Think of a blender that takes in two types of fruits and gives you juice. Think of one type of
fruits (let’s say type A) being elements of TpM (i.e., vectors) and the other type of fruits (let’s say type B)
being elements of T ∗

pM (i.e., co-vectors). Now you can think of a tensor of type
(
s
r

)
as a blender that takes

r many fruits of type A (vectors) and s many fruits of type B (co-vectors) and produces Juice (real number;
juice is real enough though, ain’t it?). Now you can think of multi-linearity as follows: if I double the size of
any fruit I would get twice the juice (scalar multiplication) and if I add more fruits, I would get extra juice
(addition) i.e., Q(., ., ., ., aV1 + V2, ......) = aQ(., ., ., ., V1, ., .....) + Q(...., V2, .....). Think of this analogy and
you’ll never forget tensors.

Now we ask the following question.

Question 22.6. How do we construct a basis of this space T sr ?

In order to construct a basis of T sr , we need to define a notion of tensor product.

Definition 22.7. The tensor product is the linear map

⊗ : T s1r1 × T
s2
r2 → T

s1+s2
r1+r2 (27)
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defined as follows

(A,B) 7→ A ⊗ B
(A⊗ B)(V1, V2, · · ··, Vr1+r2 , α1, α2, · · ··, αs1+s2)

:= A(V1, V2, · · ··, Vr1 , α1, α2, · · ·αs1) • B((Vr1+1, Vr1+2, · · ··, Vr1r2 , αs1+1, αs1+2, · · ·αs1+s2),

where • is simply the R−multiplication.

Now we can build our way up using the definition of the tensor product. Suppose I want to study the space
T 0
2 i.e., tensors of the type

(
0
2

)
. How exactly do we do that? We can use the definition of the tensor product.

Notice that the tensor product of two tensors of type
(
0
1

)
gives a tensor of type

(
0
2

)
according to the definition

22.7 of the tensor product. Therefore if I have a basis {dxi}mi=1 for T 0
1 = T ∗

pM , then, we can take two copies

of {dxi}mi=1 one for each T 0
1 and tensor product them to define a basis for T 0

2 . Let us formalize this in the
following theorem

Theorem 22.8. Let us denote the space of tensors of the type
(
s
r

)
by T sr . Then {dxi1 ⊗ · · · · dxir ⊗ ∂

∂xj1
⊗

· · · · ∂
∂xjs }i1,....ir,j1,...js=1,....m is a basis of the space T sr .

Proof. We sketch out the proof. This is similar to the proof of the basis for T ∗
pM and TpM . Firstly note

that these constitute a linearly independent set. To show this we usual the usual definition i.e.,∑
i1,...ir,j1,....js=1,....,m

αi1....ir
j1.....jsdxi1 ⊗ .......⊗ dxir ⊗ ∂

∂xj1
⊗ ......⊗ ∂

∂xjs
= 0 (28)

implies αi1....ir
j1.....js = 0 ∀i1, ...ir, j1, ......., js = 1, .....m. Here the right-hand side 0 is the 0 tensor. The

trick is the same. We act both sides on ∂
∂xk1

⊗ ........⊗ ∂
∂xkr

⊗ dxl1 ⊗ ......⊗ dxls to yield

αk1....kr
l1.....ls = 0. (29)

The span part is exactly the same as done in the proof of the theorem 22.3. Please do this and check.

Remark. Now I can even compute the dimension of the space T sr . for this, we need to find out how
many basis are there. Or even in simpler terms, how many elements are there in the set {dxi1 ⊗ · · · ·
dxir ⊗ ∂

∂xj1
⊗ · · · · ∂

∂xjs }i1,....ir,j1,...js=1,....m? Notice that i1 can any number between 1 and m, i2 ca be
any number between 1 and m and so on. Therefore, total number of elements of this set is essentially
m×m×m....×m︸ ︷︷ ︸

r time

×m×m×m....×m︸ ︷︷ ︸
s time

= mr+s.

Now what is the intuition and motivation behind constructing the tensors? Why go through all the troubles
of defining a tensor product and all that? In other words, can we have some physical objects described by a
tensor? Of course, most trivially, vectors are of type

(
0
1

)
and we know what they mean. What about tensors

of type
(
0
2

)
?

Look at the diagram. I have a cube C which is a zoomed-out version of a sufficiently small cube. Now I
want to take the cube put it under water. On the cube under water the water pressure will be acting from
all directions. Since the cube is chosen to be sufficiently small, I can think of the pressure/stress/force per
unit area to be roughly constant over the entire cube. Now if I ask you what is the force per unit area on
the face A in the direction of y axis? Firstly, at each point on the cube, we have the tangent space R3 which
is spanned by three vectors { ∂∂x ,

∂
∂y ,

∂
∂z}. Now the face A is identified by its normal which is ∂

∂x . Therefore,
to to answer the question “what is the force per unit area on the face A in the direction of y axis?”, I need
input as two vectors ∂

∂x ,
∂
∂y . Our answer should be the amount of force per unit area which is areal number.
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Figure 14: The cube C in Rn. at each point the tangent space is again R3 and the basis is the standard one
{ ∂∂x ,

∂
∂y ,

∂
∂z}.

Isn’t the answer to this question is equivalent to finding a map that takes in two vector as input and spits
out a real number or more precisely

σ : TpR3 × TpR3 → R (30)

(
∂

∂x
,
∂

∂y
) 7→ σ(

∂

∂x
,
∂

∂y
) = force per unit area on the face A at p. (31)

In addition, if I impose the linearity etc. then isn’t σ a tensor of type
(
0
2

)
i.e., takes two vectors and map

them to real numbers? Of course to find this object one needs to understand the dynamics or the equations
of motion etc. But, σ gives us a way to store the information about the force that is distributed over the
whole cube. By the very definition of tensor, then we have σ ∈ T 0

2 and we can write it as follows

σ :=

3∑
i,j=1

σijdx
i ⊗ dxj , x1 = x, x2 = y, x3 = z (32)

and σij = σ( ∂
∂xi ,

∂
∂xj ) i.e., σij describes the force per unit area in the direction of ∂

∂xj on the face whose

normal vector is ∂
∂xi . σ is called the Stress Tensor and a vital object in structural engineering. Can you

think of any other examples of tensor you have seen before?
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23 Metric

Now we want to define a special type of tensor that would be used to define the concept of length on a
manifold. Let us look at the heuristics. First we go back to the concept of length of a vector on R2. Suppose
I give you a vector X = X1e1 +X2e2 and ask to compute its length squared |X|2. What do you do? You
take the inner product of X with itself i.e.,

|X|2 = ⟨X,X⟩ = ⟨X1e1 +X2e2, X
1e1 +X2e2⟩ (33)

= (X1)2⟨e1, e1⟩+X1X2⟨e1, e2⟩+X2X1⟨e2, e1⟩+ (X2)2⟨e2, e2⟩

=
[
X1 X2

] [ ⟨e1, e1⟩ ⟨e1, e2⟩
⟨e2, e1⟩ ⟨e2, e2⟩

]
︸ ︷︷ ︸

G

[
X1

X2

]
.

In all fairness, we can actually write |X|2 the product of the vector X twice with the matrix G or

|X|2 = GijX
iXj . (34)

As it happens on Rn in the usual rectangular chart, Gij is simply the identity matrix and it contains the
inner product of the basis vectors which are chosen to be orthonormal. Now how did we construct the
basis of the tangent vector? We used curve. More precisely, we pushed forward the unit vector on Rn by
the diffeomorphism φ−1. However, as we saw on the midterm, diffeomorphisms do not necessarily preserve
lengths/angles. So the transition from the standard basis to the tangent space

{e1, · · · , em}
(φ−1)∗−→ (

∂

∂x1
, · · · , ∂

∂xm
) (35)

loses the nice orthogonality. What exactly is G doing here? It takes two copies of X and spits out a real
number GijX

iXj . Isn’t it simply a tensor of type
(
0
2

)
? To generalize to the manifold, we can define this

precisely as a
(
0
2

)
tensor that has the similar property as the matrix Gij on Rn.

Definition 23.1 (Metric). The metric on a manifold M is a symmetric non-degenerate
(
0
2

)
tensor field.

More precisely at each p ∈M , it is the linear map

g : TpM × TpM → R (36)

(V,W ) 7→ g(V,W ) (37)

that verifies (a) g(V,W)=g(W,V), (b) ∀W ∈ TpM , g(V,W ) = 0 =⇒ V = 0. The second condition is called
non-degenerate property of g.

Lemma 23.2. The non-degenerate property of g implies det(gij) ̸= 0 i.e., gij constitute an invertible matrix.

Proof. Recall the definition of non-degenerate property: ∀W ∈ TpM, g(V,W ) = 0 =⇒ V = 0. In particular
we can choose W to be the basis set { ∂

∂xi }mi=1. Therefore, we have

g(V,
∂

∂xj
) =

∑
i,k

(gikdx
i ⊗ dxk)(

∑
l

V l
∂

∂xl
,
∂

∂xj
) =

∑
i,k,l

gikV
lδilδ

k
j =

∑
i,j

gijV
i (38)

Now if g(V, ∂
∂xj ) were to be zero then we have using the preceding calculations

g(V,
∂

∂xj
) =

∑
i,j

gijV
i = 0 (39)

But this is nothing but a system of linear equations for V i which have a solution V i = 0 if and only if
det(gij) ̸= 0. Therefore we are done.
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In particular, I can use the metric g to define an inner product on TpM .

Definition 23.3 (Inner product on TpM). An inner product on TpM is defined by the metric g as follows

⟨·, ·⟩TpM ]× TpM → R (40)

(V,W ) 7→ ⟨V,W ⟩ := g(V,W ). (41)

Remark. Since g is a
(
0
2

)
tensor with the symmetry and non-degeneracy property, ⟨·, ·⟩ defined through the

metric g automatically verifies the axioms of an inner product. Notice one difference here though. We have
not defined the norm or inner product to be positive definite i.e., if I interpret the metric components gij to
be m×m matrix, then it is not necessarily positive definite.

Remark. Notice that the norm squared of a vector X ∈ TpM is simply |X|2 := g(X,X).

Now let us look at some explicit calculations regarding the metric g. First of all g is a
(
0
2

)
tensor and therefore

we can write it using theorem 22.8 as follows

g :=
∑
i,j

gijdx
i ⊗ dxj , gij := g(

∂

∂xi
,
∂

∂xj
) (42)

Now due to symmetry of g, we have g( ∂
∂xk ,

∂
∂xl ) = g( ∂

∂xk ,
∂
∂xl ). Now g( ∂

∂xk ,
∂
∂xl ) = gkl and g(

∂
∂xk ,

∂
∂xl ) = glk

and therefore glk = gkl. Now what does the inner product ⟨V,W ⟩ look like explicitly? Let us use the
definition of tensor and evaluate

⟨V,W ⟩ = g(V,W ) = (
∑
i,j

gijdx
i ⊗ dxj)(

∑
k

V k
∂

∂xk
,
∑
l

V l
∂

∂xl
). (43)

Now use the definition of the tensor product (definition 22.7) to yield

(
∑
i,j

gijdx
i ⊗ dxj)(

∑
k

V k
∂

∂xk
,
∑
l

W l ∂

∂xl
) =

∑
i,j,k,l

gijV
kW ldxi(

∂

∂xk
)dxj(

∂

∂xl
) (44)

=
∑
i,j,k,l

gijV
kW lδikδ

j
l =

∑
ij

gijV
iW j

where we have used the usual relation dxi( ∂
∂xj ) = δij=1 if i = j and 0 otherwise. Therefore in terms of the

components, we have

⟨V,W ⟩ =
∑
i,j

gijV
iW j . (45)

Remark. What is ⟨ ∂∂xi ,
∂
∂xi ⟩? This is by definition of inner product g( ∂

∂xi ,
∂
∂xi ) = gij . Now in a chart we

constructed the vectors spanning tangent vector TpM by push forwarding the basis {ei}mi=1 on the chart in Rn
by the inverse diffeomorphism φ−1. In other words, ∂

∂xi = φ−1
∗ (ei) which of course do not remain orthogonal

to themselves since a general diffeomorphism does not preserve the inner product as you have already shown
in the mid-term (except when the transformation is orthogonal, but for a manifold this definitely won’t be
the case). Therefore, the functions gij could be very far from identity in general (In 230A/B, you will see
that there exists a unique chart where you can write g as identity matrix at a point (and at point only at
once) which is called the geodesic normal chart, but you don’t have to worry about that now).

Remark (Einstein summation notation). From now on we do not write the summation notation
∑

all the
time. Whenever there are repeated indices, they are meant to be summed over. For example

∑
ij gijV

iW j

will simply be denied by gijV
iW j .

Now we use the metric to construct an isomorphism between TpM and T ∗
pM . This is called Musical

Isomorphism.
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Theorem 23.4. The map

µ : TpM → T ∗
pM (46)

V 7→ µ(V ) := g(V, ·) (47)

is an isomorphism between TpM and T ∗
pM .

Proof. First we show that g(V, ·) is an element of T ∗
pM . Let us work explicitly in a chart {xi}mi=1. In this

chart, we have

g(V, ·) = gijdx
i ⊗ dxj(V k ∂

∂xk
, ·) = gijV

idxj (48)

which is clearly an element of T 0
1 or T ∗

pM by theorem 22.3. In other words g(V, ·) = α where α = αidx
i, αi =

gijV
j . Now we show that the map µ is an isomorphism. We only need to show injectivity since we are in

finite dimensions and both TpM and T ∗
pM have same vector space dimension. Suppose for X,Y ∈ TpM we

have β = g(X, ·) and γ = g(Y, ·) such that β = γ. We want to show that this implies X = Y i.e., we want
to show the following

g(X, ·) = g(Y, ·) =⇒ X = Y. (49)

Now we use the definition of g i.e., using linearity

g(X, ·) = g(Y, ·) =⇒ g(X − Y, ·) = 0 =⇒ X − Y = 0 =⇒ X = Y (50)

due to the non-degenerate property of g.

Definition 23.5. The inverse metric g−1 of g is defined by the following relation

(g−1)ikgkj = δij (51)

Lemma 23.6. g−1 := (g−1)ij ∂
∂xi ⊗ ∂

∂xj defines an isomorphism between T ∗
pM and TpM as follows

λ : T ∗
pM → TpM (52)

α 7→ λα = g−1(α, ·). (53)

Proof. Exercise. Use the definition 23.5 of g−1 and prove it in similar manner as theorem 23.4.

24 Lengths

Now we are in a place to define the lengths of curves on a manifold once we have a metric. Note that if
I give you a metric you can construct an inner product. Now to define the lengths of curves, let us recall
the definition of a curve on a manifold M . In a chart {xi}mi=, a curve c is the following map you have seen
thousand times

c : (0, 1)→M (54)

t 7→ c(t) = (x1(t), x2(t), x3(t), ........, xm(t)). (55)

Of course, to define a curve, you might need multiple charts but due to the compatibility of chart property,
this does not make a difference. First, we compute the tangent vector to this curve. The tangent vector
V = dc

dt reads in components

V i =
dxi

dt
(56)
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i.e.,

V = V i
∂

∂xi
=
dxi

dt

∂

∂xi
. (57)

Now we prove the following lemma

Lemma 24.1. Let t 7→ c(t) ⊂M be a curve on M . The tangent vector V reads

V =
d

dt
. (58)

Proof. Let us consider a C∞ function f :M → R. Now evaluate the following

df(c(t))

dt
= df |c(t) ·

dc

dt
=
dxi

dt

∂f(c(t))

∂xi
= V f(c(t)) (59)

and therefore V = d
dt since the above holds for any C∞ function f .

Now once we have the tangent vector defined at each point on the curve, we can define the length of the
curve as usual

lc :=

∫ 1

0

|dc
dt
|dt =

∫ 1

0

|V |dt. (60)

Now using the metric g, we can compute the squared norm of |V |

|V |2 = g(V, V ). (61)

At this point, we have not said anything about the definiteness of the metric g i.e., sign of g(V, V ). Now we
make this choice and define a Riemannian metric.

Definition 24.2 (Riemannian Metric). g is called a Riemannian metric if g(V, V ) ≥ 0 and g verifies all the
properties of being a metric.

With this definition of a Riemannian metric, the concept of length becomes the usual length concept we are
used to. More specifically, we have the following expression for the length of the curve c

lc =

∫ 1

0

√
g(V, V )dt, (62)

where g(V, V ) is evaluated at each point along the curve. Once we have defined the notion of length of a
curve, we can define the distance between two points on a smooth manifold.

24.1 Distances on a Manifold

What is the next step? We want to be able to compute lengths/distances.

Given points p, q ∈M , how do we compute the distance between p and q? You want to compute the distances
between all possible paths from p to q and take the minimum.

Recall that on the bonus problem in PSET 2, we showed that the straight line gives the shortest distance
between 2 points in Rn. We did so by writing the length function and minimizing it by making the derivative
vanish. We will be able to use similar steps on a general Riemannian manifold, but it will involve some extra
steps.
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Let c : R→M be a curve on the m-manifold M given by c(t) = (x1(t), · · · , xm(t)). Then the length is

ℓc =

∫ 1

0

∣∣∣∣dcdt
∣∣∣∣ dt

The tangent vector is v := dc
dt =

(
dx1

dt , · · · ,
dxm

dt

)
. Suppose we choose a basis { ∂

∂xi }mi=1 on the tangent space.

Then we can write

v = vi
∂

∂xi
=
dxi

dt

∂

∂xi

Then we can write the length of v as∣∣∣∣dcdt
∣∣∣∣ = |v| =√⟨v, v⟩

=

√∑
⟨dx

i

dt

∂

∂xi
,
dxj

dt

∂

∂xj
⟩

=

√∑ dxi

dt

dxj

dt
⟨ ∂
∂xi

,
∂

∂xj
⟩

=

√∑ dxi

dt

dxj

dt
gij

And so we can rewrite the length as

ℓc =

∫ 1

0

√
gij
dxi

dt

dxj

dt

25 (11/22) : (TODO: )

25.1 Some logistics

PSET 5 will drop tonight, due in 2 weeks. Puskar will hold a review session next Friday instead of regular
office hours. It will be recorded. Exam will be the full 3 hours, will have more questions than the midterm
(but proportional to the exam duration)

25.2 Towards an Inner product

We have the following diagram

M N

TPM Tf(P )N

f

f∗:=df

where f is a diffeomorphism. The bottom map acts by

[f∗X]i =

m∑
j=1

∂f i

∂xj
Xj

Recall we also defined the Riemanian metric to satisfy the following: it is a bilinear map g|P : TPM×TPM →
R that sends (x, y) 7→ ⟨x, y⟩, and satisfies
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1. g|P (x, x) > 0 if x ̸= 0

2. g|P (0, 0) = 0

3. g|P (x, y) = g|P (y, x)
Remark. This turns out to not be sufficient to define a proper metric: what is missing is the Triangle
inequality. We might return to this at some point.

On Rn, for vectors A,B we have ⟨B,A⟩ = BTA = BT (I)A. Therefore, the metric on Euclidean space is just
the identity matrix.

Definition 25.1. A Riemannian manifold is a pair (M, g) of a manifold and a Riemannian metric on that
manifold.

The inner product of two arbitrary vectors xi∂i and y
j∂j (recall Einstein notation):

⟨xi∂i, yj∂j⟩ = xiyj⟨∂i, ∂j⟩ = xiyjgij

Definition 25.2 (Distance). Given points p, q ∈ M , consider a family F of curves c : R → M such that
c(0) = p and c(1) = q. Then the distance between p and q is given by

d(p, q) = inf
c∈F

ℓc

Why is the distance defined as an infimum rather than a minimum? This is because the “shortest” path
may not be attainable!

Example 25.3. Consider the disk with a closed disk in the center removed, so that we have a hole in the
center without the boundary (Figure 15). Then the “shortest” path would pass through the boundary of
the hole, but that is not a valid path that stays on the manifold.

Figure 15: The shortest path may not be attainable

Assume for now that the distance function is well defined. Then the triangle inequality d(P,Q) ≤ d(P,R) +
d(R,Q) should hold. But what can go wrong? Things can go very wrong in a space that does not have
unique limits.

Example 25.4 (Breakdown of triangle inequality). Suppose we have a sequence of points {un} which has
two limits p ̸= q. Then for any small distance ε/2, there exists N ∈ N such that if n ≥ N , then d(p, un) < ε/2
and d(q, un) < ε/2. Using the triangle inequality, we would have

d(p, q) < d(p, un) + d(un, q) <
ε

2
+
ε

2
= ε

Since ε can be any arbitrarily small positive number, we must have d(p, q) = 0. But for a distance function
d , d(p, q) = 0 ⇐⇒ p = q, a contradiction.
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The moral of the story: triangle inequality does not hold on non-Hausdorff manifolds. You have already
seen this in the PSET4.

From now on, we assume the Hausdorff property of our manifolds.

25.3 Computing the distance

Now we have a working definition of the distance d(p, q). But how do we compute it? Suppose c(0) = p and
c(1) = q

inf
c

∫ 1

0

∣∣∣∣dcdt
∣∣∣∣ dt = inf

c

∫ 1

0

√
gij(x)

dxi

dt

dxj

dt
dt

≥
∫ 1

0

inf
c

√
gij(x)

dxi

dt

dxj

dt
dt (By Fatou’s lemma)

And notice that inf
√
f(x) =

√
inf f(x) for positive f . Therefore we just need to minimize the quantity (you

were asked in the PSET2 why minimizing length and energy are equivalent and you worked out on Rn that
indeed we can get the same result by minimizing the energy)∫ 1

0

gij(x)
dxi

dt

dxj

dt
dt =

∫ 1

0

g(v, v)dt

But this is precisely the energy Ec of the curve! To minimize it, we can take the derivative with respect to
the transverse direction x to the family of curves c(t):

∇xEc =
∫ 1

0

∇xg(v, v) dt

=

∫ 1

0

∇x⟨v, v⟩ dt

= 2

∫ 1

0

⟨∇xv, v⟩ dt

However, at this point the expression ∇xv is nonsensical! Here we are trying to take a derivative of a vector
field. Let’s unpack things:

∇xv = lim
dx→0

v(x+ dx)− v(x)
dx

But notice that v(x+ dx) ∈ Tx+dxM whereas v(x) ∈ TxM , so they lie in different tangent spaces! In order
for this derivative to make sense, we need a way to compare these spaces. We will do so next week using the
notion of connections.

Before going to define the connections in rigorous detail, let us first define a concept we already know. Let us
collect all the tangent spaces at every point on the manifold. The tangent bundle is defined in section 20.2.
Its essentially the disjoint union of tangent spaces. Now before going into defining the connection, let us
define another entity that will come out to be handy. Recall that the vectors on a manifold are constructed
as differential operators. Therefore we can think of them as acting on functions as well. In fact that was the
main property of derivations i.e., acting on C∞ functions on M . In other words by construction, we have
for a vector field V = V i ∂

∂xi

V f = V i
∂f

∂xi
(63)

Using this idea we can define what is called a commutator [·, ·] of two vector fields V and W .
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Definition 25.5 (Commutator of vector fields). The commutator [·, ·] is the map

[·, ·] : TpM × TpM → TpM (64)

(V,W ) 7→ [V,W ] (65)

that is R−linear on each slot (called bi-linear) i.e., for λ, µ ∈ R, [λV, µW ] = λµ[V,W ] that verifies [X,X] = 0
and the Jacobi identity i.e., X,Y, Z ∈ TpM

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (66)

Forgetting about all the technicalities, let us explicitly compute what a bracket looks like for two vector
fields. First act [V,W ] on a C∞ function f

[V,W ]f = V (W (f))−W (V (f)) = V i
∂

∂xi
(W j ∂f

∂xj
)−W j ∂

∂xj
(V i

∂f

∂xi
) (67)

= V i
∂W j

∂xi
∂f

∂xj
+ V iW j ∂2f

∂xi∂xj
−W j ∂V

i

∂xj
∂f

∂xi
−W jV i

∂2f

∂xj∂xi

= V i
∂W j

∂xi
∂f

∂xj
−W j ∂V

i

∂xj
∂f

∂xi

where we have used the fact that the partial derivatives commute i.e., ∂2f
∂xi∂xj = ∂2f

∂xj∂xi . Now remember that
repeated indices are summed over i.e.,

V i
∂W j

∂xi
∂f

∂xj
:=
∑
i,j

V i
∂W j

∂xi
∂f

∂xj
(68)

and

W j ∂V
i

∂xj
∂f

∂xi
:=
∑
i,j

W j ∂V
i

∂xj
∂f

∂xi
=
∑
i,j

W i ∂V
j

∂xi
∂f

∂xj
(69)

since i, j are summed over if we interchange them both then nothing changes. Therefore we have

[V,W ]f = (V i
∂W j

∂xi
−W i ∂V

j

∂xi
)
∂f

∂xj
(70)

i.e.,

[V,W ] = (V i
∂W j

∂xi
−W i ∂V

j

∂xi
)
∂

∂xj
(71)

i.e., [V,W ] ∈ TpM and [V,W ]j = (V i ∂W
j

∂xi −W i ∂V j

∂xi ). There is a very deep meaning of this brackets called
Lie-Derivatives of vector fields. The mathematical interpretation of this is asked the Miscellaneous problem
set.

These are all the concepts that we need to define a connection

26 (11/29) : Derivatives of Tangent Vectors

(I missed the first 15 minutes bit it seems mostly be recap - If I missed anything important please let me
know!)
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26.1 Connections and Connection Coefficients

Let χ(M) be the space of C∞ vector fields on M , and vectors X,M ∈ χ(M). On the chart {x}, we have:

X = Xi ∂

∂xi

Y = Y j
∂

∂xj

We want to define the notion of “∇XY ”. Recall that the naive definition which we tried at the end of the
previous lecture does not work because we are trying to compare vectors from different tangent spaces!

Definition 26.1 (Covariant connection/derivative). The covariant connection is given by the following map

∇ : χ(M)× χ(M) −→ χ(M)

(X,Y ) 7−→ ∇XY

which satisfies the following conditions

1. C∞-(bi)linearity: for f1, f2 ∈ C∞, we have

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y

and

∇X(c1Y1 + c2Y2) = c1∇XY1 + c2∇XY2

(c1, c2 are constants and Note that fX is the pointwise product of functions: (fX)(x) = f(x)X(x),
and likewise for similar expressions)

2. Leibniz rule/product rule.

∇X(fY ) = f∇XY +X[f ]Y

where X[f ] = Xi ∂
∂xi f is the directional derivative.

What does ∇XY actually mean though? Let us unpack things, using the shorthand ∂i =
∂
∂xi :

∇XY = ∇Xi∂iY
j∂j

= Xi∇∂iY j∂j (By linearity in first argument)

= Xi(Yj∇∂i∂j + ∂i[Y
j ]∂j) (By product rule + linearity in second argument)

= Xi

(
Y j∇ ∂

∂xi

∂

∂xj
+
∂Y j

∂xi
∂

∂xj

)
The second summand is easy to compute, since they are usual directional derivatives. The problem is the
first term: How do we compute ∇∂/∂xi∂/∂xj? Let’s think back to Frenet curves for a moment. Recall the
frame equations

dei
dt

= ωijej , ωij := ⟨
dei
dt
, dj⟩

There, we were trying to understand the rate of change of the basis of the Frenet frame.

Quote of the day: “Knitting is a diffeomorphism”

Recall that we defined ωij to be this inner product between the frame vectors and their derivatives. In a
very similar fashion, we can define the ∇ terms in terms of “connection coefficients”.
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Definition 26.2 (Connection coefficients). We can write

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk

Γkij are the connection coefficients.

Question 26.3. Why do we call it connections?

Answer. We are connecting the tangent spaces together, and we want to understand how the basis vectors
change as we move across the manifold. The Γkij terms record precisely this information.

For instance, in Euclidean space, when we move the base point x, the basis of the tangent space does not
change.

Rewriting, we have

∇XY = Xi

(
Y jΓkij

∂

∂xk
+
∂Y j

∂xi
∂

∂xj

)
Recalling that indices are just dummy variables, we can replace the j’s in the second term with k’s. So,

∇XY = Xi

(
Y jΓkij

∂

∂xk
+
∂Y k

∂xi
∂

∂xk

)
=

(
ΓkijX

iY j +Xi ∂Y
k

∂xi

)
∂

∂xk

= (∇XY )k
∂

∂xk

where to get to the last line we observe that the left factor is just a scalar component.

26.2 Metric compatibility

So now, how do we actually compute Γkij? Naively speaking, Γ should depend both on the manifold M and
the metric g on the manifold.

We will see in the next class that this can be computed from metric compatibility

∇X⟨A,B⟩ = ⟨∇XA,B⟩+ ⟨A,∇XB⟩
∇Xg = 0 ∀X ∈ TM

27 (12/1): Last Lecture!

Here is the plan for today: We will first wrap up with geodesics and related concepts. In the second half,
we will look at some applications.

27.1 Metric Compatibility

A recap of last lecture: Given M , an m-manifold (which we assume has all the nice properties we want), if
X,Y ∈ χ(M) are C∞ vector fields, then we define the connection ∇XY ∈ χ(M) to be(

Xk∂kY
i + ΓijkX

jY k
) ∂

∂xi
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We will look at how we can compute Γ, but we will not go into the full details.

Γ depends on the manifold M , intuitively. We need to make a choice (M, g) of the metric in order to define
a Riemannian manifold. Recall that this metric gives us an inner product on the space, and therefore a way
to define lengths. We can define the connection coefficients by assuming that ∇ is compatible with g. What
this means, is that if we take X,Y ∈ χ(M) (Recall that X = Xi ∂

∂xi , and so on), such that the inner product
is ⟨X,Y ⟩ = g(X,Y ), then the following holds:

Definition 27.1 (Metric Compatibility). A connection ∇ and a metric g are metric compatible if for any
Z ∈ χ(M), we have

∇Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY )

for any choice of X,Y ∈ χ(M).

Remark. When ∇Z acts on a scalar function, it just results in the directional derivative

Let us actually explain the definition 28.1 in a bit more detail. First of all, recall the definition of the metric
g. It’s the following map

g : TpM × TpM → R, (72)

(X,Y ) 7→ g(X,Y ) (73)

i.e., g(X,Y ) is a real number that depends on p i.e., it’s a function on the manifoldM . Therefore∇Z(g(X,Y ))
is simply the directional derivative of the function g(X,Y ) in the direction of Z i.e., Z(g(X,Y )) = Zi ∂

∂xi (g(X,Y )).
Now (∇Zg) is acting by ∇Z on the left-hand side of the previous map i.e., acting on Tp×TpM or on a tensor
of type

(
0
2

)
and returning a new tensor ∇Zg of the same type

(
0
2

)
or T 0

2 i.e., more generally, we have the

connection ∆ as the following map on the space T sr of
(
r
s

)
tensors

∇ : TpM × T sr → T sr (74)

(X,T ) 7→ ∇XT. (75)

Therefore (∇Zg)(X,Y ) ̸= ∇Z(g(X,Y )) obviously. Hope this makes things more clear.

We can relate this back to an orthonormal frame. Recall that if we had d
dt ⟨e1, e2⟩ = 0, then we can move

the derivative in and write ⟨de1dt , e2⟩+ ⟨e1,
de2
dt ⟩ = 0. We can see this by writing out the derivatives explicitly

in the coordinates: (TODO: ) sum of gije
i
1e
j
2.

In the general case, g is not constant, and so we cannot pass the derivative through. So in general, we would
expect

∇Z(g(X,Y )) = (∇Zg)(X,Y ) + g(∇ZX,Y ) + g(X,∇ZY )

Then the condition of metric compatibility is the statement that ∇Zg = 0.

27.2 Obtaining the Connection from a Metric

Theorem 27.2. Assuming metric compatibility holds, then for a chart x,

Γijk =
1

2
(g−1)iℓ

(
∂gjℓ
∂xk

+
∂gℓk
∂xj

− ∂gjk
∂xℓ

)
where (g−1)iℓ is the inverse of the matrix gij :

(g−1)iℓgℓj = δij

(In this context, we use superscripts to index into the entries of the inverse of a matrix)
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Proof Sketch. Again using the notation ∂i =
∂
∂xi . Recall that the coefficients are defined by the relation

∇∂j∂k = Γijk∂i. Then by metric compatibility, for vectors ∂j , ∂k, ∂ℓ

∇∂j ⟨∂k, ∂ℓ⟩ = ⟨∇∂j∂k, ∂ℓ⟩+ ⟨∂k,∇∂j∂ℓ⟩ (1)

We can also swap the roles of the three vectors and obtain

∇∂k⟨∂ℓ, ∂j⟩ = ⟨∇∂k∂ℓ, ∂j⟩+ ⟨∂ℓ,∇∂k∂j⟩ (2)

∇∂ℓ⟨∂j , ∂k⟩ = ⟨∇∂ℓ∂j , ∂k⟩+ ⟨∂j ,∇∂ℓ∂k⟩ (3)

Let’s look at (1) in detail: We can rewrite the connection terms:

∇∂j∂k = ΓAlex
jk ∂Alex

∇∂j∂ℓ = ΓConnor
jk ∂Connor

Substituting in, we have

∇∂j ⟨∂k, ∂ℓ⟩ =
∂gkℓ
∂xj

= ⟨ΓAlex
jk ∂Alex, ∂ℓ⟩+ ⟨∂k,ΓConnor

jk ∂Connor⟩

= ΓAlex
jk ⟨∂Alex, ∂ℓ⟩+ ΓConnor

jℓ ⟨∂k, ∂Connor⟩
= ΓAlex

jk gAlex,ℓ + ΓConnor
jℓ gk,Connor

This basically gives a system of linear equations which can be solved to recover the coefficients.

Summary: (M, g) + metric compatibility gives Γ = Γ[g].

27.3 Geodesics

Definition 27.3 (Geodesics (informal definition)). Geodesics are local minimizers of length/energy.

Now using the idea of the connection, we want to obtain the equation that governs geodesic. Look at the
figure 27.3. We want to find out the curve that has possibly the minimum length. Similar to PSET2, I can
construct a family of curves with the same initial and final points by varying in the transverse direction.
Also, assume that all the curves have finite lengths and energy. This amounts to considering a two-parameter
family of curves

c : (0, 1)× (0, 1)→M (76)

(t, s) 7→ c(s, t), (77)

γ : (0, 1)× (0, 1)→M (78)

(t, s) 7→ γ(s, t). (79)

Let us denote the tangent vector fields as follows V : tangent to the family cs,t, W : tangent to the
family γs,t. Following the lemma 3.1, then we can write V = ∂

∂t and W = ∂
∂s . In particular, we have

[
∂

∂t
,
∂

∂s
] = 0 (80)

following the definition of the commutator (you of course know that the partial derivatives commute).
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Figure 16: Notice the two families of curves.
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Since the curves t 7→ c(s, t) are fixed at two ends, W (0) = W (1) = 0. Now we want to consider the
minimization of length. But you know this is the same as minimizing energy (you have seen this in PSET2
so not much to say here). Let us denote the curves t 7→ c(s, t) by cs(t). The energy of the family of the
curves t 7→ cs(t) is defined as follows

Ecs :=

∫ 1

0

|V |2dt =
∫ 1

0

g(V, V )dt. (81)

Now we want to compute the entity
∂Ecs

∂s and set it to 0 by the first requirement of minimization

∂Ecs
∂s

=
∂

∂s

∫ 1

0

g(V, V )dt =

∫ 1

0

∂

∂s
(g(V, V ))dt =

∫ 1

0

∇W (g(V, V ))dt (82)

= 2

∫ 1

0

g(∇WV, V )dt = 2

∫ 1

0

g(∇VW + [W,V ], V )dt = 2

∫ 1

0

g(∇VW,V )dt

= 2

∫ 1

0

(∇V (g(W,V ))− g(W,∇V V )) dt = 2

∫ 1

0

∂

∂t
(g(W,V ))dt− 2

∫ 1

0

g(W,∇V V )dt

= 2[g(W,V ]t=1
t=0 − 2

∫ 1

0

g(W,∇V V )dt = −2
∫ 1

0

g(W,∇V V )dt,

where we have used metric compatibility i.e.,∇Xg = 0 ∀X ∈ TpM and the fact that∇V acts on scalars/functions
simply by means of the directional derivative. In addition, W (0) =W (1) = 0. Therefore we have by setting
∂Ec

∂s = 0

∂Ec
∂s

= 0 = −2
∫ 1

0

g(W,∇V V )dt (83)

by the preceding formula obtained for
∂Ecs

∂s . Now W is an arbitrary variation vector field transverse to the
family of curves t 7→ c(s, t). Therefore by the non-degenerate property of the metric g,∫ 1

0

g(W,∇V V )dt = 0 ∀W transverse to cs(t) =⇒ ∇V V = 0. (84)

This leads to the following definition of a geodesic on a manifold (M, g).

Definition 27.4 (Geodesics). Let t 7→ c(t) ⊂ M is a smooth curve connecting two points p = c(0) and
q = c(1) such that its tangent vector field is V . This curve is called a geodesic if the tangent vector field V
verifies ∇V V = 0.

In other words, if I can give you the condition ∇V V = 0, you should be able to prove that the geodesics are
critical points of the energy functional and therefore of the length functional.

Interpretations: This condition corresponds to straight lines in Euclidean space. It also corresponds to the
idea that the “acceleration” is 0.

If a curve c(t) with V := dc
dt is a geodesic (if it exists) connecting points p, q ∈M , then it satisfies ∇V V = 0.

Let’s understand the condition ∇V V = 0. Recall that V = V i∂i. Therefore we can expand ∇V V step by
step following the definition of the connections.

∇V V = ∇V i ∂

∂xi
(V j

∂

∂xj
) = V i∇ ∂

∂xi
(V j

∂

∂xj
) = V i

(
∂V j

∂xi
∂

∂xj
+ V j∇ ∂

∂xi

∂

∂xj

)
(85)

where the first term is just the application of the vector field ∂
∂xi on the scalar function V j (look back at the

definition 27.1). The second term can be reduced by means of the definition of the connection coefficients
i.e.,

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
. (86)
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Therefore we have

∇V V = V i
∂V j

∂xi
∂

∂xj
+ V iV jΓkij

∂

∂xk
= (V i

∂V j

∂xi
+ ΓjikV

iV k)
∂

∂xj
(87)

where we have used the fact the repeated indices are summed over and they are simply dummies or placehold-
ers i.e., AijBij is the same as AjiBji (be cautious here that the order should be same i.e. AijBij ̸= AijBji
i.e., you have to change both simultaneously; this should be obvious by writing down the sum; all the finite
sum here so you can interchange the order of summation). Therefore ∇V V = 0 implies each component
should be zero i.e.,

∇V V = 0 =⇒ (∇V V )j = V i
∂V j

∂xi
+ ΓjikV

iV k = 0 (88)

Now recall the tangent vector V and the lemma 24.1

V = V i
∂

∂xi
=
dxi

dt

∂

∂xi
=

d

dt
(89)

and therefore

(∇V V )j = V i
∂V j

∂xi
+ ΓjikV

iV k = 0 =⇒ dV j

dt
+ ΓjikV

iV k = 0 (90)

=⇒ d2xj

dt2
+ Γjik

dxi

dt

dxk

dt
= 0.

The last expression is known as proper acceleration. Therefore given initial point xi(0) and velocity dxi

dt (t =
0), you can integrate this second order ODE for small enough parameter time t to find the desired geodesic
t 7→ xi(t) = c(t).

In Rn, g = δ in usual chart, and so Γ ∼ ∂g = 0. Therefore the equation is simplified to

d2xi

dt2
= 0

This tells us that the geodesics on Rn are straight lines. You have already proven this in PSET2. Now in
the case of a manifold, you have the extra Γ factor appearing.

Question 27.5. What happens if the manifolds have holes?

Answer. Then the minimization procedure that we discussed breaks down.

28 (11/17): (TODO: )

28.1 Change of Charts on the Tangent Space

Last lecture, we gave the definition of a basis of the tangent space TPM in terms of the vectors ∂
∂xi . We did

all of this with respect to a choice of chart. What happens if we choose a different chart? Consider a map
between charts x 7→ y(x). This map is a diffeomorphism.

We should keep in mind: a switch of coordinate charts does not change the vectors in the tangent space itself!
We can look to R3 as an example: Given a vector in space, we can describe it in Euclidean coordinates, or
using spherical coordinates, and so on. The vector v itself does not change when we change the chart. What
changes is the basis, and by extension the components v1, v2, v3 along the basis vectors.
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Therefore, given a vector

v =

m∑
i=1

vix(P )
∂

∂xi

and a change of chart x 7→ y(x), we expect to be able to write

v =

m∑
i=1

viy(P )
∂

∂yi

How do vix and viy relate? We can use the chain rule! Notice that

∂f

∂xi
=

m∑
j=1

∂f

∂yj
∂yj

∂xi
∀f =⇒ ∂

∂xi
=

m∑
j=1

∂yj

∂xi
∂

∂yj

And so,

v =

m∑
i=1

vix(P )
∂

∂xi

=

m∑
i=1

vix(P )

m∑
j=1

∂yj

∂xi
∂

∂yj

=

m∑
i=1

m∑
j=1

(
vix
∂yj

∂xi

)
∂

∂yj

=

m∑
j=1

(
m∑
i=1

vix
∂yj

∂xi

)
∂

∂yj
(exchanging finite sums is ok)

=

m∑
j=1

vjy
∂

∂yj

=⇒ vjy =

m∑
i=1

vix
∂yj

∂xi

Question 28.1. Why could we just compare the coefficients in the penultimate line?

Answer. That is because the ∂
∂yj ’s are linearly independent. We saw this by acting with both sides on the

coordinate functions yk.

Now, notice that the form of vjy looks suspiciously like a matrix multiplication! If we let A be a matrix where

Aji =
∂yj

∂xi , then we can write

vjy =

m∑
i=1

Ajiv
i
x

Question 28.2. Can we think of this as a Df map?

Answer. Yes! Recall that f is a map between manifolds. For a change of charts, this is just the special
case of a map from a manifold to itself.

Remark. The fact that v is the “real” object and that the components vi are “fake” mirrors our earlier
study of curves. Recall that we discussed that the tangent vectors along a curve are not invariant under
reparameterization. What is invariant is a geometric property, such as arclength and curvature.
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Definition 28.3 (Einstein’s Summation notation). To reduce clutter, we write

Aijv
j :=

m∑
j=1

Aijv
j

A more complicated example:

Aijkℓmx
jykzℓwm :=

∑
j

∑
k

∑
ℓ

∑
m

Aijkℓmx
jykzℓwm

Summation is implied by paired indices.

28.2 Metrics

Now recall: how did we define the basis of the tangent space? We looked at (equivalence classes of) curves
and took a collection of tangent vector as the basis. Can we talk about the length of these curves on the
manifold?

Let’s look at R2. We have dℓ =
√
(dx)2 + (dy)2. Notice that we don’t have any cross terms dx dy. Another

way of writing Pythagoras theorem is the following:

dℓ2 =
(
dx dy

)(1 0
0 1

)(
dx
dy

)
Why is the middle matrix the identity matrix? Because dx and dy are orthogonal. The precise definition of
the matrix is given by (

⟨e1, e1⟩ ⟨e1, e2⟩
⟨e2, e1⟩ ⟨e2, e2⟩

)
However, as we saw on the midterm, diffeomorphisms do not necessarily preserve lengths/angles. So the
transition from the standard basis to the tangent space

{e1, · · · , em}
φ−1

−→ (
∂

∂x1
, · · · , ∂

∂xm
)

loses the nice orthogonality.

We end off by defining the notion of a metric. Let X,Y ∈ TPM . Choose a chart x for the point P . Then
we can write

X = Xi(P )
∂

∂xi

Y = Y j(P )
∂

∂xj

We want to define an inner product on the manifold. Heuristically, we can try defining

⟨X,Y ⟩ = ⟨Xi ∂

∂xi
, Y j

∂

∂xj
⟩ = XiY j⟨ ∂

∂xi
,
∂

∂xj
⟩

There is no reason for ⟨ ∂∂xi ,
∂
∂xj ⟩ to be the identity matrix. So let us give it a name: gij := ⟨ ∂∂xi ,

∂
∂xj ⟩.

Definition 28.4. A Riemannian metric at point P ∈M is a non-degenerate symmetric bilinear map

gp : TPM × TPM −→ R

(gp)ij := ⟨
∂

∂xi
,
∂

∂xj
⟩
∣∣∣∣
p

which satisfies gP (X,X) ≥ 0 ∀X ∈ TPM and gP (X,X) = 0 ⇐⇒ X = 0.
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29 Differentials in the space of matrices

Recall the differential on Rn. You can of course do it on manifolds. You know the definition of the differential
of a map f : U ⊂ Rn → V ⊂ Rn. The differential at x ∈ U is a linear map denoted by the Jacobian df |x
such that the following holds

df |x : Rn → Rn (91)

h 7→ df |x · h (92)

and moreover

f(x+ th)− f(x) = tdf |x · h+O(t2) (93)

for t > 0 sufficiently small. The entity df |x · h called the differential of f in the direction of h (or the
directional derivative) can also be computed as follows

df |x · h =
d

dt
f(x+ th)|t=0. (94)

Here · represents the linear action of the differential df |x on h. The equation 94 just follows from differen-
tiating 93 both sides with respect to t and setting t = 0. Using this definition, I want you to compute the
derivative in the space of matrices. First, denote by GL(k,R) the space of all invertible matrices (non-zero
determinant) with real entries. Now since any matrix belonging to the set GL(k,R) has k2 real elements.

The space GL(k,R) is a subset of Rk2 . Let U ∈ GL(k,R) open and f is the following map

f : U ⊂ GL(k,R)→ V ⊂ GL(k,R) (95)

A 7→ f(A) := A2 (96)

where A is a matrix and A2 is the usual matrix multiplication AA. Using 94, compute the differential of f
at identity I in the direction of any real k × k matrix H i.e., compute df |I ·H.

Answer. The differential of the map f at any A ∈ U can be computed using the equation 94. More explicitly

df |A :M(n,R)→M(n,R) (97)

H 7→ dfA ·H =
d

dt
f(A+ tH)|t=0 =

d

dt
(A+ tH)(A+ tH)|t=0 =

d

dt
(A2 + tAH + tHA+ t2H2)|t=0 (98)

= AH +HA. (99)

Therefore df |IḢ = H +H = 2H. Here M(n,R) denotes the space of real n× n marices.

29.1 Applications

Why do we learn math? We want to acquire a toolkit to solve real-world problems.

• Biology

Humans are a perfect example of manifolds. Proteins are manifolds. Suppose we want to Xray a tumor
- everything is curved, so we need differential geometry. In the brain, if we want to find the shortest
distance between two points, we need to use geodesics! The straight-line path will pierce through the
brain.

• Manifold learning

In machine learning we want to minimize the cost. This is the same as minimizing some metric.
Suppose we have a 10-dimensional “statistical manifold” in a 100-dimensional space. We can use
geodesics to reduce dimensions and get faster computations. Fisher metrics.

• Physics

Not much needs to be said here.
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29.2 Course Feedback

Please provide your honest feedback on the course!

Thanks for attending the lectures and submitting your homework!
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