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Since its conception, the FLRW cosmological solution has been used extensively to model the dynam-

ics of our universe. With the advent of accelerated expansion of the physical universe, a cosmological

constant (the simplest form of the dark energy) is often included in the model and such a model is

designated as the ΛCDM model. This model is developed based on the assumption of global homo-

geneity and isotropy of the physical universe, the so-called cosmological principle. One important

question that arises in the context of FLRW cosmology is whether these models are predicted by

general relativity? To conclude that they are would seem to hinge on a proof that the purely theo-

retical variants of FLRW models (spatially compact models foliated by compact hyperbolic spaces)

are dynamically stable. In other words, if one were to perturb these solutions in a suitable function

space setting, then the natural question would be whether the perturbed spacetimes exist for all

time as solutions of Einstein’s field equations. Moreover one would like to understand whether all

small data solutions (in suitable function space settings after subtracting the background solutions

of the Einstein’s field equations remain bounded for all time in terms of a suitable norm of the initial

data and whether they exhibit asymptotic decay. There are other important physical motivations

such as large-scale structure formation in the universe through cosmological perturbations. In order

to understand the global evolution problem in the context of mathematical cosmology, one ought to

address the interaction of the topology and geometry with the matter (or radiation) present in the

spacetime. Since gravity is a highly non-linear theory, the interaction can possibly focus energy and

generate singularities in finite time. Of course such singularities in the spacetime are well known in

the context of black holes. However, they are hidden behind a horizon and therefore inaccessible by

any observer in the domain of outer communication. In a sense these do not really imply a break-

down of the general theory of relativity. The singularities that can cause pathological breakdown of

general relativity are the so called naked singularities and as such they are ruled out by Penrose’s

cosmic censorship conjecture. In order to even make a quantum jump towards proving such a con-

jecture would require a rigorous analysis of the dynamics of spacetime topology and geometry. In

this thesis, we address a collection of such studies for a class of spacetimes in the regime of both

2+1 and n + 1 (n ≥ 3) gravity in the presence and absence of matter source. We prove a series of



stability theorems and in the process also discover several implications of non-trivial topology on

the dynamics of the spacetimes.
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Introduction

Viewed on a sufficiently coarse-grained scale the portion of our universe that is accessible to observa-

tion appears to be spatially homogeneous and isotropic. If, as is usually imagined, one should be able

to extrapolate these features to (a suitably coarse-grained model of) the universe as a whole then only

a handful of spatial manifolds need be considered in cosmology- the familiar Friedmann-Lematre-

Robertson-Walker (FLRW) archetypes of constant positive, vanishing or negative curvature [3,107].

These geometries consist, up to an overall, time-dependent scale factor, of the 3-sphere, S3, with

its canonical ?round? metric, Euclidean 3-space, E3, hyperbolic 3-space, H3 and the quotient space

RP(3) = S3/Z2 obtainable from S3 by the identification of antipodal points [4]. Of these possibilities

only the sphere and its 2-fold quotient RP3 are closed and thus compatible with a universe model

of finite extent. It is not known of course whether the actual universe is spatially closed or not

but, to simplify the present discussion, we shall limit our attention herein to models that are. More

precisely we shall focus on spacetimes admitting Cauchy hypersurfaces that are each diffeomorphic

to a smooth, connected 3-manifold that is compact, orientable and without boundary.

On the other hand if one takes literally the cosmological principle that only manifolds supporting

a globally homogeneous and isotropic metric should be considered in models for the actual universe

then, within the spatially compact setting considered here, only the 3-sphere and RP3 would remain.

But the astronomical observations which motivate this principle are necessarily limited to a (possibly

quite small) fraction of the entire universe and are compatible with models admitting metrics that are

only locally, but not necessarily globally, spatially homogeneous and isotropic. As is well-known there

are spatially compact variants of all of the basic Friedmann-Lematre- Robertson-Walker cosmological

models, mathematically constructable (in the cases of vanishing or negative curvature) by taking

suitable compact quotients of Euclidean 3-space E3 or of hyperbolic 3-space H3. One can also take

infinitely many possible quotients of S3 to obtain the so-called spherical space forms that are locally

compatible with the FLRW constant positive curvature geometry but are no longer diffeomorphic

to the 3-sphere.

Still more generally though we shall find that there is a dynamical mechanism at work within the
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Einstein ‘flow’, suitably viewed in terms of the evolution of 3-manifolds to develop 4-dimensional,

globally hyperbolic spacetimes, and extended to include suitable matter sources and a positive

cosmological constant Λ, that strongly suggests that even manifolds that do not admit a locally

homogeneous and isotropic metric at all will nevertheless evolve in such a way as to be asymptoti-

cally compatible with the observed homogeniety and isotropy. This reflects an argument which we

shall sketch that, under Einsteinian evolution, the summands making up M (in a connected sum

decomposition) that do support locally homogeneous and isotropic metrics will tend to overwhelm-

ingly dominate the spatial volume asymptotically as the universe model continues to expand and

furthermore that the actual evolving (inhomogeneous, non-isotropic) metric on M will naturally tend

to flow towards a homogeneous, isotropic one on each of these asymptotically volume-dominating

summands.

We do not claim that this mechanism is yet so compelling, either mathematically or physically, as

to convince one that the actual universe has a more exotic topology but only that such a possibility is

not strictly excluded by current observations. However, it is intriguing to investigate the possibility

that there may be a dynamical reason, provided by Einstein?s equations, for the observed fact that

the universe seems to be at least locally homogeneous and isotropic and that this mechanism may

therefore allow an attractive logical alternative to simply extrapolating observations of necessarily

limited scope to the universe as a whole.

But what are the (compact, connected, orientable) 3-manifolds available for consideration? This

question has been profoundly clarified in recent years by the dramatic progress on lower dimensional

topology made possible through the advancements in Ricci flow [5,64]. One now knows for example

that, since the Poincar conjecture has finally been proven, any such 3-manifold M that is in fact

simply connected must be diffeomorphic to the ordinary 3-sphere S3. Setting aside this so-called

?trivial? manifold the remaining possibilities consist of an infinite list of nontrivial manifolds, each

of which is diffeomorphic (designated herein by ≈) to a finite connected sum of the following form:

M ≈ (1)

S3/Γ1#..#S3/Γk#(S2 × S1)1#..#(S2 × S1)l#K(π, 1)1#..#K(π, 1)m.

Here k, l and m are integers ≥ 0, k+ l+m ≥ 1 and if either k, l or m is 0 then terms of that type do

not occur. The connected sum M#N of two closed connected, oriented n-manifolds is constructed

by removing the interiors of an embedded closed n-ball in each of M and N and then identifying

the resulting Sn−1 boundary components by an orientation-reversing diffeomorphism. The resulting
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n−manifold will be smooth, connected, closed and consistently oriented with the original orientations

of M and N . The above decomposition of M is only uniquely defined provided we set aside S3 since

M#S3 ≈M for any 3-manifold M .

In the above formula if k ≥ 1, then each Γi, 1 ≤ i ≤ k is a finite, nontrivial (Γi 6= I) subgroup

of SO(4) acting freely and orthogonally on S3. The individual summands S3/Γi are the spherical

space forms alluded to previously and, by construction, each is compatible with an FLRW metric

of constant positive spatial curvature (i.e., k = +1 models in the usual notation). The individual

?handle? summands S2 × S1 admit metrics of the Kantowski-Sachs type that are homogeneous but

not isotropic and so not even locally of FLRW type.

The remaining summands in the above ‘prime decomposition’ theorem [6] are the K(π, 1) man-

ifolds of Eilenberg-MacLane type wherein, by definition π = π1(M), the fundamental group of M

and all of the higher homotopy groups are trivial, that is πi(M) = 0 for i > 1. Equivalently, the

universal covering space of M is contractible and, in this case, known to be diffeomorphic to R3 [6].

Since the higher homotopy groups, πi(M) for i > 1 can be interpreted as the homotopy classes of

continuous maps Si → M , each such map must be homotopic to a constant map. For this reason

K(π, 1) manifolds are said to be aspherical.

This general class of K(π, 1) manifolds includes, as special cases, the 3-torus and five additional

manifolds, finitely covered by the torus, that are said to be of ‘flat type’ since they are the only

compact, connected, orientable 3-manifolds that each, individually, admits a flat metric and thus

supports spatially compactified versions of the FLRW spaces of flat type (i.e., k = 0 models).

Other K(π, 1) spaces include the vast set of compact hyperbolic manifolds H3/Γ, where here Γ

is a discrete torsion-free (i.e., no nontrivial element has finite order) co-compact subgroup of the Lie

group Isom+(H3) of orientation preserving isometries of H3 that, in fact, is Lie-group isomorphic to

the proper orthochronous Lorentz group SO+(3, 1). Each of these, individually, supports spatially

compactified versions of the FLRW spacetimes of constant negative (spatial) curvature (i.e., k = −1

models).

Additional K(π, 1) manifolds include the trivial circle bundles over higher genus surfaces Σp for

p ≥ 2 (where Σp designates a compact, connected, orientable surface of genus p) and nontrivial circle

bundles over Σp for p ≥ 1. Note that the trivial circle bundles S2×S1 and T2×S1 ≈ T3 are already

included among the previous prime factors discussed and that nontrivial circle bundles over S2 are

included among the spherical space forms S3/Γ for suitable choices of Γ. Still further examples of

K(π, 1) manifolds are compact 3-manifolds that fiber nontrivially over the circle with fiber Σp for

p ≥ 1. Any such manifold is obtained by identifying the boundary components of [0, 1]×Σp with a
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(nontrivial) orientation-reversing diffeomorphism of Σp.

It is known however that every prime K(π, 1) manifold is decomposible into a (possibly trivial

but always finite) collection of (complete, finite volume) hyperbolic and graph manifold compo-

nents. The possibility of such a (nontrivial) decomposition arises whenever the K(π, 1) manifold

under study admits a nonempty family {Ti} of disjoint embedded incompressible two-tori. An em-

bedded two-torus T2 is said to be incompressible if every incontractible loop in the torus remains

incontractible when viewed as a loop in the ambient manifold. A closed oriented 3-manifold G (pos-

sibly with boundary) is a graph manifold if there exists a finite collection {T ′i } of disjoint embedded

incompressible tori {T ′i } ⊂G such that each component Gj of G− ∪T ′i is a Seifert-fibered space (A

Seifert-fibered space is a 3-manifold foliated by circular fibers in such a way that each fiber has a

tubular neighborhood (characterized by a pair of co-prime integers) of the special type known as a

standard fibered torus). Thus a graph manifold is a union of Seifert-fibered spaces glued together

by toral automorphisms along toral boundary components. The collection of tori is allowed to be

empty so that, in particular, a Seifert-fibered manifold itself is a graph manifold. Decomposing a

3-manifold by cutting along essential two-spheres (to yield its prime factors) and then along in-

compressible tori, when present, are the basic operations that reduce a manifold to its ?geometric?

constituents [6]. The Thurston conjecture that every such 3-manifold can be reduced in this way

has now been established via arguments employing Ricci flow [5,64].

It may seem entirely academic to consider such general, ‘exotic’ 3-manifolds as the composite (i.e.,

nontrivial connected sum) ones described above as arenas for general relativity when essentially all of

the explicitly known solutions of Einstein‘s equations (in this spatially compact setting) involve only

individual, ‘prime factors’. As we shall see however some rather general conclusions are derivable

concerning the behaviors of solutions to the field equations on such exotic manifolds and astronomical

observations do not logically exclude the possibility that the actual universe could have such a global

topological structure. It is furthermore conceivable that the validity of central open issues in general

relativity like the cosmic censorship conjecture could depend crucially upon the spatial topology of

the spacetime under study.
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Chapter 1

Asymptotic behavior of a matter filled universe with exotic topology

The ADM formalism together with a constant mean curvature (CMC) temporal gauge is used to

derive the monotonic decay of a weak Lyapunov function of the Einstein dynamical equations in

an expanding universe with a positive cosmological constant and matter sources satisfying suitable

energy conditions. While such a Lyapunov function does not, in general, represent a true Hamil-

tonian of the matter-coupled gravity dynamics (unlike in the vacuum case when it does), it can

nevertheless be used to study the asymptotic behavior of the spacetimes. The Lyapunov function

attains its infimum only in the limit that the matter sources be ‘turned off‘ or, at least, become

asymptotically negligible provided that the universe model does not re-collapse and form singular-

ities. Later we specialize our result to the case of a perfect fluid which satisfies the desired energy

conditions. However, even in this special case, we show using Shutz’s velocity potential formalism

cast into Hamiltonian form that unlike the vacuum spacetimes (with or without a positive cosmo-

logical constant), construction of a true Hamiltonian for the dynamics in constant mean curvature

temporal gauge is difficult and therefore the Lyapunov function does not have a straightforward

physical interpretation. Nevertheless, we show, for the fluid with equation of state P = (γ − 1)ρ

(1 ≤ γ ≤ 2), that the general results obtained hold true and the infimum of the weak Lyapunov

function can be related to the Sigma constant, a topological invariant of the manifold. Utilizing

these results, some general conclusions are drawn regarding the asymptotic state of the universe and

the dynamical control of the allowed spatial topologies in the cosmological models.

Construction of a complete cosmological model of the universe entails the study of the full Einstein

equations with suitable matter sources. The so-called FLRW models are rather very special examples

of cosmological models, where one takes the cosmological principle literally that the universe ap-

pears spatially isotropic and homogeneous if viewed on a sufficiently coarse-grained scale [46,47,48].

However, the astronomical observations that motivate the cosmological principle are necessarily lim-

ited to a fraction (possibly small) of the entire universe and such observations are compatible with
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spatial metrics being locally but not globally homogeneous and isotropic. Once the restriction on

the ‘global’ topology is removed, there are compact variants of all of the basic FLRW cosmological

models, mathematically constructible by taking suitable compact quotients of the basic topologies

i.e., Euclidean 3-space E3, Hyperbolic 3-space H3, and 3-sphere S3. A natural question that then

arises is whether the governing principle of general relativity does indeed support such cosmologi-

cal models allowing ‘exotic’ topologies. Recent studies [107, 229] uncovered a surprising dynamical

mechanism at work within the framework of the vacuum Einstein flow (with and without a positive

cosmological constant Λ) that strongly suggests that many closed 3-manifolds that do not admit

a locally homogeneous and isotropic metric at all will nevertheless evolve in such a way as to be

asymptotically compatible with the observed homogeneity and isotropy of the universe. Such a strik-

ing result naturally necessitates the inclusion of suitable matter sources in the Einsteinian evolution

and the deduction of whether such a matter-filled universe does exhibit the asymptotic behavior

compatible with the cosmological observations. Numerous matter models such as dust [51], perfect

fluid [53], and Vlasov type matter [54], have been suggested for the cosmological models. In this

study, we will consider matter models in the ADM Einstein equations satisfying suitable energy

conditions.

The ADM formulation of the Einstein equations, developed by Arnowitt, Deser, and Misner [55],

was originally restricted to vacuum space-times. Taub [56] developed a gauge fixed Lagrangian

variational principle for the relativistic perfect fluid. Later Schutz [52] used velocity potential for-

mulation to construct a gauge free variational formalism which was still Lagrangian. Afterwards

Moncrief [131] and Moncrief & Demaret [132] developed the Hamiltonian formalism for a perfect

fluid and Moncrief & Demaret [132] used Taub’s co-moving gauge to derive a reduced Hamiltonian (a

true Hamiltonian of the dynamics) and it was applied for canonical quantization of general relativis-

tic configurations filled with perfect fluid using Dirac’s technique [59]. However, these studies do not

address the topology and the future stability of the universe filled with perfect fluid, and, in partic-

ular, do not focus on constructing a suitable cosmological model. On the other hand, [107,161,229]

constructed a reduced Hamiltonian (respecting the topological restriction) and showed its monotonic

decay in the expanding direction in a suitably chosen constant mean curvature gauge. The reduced

Hamiltonian (also a weak Lyapunov function), in these studies, seeks to attain its infimum and can

achieve its infimum asymptotically, yielding spacetimes admitting spatial slices locally compatible

with the cosmological principle. However, such studies are devoid of matter sources i.e., only vacuum

spacetimes (with and without cosmological constant) are considered.

It, therefore, seems necessary to focus on the construction of a suitable Lyapunov function and
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study its temporal behavior in a general framework which includes a matter source along with a

positive cosmological constant. We start with the ADM formalism including a general matter source

and later fix a temporal gauge namely the constant mean curvature gauge. Thereafter we study

several aspects of dynamical behavior associated with matter sources and assert that the obtained

results hold provided that the matter satisfies physically ‘reasonable’ energy conditions. Later on,

we specialize our results to a perfect fluid source (which satisfies the required energy conditions) and

obtain the asymptotic solutions for which the Lyapunov function stays constant in the limit where

the baryon density becomes negligible. Finally, we relate the asymptotic behavior of this Lyapunov

function to a topological property of the manifold thereby drawing some general conclusions regard-

ing possible ‘exotic’ topologies of the physical ‘3+1’ universe compatible asymptotically with the

cosmological principle.

1.1 ADM formalism with a Matter source

The ADM formalism splits the spacetime described by an ‘n+1’ dimensional Lorentzian manifold

M̃ into R ×M with each level set {t} ×M of the time function t being an orientable n-manifold

diffeomorphic to a Cauchy hypersurface (assuming the spacetime admits a Cauchy hypersurface) and

equipped with a Riemannian metric. Such a split may be executed by introducing a lapse function

N and shift vector field X belonging to suitable function spaces and defined such that

∂t = Nn̂+X (1.1)

with t and n̂ being time and a hypersurface orthogonal future directed timelike unit vector i.e.,

g̃(n̂, n̂) = −1, respectively. The above splitting writes the spacetime metric g̃ in local coordinates

{xα}nα=0 = {t, x1, x2, ...., xn} as

g̃ = −N2dt⊗ dt+ gij(dx
i +Xidt)⊗ (dxj +Xjdt) (1.2)

and the stress-energy tensor as

T = En⊗ n + J� n + S, (1.3)

where J ∈ X(M), S ∈ S2
0(M), and A�B = 1

2 (A⊗B+B⊗A). Here, X(M) and S2
0(M) are the space

of vector fields and the space of symmetric covariant 2-tensors, respectively. The choice of a spatial
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slice in the spacetime leads to consideration of the second fundamental form kij which describes how

the slice is curved in the spacetime. The trace of the second fundamental form (trgk = τ) is the

mean extrinsic curvature of the slice, which will play an important role in the analysis. Under such

decomposition, the Einstein equations

Rµν −
1

2
Rgµν + Λgµν = Tµν (1.4)

take the form (8πG = c = 1)

∂tgij = −2Nkij + LXgij , (1.5)

∂tkij = −∇i∇jN +N{Rij + τkij − 2kikk
k
j

− 1

n− 1
(2Λ− S + E)gij − Sij}+ LXkij

along with the constraints (Gauss and Codazzi equations)

R(g)− |k|2 + τ2 = 2Λ + 2E, (1.6)

∇jkji −∇iτ = Ji, (1.7)

where S = gijSij . The vanishing of the covariant divergence of the stress energy tensor i.e., ∇νTµν =

0 is equivalent to the continuity equation and equations of motions of the matter

∂E

∂t
= LXE +NEτ −N∇iJ i − 2J i∇iN +NSijkij , (1.8)

∂J i

∂t
= LXJ

i +NτJ i −∇j(NSij) + 2NkijJ
j − E∇iN.

Note that there are no evolution equations for the lapse function and the shift vector field as a

consequence of gauge freedom. In a sense, the original Einstein equations (before the ADM split)

consists of 6 evolution equations and 4 constraints and therefore the equations for lapse and shift

should be obtained by fixing the gauge. In order to choose a time coordinate and assign uniqueness

to the spatial slice, gauge fixing is required. Here we choose ‘constant mean extrinsic curvature’

(CMC) as the temporal gauge which yields an elliptic equation for the lapse function. Later on, we

will select a suitable spatial gauge. CMC gauge reads

τ = trgk = monotonic function of t alone (1.9)
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so τ is thus constant throughout the hypersurface and therefore can play the role of time. Using the

evolution and constraint equations, one may obtain the following equation for the lapse function

∂τ

∂t
= ∆gN + {|k|2 +

S

n− 1
+
n− 2

n− 1
E − 2Λ

n− 1
}N + LXτ (1.10)

which after implementing CMC gauge (∂iτ = 0) yields

∂τ

∂t
= ∆gN + {|k|2 +

S

n− 1
+
n− 2

n− 1
E − 2Λ

n− 1
}N,

where |k|2 = kijk
ij and the Laplacian is defined as ∆g = −∇[g]i∇[g]i and therefore has positive

spectrum on compact connected manifolds.

The evolution and constraint equations derived here are purely geometric and therefore one has

the freedom to choose the topology of the spatial slice M . Different choices would lead to different

cosmological models. Of course, not all topologies admit metrics that satisfy the cosmological princi-

ple. Nevertheless, we will consider a general topology to start with so that the universe may not have

been isotropic and homogeneous (locally) throughout its complete course of evolution. Thurston’s

geometrization conjecture [61, 62, 63] and its subsequent proof together with the Poincaré conjec-

ture [61,64,65] and its proof allow one a complete classification of compact, orientable 3-manifolds.

Leaving aside the so-called ‘trivial’ manifolds diffeomorphic to S3, the remaining possibilities consist

of an infinite list of nontrivial manifolds, each of which is diffeomorphic to a finite connected sum of

the following form [107,187,229]

S3/Γ1#..#S3/Γk#(S2 × S1)1#..#(S2 × S1)l#K(π, 1)1#..#K(π, 1)m, (1.11)

where k, l, and m are non-negative integers satisfying k+ l+m ≥ 1 and if either k, l or m equals to

zero, then terms of that type do not occur. Here each Γk (for k ≥ 1) is a nontrivial (6= I) subgroup of

SO(4) acting freely and properly discontinuously on S3 and the resulting manifold is S3/Γk (see [66]

and [67] for free and properly discontinuous actions). S2×S1 denotes the wormhole and supports only

anisotropic (even locally) homogeneous metrics and therefore is not compatible with the cosmological

observations. The remaining K(π, 1) manifolds are of interest to us and defined to have non-trivial

fundamental group while the rest of their higher homotopy groups vanish [67, 68]. A vast set of

compact hyperbolic manifolds (and therefore supporting locally homogeneous and isotropic metrics)

fall under this category. In this article, we will focus on manifolds of negative Yamabe type i.e., the

scalar curvature R(g) of every Riemannian metric g on M is negative somewhere (for details about
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negative Yamabe manifolds, the reader is referred to [107,187,229]). Note that non-flat type K(π, 1)

manifolds are of negative Yamabe type and presence of a single negative Yamabe type manifold in

the connected sum decomposition written as (1.11) turns the whole manifold into one of negative

Yamabe type. It is also known that every prime K(π, 1) manifold is decomposable into a (finite)

collection of (complete, finite volume) hyperbolic and graph manifolds (see introduction of [229] for

the detailed description of a graph manifold). This property of K(π, 1) manifold will turn out to be

important later in our discussion. We will, throughout our analysis, consider an ‘n+1’ dimensional

universe and only later specialize our results to the physical ‘3+1’ universe.

Utilizing the ‘CMC’ condition, the momentum constraint reduces to

∇[g]jk
j
i = Ji, (1.12)

the solution of which may be written as

kij = Ktri
j +

τ

n
δij (1.13)

with Ktr being traceless with respect to g i.e., Ktr
ij g

ij = 0 (and so with respect to any metric

conformal to g). Note that Ktr is obtained by solving the following equation

∇[g]jK
trj
i = Ji. (1.14)

The Hamiltonian constraint (4.19) may be written using the solution of momentum constraint (3.23)

as follows

R(g) = |Ktr|2 + 2E − n− 1

n
(τ2 − 2nΛ

n− 1
).

Since we are primarily interested in the case Λ > 0, it might appear that τ2− 2nΛ
n−1 could be negative.

But then the Hamiltonian constraint would imply that if the energy density E is non-negative,

then R(g) ≥ 0 everywhere on M which is impossible for a manifold of negative Yamabe type.

Let’s consider the energy condition and establish an allowed range for the constant extrinsic mean

curvature τ which is now playing the role of time. The weak energy condition yields

T(n,n) ≥ 0, (1.15)

E ≥ 0 (1.16)
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that is to any time-like observer the energy density is nonnegative and as such physically relevant

classical matter sources are expected to satisfy this energy condition. We will only consider matter

sources with point-wise nonnegative energy density throughout the spacetimes. Therefore a universe

filled with matter satisfying the weak energy condition shall always have

τ2 − 2nΛ

n− 1
> 0, (1.17)

and for expanding models (∂τ∂t > 0),

−∞ < τ < −
√

2nΛ

n− 1
. (1.18)

Since we are primarily interested in the asymptotic behavior of the ‘expanding’ universe model

(the physically relevant case), we set the range of τ to be (−∞,−
√

2nΛ
n−1 ) once and for all. We turn

our attention to the Lapse equation in an expanding universe model by setting

∂τ

∂t
=

n

2(n− 1)
(τ2 − 2nΛ

n− 1
)
n
2 > 0 (1.19)

whose solution τ = τ(t) plays the role of time from now onwards. Note that (1.19) is a valid ‘choice’

of a time function since τ(t) is monotonic and chosen to be constant on a Cauchy hypersurface

(CMC gauge). The lapse equation is explicitly written in this time co-ordinate as

∆gN + (|Ktr|2 + (
τ2

n
− 2Λ

n− 1
) +

1

n− 1
(S + (n− 2)E))N (1.20)

=
n

2(n− 1)
(τ2 − 2nΛ

n− 1
)
n
2 .

In order for this equation to have a unique positive solution, the kernel of the elliptic operator

{∆g + (|Ktr|2 + (
τ2

n
− 2Λ

n− 1
) +

1

n− 1
(S + (n− 2)E))I} (1.21)

defined between suitable function spaces, must be trivial. Here I denotes the identity operator. If

φ belongs to the kernel i.e., it satisfies

{∆g + (|Ktr|2 + (
τ2

n
− 2Λ

n− 1
) +

1

n− 1
(S + (n− 2)E))I}φ = 0,

then after multiplying both sides with φ, integration over the closed orientable manifold M and
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applying Stokes’ theorem one gets

∫
M

{∇[g]iφ∇[g]iφ+ (|Ktr|2 + (
τ2

n
− 2Λ

n− 1
) (1.22)

+
1

n− 1
(S + (n− 2)E))φ2}µg = 0,

where µg =
√

det(g)dx1 ∧ dx2 ∧ dx3 ∧ ..... ∧ dxn is the volume form on M . Existence of a trivial

kernel i.e., φ ≡ 0 throughout the whole of M , is implied by

(n− 2)E + S ≥ 0. (1.23)

Therefore, for a universe filled with matter sources of everywhere non-negative energy density, an

additional energy condition needs to be satisfied in order to obtain a unique solution for the lapse

equation. Note that matter satisfying the strong energy condition

(Tµν −
1

2
Tgµν)nµnν ≥ 0, (1.24)

E + S ≥ 0

falls under this category. In a sense the ‘weak+strong energy condition’⊆ {E ≥ 0, S + (n − 2)E ≥

0, n ≥ 3} and therefore such sources are allowed for our analysis. Of course, most physically relevant

sources do satisfy the property of non-negative energy density (weak energy condition) and the

attractive nature of gravity (strong energy condition). Several known sources of physical interest

satisfy weak and strong energy conditions. These include for example perfect fluid and Vlasov matter

(see [54,70,71,72,73] for details about Vlasov matter).

We have established the existence of a unique solution of the lapse equation provided that the

matter sources in the universe satisfy a suitable energy condition. A standard maximum principle

argument for the elliptic equation yields the following estimate of the lapse function

0 <

n
2(n−1) (τ2 − 2nΛ

n−1 )
n
2(

( τ
2

n −
2Λ
n−1 ) + sup(|Ktr|2 + 1

n−1 (S + (n− 2)E))
) ≤ N ≤ (1.25)

n2

2(n− 1)
(τ2 − 2nΛ

n− 1
)
n
2−1.

The important thing here is to note that the lapse function is positive for an expanding universe

model. The results obtained so far will be sufficient to study the dynamical behavior in terms of a

weak Lyapunov function.
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1.2 A weak Lyapunov function and its monotonic decay

[187, 229] constructed a reduced phase space as the cotangent bundle of the higher dimensional

analogue of the Teichmüller space and obtained the following true Hamiltonian of the dynamics

through a conformal technique

Hreduced :=
2(n− 1)

n

∫
M

∂τ

∂t
µg. (1.26)

In that particular case of a vacuum limit, it is indeed possible to construct such a reduced Hamil-

tonian in ‘CMC’ gauge, which also acts as a weak Lyapunov function. However, as will be shown

in the case of a simple matter source, the perfect fluid, the construction of a reduced Hamiltonian

using a conformal diffeomorphism is restricted by certain conditions described later. However, for

the purpose of the Einsteinian dynamics, we do not need to construct a reduced phase space (and

associated Hamiltonian) but rather a suitable Lyapunov function and study its dynamical behavior.

Let us consider the rescaled volume functional as the weak Lyapunov function and call it L(g, k)

L(g, k) =
2(n− 1)

n

∫
M

∂τ

∂t
µg. (1.27)

We call L(g, k) a weak Lyapunov function because, following the expression of ∂τ
∂t , it controls the

H1×L2 norm of the data (g,k) while the desired norm would be Hs×Hs−1, s > n
2 +p for some p ≥ 1.

Note that we do not, at this point, have a local existence theorem of the Cauchy problem of the

Einstein system in exotic spatial topologies (negative Yamabe manifolds in this case) with arbitrary

matter source satisfying the desired energy conditions. For the vacuum case, Bel-Robinson energy is

used by [151], which controls the H2×H1 norm of the data. Recently, [79] proved nonlinear stability

results for small data perturbations of FLRW background cosmological model, which of course deals

only with special topologies (S3,T3, and H3). At the moment, let us focus on the time evolution of

the weak Lyapunov function namely the rescaled volume functional. Due to its weak property, we

would not be able to state a theorem concerning the stability (either Lyapunov or asymptotic) of

the spacetime on the basis of its time evolution. Nevertheless, we will be able to obtain important

physical results related to the asymptotic behavior of the spacetime (in the expanding direction)

utilizing the limiting behavior of the Lyapunov function. The time evolution of this function may
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be obtained as

dL(g, k)

dt
=

∫
M

δL(g, k)

δg
∂tg +

∫
M

δL(g, k)

δk
∂tk,

=
2(n− 1)

n

∫
M

(
∂2τ

∂t2
+

1

2

∂τ

∂t
gij

∂gij
∂t

)
µg,

=

∫
M

τ(τ2 − 2nΛ

n− 1
)
n
2−1(n∆g + n|Ktr|2 + (τ2 − 2nΛ

n− 1
)

+
n

n− 1
(S + (n− 2)E))N + (τ2 − 2nΛ

n− 1
)
n
2

∫
M

(−Nτ +∇iXi))µg,

= τ(τ2 − 2nΛ

n− 1
)
n
2−1

∫
M

(n|Ktr|2 + (τ2 − 2nΛ

n− 1
)

+
n

n− 1
(S + (n− 2)E)− (τ2 − 2nΛ

n− 1
))Nµg,

= nτ(τ2 − 2nΛ

n− 1
)
n
2−1

∫
M

(|Ktr|2 +
1

n− 1
(S + (n− 2)E))Nµg, (1.28)

where we have used the identity

∂2τ

∂t2
=

n

2(n− 1)
τ(τ2 − 2nΛ

n− 1
)
n
2−1(n∆g + n|Ktr|2 (1.29)

+(τ2 − 2nΛ

n− 1
) +

n

n− 1
(S + (n− 2)E))N,

obtained using the lapse equation and the CMC gauge condition (∂iτ = 0). We have also used

the Stokes’ theorem to eliminate the covariant divergence terms in the integral. Along the solution

curve in the expanding direction (∂τ∂t > 0 and −∞ < τ < −
√

2nΛ
n−1 ), therefore, the Lyapunov function

monotonically decays i.e.,

dL(g, k)

dt
< 0 (1.30)

and only attains its infimum (i.e., dLdt = 0) precisely when the following conditions are met

Ktr = 0, (1.31)

S + (n− 2)E = 0. (1.32)

Substitution of the first condition into the momentum constraint (3.23) immediately yields

J i ≡ 0 (1.33)
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as well as Y ≡ 0 everywhere on M . In addition to satisfying E,S + (n − 2)E ≥ 0, if the matter

sources also satisfy the strong energy condition i.e., (S+E) ≥ 0, then for n ≥ 3 (the cases of primary

interest), the second condition for the infimum of the Lyapunov function translates to

S + E = 0, (1.34)

E = 0 (1.35)

and therefore

S = 0. (1.36)

This result, therefore, states that the weak Lyapunov function namely the rescaled volume is mono-

tonically decaying in the direction of cosmological expansion and approaches its nfimum only in the

limit that the matter sources be ‘turned off’ or at least become asymptotically negligible. In the

limit of turned off matter, one may utilize the evolution and constraint equations by substituting

kTT = ∂tk
TT = 0 to obtain the background warped product spacetimes

ds2 = − n2

(τ2 − 2nΛ
n−1 )2

dτ2 +
n

(n− 1)(τ2 − 2nΛ
n−1 )

γijdx
idxj , (1.37)

with R(γ) = −1. The vital question is whether the Lyapunov function L ever attains its infimum.

In the expanding universe model, if the matter sources do not re-collapse to form a singularity,

then the matter density falls off and in the limiting case, may be considered to be negligible. We

will indeed show such asymptotic decay of the matter density in case of a perfect fluid. Observing

the monotonic decay of the Lyapunov function along a solution curve, one may be tempted to

conjecture the asymptotic stability of the matter filled spacetimes. However, we remind the reader

again that such property only provides a weak notion of stability if the matter sources do not develop

singularities. Even a vacuum spacetime might be able to go singular that is the pure gravity can

collapse to form singularity before the spatial volume of the universe reaches infinity. As of now,

we do not yet have a global existence theorem for even a vacuum spacetime. Now we specialize our

results to the perfect fluid matter source.
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1.3 Perfect Fluid

The perfect fluid stress-energy tensor

Tµν = (P + ρ)uµuν + Pgµν (1.38)

yields

E = T (n,n) = (P + ρ)(g̃(u, n))2 − P (1.39)

= (P + ρ)(Nu0)2 − P ≥ 0 (1.40)

assuming the equation of state P = (γ − 1)ρ, 1 ≤ γ ≤ 2, normalization g̃(u, u) = −1, and a positive

energy density ρ. The strong energy condition requires

(nP + ρ) ≥ 0 (1.41)

which is clearly satisfied as well. Therefore, satisfying both of these energy conditions, a perfect fluid

falls under the category for which our analysis holds true. Through a conformal technique, we will

obtain the infimum of the weak Lyapunov function described in the previous section. The conformal

technique may not be applied to any matter source in a unique way in general as the conformal

rescaling of at least the energy density would be different for a different choice of sources. As a

consequence, the resulting nonlinear elliptic equation namely the Lichnerowicz equation arising from

the rescaling of Hamiltonian constraint, which will play the central role in obtaining the infimum

of the Lyapunov function, may not have a unique positive solution. Nevertheless, as we will see

shortly, one may obtain a suitable conformal rescaling of matter variables in the case of a perfect

fluid and therefore, the subsequent analysis will follow. Using the momentum constraint, the second

fundamental form may be written as follows (1.13)

Kij = Ktrij +
τ

n
gij , (1.42)

where gijK
trij = 0, but ∇jKtrij = J i under ths CMC condition (∂iτ = 0). We use the conformal

transformation as described in [107, 161, 229] only replacing the momenta conjugate to the metric

g by the second fundamental form through a Legendre transformation π = −µg(k − (trgk)g). The
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conformal transformation reads

(gij ,K
trij) = (ψ

4
n−2 γij , ψ

− 2(n+2)
n−2 κtrij), (1.43)

where γ and κtr are the scale-free fields satisfying γijκtrij = 0 with γ ∈ M−1 and ψ : M → R>0.

Here M−1 is defined as M−1 = {γ is a Riemannian metric on M |R(γ) = −1}. In reality, the true

dynamics assumes a metric lying in the orbit spaceM−1/D0, D0 being the group of diffeomorphisms

(of M) isotopic to identity. This is a consequence of the fact that if γ ∈ M−1, k,N , and X solve

the Einstein equations, so do (φ−1)∗γ, (φ−1)∗k, (φ−1)∗N = N ◦ φ−1, and φ∗X, where φ ∈ D0 and

∗, and ∗ denote the pullback and push-forward operations on the cotangent and tangent bundles

of M , respectively. To avoid technical complexities, the calculations may be restricted to M−1 as

the entities we are interested in (such as µγ =
√

det γijdx
1 ∧ dx2...∧ dxn) are D0 invariant yielding

equivalence between M−1 and M−1/D0 (only in this particular occasion). Note that Ktr may be

decomposed into a transverse-traceless part (with respect to g) and a Conformal Killing tensor part

Ktrij = KTTij + ψ
−2n
n−2 (LY g −

2

n
∇mY mg)ij , (1.44)

where Y ∈ X(M). Under this conformal transformation, the components of the conformal Killing

tensor (LgY − 2
n∇mY

mg) transforms as follows

(LgY −
2

n
∇mY mg)ij = ψ

−4
n−2 (LγY −

2

n
∇mY mγ)ij (1.45)

yielding a consistent transformation of the transverse-traceless tensor KTT , that is, KTTij =

ψ−
2(n+2)
n−2 κTTij . Therefore, we may write

κtrij = κTT + (LγY −
2

n
∇mY mγ)ij (1.46)

The Hamiltonian constraint, under this conformal transformation, yields the Lichnerowicz equa-

tion

∆γψ −
n− 2

4(n− 1)
ψ − (n− 2)

4(n− 1)
ψ
−3n+2
n−2 |κTT + (LγY −

2

n
∇mY mγ)|2 (1.47)

+
n− 2

4n
(τ2 − 2nΛ

n− 1
)ψ

n+2
n−2 − (n− 2)E[g]

2(n− 1)
ψ
n+2
n−2 = 0,

where E[g] denotes the energy density without conformal scaling. Note that we can not analyze the
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Lichnerowicz equation without performing suitable scaling of E[g] which we will precisely do in the

case of a perfect fluid. But first, the momentum constraint after the rescaling reads

∇[γ]jκ
trij = ψ

2(n+2)
n−2 J [g]i, (1.48)

where J [g]i is the momentum density without conformal scaling. Now of course, if one chooses the

following scaling for the momentum density (York scaling [223])

J [g]i = ψ
−2(n+2)
n−2 J [γ]i, (1.49)

the momentum constraint becomes decoupled from the Lichnerowicz equation i.e.,

∇[γ]jκ
trij = J [γ]i. (1.50)

Now upon substituting κtr from equation (1.46) into equation (1.50) yields an elliptic equation for

Y

−∆γY
i +R[γ]imY

m + (1− 2

n
)∇[γ]i(∇[γ]mY

m) = J [γ]i. (1.51)

The vector field Y (not a vector density) therefore soley depends on the metric γ and the matter

source J [γ], not on the conformal function ψ. Analysis completed up to now holds for any general

matter source, however, in order to obtain a rescaling of the energy density, we need to know the

matter type. In the case of a perfect fluid, the momentum density is expressible in terms of the

basic variables P and ρ which in turn yields the energy density E. Let us split the n + 1-velocity

vector (uµ) of the fluid into a hypersurface parallel component

v = u+ n+1g(u,n)n, (1.52)

and its orthogonal complement −n+1g(u,n)n. Here n+1g and n denote the spacetime metric and

hypersurface orthogonal future directed unit vector, respectively. Note that vi = ui, but vi 6= ui. In

the ADM language, the unscaled matter momentum density and energy density may be written as

J [g]i = (P + ρ)Nu0vi, (1.53)

E[g] = (P + ρ)(Nu0)2 − P. (1.54)
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Now, utilizing the normalization condition gµνu
µuν = −1 in conjunction with the spliting (1.52),

we obtain

−(Nu0)2 + gijv
ivj = −1. (1.55)

Since, the right hand side of this equation is a constant (and therefore conformally invariant), each

term in the left hand side has to be conformally invariant leading to the following scaling of Nu0

and vi

(Nu0)g = (Nu0)γ , (1.56)

vig = ψ−
2

n−2 viγ , (1.57)

which together with the expressions of matter energy and momentum density (1.53-1.54) yields the

scaling for P, ρ, and E[g]

(P + ρ)g = ψ−
2(n+1)
n−2 (P + ρ)γ , (1.58)

E[g] = ψ−
2(n+1)
n−2 E[γ]. (1.59)

Rescaling of the matter energy density E[g] now leads to the proper Lichnerowicz equation

∆γψ −
n− 2

4(n− 1)
ψ − (n− 2)

4(n− 1)
ψ
−3n+2
n−2 |κTT + (LY γ −

2

nµγ
∇mY mγ)|2 (1.60)

− (n− 2)E[γ]

2(n− 1)
ψ−

n
n−2 +

n− 2

4n
(τ2 − 2nΛ

n− 1
)ψ

n+2
n−2 = 0,

a solution of which may be obtained by the standard sub and super solution technique [223, 224].

Note that the exponent of ψ in the term (n−2)E[γ]
2(n−1) ψ−

n
n−2 is crucial in proving the uniqueness and

existence of solutions to the Lichnerowicz equation and therefore, the rescaling of the energy density

E[g] is vital. Now that we have obtained a Lichnerowicz equation for the gravity coupled fluid

dynamics, we may explicitly obtain the infimum of the weak Lyapunov function. A straightforward

maximum principle argument, applied to the Lichnerowicz equation, shows that the unique positive

solution ψ = ψ(τ, γ, κTT , Y ) satisfies

ψ
4

n−2 ≥ n

n− 1

1

(τ2 − 2nΛ
n−1 )

(1.61)
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with equality holding everywhere on M iff

κtr = κTT + {LY γ −
2

n
∇mY mγ} ≡ 0, (1.62)

E[γ] ≡ 0 (1.63)

on M . Therefore the asymptotic analysis becomes straightforward as the infimum of the Lyapunov

function is attained precisely when the previous two conditions are met. In the limit of negligible

matter (matter turned off condition), the Lyapunov function may be written in terms of the rescaled

variables as follows

L(τ, γ, κtr = 0) =

∫
M

(τ2 − 2nΛ

n− 1
)n/2ψ2n/(n−2)(τ, γ, κtr = 0)µγ . (1.64)

The infimum of the Lyapunov function over the space M−1/D0 × S0
2(M) (S0

2(M) being the space

of symmetric covariant 2-tensors) may be computed as

inf
M−1/D0×S0

2(M)
L(τ, γ, κtr) (1.65)

= inf
M−1/D0×S0

2(M)

∫
M

(τ2 − 2nΛ

n− 1
)n/2ψ2n/(n−2)(τ, γ, κtr)µγ ,

= (
n

n− 1
)n/2 inf

M−1/D0

∫
M

µγ ,

= (
n

n− 1
)n/2 {−σ(M)}n/2 ,

where σ(M)(< 0) is a topological invariant (higher dimensional analog of the Euler characteristics of

a higher genus surfaces) of the manifold M (of negative Yamabe type considered here). For extensive

details about the σ−constant (also known as Yamabe invariant) see [82, 83, 161]. For the purpose

here, it suffices to know that it is a topological invariant.

The most interesting case here is the physical universe i.e., 3 + 1 case. Utilizing Ricci-flow

techniques, the σ constant (and therefore the infimum of the weak Lyapunov function) of the most

general compact 3-manifolds of negative Yamabe type has been computed and as such is given by

|σ(M)| = (vol−1H)2/3, (1.66)

where vol−1H is the volume of the hyperbolic part of M computed with respect to the hyperbolic

metric normalized to have scalar curvature −1 [84,85]. Therefore, apart from the hyperbolic family of

K(π, 1) manifolds, the remaining parts of M i.e., wormholes (S2×S1), spherical space forms (S3/Γk),
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and the graph manifolds (non-hyperbolic part of K(π, 1) manifold) do not contribute to the σ

constant. Hence, they do not contribute to the infimum of the weak Lyapunov function as well. Since

the weak Lyapunov function is geometrically the rescaled volume ofM (1.27), following its monotonic

decay towards an infimum dominated only by the hyperbolic component of the spatial manifold, one

is led to the natural conclusion that the Einstein flow in the presence of a suitable matter sources

and positive cosmological constant drives the universe towards an asymptotic state that is volume

dominated by the hyperbolic components equipped with a locally homogeneous and isotropic metric.

Such results while seeming innocuous may have tremendous cosmological significance. For example,

let us consider the case discussed below. A well-known result in topology is that the presence of a

single negative Yamabe type component in the connected sum makes the whole manifold negative

Yamabe (one may find a unique solution to the Yamabe problem) and thus the asymptotic analysis

described previously holds (except stand alone flat types which are zero Yamabe type). Spaces like

de-sitter (S3 with a positive cosmological constant) or the spherical space forms (S3/Γ,Γ ⊂ SO(4))

or the Schwarchild-deSitter spaces (S2×S1) may individually expand to infinity (proven results, see

e.g., [88, 223]), however, while present in a connected sum with a negative Yamabe type summand,

may be asymptotically volume dominated by hyperbolic parts. Let’s consider the spherical space

form case, for example. The spatial topology is S3/Γ and the connected sum with a negative

Yamabe manifold M is still topologically a negative Yamabe manifold. As a consequence, the

individual ‘expansion to infinity’ property of the de-Sitter spaces (or its quotients) is sort of ‘killed’

by the hyperbolic parts present in M and therefore becomes asymptotically negligible. [93] showed

that spherical space forms (S3/Γ) and handle (S2 × S1) topologies re-collapse through formation

of maximal hypersurfaces provided a number of conditions on matter sources and spatial geometry

are satisfied (without a cosmological constant; see their theorem 3). Later [94] studied the closed

universe re-collapse conjecture with the same spatial topologies. This provides a rough notion that

these topologies may not contribute to the asymptotic state of the universe. However, in the presence

of a positive cosmological constant, spherical space forms (generalized de-Sitter spaces) may avoid

formation of a maximal hypersurface and continue to expand. Our result, in this particular aspect,

becomes interesting in a sense that even if S3/Γ or S2 × S1 individually may expand forever (with

a positive cosmological constant present), while present in a connected sum decomposition with

hyperbolic manifolds, do not contribute to the asymptotic volume of the spatial universe due to the

reason discussed previously. Now, compact quotients of hyperbolic space H3 by faithful and discrete

subgroups of SO+(3,1) provide an ample supply of compact hyperbolic manifolds equipped with

locally homogeneous and isotropic metric. Therefore, the cosmological model is potentially enriched
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(and generalized in a certain sense) by including such rather exotic topologies capable of assuring

that the cosmological principle holds.

Following the previous analysis, two natural questions arise. Firstly, whether, as in the vacuum

case (with or without a positive cosmological constant), the Lyapunov function has a physical in-

terpretation as a Hamiltonian of the reduced dynamics that is, can one cast the problem in such a

way that the reduced Hamiltonian of the dynamics naturally turns out to be the rescaled volume

functional. Secondly, how does one justify the matter being asymptotically negligible? We will try

to answer both of these question by invoking the variational formulation of the gravity coupled fluid

dynamics developed by [52], [132], [131]. A reduced Hamiltonian was constructed by [132] in co-

moving spatial gauge and a time coordinate condition, where the lapse function and shift vector field

were obtained through algebraic equations. Here, however, we explicitly worked in constant mean

curvature gauge and derived the monotonic decay of the weak Lyapunov function and therefore the

existence of a reduced Hamiltonian in this gauge remains to be checked. Later utilizing the CMC

temporal gauge together with a co-moving gauge, we will show that indeed the matter density falls

off asymptotically in an expanding universe model. We will explicitly work in a ‘3+1’ dimensional

universe.

Using Schutz’s velocity potential technique [52], we will attempt to construct a reduced Hamil-

tonian in CMC gauge. We just provide a very brief description of the Schutz’s velocity potential

formulation, which is necessary for our purpose. For complete details, the reader is referred to [52].

The 4-velocity of the fluid uµ may be written in terms of the five velocity potentials φ, α, β, θ,

and S as

uµ =
1

h
(∂µφ+ α∂µβ + θ∂µS), (1.67)

where h is the specific enthalpy of the fluid

h =
P + ρ

n
, (1.68)

n being the baryon number density. From the equation of state

P = P (h, S), (1.69)
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we have

dP = ndh− nTdS, (1.70)

T being the temperature. The equations of motions are obtained as

uµ∂µφ = −h, (1.71)

uµ∂µα = 0, (1.72)

uµ∂µβ = 0, (1.73)

uµ∂µθ = T, (1.74)

uµ∂µS = 0 (1.75)

along with the continuity equation

∇µ(nuµ) = 0, (1.76)

where the covariant derivative is with respect to the spacetime metric (e.o.m along with continuity

equation are equivalent to the vanishing of the covariant divergence of the stress energy tensor).The

conjugate momenta corresponding to the scalar fields qη ≡ (φ, α, β, θ, S) are as follows [52]

pφ = −nNu0, (1.77)

pα = 0, (1.78)

pθ = 0, (1.79)

pβ = αpφ, (1.80)

pS = θpφ. (1.81)

Here, note that only α, β, and pφ are independent. Using Dirac’s technique (for the degenerate case

as the one presented here) the fluid Hamiltonian density Hf is calculated, which together with the

gravitational Hamiltonian density provide the total Hamiltonian density of the dynamics

Htotal = Hgravity + µgHf . (1.82)

The lapse function N and shift vector field X are included in the total Hamiltonian density, which
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will act as Lagrange multipliers in the ADM action. Using the total Hamiltonian density, the fluid-

ADM action may be written in the following form

SADM =

∫
I⊂R

dt

∫
M

(πij
∂gij
∂t

+
∑
η

pη q̇η −Htotal)dnx,

where πij , the gravitational momentum conjugate to gij , is obtained from the second fundamental

form kij through the legendre transformation πij = −µg(kij − (trgk)gij), and qη and pη are defined

before. Varying the acting with respect to the Lagrange multipliers the lapse N and the shift Xi,

one immediately obtains the Hamiltonian and momentum constraints of the fluid coupled gravity

dynamics.

When, both of these constraints are satisfied, the term H totally disappears yielding the following

reduced action

Sreduced =

∫
I⊂R

dt

∫
M

(πij
∂gij
∂t

+
∑
η

pη q̇η)d3x.

Now we peform the Hamiltonian reduction via conformal transformation. Following the conventional

scaling of the metric and the momenta [107,161,229],

(g, πTT ) = (ψ4γ, ψ−4pTT ), (1.83)

the conformal Killing tensor (LY g)ij − 2
3 (∇mY m)gij transforms as

(LY g)ij − 2

3
(∇mY m)gij = ψ−4((LY γ)ij (1.84)

−2

3
(∇[γ]mY

m)γij).

Using the Legendre transformation πij = −µg(kij − (trgk)gij) and the equations (1.42-1.44), the

gravitational momenta πij may be written as follows

πij = πTTij +
trgπ

3
gij − ψ−6µg[(LY g)ij − 2

3
(∇mY m)gij ], (1.85)

where πTT is transverse-traceless with respect to g i.e., πTTijgij = 0 = ∇[g]jπ
TTij .
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Using these conformal transformations, the reduced action becomes

Sreduced =

∫
I⊂R

dt

∫
M

(pTTij
∂γij
∂t
− 4µg

3

∂τ

∂t
(1.86)

−((LY γ)ij − 2

3
∇[γ]mY

mγij)
∂γij
∂t

µγ

+
∑
η

pη q̇η)d3x,

where we have left the fluid variables unscaled intentionally for reasons which will be discussed

now. Note that even though Schutz’s formalism is only true for ‘3+1’ spacetimes, the result we

are about to state holds for any higher dimension irrespective of the fluid source. That is any

non-vanishing momentum flux density J i leads to the following problem while trying to construct

an unconstrained Hamiltonian. Following the conformally scaled reduced action, one immediately

observes that in order to obtain a reduced Hamiltonian, one must reduce the action to the form

similar to
∫
I×M dtd3x(πTT∂tγ +

∑
η p

η q̇η −Hreduced) and therefore, one need to somehow make the

term
∫
M

((LY γ)ij− 2
n∇[γ]mY

mγij)
∂γij
∂t µγ disappear. In order to do so, we must work in a slice of the

D0 action onM−1 i.e.,
∂γij
∂t =

∂γij
∂ra ṙ = lTTij ṙ, for some γ−transverse-traceless covariant 2-tensor l and

co-ordinates {ra} on some local chart ofM−1/D0. However, for dimension n > 2, such procedure is

restricted as a consequence of the absence of a globally integrable distribution i.e., a slice of the D0

action is not a submanifold ofM−1 in general (and therefore is not integrable). For 2 dimensions, the

Teichmüller space has a nice global manifold structure (as a submanifold ofM−1) and thus is globally

integrable. Of course, in the absence of a matter source (with or without cosmological constant), the

vector field Y, the generator of the diffeomorphism of M vanishes due to the momentum constraint

and the weak Lyapunov function 4
3

∫
M

∂τ
∂t µg becomes a reduced Hamiltonian.

Even though we could not obtain a reduced Hamiltonian in CMC gauge, we may show using CMC

time gauge and a co-moving gauge, that the matter sources (perfect fluid), in an expanding universe,

becomes asymptotically negligible. Let us write the time and spatial slice gauge explicitly first. In

‘3+1’ CMC gauge, a time coordinate is chosen as (consistent throughout the study)

∂τ

∂t
=

3

4
(τ2 − 3Λ)

3
2 (1.87)

along with the co-moving spatial gauge condition

ui = 0, (1.88)

21



which through the normalization condition gµνu
µuν = −1 yields

u0 =
1√

N2 −XiXi
(1.89)

with N2 > XiX
i. Noting that both E and S are nonnegative for perfect fluids, an estimate of N

follows immediately from (1.25)

0 <
9
4 (τ2 − 3Λ)

1
2(

1 + 1
τ2−3Λ sup(|Ktr|2 + 1

2 (S + 2E))
) ≤ N ≤ 9

4
(τ2 − 3Λ)

1
2 .

Since the condition N2 > XiX
i has to be satisfied point-wise through the spacetime, XiX

i may be

written in terms of N2 as CN2 for a suitable 1 > C > 0. Finally, the continuity equation (1.76)

may be written in the chosen gauge as

∂

∂t
(
√
Nµgnu

0) = 0, (1.90)

which upon substituting u0 and XiX
i yields

n ≈ C1

√
N

µg
, (1.91)

where C1 > 0 is a suitable constant. In an expanding universe (if initially expanding, it will only

continue to expand, because, the formation of a maximal hypersurface and subsequent re-collapse

are strictly prohibited; τ can never vanish by virtue of the Hamiltonian constraint) , the spatial

volume form µg satisfies the estimate µg ≈ (τ2 − 3Λ)−2α, for some α > 0 (may be obtained by time

differentiating
∫
M
µg in conjunction with the use of field equations and estimate of lapse function),

which together with the estimate of N yields the decay of the baryon density

n ≈ C2(τ2 − 3Λ)
1
4 +α, (1.92)

for some C2 > 0. In the asymptotic limit τ → −
√

3Λ, the baryon density becomes negligible if the

matter source does not already collapse to form a singularity. Therefore, the previous asymptotic

analysis holds true and the infimum of the Lyapunov function is attained in this limit allowing the

persistence of topological consequences discussed previously. However, an important thing to note

here is that the analysis presented here does not address the global existence by any means (despite

the fact that the Lyapunov function provides a weak notion). Even in the absence of matter sources,
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pure gravity could ‘blow up’ before the volume tends to infinity i.e., gravitational singularities could

prevent global existence. Such global existence is addressed by [206] in the special case of small

data limit and vacuum spacetimes (without cosmological constant) of arbitrary dimension. In case

of vacuum spacetimes with a positive cosmological constant, proof of the global existence of the

sufficiently small perturbations about background conformal spacetimes (eq. 1.37; through studying

the asymptotic stability of such spacetimes) is under preparation by the author [90]. [103] studied

the global existence of small data perturbations in case of vacuum spacetimes with a cosmological

constant by establishing the Lyapunov stability of the background solutions. In the presence of

matter sources, global existence, even in the small data limit, is an open problem.

Developing a cosmological model is of fundamental importance in general relativity. The present

so-called FLRW models are developed based on astronomical observations of local homogeneity and

isotropy (since the observations are only limited to a possibly quite small fraction of the universe)

that is the procedure resembles ‘model fitting’ in certain sense. Extrapolating the local observations

to a global scale thereby allows only special simple topologies and leads to the reduction of Einstein

equations to ordinary differential equation for one unknown namely the scale parameter. This is, in a

sense, against the whole spirit of general relativity where one should include more general topologies

and study the Einsteinian dynamics in a rigorous way. The resulting cosmological model should then

be compared locally with the observations. For example, for a compact spatial topology, within the

injectivity radius around a point, space seems locally flat despite the possibility that the manifold

may originally be globally exotic (with strictly nonvanishing curvature). In addition, manifolds may

also admit locally homogeneous and isotropic metrics with no such global extension. In a sense,

the role of spatial topologies in the dynamics of general relativity is somewhat underestimated and

we precisely address possibly a small fraction of such roles here. We show by invoking a weak

Lyapunov function that while the initially expanding universe in the presence of suitable matter

sources (satisfying suitable energy conditions) and a positive cosmological constant, may not be

isotropic and homogeneous (not even locally), it nevertheless will evolve to support a homogeneous

and isotropic metric if the evolution continues long enough without going singular. Therefore,

one does not in general need to start the evolution with an isotropic and homogeneous metric at

all. Einsteinian evolution automatically leads to the spatially homogeneous and isotropic universe

in the asymptotic limit where the baryon number density becomes negligible. Our analysis of

course only addresses the issue of asymptotic negligibility of the matter in the case of a rather

special perfect fluid source through invoking Schutz’s velocity potential formalism in a constant mean

curvature co-moving gauge. In the limiting case, as shown previously, the asymptotic vanishing of
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the matter density simplifies the associated conformal equation (Lichnerowicz equation) leading us

to the main result. Of course, during the course of evolution, matter or gravitational radiation

may collapse to form a singularity and a rough notion of such singularity formation (or at least

geodesic incompleteness via formation of caustics) is stated by the singularity theorems for matter

sources satisfying the strong energy condition. In our case while a positive cosmological constant is

included, even the formation of caustics is excluded in an expanding universe. In order to establish

an absolute claim that ‘true’ singularities are avoided, one must investigate the dynamics of Einstein

equations in the presence of exotic topologies numerically (which is currently only limited to very

special manifolds with several symmetries). Nevertheless, it is realized through our analysis that

the universe may be locally isotropic and homogeneous, but does not have to be globally so. Such

topological non-triviality demonstrated here, may be only the beginning of a bigger picture and

may potentially be able to answer the fundamental questions related to issues such as the flatness

problem, horizon problem or even have consequences for the Cosmic Censorship conjecture.

Another interesting fact revealed through our analysis is that while the associated Lyapunov

function has the physical meaning of being a reduced Hamiltonian (‘true Hamiltonian of the dy-

namics) only in case of a vacuum universe (with or without a positive cosmological constant), and

therefore may be used for the purpose of quantization, matter sources (even the special perfect fluid

case) rule out such significance in CMC gauge. Nevertheless, we are able to draw general conclusions

about the asymptotic behavior of the spacetimes using the Lyapunov function alone. However, the

weak nature (in terms of norm control) as discussed previously, does not allow a global existence

theorem and for the time being we are only limited to the asymptotic results. Nevertheless, our anal-

ysis opens up several interesting questions which as described before may potentially address several

existing problems. Are the Cauchy hypersurfaces always asymptotically volume-dominated by their

hyperbolic components with the rescaled metrics on these components asymptotically approaching

homogeneity and isotropy? Do wormholes (S2 × S1) , spherical space forms (S3/Γ,Γ ∈SO(4)), and

graph manifolds always asymptotically pinch off from the universe? How is the fundamental ques-

tion of ‘Cosmic Censorship’ influenced by answers to these questions? what happens if one includes

matter sources not satisfying either or both of the energy conditions mentioned? Upon further de-

velopment of Einsteinian dynamics with matter sources, these questions may be answered yielding

a self consistent cosmological model.
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Chapter 2

Attractors of the ‘n+1’ dimensional Einstein-Λ flow

Here we prove a global existence theorem for sufficiently small however fully nonlinear perturbations

of a family of background solutions of the ‘n + 1’ dimensional vacuum Einstein equations in the

presence of a positive cosmological constant Λ. The future stability of vacuum solutions in the small

data and zero cosmological constant limit has been studied previously for both ‘3 + 1’ and higher

dimensional spacetimes. However, with the advent of dark energy driven accelerated expansion

of the universe, it is of fundamental importance in mathematical cosmology to include a positive

cosmological constant, the simplest form of the dark energy for the vacuum Einstein equations.

Such Einsteinian evolution is here designated as the ‘Einstein-Λ’ flow. We study the background

solutions of this ‘Einstein-Λ’ flow in ‘n + 1’ dimensional spacetimes in constant mean curvature

spatial harmonic gauge, n ≥ 3 and establish both linear and non-linear stability of such solutions.

In the cases of number of spatial dimensions being strictly greater than 3, the finite dimensional

Einstein moduli spaces form the center manifolds of the dynamics. A suitable shadow gauge condition

[206] is implemented in order to treat these cases. In addition, the autonomous character of the

suitably re-scaled Einstein flow breaks down as a consequence of including Λ(> 0). We construct

a Lyapunov function (controlling a suitable norm of the small data) similar to a wave equation

type energy for the non-linear non-autonomous evolution of the small data and prove its decay

in the direction of cosmological expansion utilizing the structure of the non-autonomous terms

and smallness assumption on the data. Our results demonstrate the future stability and geodesic

completeness of the perturbed spacetimes, and show that the scale-free geometry converges to an

element of the space of constant negative scalar curvature metrics sufficiently close to and containing

the Einstein moduli space (a point for n = 3 and a finite dimensional space for n > 3), which has

significant consequences for the cosmic topology while restricting to the case of n = 3.

Since the Einstein equations formulated as a Cauchy problem leave the spatial topology of the

universe unrestricted, a natural question arises whether one may constrain the topology through
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studying the dynamics of the Einsteinian evolution, while also satisfying the cosmological principle.

Recent articles [107,229] unfolded such a possibility i.e., a dynamical mechanism at work within the

Einstein flow (both with and without Λ) which strongly suggests that many closed 3-manifolds that

do not admit a locally homogeneous and isotropic metric at all (and thus are incompatible with

the cosmological principle) will nevertheless evolve under Einsteinian evolution to be asymptoti-

cally compatible with the observed, approximate, spatial homogeneity and isotropy of the universe.

Results of these studies, based on the monotonic decay of a weak Lyapunov function namely the

reduced Hamiltonian, suggested that a 3-manifold of negative Yamabe type, if it contains parts

supporting hyperbolic metrics in its connected sum decomposition, will be volume dominated by

these hyperbolic components asymptotically by the Einstein flow (Einstein-Λ flow for Λ 6= 0). On

the other hand, if one takes the cosmological principle literally, the so-called FLRW model restricts

the choice of global spatial topology of the universe to a small set consisting of negatively curved

hyperbolic space H3, flat Euclidean space E3, positively curved 3-sphere S3 with its canonical round

metric and its two fold quotient PR3 = S3/Z2. However, the astronomical observations that mo-

tivate the cosmological principle are necessarily limited to a fraction (possibly small) of the entire

universe and such observations are compatible with spatial metrics being locally but not globally

homogeneous and isotropic. Once the restriction on the topology (a global property) is removed, nu-

merous closed manifolds may be constructed as the quotients of H3,E3, and S3 by discrete, proper,

and torsion free subgroups of their respective isometry groups, with each satisfying the local homo-

geneity and isotropy criteria but no longer being globally homogeneous or isotropic. In order for

these topologically rich spatially compact spacetimes to be possible candidates for the cosmological

models, it is crucial to study the asymptotic behaviour of the fully nonlinear perturbations of these

models. Non-linear stability of these spacetimes clearly opens up the possibility for the universe

to have an exotic spatial topology. In this paper, we study the linear (which acts as a motivation

towards studying non-linear stability) and non-linear stability of the spacetimes with spatial part

being negative Einstein for the cases of n ≥ 3 (hyperbolic for n = 3). However, we will assume

certain smallness condition on the fully nonlinear perturbations.

The family of background solutions (a class of fixed points of the Einstein-Λ flow) designated as

‘conformal spacetimes’ (due to the fact that each of these spacetimes admits a timelike conformal

Killing field) with the spacetime topology R×M (M being the spatial manifold) in constant mean

26



curvature spatial harmonic gauge (CMCSH), may be written in the following warped product form

ĝ = − n2

(τ2 − 2nΛ
n−1 )2

dτ ⊗ dτ +
1

(τ2 − 2nΛ
n−1 )

γijdx
i ⊗ dxj , (2.1)

where γ is an Einstein metric satisfying Rij(γ) = −n−1
n2 γij and τ ∈ (−∞,−

√
2nΛ
n−1 ) is the mean

extrinsic curvature of M in the globally hyperbolic spacetime on R ×M . For the special case of

n = 3, the negative Einstein spaces are hyperbolic i.e., the Einstein moduli space reduces to a point.

In the limit of Λ = 0, [206] calls these spacetimes the Lorentz cone space times (these are constructed

by taking quotient of the interior of the future light cone in Minkowski space by SO+(3, 1) in case

of n = 3). Stability of these ‘3+1’ Lorentz cone spacetimes was proven by [151] utilizing the Bel-

Robinson energy. In the more general setting of n > 3, a finite dimensional space of Einstein

metrics provides the ‘center manifold’ towards which the re-scaled spatial metric is flowing in the

limit of infinite cosmological expansion. [206] proved the stability of these background solutions by

invoking a so called shadow gauge condition and later utilized a wave equation type of energy for the

sufficiently small however fully nonlinear perturbations. This energy acts like a Lyapunov function

for these perturbations (and, in particular vanishes at fixed points), which is defined to control the

desired norm of perturbations. In the case of the ‘2+1’ Einstein flow on R×Σgenus with genus > 1,

Teichmüller space plays the role of the Einstein moduli space and special techniques [197,198] were

used to study the global existence (by utilizing the properness of the Dirichlet energy functional

defined on the Teichmüller space). Recently [103] studied the Lyapunov stability of these background

solutions including a positive cosmological constant. However, in order to establish the ‘attractor’

property of certain solutions, it is necessary to prove their asymptotic stability. [161,229] constructed

a reduced phase space as the cotangent bundle of the higher dimensional analogue of the Teichmüller

space and obtained the following true Hamiltonian of the dynamics while expressed as a functional

of the reduced phase space variables through a conformal technique

Hreduced :=
2(n− 1)

n

∫
M

∂τ

∂t
µg. (2.2)

They have shown that the reduced Hamiltonian acting as a Lyapunov function decays along certain

solutions of the Einstein equations and achieves its infimum precisely for the background Lorentz

cone spacetimes (conformal spacetimes for Λ 6= 0). Such a property provides a notion of the stability

of these background solutions for arbitrarily large perturbations. However, the Lyapunov function

only controls the H1 × L2 norm of the reduced data and therefore, such a notion of stability is
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weak. Motivated by these results, we intend to study the stability of these background solutions for

sufficiently small fully nonlinear perturbations in the case when a positive consmological constant is

included in the Einstein equations. A subtlety is that the properties of the wave equation type energy

exploit the information about the lowest eigenvalue of the Lichnerowicz type Laplacian (acting on the

space of symmetric (0,2) tensors on M , that is, S0
2(M)) which enters into the evolution equation.

In this paper, we consider the complete generality of the problem in a framework of sufficiently

small however fully nonlinear perturbations of the background solutions. However, the inclusion of a

positive cosmological constant introduces several seemingly restrictive features of the field equations.

A few examples may be seen as follows. In the CMCSH gauge, the vacuum Einstein equations

with Λ = 0 are non-autonomous due to the fact that the mean extrinsic curvature acting as time

explicitly appears in the equations. However, after a suitable re-scaling, the equations can be made

to be autonomous. In the presence of a nonzero Λ, such a property is lost. This is one of the major

differences from the case of Λ = 0. Nevertheless, one may still obtain estimates necessary to prove

the decay property of a suitably defined Lyapunov function by introducing a Newtonian like time

co-ordinate. In particular, we take the advantage of the structure of the Einstein’s equations. The

explicitly time dependent terms appear in the field equation in such a way as to help drive the

flow towards a class of fixed points. Roughly speaking, the potentially problematic terms in the

expression for the time derivative of the energy either gets cancelled point-wise or are multiplied

by asymptotically decaying factor e−T (T ∈ (−∞,∞)). Therefore, one needs to keep track of the

explicitly time dependent terms accurately to reach the conclusion of energy decay. This subtlety

does not arise in the case of vanishing cosmological constant and one may easily obtain the decay

of the suitably defined Lyapunov function by introducing a correction factor (see [206] for detail).

In the process of controlling the energy decay, invoking the shadow gauge in order to handle the

nontrivial moduli space (such moduli space is assumed to have a smooth structure and be stable)

becomes necessary. In the Λ = 0 case, the scale-free geometry converges to the Einstein structure

and therefore the attractors of the Einstein flow is identified to be the Einstein spaces. However,

in the presence of Λ > 0, the scale-free geometry exponentially converges to space of metrics with

constant negative scalar curvature sufficiently close to and containing the Einstein structure. In

other words, if we start the evolution with an arbitrary metric g sufficiently close to the Einstein

moduli space such that the difference is L2 orthogonal to the moduli space then the conformal

geometry converges in infinite time to an element of the space of metrics with constant negative

scalar curvature sufficiently close to and containing the Einstein structure. On the other hand

perturbations tangential to the Einstein moduli space exponentially decays such that the metric
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converges to another element of the moduli space, that is, tangential perturbations exhibit trivial

asymptotic stability. Therefore, the attractor of the Einstein-Λ flow is identified to be the space

of constant negative scalar curvature metrics lying sufficiently close to and containing the Einstein

moduli space. In addition, the only requirement for the asymptotic stability of these spacetimes

is the stability of the negative Einstein structure i.e., the non-negativity of the eigen spectrum of

the associated Lichnerowicz type Laplacian operator. These are some major differences between the

Λ = 0 and Λ > 0 cases. The asymptoically stable physical conformal spacetimes are given by the

following warp product metric

ĝ = − n2

(τ2 − 2nΛ
n−1 )2

dτ ⊗ dτ +
1

(τ2 − 2nΛ
n−1 )

γ†ijdx
i ⊗ dxj , (2.3)

where R(γ†) = −n−1
n . Our strategy would be to perturb the fixed point solutions described by the

negative Einstein spaces and employ the shadow gauge to treat the evolution of the perturbations

orthogonal and tangential to the Einstein moduli space. Using necessary estimates, we then prove

that the spatial metric exponentially converges (in appropriate norm topology) to a point of the

space of constant negative scalar curvature metrics sufficiently close to and containing the moduli

space. In summary, the structure of the paper is the following. We start with the gauge fixed

Einstein-Λ equations and state the necessary theorems ensuring local well-posedness of the Cauchy

problem. Next, we move on to computing background solutions and study their linear stability. After

obtaining a series of estimates utilizing the elliptic equations arising as a result of gauge fixing and

imposing the shadow gauge condition, we construct a Lyapunov function for the small data. In the

last part, utilizing the obtained estimates, we prove the decay of the constructed energy functional

(which vanishes only for the spacetimes of type (3.1) and remains constant for the spacetimes of

type (2.3)) thereby establishing the stability of the background solutions.

2.1 Notations and facts

We denote the ‘n+1’ dimensional (n ≥ 3) spacetime manifold by M̃ with its topology being R×M ,

M being the n-dimensional spatial slice diffeomorphic to a Cauchy hypersurface. The space of

Riemannian metrics on M is denoted by M. M−n−1
n

is defined as follows

M−n−1
n

:= {g ∈M|R(g) = −n− 1

n
},
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with R(g) being the scalar curvature associated with g. Rijkl[g] and Γ[g]ijk denote the Riemann

curvature and connection coefficients with respect to the metric g, respectively. In terms of the

function space of fields (metric, second fundamental form etc.), we work in the L2 (with respect to

a given metric) Sobolev space W s,2 for s > n
2 + 2, also denoted by Hs. We denote the L2 inner

product between two 2-tensors on M with respect to a background metric γ as

< u|v >L2=

∫
M

uijvklγ
ikγjlµg

and the inner product on derivatives as

< ∇[γ]u|∇[γ]v >L2 =

∫
M

∇[γ]muij∇[γ]nvklg
mnγikγjlµg,

where µg is the volume form associated with g ∈M

µg =
√

det(gij)dx
1 ∧ dx2 ∧ dx3 ∧ ......... ∧ dxn.

Abusing notation, we use µg to denote both the volume form as well as
√

det(gij). The rough

Laplacian ∆g,γ acting on a vector bundle (symmetric covariant 2-tensors are sections of this bundle)

over (M, g) is defined as

∆g,γhij := − 1

µg
∇[γ]m(gmnµg∇[γ]nhij). (2.4)

This rough Laplacian is self-adjoint with respect to the L2 inner product on covariant 2-tensors.

Using the rough Laplacian, a self-adjoint Lichnerowicz type Laplacian which will be crucial later is

defined as follows

Lg,γhij := ∆g,γhij − 2R[γ]i
k
j
lhkl. (2.5)

We may sometimes drop the Sobolev index to simplify the notation. The reader is expected to

assume the function space for (g, k,N,X) to be Hs ×Hs−1 ×Hs+1 ×Hs+1 with s > n
2 + 2. The

Laplacian ∆g is defined so as to have a non-negative spectrum i.e.,

∆g ≡ −gij∇i∇j . (2.6)
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For a, b ∈ R>0, a . b is defined to be a ≤ Cb for some constant 0 < C <∞. The spaces of symmetric

covariant 2-tensors and vector fields on M are denoted by S0
2(M) and X(M), respectively.

2.2 Field equations and gauge fixing

The ADM formalism splits the spacetime described by an ‘n+1’ dimensional Lorentzian manifold

M̃ into R ×M with each level set {t} ×M of the time function t being an orientable n-manifold

diffeomorphic to a Cauchy hypersurface (assuming the spacetime to be globally hyperbolic) and

equipped with a Riemannian metric. Such a split may be implemented by introducing a lapse

function N and shift vector field X belonging to suitable function spaces and defined such that

∂t = Nn̂+X (2.7)

with t and n̂ being time and a hypersurface orthogonal future directed timelike unit vector i.e.,

ĝ(n̂, n̂) = −1, respectively. The above splitting puts the spacetime metric ĝ in local coordinates

{xα}nα=0 = {t, x1, x2, ...., xn} into the form

ĝ = −N2dt⊗ dt+ gij(dx
i +Xidt)⊗ (dxj +Xjdt) (2.8)

where gijdx
i ⊗ dxj is the induced Riemannian metric on M . In order to describe the embedding

of the Cauchy hypersurface M into the spacetime M̃ , one needs the information about how the

hypersurface is curved in the ambient spacetime. Thus, one needs the second fundamental form k

defined as

kij = − 1
2N (∂tgij − (LXg)ij), (2.9)

the trace of which (τ = gijkij , g
ij ∂
∂xi ⊗

∂
∂xj := g−1) is the mean extrinsic curvature of M in M̃ . Here

L denotes the Lie derivative operator. The vacuum Einstein equations with a cosmological constant

Λ

Rµν(ĝ)− 1

2
R(ĝ)ĝµν + Λĝµν = 0 (2.10)
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may now be expressed as the evolution and Gauss and Codazzi constraint equations of g and k

∂tgij = −2Nkij + (LXg)ij , (2.11)

∂tkij = −∇i∇jN +N(Rij + τkij − 2kki kjk −
2Λ

n− 1
gij) + (LXk)ij , (2.12)

2Λ = R(g)− |k|2g + (trgk)2, (2.13)

0 = ∇ikij −∇jτ, (2.14)

where τ = trgk. A solution to the Einstein evolution and constraint equations is a curve t 7→

(g(t), k(t), N(t), X(t)) in Hs ×Hs−1 ×Hs+1 ×Hs+1 (at least in our case where the local existence

theorem holds in this function space) satisfying equations (4.17)-(4.19). The spacetime metric g̃

given in terms of (g,N,X) by (4.14) solves the Einstein equation (4.16) if and only if (g, k,N,X)

solves the evolution and constraint equations (4.17)-(4.19). However, the system (4.17)-(4.19) is not

hyperbolic. We may reduce the system to a canonical hyperbolic evolution equation for g by fixing

gauge. The physical concept of gauge fixing (spatial and temporal) may be described as follows. Let

us first consider the spatial gauge. With the spacetime topology of R×M , one has the freedom to

choose the spatial slice as long as it is diffeomorphic to a Cauchy hypersurface. Let M be a Cauchy

hypersurface with an induced metric g which together with (k,N,X) satisfies the Einstein evolution

and constraint equations (4.17-4.19). Now let φ (t−independent) be an element of the identity

component of the diffeomorphism group (D0) of M . Then (φ−1)∗g, (φ−1)∗k, (φ−1)∗N = N ◦ φ−1,

and φ∗X solves the Einstein equations as well, where ∗, and ∗ denote the pullback and push-forward

operations on the cotangent and tangent bundles of M , respectively. This is obvious due to the

spatial covariant nature of the evolution and constraint equations. More generally, let the identity

component of the diffeomorphism group act on M by a time dependent element φt. The evolution

equation (4.17) under the action of φt reads

∂t((φ
−1
t )∗g)ij = −2(φ−1

t )∗(Nk)ij + (Lφt∗X(φ−1
t )∗g)ij , (2.15)

((φ−1
t )∗∂tg)ij + (∂t(φ

−1
t )∗g)ij = −2(φ−1

t )∗(Nk)ij

+
∂

∂s
((φ−1

t ΨX
s φt)

∗(φ−1
t )∗g)ij |s=0,

((φ−1
t )∗∂tg)ij + (∂s(φ

−1
t+s)

∗g)ij |s=0 = −2(φ−1
t )∗(Nk)ij + (φ−1

t )∗(LXg)ij ,

(φ−1
t )∗∂tgij + (φ−1

t )∗(LY g)ij = −2(φ−1
t )∗(Nk)ij + (φ−1

t )∗(LXg)ij ,

(φ−1
t )∗ {∂tgij = −2Nkij + (LX−Y g)ij} .
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Here Y is the vector field associated with the flow φt and ΨX
s is the flow of the shift vector field X.

A similar calculation for the evolution equation for the second fundamental form shows that if we

make a trasformation X 7→ X+Y , the Einstein evolution and constraint (due to their natural spatial

covariance nature) equations are satisfied by the transformed fields. The choice of spatial hypersur-

face is fixed by choosing constant mean extrinsic curvature spatial harmonic gauge. Constant mean

extrinsic curvature gauge defines a time function and therefore it is the temporal gauge choice. We

briefly describe the gauge fixing below starting with spatial harmonic gauge. Let φ : (M, g)→ (M,γ)

be a harmonic map. Clearly it satisfies the Euler-Lagrange equations arising from criticality of the

associated Dirichlet energy 1
2

∫
M
gij ∂φ

k

∂xi
∂φl

∂xj γklµg i.e.,

gij
(

∂2φk

∂xi∂xj
− Γ[g]lij

∂φk

∂xl
+ Γ[γ]kαβ

∂φα

∂xi
∂φβ

∂xj

)
= 0. (2.16)

Now, we fix the gauge by imposing the condition that φ = id, which leads to the following equation

−gij(Γ[g]kij − Γ̂[γ]kij) = 0. (2.17)

where Γ̂[γ]kij is the connection with respect to some arbitrary background Riemannian metric γ.

Choice of this spatial harmonic gauge yields an elliptic equation for the shift vector field X after

time differentiating equation (3.29). The spatial harmonic slice is chosen to have uniform mean

extrinsic curvature i.e.,

∂iτ = 0, (2.18)

and thus τ may play the role of time i.e.,

t = monotonic function of τ, (2.19)

and in this case, we choose t = τ . Choice of the Constant mean extrinsic curvature gauge (CMC)

yields an elliptic equation for the lapse N . Note that we do not have evolution equations for the

lapse and shift. However, they are constrained by the elliptic equations obtained through gauge
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fixing which together with the evolution equations for g and k comprises the full ‘Einstein-Λ’ system

∂tgij = −2Nkij + (LXg)ij , (2.20)

∂tkij = −∇i∇jN +N(Rij + τkij − 2kki kjk −
2Λ

n− 1
gij − αij) (2.21)

+ (LXk)ij ,

∂τ

∂t
= ∆gN + (kijk

ij − 2Λ

n− 1
)N, (2.22)

∆gX
i −RijXj + LXV

i = (∇iN)τ − 2∇jNkij + (2Nkjk (2.23)

−2∇jXk)(Γ[g]ijk − Γ̂[γ]ijk)− gjk∂tΓ̂[γ]ijk,

where αij = 1
2 (∇iVj +∇jVi) and −V i is the tension field defined as

V i = gjk(Γ[g]ijk − Γ̂[γ]ijk). (2.24)

In addition, we also have the constraints

2Λ = R(g)− |k|2g + (trgk)2, (2.25)

0 = ∇ikij , (2.26)

which are conserved throughout the term of evolution as a consequence of the Bianchi identity.

V i = 0 essentially corresponds to the spatial harmonic gauge. This Cauchy problem with constant

mean extrinsic curvature and spatially harmonic gauge is referred to as ‘CMCSH Cauchy’ problem.

2.2.1 local well-posedness and gauge conservation

[150] proved a well-posedness theorem for the Cauchy problem for a family of elliptic-hyperbolic

systems that included the ‘n + 1’ dimensional vacuum Einstein equations in CMCSH gauge. [229]

sketched how to apply the theorem of [150] to a gauge fixed system of ‘Einstein-Λ’ field equations.

Since the ‘Einstein-Λ’ field equations only differ from the vacuum equations by the addition of some

rather innocuous linear terms, most of the technicalities of this extended application of their theorem

are straightforward to verify. There are however a couple of subtle points involving the elliptic

equations for the lapse function and the shift vector field. Firstly, inclusion of Λ > 0 seemingly

creates an obstruction to achieving a trivial kernel for the lapse equation (2.22). However, note

that we are primarily interested in negative Yamabe manifolds (see [107] and [229] for the relevant

definitions) and therefore the scalar curvature R(g) can never be positive everywhere on M yielding
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the following range of allowed mean extrinsic curvature (for cosmologically expanding solutions) by

virtue of the Hamiltonian constraint

−∞ < τ < −
√

2nΛ

n− 1
. (2.27)

This condition indeed guarantees a unique positive solution of the lapse equation (2.22). Secondly,

allowing for the time dependent behavior of the background metric (a negative Einstein metric

in our case) introduces the extra term ‘−gjk∂tΓ̂[γ]ijk’ in the elliptic equation for the shift vector

field. However, our primary concern is the small perturbations about the background and the term

‘−gjk∂tΓ̂[γ]ijk’ acts as small perturbation (see lemma (3) and (4) for the relevant estimates). There-

fore, the extra term in the shift equation due to time dependence of the background spatial metric

does not affect the existence and uniqueness results. In a sense, these previous studies together com-

plete the desired local well-posedness for the ‘Einstein-Λ’ system. For this reason we shall mostly

refer the reader to the relevant sections of [150], [206], and [229] rather than reiterate the detailed

arguments herein. The most important point to note is that the local existence theorem provides the

time of existence in terms of the size of the initial data. Therefore, in the global existence argument,

if the appropriate norm of the perturbation is bounded, one may immediately use to local existence

to obtain the desired result.

In addition to proving the local well-posedness of the ‘Einstein-Λ’ quasi hyperbolic evolution equa-

tions, we also need to ensure the conservation of gauges and constraints i.e., whenever (g, k,N,X)

solve the ‘Einstein-Λ’ equations (2.20-2.23), the following entities, if vanishing initially, are zero

along the solution curve

A = τ − t, (2.28)

V i = gjk(Γ[g]ijk − Γ̂[γ]ijk), (2.29)

F = R(g) + τ2 − |k|2 −∇iV i − 2Λ, (2.30)

Di = ∇iτ − 2∇kkki. (2.31)

One may show by direct calculation using the modified evolution equations (2.20-2.21) that the set

of constraint and gauge entities (A, V i, F,Di) satisfy exactly the same induced evolution equations

as those given in equations (4.4a-d) in [150]. Thus the energy argument in section 4 of this reference

goes through unchanged and shows that if (A,F, V i, Di) = 0 for the initial data (g(t0), k(t0)), then

(A,F, V i, Di) ≡ 0 along the solution curve (g(t), k(t), N(t), X(t)). This completes the analysis of
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the desired local well-posedness and gauge conservation criteria.

2.3 Re-scaled equations

In this section, we convert the evolution and constraint equations to scale free equations after

rescaling the dimensionful entities by suitable powers of the conformal factor φ2 = τ2 − 2nΛ
n−1 (which

is strictly positive according to the condition (2.27)). Before rescaling, we observe that the solution

of the momentum constraint

∇jkij = 0, (2.32)

may be written as

k = KTT +
τ

n
g, (2.33)

where KTT is traceless with respect to g. We will obtain equations in terms of KTT . We denote

the dimensional entities by a˜sign, while dimensionless entities are written simply without˜sign for

convenience. The re-scaled entities are given as follows

g̃ij =
1

φ2
gij , Ñ =

1

φ2
N, X̃i =

1

φ
Xi, K̃TT

ij =
1

φ
KTT
ij , (2.34)

where φ = −
√
τ2 − 2nΛ

n−1 such that φ
τ > 0. In CMCSH gauge, the re-scaled evolution and constraint

equations may be written as

∂T τ = −φ
2

τ
, (2.35)

∂T gij =
2φ(τ)

τ
NKTT

ij − 2(1− N

n
)gij −

φ(τ)

τ
(LXg)ij , (2.36)

∂TK
TT
ij = −(n− 1)KTT

ij −
φ(τ)

τ
N(Rij +

n− 1

n2
gij − αij) (2.37)

+
φ(τ)

τ
∇i∇jN +

2φ(τ)

τ
NKTT

im KTm
j

−φ(τ)

nτ
(
N

n
− 1)gij − (n− 2)(

N

n
− 1)KTT

ij −
φ(τ)

τ
(LXK

TT )ij ,

R+
n− 1

n
− |KTT |2 = 0, (2.38)

∇jKTTij = 0. (2.39)
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Here the new time coordinate is defined as

∂T = −φ
2

τ
∂τ (2.40)

which may be integrated explicitly to yield

φ(τ) = −e−T , (2.41)

τ = −
√
e−2T +

2nΛ

n− 1
(2.42)

with T being Newtonian like i.e., −∞ < T < ∞. Note an important fact that 0 < φ(τ)
τ < 1 and

φ(τ)
τ ≈

√
n−1
2nΛ e

−T as T → ∞. The re-scaled elliptic equations for the lapse function and the shift

vector field may be expressed as follows

∆gN + (|KTT |2 +
1

n
)N = 1, (2.43)

φ(τ)

τ
(∆gX

i −RijXj + LXV
i) =

φ(τ)

τ
(2NKTjk − 2∇jXk)(Γ[g]ijk

− Γ[γ]ijk)− (2− n)∇i(N
n
− 1)− 2φ(τ)

τ
∇jNKTi

j + gjk∂TΓ[γ]ijk.

2.3.1 Background solutions: conformal spacetimes

The fixed point solutions are computed as the solutions of the following set of equations in CMCSH

gauge i.e., by setting V i = 0 and taking τ =a monotonic function of t (t = τ in this case)

0 =
2φ(τ)

τ
NKTT

ij − 2(1− N

n
)gij −

φ(τ)

τ
(LXg)ij , (2.44)

0 = −(n− 1)KTT
ij −

φ(τ)

τ
N(Rij +

n− 1

n2
gij) +

φ(τ)

τ
∇i∇jN (2.45)

+
2φ(τ)

τ
NKTT

im KTm
j − φ(τ)

nτ
(
N

n
− 1)gij − (n− 2)(

N

n
− 1)KTT

ij

−φ(τ)

τ
(LXK

TT )ij ,

1 = ∆gN + (|KTT |2 +
1

n
)N, (2.46)

φ(τ)

τ
(∆gX

i −RijXj) =
φ(τ)

τ
(2NKTjk − 2∇jXk)(Γ[g]ijk − Γ[γ]ijk) (2.47)

−(2− n)∇i(N
n
− 1)− 2φ(τ)

τ
∇jNKTi

j + gjk∂TΓ[γ]ijk.
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Contracting equation (2.44) with KTT , using the momentum constraint∇jKTij = 0, and integrating

over M , we obtain

∫
M

2φ(τ)

τ
N |KTT |2gµg = 0. (2.48)

Standard maximum principle arguments for the elliptic equation (2.43), yield estimates for the

re-scaled lapse

0 <
1

sup(|KTT |2) + 1
n

≤ N ≤ n (2.49)

which, together with equation (2.48) implies

KTT ≡ 0 (2.50)

on M . From the lapse equation (2.43), we immediately obtain

N = n (2.51)

on M . Substituting equations (2.50) and (2.51) into equation (2.44) leads to

LXg|KTT=0 = 0, (2.52)

which implies that the shift vector field is a generator of the isometry group of M. After substituting

the available variables into the fixed point equation of the transverse traceless second fundamental

form (2.45), we obtain the re-scaled metric to be a negative Einstein metric

Rij(g) = −n− 1

n2
gij . (2.53)

Now, the isometry group of compact manifold M with negative Ricci curvature is discrete. Therefore,

the existing Killing fields are only trivial i.e., X = 0. A sketch of the proof is as follows. The

divergence of the Killing equation along with commutation of covariant derivative yields

−∆gX
i +RijX

j +∇i∇jXj = 0. (2.54)
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The trace of the Killing equation provides ∇iXi = 0 and therefore, after multiplying both sides of

equation (2.54) with Xi and integrating over M , the following expression is obtained

∫
M

[∇jXi∇jXi +
n− 1

n2
gijX

iXj ]µg = 0 (2.55)

which implies

X ≡ 0 (2.56)

everywhere on M . One observes that the unknowns obtained from the momentum constraint and

the dynamical equations satisfy the Hamiltonian constraint. Therefore, we have proved the following

theorem.

Theorem 1. Let M be a closed (compact without boundary) connected orientable n-manifold, n ≥ 3,

of negative Yamabe type. Then the fixed point solutions of the re-scaled ‘Einstein-Λ’ flow (2.44-4.22)

on (T−, T+) ×M, −∞ ≤ T− < T+ ≤ ∞, have the Cauchy data (g,KTT , N,X)=(g0,K
TT
0 , N0, X0)

which satisfy the following equations:

Rij(g0) = −n−1
n2 g0, KTT = 0, N0 = n, X0 = 0.

For convenience, we may replace g0 by γ with

Rij(γ) = −n− 1

n2
γij , (2.57)

The physical variables are then given by

g̃ij =
1

φ2
gij =

1

τ2 − 2nΛ
n−1

γij , (2.58)

Ñ =
N

τ2 − 2nΛ
n−1

=
n

τ2 − 2nΛ
n−1

, (2.59)

X̃i =
Xi√

τ2 − 2nΛ
n−1

= 0. (2.60)

If M admits an Einstein metric γ, then the corresponding re-scaled variables (γ, 0, n, 0) provide

constant mean extrinsic curvature Cauchy data (g,K,N,X) through equations (50-53) for a vacuum

spacetime with a positive cosmological constant on (−∞,−
√

2nΛ
n−1 )×M, locally expressible as

ds2 = − n2

(τ2 − 2nΛ
n−1 )2

dτ2 +
1

(τ2 − 2nΛ
n−1 )

γijdx
idxj . (2.61)
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This so called ‘trivial’ evolution exists for n = 3 if and only if the spatial manifold M is hyperbolizable

(by the Mostow rigidity theorem). For n > 3, the existence of a negative Einstein space is sufficient

to guarantee the existence of this Cauchy data. This is the isolated fixed point for n = 3 and is

in general non-isolated (by virtue of non-trivial Einstein moduli spaces) for n > 3. The spacetime

(2.61) admits a globally defined time-like conformal Killing field Y =
√
τ2 − 2nΛ

n−1∂τ i.e.,

LY g
n+1 = − 2τ√

τ2 − 2nΛ
n−1

gn+1. (2.62)

We therefore designate these spacetimes as ‘conformal spacetimes’. A summary of the results ob-

tained so far yields the following theorem

Theorem 2. Let M be a closed connected oriented n-manifold of negative Yamabe type. The

fixed points of the non-autonomous re-scaled ‘Einstein-Λ’ evolution and constraint equations on

(−∞,−
√

2nΛ
n−1 ) ×M with the gauge condition t = τ and spatial harmonic slice gauge condition are

the ‘trivial’ spacetimes given by (2.61). Such spacetimes admit Y =
√
τ2 − 2nΛ

n−1∂τ as a globally

defined time-like conformal Killing vector field.

A second class of solutions of the re-scaled equations lying sufficiently close to and containing the one

described by the negative Einstein metrics will be of particular importance to us. These solutions

are described by

R(g) = −n− 1

n
,X = 0, N = 0,KTT = 0 (2.63)

provided that ||g − γ||Hs < ε, γ ∈ Ein−n−1

n2
, s > n

2 + 2 and ε << ||γ||Hs . Small calculation

similar to the previous case together with lemma 5 shows that the space described by the set

{R(g) = −n−1
n , X = 0, N = 0,KTT = 0} satisfies the scale-free Einstein’s equations (2.35-2.39) in

CMCSH gauge in the limit φ
τ → 0. Clearly the centre manifold described by the negative Einstein

spaces in theorem 1 is a subset of the solutions {R(g) = −n−1
n , X = 0, N = 0,KTT = 0} since

Ein−n−1

n2
⊂ M−n−1

n
. We will designate the space of solutions {R(g) = −n−1

n } lying sufficiently

close to the Einstein structure with metric g satisfying the spatial harmonic gauge condition the

‘extended centre manifold’ and denote it by Mε
−n−1

n

∩ Sγ (the reason for such a notation will

be clear in section 4.1). Our intention is to prove that this extended centre manifold is indeed the

attractor of the Einstein-Λ flow.
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2.3.2 Linear stability of the conformal spacetimes

[229] constructed the following reduced Hamiltonian (while expressed as a functional of the reduced

phase space variables)

Hreduced =
2(n− 1)

n

∫
M

∂τ

∂t
µg > 0 (2.64)

of the dynamics which was shown to decay monotonically along the solution curves and achieve

its infimum precisely for the conformal spacetimes described by equation (2.61). Such a reduced

Hamiltonian plays the role of a weak Lyapunov function of the reduced dynamics, which indicates

that these background solutions may be stable against perturbations. Motivated by this notion we

conduct a linear stability analysis of the re-scaled equations about the background solutions. Let the

perturbation be (hij = δgij , δK
TT
ij = KTT

ij , δN, δXi). However, δN and δXi satisfy elliptic equa-

tions from which we prove that they vanish if the background metric is negative Einstein (which is

the case here). We state and prove the following lemma regarding the vanishing of the perturbations

to the lapse function and the shift vector field.

Lemma 1: Let M be a closed connected oriented n-manifold of negative Yamabe type. The fixed

points of the non-autonomous re-scaled ‘Einstein-Λ’ evolution and constraint equations on (−∞,−
√

2nΛ
n−1 )×

M with the gauge condition t = τ and spatial harmonic slice gauge condition are the ‘trivial’ space-

times given by (2.61). Let the perturbations about these background solutions be (hij , δπ
Tij , δN, δXi).

Then δN ≡ 0 and δXi ≡ 0 everywhere on M.

Proof: Perturbation of the lapse equation leads to

∆γδN +
1

n
δN = 0. (2.65)

Application of the standard maximum principle immediately yields δN ≡ 0 everywhere on M, which

completes the proof of the first part. Perturbation of the shift equation yields

∆γδXi −R[γ]ijδX
j = 0. (2.66)

Now, multiplying both sides with δXi and integrating over closed M , we obtain

∫
M

(
δXi∆γδXi − δXiR[γ]ijδX

j
)
µγ = 0, (2.67)∫

M

(
∇[γ]iδXj∇[γ]iδXj −R[γ]ijδX

iδXj
)
µγ = 0. (2.68)
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Substituting Rij [γ] = −n−1
n2 γij yields

∫
M

(
∇[γ]iδXj∇[γ]iδXj +

n− 1

n2
gijδX

iδXj

)
µγ = 0, (2.69)

which implies δXi ≡ 0 everywhere on M , completing the second part of the proof. With the results

δN = 0 = δXi, the spacetime perturbations (at the linear level) reduce to (hij ,K
TT
ij , 0, 0). In the

next lemma, we prove that utilizing the constraint and gauges, the perturbations hij to the spatial

metric may be reduced to pure transverse-traceless form with respect to the background metric.

Lemma 2: Let the perturbations describing the dynamics be (hij ,K
TT
ij ). Full-filling the Hamiltonian

constraint by the perturbed data (gij = γij + hij ,K
TT
ij = 0 + KTT

ij ) through the constant mean

extrinsic curvature spatial harmonic gauge implies the transverse-traceless property of the metric

perturbations.

Proof: Variation of Hamiltonian constraint (2.38) reads

DR · h = 0, (2.70)

which upon using the expression of the Frechet derivative of R yields

∆γtrγh+∇i∇jhij −R[γ]ijh
ij = 0. (2.71)

Following the Hodge-like decomposition, we may write the symmetric 2-tensor hij as

hij = hTTij + fγij + (LW γ)ij , (2.72)

where hTT is a symmetric transverse-traceless (w.r.t the background metric γij) 2 tensor and f and

W are a function and vector field lying in suitable function spaces. Upon substituting decomposition

(2.72) into the variation of the Hamiltonian constraint and noticing ∆γtrγ(LW γ) +∇i∇j(LW γ)ij −

R[γ]ij(LW γ)ij ≡ 0 one arrives at

3∆γf + γij∇i∇jf −R[γ]f = 0, (2.73)

2∆γf −R[γ]f = 0,
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where R[γ] = −n−1
n . Noting that the operator (2∆γ + n−1

n ) is invertible on compact M , we imme-

diately obtain

f ≡ 0 (2.74)

throughout M . The vector field W may be obtained in terms of f through the following elliptic

equation, which follows from the variation of the spatial harmonic gauge condition (i.e., variation

of the tension field). At the linear level, the gauge condition ‘id : (M,γ + h)→ (M,γ) is harmonic’

yields

γjk
(
Γ[γ + h]ijk − Γ[γ]ijk

)
= 0 (2.75)

2∇jhij −∇itrγh = 0

−∇if − 2∆γW
i + 2R[γ]ijW

j = 0

∆γW
i −R[γ]ijW

j = −1

2
∇if. (2.76)

Now substituting f = 0 and R[γ]ij = −n−1
n2 γij , yields

∆γW
i +

n− 1

n2
W i = 0. (2.77)

Again, invertibility of the operator (∆γ + n−1
n2 ) in compact M implies W ≡ 0 throughout M.

Therefore, hij = hTTij , which concludes the proof.

Following the previous lemma, we need only consider the perturbations of the transverse-traceless

type and no information is lost doing so. We will denote hTTij simply by hij if there is no confusion.

Now the linearized equations of motion around the background solution take the following forms

∂Thij =
2nφ(τ)

τ
KTT
ij , (2.78)

∂TK
TT
ij = −(n− 1)KTT

ij −
nφ(τ)

τ

(
δRij +

n− 1

n2
hij

)
, (2.79)

where we have dropped δN and δXi following lemma 1. We may now obtain the wave equation for

the metric perturbation as follows. Using the perturbation to the Ricci tensor

δRij =
1

2
[−2(n− 1)

n2
hij + (R[γ]kijm +R[γ]kjim)hkm (2.80)

−∇[γ]m∇[γ]mhij ]
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along with γijhij = 0, ∇[γ]mh
ml = 0, and hij = γikγjlhkl 6= δgij , the wave equation for the metric

perturbation takes the form

∂2hij
∂T 2

+

[
(n− 1) +

2nΛ

(n− 1)τ2

]
∂hij
∂T

(2.81)

+
φ2(T )

τ2(T )
n2(∆γhij + (R[γ]kijm +R[γ]kjim)hkm) = 0.

Let the Laplacian be defined as ∆γ = −∇[γ]i∇[γ]i. Utilizing the eigenvalue equation of the linear

differential operator on the right hand side of the previous equation i.e.,

∆γhij + (R[γ]kijm +R[γ]kjim)hkm = λhij , (2.82)

the wave equations for the transverse-traceless metric perturbations reduce to the following set of

ordinary differential equations

∂2hij
∂T 2

+

[
(n− 1) +

2nΛ

(n− 1)τ2

]
∂hij
∂T

+
φ2(T )

τ2(T )
λn2hij = 0. (2.83)

Here, we assume that the negative Einstein spaces are stable, that is, λ ≥ 0. No example of an

unstable, compact, negative Einstein space is known [206]. Therefore we will assume λ ≥ 0. This

leads to the result of [161] in the limit of Λ = 0. The time coordinate T satisfies the following from

equation (4.48)

−φ
2

τ

∂

∂τ
=

∂

∂T
, (2.84)

which yields the range of T as (−∞,∞) for τ ∈ (−∞,−
√

2nΛ
n−1 ). Note that for h in the kernel of

the differential operator i.e., for −∆γhij − (R[γ]kijm +R[γ]kjim)hkm = 0, (i.e., λ = 0) the equation

reduces trivially to

∂2hij
∂T 2

+

[
(n− 1) +

2nΛ

(n− 1)τ2

]
∂hij
∂T

= 0, (2.85)

which yields asymptotic stability following the fact that the damping coefficient is strictly positive.

Asymptotic stability of perturbations lying in the space orthogonal to the kernel of L may be shown

by explicitly constructing a Lyapunov function and deriving its monotonic decay property in the

time future direction. Let us convert the second order equation (2.83) to a system of first order
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equations by substituting hij = u and
∂hij
∂T = v

∂Tu =
φ

τ
v, (2.86)

∂T v = −(n− 1)v − φ(τ)

τ
n2λu, (2.87)

Let the Lyapunov function be defined as

E =
1

2
v2 +

1

2
n2λu2, (2.88)

the time derivative of which reads

dE

dT
= −(n− 1)v2 (2.89)

< 0

i.e., energy decays monotonically and dE
dT = 0 only when v ≡ 0. The equations (2.86) and (2.87)

together with the decay of the Lyapunov function yield ∂Tu . e−2T , v . e−T as T → ∞ and

therefore u remains bounded and limits to u∗ <∞. The asymptotic solution is as follows

|u− u∗| . e−2T , (2.90)

|v| . e−T . (2.91)

We may prove the future completeness of these perturbed spacetimes at the linear level as follows.

In order to establish the future completeness of the spacetime, we need to show that the length

of a timelike geodesic goes to infinity. For a family (homotopy class) of rectifiable timelike curves

c : [a, b]→ R×M , the length of its geodesic representative is computed as follows

sup
c

∫ b

a

√
(−ĝ(ċ, ċ))dt = dĝ(a, b) = lĝ(C), (2.92)

where C is the geodesic representative of the family c and ĝ is the spacetime metric. Note that the

problem arises due to the fact that these family of curves are not necessarily uniformly timelike.

Here we will use a theorem proved in [223], which serves as sufficient condition for the geodesic

completeness. Such condition is satisfied in this particular case and therefore future completeness

holds.

Theorem [223] Sufficient conditions for future timelike and null geodesic completeness of a regularly
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sliced spacetime are that

1. |∇N |g is bounded by a function of t which is integrable on [a,∞)

2. |K|g is bounded by a function of t which is integrable on [a,∞) for some a < ∞. Note that

both of these conditions are trivially satisfied in our case of linearized perturbations. We will obtain

a separate proof of future completeness in the fully nonlinear case. Theorem 3: Let M be a

closed connected oriented n-manifold of negative Yamabe type. The background solutions (2.61) of

the Einstein-Λ evolution and constraint equations on (−∞,−
√

2nΛ
n−1 )×M with the gauge condition

t = τ and spatial harmonic slice gauge condition are stable and future complete against linear

perturbations.

2.4 Fully nonlinear perturbations

Theorem 3 provides us with a notion of stability of the background solutions. However, it leaves

out the fully non-linear evolution of the small perturbations. The reduced Hamiltonian described

in equation (2.64) is always at hand and may be used to study fully non-linear and arbitrarily large

perturbations. But, it seems to control only the H1 × L2 norm of the reduced phase space data

(see [161] and [229] for a definition of reduced phase space). However, following the local existence

theorem developed here, we need to control the Hs ×Hs−1 norm with s > n
2 + 2, n ≥ 3. Therefore

we construct a Lyapunov function of the dynamics which indeed controls the required Sobolev norm

(L2 norm of the s > n
2 + 2 spatial derivatives) of the fully non-linear small perturbations. We show

that it decays along the solution curve if we start sufficiently close to the background spacetime. In

addition, as mentioned previously, finite dimensionality of the Einstein moduli space in the case of

higher dimensions (n > 3) has to be addressed carefully in order to show the attractor property of

the centre manifold. However, before doing so, a few important geometric notions are to be discussed

which have substantial impact on the stability analysis in the case of the spatial dimension n > 3.

2.4.1 Deformation space

Here we provide a brief description of the deformation space of the Einstein structure necessary for

the nonlinear analysis. Details can be found in several studies [98, 206]. The background solutions

of the Einstein-Λ flow in CMCSH gauge are the conformal spacetimes as described in the previous

section. The spatial metric component of these conformal spacetimes is a negative Einstein metric
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i.e., the spatial metric satisfies

Rij(γ) = −n− 1

n2
γij . (2.93)

Let us denote the space of metrics satisfying equation (4.16) by Ein−n−1

n2
and consider the following

map

F :M → M
′
, (2.94)

γ 7→ Rij(γ) +
n− 1

n2
γij ,

where M′
is a subspace of the space of symmetric (0, 2) tensors. Ein−n−1

n2
= F−1(0) will be a

submanifold ofM provided that the TF−1(0)F is surjective (i.e., F is a submersion). The differential

D(Ric+n−1
n2 γ)·hmay be reduced to a second order elliptic differential operator acting on the variation

h, whose adjoint is injective and thus TF−1(0)F is surjective. The tangent space of Ein−n−1

n2
may be

calculated as the kernel of TγF . The operator TγF = D(Ric+ n−1
n2 γ) may be decomposed in terms

of the Lichnerowicz type Laplacian L, via

TγF · h = Lh− 2δ∗δh−∇[γ]d(trh), (2.95)

where Lhij = ∆γhij − 2R[γ]ikjlh
kl, (δh)i = ∇[γ]jhij , and (δ∗Y )ij = − 1

2 (LY γ)ij . The space of

symmetric 2 tensors S2M may be decomposed as

S2M = CTT (S2M)⊕ (F(M)⊗ γ)⊕ IM(L), (2.96)

where CTT (S2M), F(M), and IM(L) are the space of symmetric transverse-traceless 2-tensors, the

space of functions on M , and the image of the Lie derivative L acting on γ with respect to a vector

field Y ∈ TM (a section of TM to be precise), respectively. In local co-ordinates, this decomposition

may be represented as

hij = hTTij + fγij + (LY γ)ij . (2.97)
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The kernel K(TγF ) at γ ∈ F−1(0) may be obtained through the solution of the following equation

L(hTT + fγ + LY γ)− 2δ∗δ(hTT + fγ + LY γ) (2.98)

−∇d(tr(hTT + fγ + LY γ)) = 0,

where we notice that L(LY γ)−2δ∗δ(LY γ)−∇d(tr(LY γ)) ≡ 0 and thus LY γ ∈ K(Tγ∈F−1(0)F ). The

remaining terms lead to

(LhTT )ij + (∆γf)γij − 2fRij +∇i∇jf +∇j∇if − n∇i∇jf = 0, (2.99)

which upon taking the trace yields

2(n− 1)∆γf − 2R(γ)f = 0. (2.100)

For γ ∈ F−1(0), the scalar curvature R(γ) = −n−1
n and therefore f = 0 everywhere on M . The

resulting tangent space of Ein−n−1

n2
= F−1(0) consists of the kernel of the operator L (a subspace of

the space of transverse-traceless symmetric 2-tensors) and the image of the Lie derivative operator

with respect to a vector field

TγEin−n−1

n2
= ker(L)⊕ IM(L). (2.101)

Let γ0 ∈ Ein−n−1

n2
and V be its connected component. Also consider Sγ to be the harmonic slice

of the identity diffeomorphism i.e., the set of γ ∈ Ein−n−1

n2
for which the identity map Id : (M,γ)→

(M,γ0) is harmonic. This condition is equivalent to the vanishing of the tension field −V k that is

−V k = −γij(Γ[γ]kij − Γ[γ0]kij) = 0. (2.102)

For γ ∈ Ein−n−1

n2
, Sγ is a submanifold ofM for γ sufficiently close to γ0 [206,229]. The deformation

space N of γ0 ∈ Ein−n−1

n2
is defined as the intersection of the γ0−connected component V ⊂ Ein−n−1

n2

and the harmonic slice Sγ i.e.,

N = V ∩ Sγ . (2.103)

N is assumed to be smooth. In the case of n = 3, the negative Einstein structure is rigid which

48



follows from the Mostow rigidity theorem [96, 121] and this structure corresponds to the hyper-

bolic structure up to isometry. For higher genus surfaces Σgenus (genus > 1) in two dimensions,

the deformation space modulo isotopy diffeomorphisms is the Teichmüller space diffeomorphic to

R6genus−6. For n > 3, it is a finite dimensional submanifold ofM. Examples of higher dimensional

(n > 3) negative Einstein spaces with non-trivial deformation spaces include Kahler-Einstein man-

ifolds [178]. [206] provides the details of constructing numerous negative Einstein spaces through a

product operation. Therefore, we do not repeat the same here. Readers are referred to the afore-

mentioned paper.

Following equations (2.101), (3.73), and (3.74), the tangent space TγN in local coordinates is rep-

resented as

∂γ

∂qa
= hTT || + LY ||γ, (2.104)

where hTT || ∈ ker(L) = CTT ||(S2M) ⊂ CTT (S2M), Y ∈ X(M) satisfy

−[∇[γ]m∇[γ]mY
i +R[γ]imY

m] + (hTT || + LY ||γ)mn(Γ[γ]imn − Γ[γ0]imn) = 0,

and, {qa}dim(N )
a=1 is a local chart on N , X(M) is the space of vector fields on M (in a suitable function

space setting). Also note that the space of transverse-traceless tensors may be decomposed as follows

CTT (S2M) = CTT ||(S2M)⊕ CTT⊥(S2M), (2.105)

where CTT⊥ is the orthogonal complement of ker(L) in CTT (S2M). An important thing to note is

that all known examples of closed negative Einstein spaces have integrable deformation spaces. Note

that the extended centre manifold is correctly defined as the intersection of the ε−neighbourhood of

deformation space N inM−n−1
n
∩Sγ , that is,Mε

−n−1
n

∩Sγ , γ ∈ Ein−n−1

n2
(since the spatial harmonic

gauge is imposed, the metric must lie in the submanifold Sγ as well). Obviously, N ⊂Mε
−n−1

n

∩ Sγ

and TN ⊂ T (Mε
−n−1

n

∩ Sγ). This concludes the business of describing the centre (and extended

centre) manifold of the dynamics.

2.4.2 Perturbations and shadow gauge

The previous section describes the non-trivial deformation space of a negative Einstein structure.

The presence of a non-trivial deformation space necessitates the consideration of perturbations L2

orthogonal to the deformation space of the Einstein structures forming the center manifold of the
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re-scaled dynamics. Perturbations tangent to the deformation space are trivially stable at the linear

level, which was shown earlier and will be repeated later as well. For the treatment of the orthogonal

perturbations, we invoke the shadow gauge introduced by [206] in addition to the constant mean

curvature spatial harmonic gauge (CMCSH). Let γ ∈ N and consider metric g ∈M close to γ0 such

that ||g−γ0||Hs < δ, and ||γ−γ0||Hs < δ imply that ||g−γ||Hs < 2δ through the triangle inequality.

The shadow gauge is defined by requiring that the perturbation (g − γ) be L2 orthogonal to the

deformation space N . Adopting the local coordinate system {qa}Na=1 on N with N = dim(N ) <∞,

the local basis for the tangent space of N may be written as
∂γij
∂qa = hTT || + LY ||γ. The shadow

gauge condition is equivalent to

< (g − γ),
∂γ

∂qa
>L2 = 0, (2.106)∫

M

(gij − γij)
∂γij

∂qa
µγ = 0,

where ∂γij

∂qa = −γimγjn ∂γmn∂qa . Technically, this shadow condition is equivalent to γ being a projection

of g onto N . In other words, there is a projection map P :M→N such that

γ = P[g]. (2.107)

Noting that the space N is assumed to have smooth structure, this projection, in a sense, is a

smoothing operation. We call γ the shadow of g. The time derivative of γ in N may be obtained as

∂γ

∂T
= DP[g] · ∂g

∂T
. (2.108)

The expression for DP[g] may be obtained by time differentiating the shadow metric condition i.e.,

d

dT

∫
M

(gij − γij)
∂γij

∂qa
µγ = 0, (2.109)

∫
M

∂T gij
∂γij

∂qa
µγ +

∫
M

(gij − γij)
∂

∂qb
(
∂γij

∂qa
)
∂qb

∂T
µγ (2.110)

+
1

2

∫
M

(gij − γij)
∂γij

∂qa
γlm

∂γlm
∂qb

∂qb

∂T
µγ −

∫
M

∂γij
∂qb

∂γij

∂qa
∂qb

∂T
µγ = 0,

50



where the matrix −
∫
M

∂γij
∂qb

∂γij

∂qa µγ =
∫
M

∂γij
∂qb

γimγjn ∂γmn∂qa µγ is invertible due to
∂γij
∂qb

being a basis

for TγN . For the small data limit i.e., (g − γ) < 2δ, δ > 0, the combined matrix

B =

∫
M

(gij − γij)
(
∂

∂qb
(
∂γij

∂qa
) +

∂γij

∂qa
γlm

∂γlm
∂qb

)
µγ (2.111)

+

∫
M

µγ
∂γij
∂qb

γimγjn
∂γmn
∂qa

µγ

is invertible as well yielding the following time evolution of the shadow metric γ in the deformation

space

∂qb

∂T
= −(B−1)ba

∫
M

∂T gij
∂γij

∂qa
µγ , (2.112)

∂γij
∂T

= −∂γij
∂qb

(B−1)ba
∫
M

∂T gmn
∂γmn

∂qa
,

where ∂gmn
∂T may be obtained from the re-scaled field equation (2.36). This is again equivalent to

the following projection operation DP : TgM→ TγN

∂γ

∂T
= DP[g] · ∂g

∂T
(2.113)

In a sense, the following estimate holds

|| ∂γ
∂T
||Hs ≤ C||

∂g

∂T
||Hs−1 , (2.114)

for some constant C = C(δ) > 0. More generally, one may have the following estimate for z ∈ TgU

(g ∈ U ⊂M) while considering the projection operation P : TgU → TγN

||DP · z||Hs ≤ C||z||Hs−1 . (2.115)

In a sense, the projection is a smoothing operation. We are primarily interested in studying the

evolution of sufficiently small however fully nonlinear perturbations under Einstein-Λ flow. In order

to do so, we need to first define the small data. The background solutions (conformal space-times

(2.61)) may be expressed in terms of the re-scaled variables (γ,N = n,Xi = 0) after dimensional-

ization by suitable factors of φ2 = (τ2 − 2nΛ
n−1 ) > 0. In addition to these three entities, we also have

the corresponding background re-scaled transverse-traceless second fundamental form KTT = 0.

Therefore, the complete set of small data is defined as the difference between the background and
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perturbed solutions i.e., (g − γ,KTT , Nn − 1, X) whose norm is sufficiently small in the suitable

function space.

Now we state and prove a series of important lemmas which shall be required later to obtain several

important estimates.

Lemma 3: Let s > n
2 +2, γ0 ∈ Ein−n−1

n2
and N be its integrable deformation space and γ ∈ N . Also

assume g ∈ U ⊂ M and U is a neighborhood of N in M and g ∈ U satisfies ||g − γ0||Hs < δ > 0.

Let z ∈ TgU . Then

γmnDΓimn[γ]DP · z : Hs−1 → Hs (2.116)

satisfies the following estimate

||γmnDΓimn[γ]DP · z||Hs ≤ C(δ)||γ − γ0||Hs ||z||Hs−1 . (2.117)

with C(δ) > 0.

Proof: Following equation (3.75), any element belonging to TγN may be written as

h = hTT || + LY ||γ, (2.118)

with Y || satisfying

−[∇[γ]m∇[γ]mY
||i +R[γ]||imY

||m] + (hTT || + LY ||γ)mn(Γ[γ]imn (2.119)

−Γ[γ0]imn) = 0.

γmnDΓimn[γ]h for h ∈ TγN may be written as

2γmnDΓ[γ]imnh = γmnγik (∇[γ]mhkn +∇[γ]nhmk −∇[γ]khmn) (2.120)

= 2γik∇[γ]nhkn −∇[γ]i(trγh),
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from which γmnDΓimn[γ]hTT || = 0 follows immediately and the remaining terms lead to the following

equation

2γmnDΓ[γ]imnh = 2γik∇[γ]n (∇[γ]kYn +∇[γ]nYk)− 2∇[γ]i(∇[γ]mY
m)

= 2γik(∇[γ]k∇[γ]nY
n +R[γ]mkY

m) + 2∇[γ]n∇[γ]nY
i − 2∇[γ]i(∇[γ]mY

m)

= 2(∇[γ]n∇[γ]nY
i +R[γ]imY

m)

= 2(LY ||γ + hTT )mn(Γ[γ]imn − Γ[γ0]imn)

= 2hmn(Γ[γ]imn − Γ[γ0]imn).

Now, using the previous expression, for γ close to γ0, we have the following estimate

||γmnDΓ[γ]imnh||Hs ≤ C||γ − γ0||Hs ||h||Hs−1 (2.121)

which upon substituting TγN 3 h = DP · z together with (2.115) yields the required estimate

||γmnDΓimn[γ]DP · z||Hs ≤ C||γ − γ0||Hs ||z||Hs−1 . (2.122)

We have therefore proved the lemma.

Lemma 4: let s > n
2 + 2, γ0 ∈ Ein−n−1

n2
, and N be the integrable deformation space of γ0, and let

γ ∈ N be the shadow of g i.e., P[g] = γ, g ∈ U ⊂ M with U being a neighborhood of N in M and

g ∈ U satisfying ||g − γ0||Hs < δ for some δ > 0, then

||gmnDΓimn[γ]DP|gz||Hs ≤ C(δ) (||g − γ||Hs + ||γ − γ0||Hs) ||z||Hs−1 , (2.123)

for z ∈ TgU .

Proof:

gmnDΓimn[γ]DP|gz = (gmn − γmn)DΓimn|γ ·DP|gz + γmnDΓimn|γ ·DP|gz,

||gmnDΓimn[γ]DP|gz||Hs = ||(gmn − γmn)DΓimn|γ ·DP|gz

+γmnDΓimn|γ ·DP|gz||Hs

≤ ||(gmn − γmn)DΓimn|γ ·DP|gz||Hs + ||γmnDΓimn|γ ·DP|gz||Hs .
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Application of lemma 1 in conjunction with (2.122) yields the desired estimate

||gmnDΓimn[γ]DP|g · z||Hs ≤ C (||g − γ||Hs + ||γ − γ0||Hs) ||z||Hs−1 . (2.124)

Lemma 5: let s > n
2 + 2, γ0 ∈ Ein−n−1

n2
, and N be the integrable deformation space of γ0, and let

γ ∈ N be the shadow of g i.e., P[g] = γ, g ∈ U ⊂ M with U being a neighborhood of N in M and

g ∈ U satisfying ||g − γ0||Hs < δ for some δ > 0, then the following map

P : Hs+1(X(M)) → Hs−1(X(M)), (2.125)

X 7→ ∆gX
i −R[g]ijX

j + (2∇jXk)(Γ[g]ijk − Γ[γ]ijk) (2.126)

is an isomorphism.

Proof: Let us say ψs is the flow of the shift vector field X and thus a one parameter group of

diffeomorphism of M . Therefore, by ψs at a fixed time, we may push forward and pull back the

sections of the tangent and the co-tangent bundles, respectively. The negative of the tension vector

field is defined as a section of the tangent bundle TM and locally expressible as

V i = gjk(Γ[g]ijk − Γ[γ]ijk). (2.127)

The co-vector counterpart of V may be pulled back and dualized as

(ψ∗sV )i = (ψ∗sg)jkψ∗s ((Γ[g]− Γ[γ])ijk, (2.128)

= (ψ∗sg)jk
(
Γ[ψ∗sg]ijk − Γ[ψ∗sγ]ijk

)
.

The right hand side follows as a consequence of the tensor transformation property of the difference

of connection coefficients (Γijk). Differentiation with respect to s at s = 0 yields

(
d

ds
(ψ∗sV )i)|s=0 =

d

ds
((ψ∗sg)jk

(
Γ[ψ∗sg]ijk − Γ[ψ∗sγ]ijk

)
)|s=0, (2.129)

LXV
i =

d

ds
((ψ∗sg)jk)|s=0

(
Γ[g]ijk − Γ[γ]ijk

)
+gjk

d

ds

(
Γ[ψ∗g]ijk − Γ[ψ∗γ]ijk

)
|s=0,

LXV
i = LXg

jk
(
Γ[g]ijk − Γ[γ]ijk

)
+ gjk

d

ds

(
Γ[ψ∗g]ijk − Γ[ψ∗γ]ijk

)
|s=0.
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Using the formula for the Fréchet derivative of the connection coefficients, we may obtain

d

ds
Γijk[ψ∗sg]|s=0 =

1

2
gim[∇j(

d

ds
((ψ∗sg)mk)|s=0) +∇k(

d

ds
((ψ∗sg)jm)|s=0)

−∇m(
d

ds
((ψ∗sg)jk)|s=0)]

=
1

2
gim (∇j(LXgmk) +∇k(LXgjm)−∇m(LXgjk))

=
1

2
gim(∇j(∇mXk +∇kXm) +∇k(∇mXj +∇jXm)

−∇m(∇kXj +∇jXk))

=
1

2

(
∇(j∇k)X

i + gim(Rknjm +Rjnkm)Xn
)

=
1

2

(
∇[g](j∇[g]k)X

i + (R[g]ijnk +R[g]iknj)X
n
)
,

where ∇(iXj) is the symmetrization of ∇iXj i..e, ∇(iXj) := ∇iXj +∇jXi. Similarly the following

holds

d

ds
Γijk[ψ∗sγ]|s=0 =

1

2

(
∇[γ](j∇[γ]k)X

i + (R[γ]ijnk +R[γ]iknj)X
n
)
. (2.130)

The previous expressions altogether yield

LXV
i = (−2∇[g]jXk)

(
Γ[g]ijk − Γ[γ]ijk

)
+ gjk[∇[g]j∇[g]kX

i +R[g]iknjX
n

−∇[γ]j∇[γ]kX
i −R[γ]iknjX

n]

which leads to

∆gX
i −R[g]ijX

j + (2∇jXk)(Γ[g]ijk − Γ[γ]ijk) + LXV
i (2.131)

= −gjk(∇[γ]j∇[γ]kX
i +R[γ]iknjX

n),

or

∆gX
i −R[g]ijX

j + (2∇jXk)(Γ[g]ijk − Γ[γ]ijk) (2.132)

= −gjk(∇[γ]j∇[γ]kX
i +R[γ]iknjX

n).

upon imposing the spatial harmonic gauge condition V i = 0. Given that we’ve established the rela-

tion (2.132), it is sufficient to show the injectivity of the map X 7→ −gjk(∇[γ]j∇[γ]kX
i+R[γ]iknjX

n)

(a map from Hs+1(X(M)) to Hs−1(X(M))) in order to prove the isomorphism property (then sur-

55



jectivity will follow from self-adjointness) of the map P . Let Z ∈ ker(X 7→ −gjk(∇[γ]j∇[γ]kX
i +

R[γ]iknjX
n)) i.e.,

−gjk(∇[γ]j∇[γ]kZ
i +R[γ]iknjZ

n) = 0, (2.133)

which upon multiplying both sides by Zi and integrating over M after imposing V i = 0 yields

∫
M

(−gjk∇[γ]jZi∇kZi + gjkR[γ]iknjZ
iZn)µg = 0. (2.134)

Now g is sufficiently close to γ and Ricγ(Z,Z) = −n−1
n2 γ(Z,Z) < 0. Therefore gjkR[γ]iknjZ

iZn ≤ 0

is satisfied leading to

Z = 0, (2.135)

and therefore

ker(X 7→ −gjk(∇[γ]j∇[γ]kX
i +R[γ]iknjX

n)) = {0}.

This concludes the proof that P is an isomorphism between Hs+1 and Hs−1.

Using the previous lemmas, we will prove three additional lemmas which will be crucial towards

proving the stability results.

Lemma 6: Let s > n
2 + 2. Let Bs,δ(γ0, 0) ⊂ Hs × Hs−1 be a ball of radius δ centered at (γ0, 0)

and (g,KTT ) ∈ Bs,δ(γ0, 0). Let (τ2 − 2nΛ
n−1 ) > 0, ∂T = − τ

2− 2nΛ
n−1

τ ∂τ = −φ
2

τ ∂τ , and assume that

the CMCSH gauge condition is satisfied. Then there exists a constant C = C(δ) > 0 such that the

following inequality holds for any T satisfying −∞ < T1 < T < T2 <∞

||N
n
− 1||Hs+1 ≤ C||KTT ||2Hs−1 . (2.136)

Proof : Let’s consider the re-scaled Lapse equation

∆gN + (|KTT |2 +
1

n
)N = 1 (2.137)

and substitute Q = N
n − 1 i.e., N = n(1 +Q). We obtain

∆gQ+ (|KTT |2 +
1

n
)Q = −|KTT |2. (2.138)
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Clearly, as (|KTT |2+ 1
n ) > 0, “∆g+(|KTT |2+ 1

n )id” is an isomorphism ofHs+1 ontoHs−1. Therefore,

from the elliptic regularity of “∆g + (|KTT |2 + 1
n )id”, we may write the following inequality [104]

||Q||Hs+1 ≤ C||(∆g + (|KTT |2 +
1

n
)id)Q||Hs−1 , (2.139)

and using equation (2.138), we may immediately write

||Q||Hs+1 ≤ C||KTT ||2Hs−1 (2.140)

or

||N
n
− 1||Hs+1 ≤ C||KTT ||2Hs−1 . (2.141)

We have thus proved the lemma.

Lemma 7: Let s > n
2 + 2. Let Bs,δ(γ0, 0) ⊂ Hs × Hs−1 be a ball of radius δ centered at (γ0, 0)

and (g,KTT ) ∈ Bs,δ(γ0, 0). Let (τ2 − 2nΛ
n−1 ) > 0 and ∂T = − τ

2− 2nΛ
n−1

τ ∂τ = −φ
2

τ ∂τ , 0 < φ(τ)
τ < 1, and

assume that the CMCSH gauge condition is satisfied. Then there exists a constant C = C(δ) > 0

such that the following inequality holds for any T satisfying −∞ < T1 < T < T2 <∞

||X||Hs+1 ≤ C(||KTT ||Hs−1 +
τ

φ
||KTT ||2Hs−1). (2.142)

Proof: The elliptic equation (4.22) for the shift X reads

∆g(
φ(τ)

τ
Xi)−R[g]ij(

φ(τ)

τ
Xj) + (2∇j(φ(τ)

τ
Xk))(Γ[g]ijk − Γ[γ]ijk) =

φ(τ)

τ
(2NKTjk)(Γ[g]ijk − Γ[γ]ijk)− (2− n)∇[g]i(

N

n
− 1)

−2φ(τ)

τ
∇[g]jNKTi

j + gjk∂TΓ[γ]ijk,

and we have proved in lemma (5) that the operator P : Hs+1 → Hs−1 i.e.,

Xi 7→ ∆gX
i −R[g]ijX

j + 2∇jXk(Γ[g]ijk − Γ[γ]ijk)

is an isomorphism and thus the following estimate holds

||X||Hs+1 ≤ C||∆gX
i −R[g]ijX

j + 2∇jXk(Γ[g]ijk − Γ[γ]ijk)||Hs−1 .
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Therefore, use of the shift equation yields

||φ(τ)

τ
X||Hs+1 ≤ ||gmn∂TΓ[γ]imn||Hs . (2.143)

Note that every term on the right hand side of the equation (2.143) is of second or higher order

except the last term gjk∂TΓ[γ]ijk. Using the estimate (2.123), and the re-scaled field equation (2.36),

and 0 < φ(τ)
τ < 1, we obtain

||gmn∂TΓ[γ]imn||Hs ≤ C(||g − γ||Hs + ||γ − γ0||Hs)(||
φ(τ)

τ(T )
X||Hs+1

+||φ(τ)

τ
KTT ||Hs−1 + ||KTT ||2Hs−1)

≤ Cφ(τ)

τ
(||g − γ||Hs + ||γ − γ0||Hs)(||X||Hs+1 + ||KTT ||Hs−1 +

τ

φ
||KTT ||2Hs−1),

which upon substituting in (4.47) leads to the desired estimate

||X||Hs+1 ≤ C(||g − γ||Hs + ||γ − γ0||Hs)(||X||Hs+1 + ||KTT ||Hs−1 (2.144)

+
τ

φ
||KTT ||2Hs−1).

Obviously, we can find a constant C = C(δ), such that the following holds for sufficiently small

(||g − γ||Hs + ||γ − γ0||Hs)

C(||g − γ||Hs + ||γ − γ0||Hs) ≤ 1. (2.145)

Therefore, we have the following estimate for X

||X||Hs+1 ≤ C(||KTT ||Hs−1 +
τ

φ
||KTT ||2Hs−1), (2.146)

and thus we have proved the lemma. Notice an important fact that the potentially dangerous term τ
φ

which satisfies eT growth as T →∞ appears in the lemma. However, as we shall see, this dangerous

factor cancels with its inverse in the energy inequalities which will be derived later.

Finally, we obtain an estimate on the term φ(τ)
τ X + Y ||, which is stated in the next lemma.

Lemma 8: Let s > n
2 + 2. Let Bs,δ(γ0, 0) ⊂ Hs × Hs−1 be a ball of radius δ centered at (γ0, 0)

and (g,KTT ) ∈ Bs,δ(γ0, 0). Let (τ2 − 2nΛ
n−1 ) > 0 and ∂T = − τ

2− 2nΛ
n−1

τ ∂τ = −φ
2

τ ∂τ , and assume that

the CMCSH gauge condition is satisfied. Then there exists a constant C = C(δ) > 0 such that the
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following inequality holds for any T satisfying −∞ < T1 < T < T2 <∞

||φ(τ)

τ
X + Y ||||Hs+1 ≤ C(

φ(τ)

τ
||g − γ||Hs ||KTT ||Hs−1 + ||KTT ||2Hs−1), (2.147)

Proof: Now let’s consider γ ∈ N . Thus, TγN 3 ∂T γ may be written as

∂T γ = hTT + LY ||γ, (2.148)

where hTT is a transverse-traceless tensor and Y || solves the following equation

−[∇[γ]m∇[γ]mY
i +R[γ]imY

m] + (hTT || + LY ||γ)mn(Γ[γ]kmn − Γ[γ0]kmn) = 0.

We have already shown (2.120) that the following equation holds

γmn∂TΓ[γ]imn = γmnDΓ[γ]imn∂T γ = γmnDΓ[γ]imn(hTT + LY ||γ) (2.149)

= γmnDΓ[γ]imnLY ||γ = (∇[γ]n∇[γ]nY
||i +R[γ]imY

||m) (2.150)

Now adding (−∇[γ]n∇[γ]n((φ(τ)
τ Xi) − R[γ]im(φ(τ)

τ Xm)) to both sides of equation (2.143), we

obtain

∆g(
φ(τ)

τ
Xi)−R[g]ij(

φ(τ)

τ
Xj) + (2∇j(φ(τ)

τ
Xk))(Γ[g]ijk − Γ[γ]ijk)

+(−∇[γ]n∇[γ]n((
φ(τ)

τ
Xi)−R[γ]im(

φ(τ)

τ
Xm)) =

φ(τ)

τ
(2NKTjk)(Γ[g]ijk − Γ[γ]ijk)

−(2− n)∇[g]i(
N

n
− 1)− 2φ(τ)

τ
∇[g]jNKTi

j

+gjk∂TΓ[γ]ijk + (−∇[γ]n∇[γ]n((
φ(τ)

τ
Xi)−R[γ]im(

φ(τ)

τ
Xm))

−gjk(∇[γ]j∇[γ]k(
φ(τ)

τ
Xi) +R[γ]iknj(

φ(τ)

τ
Xn)) + (−∇[γ]n∇[γ]n(

φ(τ)

τ
Xi)

−R[γ]im(
φ(τ)

τ
Xm)) =

φ(τ)

τ
(2NKTjk)(Γ[g]ijk − Γ[γ]ijk)− (2− n)∇[g]i(

N

n
− 1)

−2φ(τ)

τ
∇[g]jNKTi

j + gjk∂TΓ[γ]ijk + (−∇[γ]n∇[γ]n((
φ(τ)

τ
Xi)−R[γ]im(

φ(τ)

τ
Xm))
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(−∇[γ]n∇[γ]n(
φ(τ)

τ
Xi)−R[γ]im(

φ(τ)

τ
Xm)) =

φ(τ)

τ
(2NKTjk)(Γ[g]ijk − Γ[γ]ijk)

−(2− n)∇[g]i(
N

n
− 1)− 2φ(τ)

τ
∇[g]jNKTi

j + gjk∂TΓ[γ]ijk

+(γmn − gmn)(−∇[γ]m∇[γ]n((
φ(τ)

τ
Xi)−R[γ]imjn(

φ(τ)

τ
Xj)).

Now adding −(∇[γ]n∇[γ]nY
||i +R[γ]imY

||m) = −γmn∂TΓ[γ]imn to the both sides of previous equa-

tion, we obtain

(−∇[γ]n∇[γ]n(
φ(τ)

τ
Xi + Y ||i)−R[γ]im(

φ(τ)

τ
Xm + Y ||m)) (2.151)

=
φ(τ)

τ
(2NKTjk)(Γ[g]ijk − Γ[γ]ijk)− (2− n)∇[g]i(

N

n
− 1)− 2φ(τ)

τ
∇[g]jNKTi

j

+gmn∂TΓ[γ]imn + (γmn − gmn)(−∇[γ]m∇[γ]n((
φ(τ)

τ
Xi)

−R[γ]imjn(
φ(τ)

τ
Xj))− γmn∂TΓ[γ]imn

=> (−∇[γ]n∇[γ]n(
φ(τ)

τ
Xi + Y ||i)−R[γ]im(

φ(τ)

τ
Xm + Y ||m))

=
φ(τ)

τ
(2NKTjk)(Γ[g]ijk − Γ[γ]ijk)− (2− n)∇[g]i(

N

n
− 1)− 2φ(τ)

τ
∇[g]jNKTi

j

+(γmn − gmn)(−∇[γ]m∇[γ]n((
φ(τ)

τ
Xi)−R[γ]imjn(

φ(τ)

τ
Xj))

+(gmn − γmn)∂TΓ[γ]imn.

Now after applying estimate of N
n − 1, X, smoothing operation by shadow gauge || ∂γ∂T ||C∞ .

|| ∂g∂T ||Hs−1 , the elliptic regularity of the operator P , and the algebra property of the space Hs

for s > n
2 , we note that every term in the right hand side of the previous equation contributes at

least to a second order. Trivial power counting of φ
τ yields

||φ(τ)

τ
X + Y ||||Hs+1 ≤ C(

φ(τ)

τ
||g − γ||Hs ||KTT ||Hs−1 + ||KTT ||2Hs−1), (2.152)

for some C = C(δ) > 0. This concludes the proof of the lemma.

In order to construct a Lyapunov function and to establish its decay property, we need the evolution

equations for the small data (g − γ,KTT ). Through the following lemmas and utilizing equations

(2.36)-(2.37), we arrive at the final set of evolution equations required to define an energy functional

(Lyapunov function for small data) and obtain its estimate.
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Lemma 9: Let (g0,K
TT
0 , N,X) = (γ, 0, n, 0) be a fixed point solution of the re-scaled ‘Einstein-Λ’

equations, where R(γ) = −n−1
n2 γ. Define u = g − γ, v = 2nKTT , and w = N

n . The ‘Einstein-Λ’

evolution equations are equivalent to the following system

∂Tuij =
φ

τ
wvij −

φ

τ
Xm∇[γ]muij − hTT ||ij + 2(w − 1)(uij + γij) (2.153)

−(Lφ
τX+Y ||γ)ij −

φ

τ
(uim∇[γ]jX

m + umj∇[γ]iX
m),

∂T vij = −(n− 1)vij −
φ

τ
n2wLg,γuij −

φ

τ
Xm∇[γ]mvij − 2

φ

τ
n2w(R[g]ij

+
n− 1

n2
gij − αij) +

2φ

τ
n2∇i∇jw +

φ

τ
wvimv

m
j − 2

φ

τ
(w − 1)(uij + γij)

−(n− 2)(w − 1)vij −
φ

τ
(vim∇[γ]jX

m + vmj∇[γ]iX
m) + 8

φ(τ)

τ
n3wvimv

m
j ,

where φ2 = τ2 − 2nΛ
n−1 > 0, vmj = gmlvlj, and ∂T = −φ

2

τ ∂τ .

Proof : A direct calculation after substituting the transformed variables u = g − γ, v = 2nKTT ,

and N = nw along with the fact that 0 6= ∂γ
∂T ∈ TγN and thus ∂γ

∂T = hTT || + LY ||γ, we thereby

obtain the evolution equation for u.

Now, we need the following lemma.

Lemma 10 [206]: The following holds for Rij [g]

Rij [g]− αij +
n− 1

n2
gij =

1

2
Lg,γ(g − γ)ij + Jij , (2.154)

where αij = 1
2 (LV g)ij, Lg,γhij = ∆g,γhij−2R[γ]ikjlh

kl, ∆g,γhij = − 1
µg
∇[γ]m(gmnµg∇[γ]nhij), and

Jij satisfies the following estimate

||J ||Hs−2 ≤ C||g − γ||2Hs . (2.155)

Proof: A direct calculation using the definitions of Lg,γ and ∆g,γ yields the result. Note that Lγ,γ

is just L defined in section (4.1).

Using this lemma (10), the evolution equations follow from a direct calculation.

Lemma 11: The evolution equations for u and v are equivalent to the following system

∂Tu =
φ

τ
wv − φ

τ
Xm∇[γ]mu− hTT || + 2(w − 1)γ + Fu, (2.156)

∂T v = −(n− 1)v − φ

τ
n2wLg,γu−

φ

τ
Xm∇[γ]mv + Fv, (2.157)

where (Fu)ij = 2(w−1)uij−(Lφ
τX+Y ||γ)ij−φτ (uim∇[γ]jX

m+umj∇[γ]iX
m) and (Fv)ij = −2φτ n

2wJij+
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2φ
τ n

2∇i∇jw+ φ
τ wvimv

m
j − 2φτ (w− 1)(uij + γij)− (n− 2)(w− 1)vij − φ

τ (vim∇[γ]jX
m + vmj∇[γ]i) +

8φ(τ)
τ n3wvimv

m
j , and they satisfy the following estimates

Proof: Trivial.

2.4.3 Linearization

Even though we have already established the linearized stability, we may quickly reprove the re-

sult using the dynamical equations obtained for the perturbations. Here, we construct an energy

functional (Lyapunov function) for the linearized equations, which will motivate the construction of

the energy functional for the fully nonlinear stability problem. At this point, we have dynamical

equations for perturbations both parallel and perpendicular to N . However, we will see shortly that

the parallel component of the perturbation is trivially stable. Once again the fixed points satisfy

w0 =
N

n
= 1, Xi

0 = 0, u0 = γ,R(γ) = −n− 1

n2
γ, v0 = 2nKTT

0 = 0. (2.158)

Linearization about these fixed points preserving the gauges and constraints i.e.,

δu = uTT , δv = vTT , δw = 0, δX = 0, δ(
φ

τ
X + Y ||) = 0, hTT || =

φ

τ
v|| (2.159)

together with the field equations yield

∂Tu
⊥ =

φ

τ
v⊥, (2.160)

∂T v
|| = −(n− 1)v||, (2.161)

∂T v
⊥ = −(n− 1)v⊥ − φ(τ)

τ
n2Lγ,γu⊥, (2.162)

where we have used the L2 orthogonal decomposition uTT = uTT || + uTT⊥, vTT = vTT || + vTT⊥,

and uTT || = 0 (at the linear level, u is L2 orthogonal to N ). We immediately obtain as T →∞

v||(T ) = e−(n−1)(T−T0)v||(T0) (2.163)
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The linearized equation for the L2 orthogonal component satisfies the following pdes (let’s write

u⊥ = u and v
′⊥ = v for simplicity)

∂Tu =
φ

τ
v, (2.164)

∂T v = −(n− 1)v − φ(τ)

τ
n2Lγ,γu, (2.165)

where the operator Lγ,γ satisfies the eigenvalue equation

Lγ,γX = λX (2.166)

with

λ ≥ 0. (2.167)

Note that the eigentensor corresponding to λ = 0 is tangent to the centre manifold N . Such

perturbations are trivially stable as evident from equation (164). Since, on the compact manifold,

the spectrum of the second order elliptic operator is essentially discrete, we need to focus on the

minimum positive eigenvalue of Lγ,γ . Let the positive minimum of the spectrum of Lγ,γ be λ0 > 0

i.e., λ > λ0 > 0 ∀ λ ∈ Spec(L). Clearly, the coupled pde system can be reduced to the following

pair of odes

∂Tu =
φ

τ
v, (2.168)

∂T v = −(n− 1)v − φ(τ)

τ
n2λu. (2.169)

In the linearized analysis section, we have already constructed a Lyapunov function for this system.

The most natural energy (Lyapunov function) may be defined as follows

E =
1

2
v2 +

n2λ

2
u2. (2.170)

The energy E is positive semi-definite and vanishes precisely when (u, v) ≡ 0, that is, at the fixed

points. The time derivative of the energy reads

dTE = −(n− 1)v2 < 0 (2.171)
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Therefore, we observe that the energy E is monotonically decaying. Utilizing well known theorem of

dynamical system, strictly monotonic decay of Lyapunov function implies asymptotic stability. As

T →∞, we have the following decay

v(T ) . e−T , ∂Tu . e
−2T , |u− u∗| . e−2T . (2.172)

Here we have utilized the fact that φ(τ)
τ ∼ e−T as T →∞. Using the evolution equation, we observe

that the re-scaled metric converges to a limit metric (in the space of metrics with constant scalar

curvature −n−1
n ) as T →∞.

2.4.4 Non-linear perturbations

From here onward, we will focus on fully non-linear perturbations to the background solutions. Let

us fix a background metric γ0 ∈ Ein−n−1

n2
. Let N be the deformation space with respect to γ0 and

assume γ is close to γ0. There exists a harmonic slice Sγ ⊂ M as the solution of the following

equation satisfied by the tension field equation i.e.,

V i = gjk
(
Γ[g]ijk − Γ[γ]ijk

)
= 0. (2.173)

We want to consider (g ∈ M,KTT ) which satisfies the constraint equations (2.38-2.39) as well as

the harmonicity condition that the idenitity map ‘id : (M, g)→ (M,γ)’ is harmonic. Let us denote

this constraint slice by Sc,γ corresponding to Sγ . Following the analysis of [151] (see lemma 2.3),

we may represent the constraint slice Sc,γ as a graph over its tangent space, that is, we may write

(g,KTT ) ∈ Sc,γ in the following form

g − γ = uTT + z, (2.174)

2nKTT = vTT + r, (2.175)

where uTT and vTT are transverse-traceless with respect to γ with < z|uTT >L2= 0, < vTT |r >L2=

0, and ||z||Hs ≤ C(||uTT ||2Hs + ||vTT ||2Hs−1), and ||r||Hs−1 ≤ C(||uTT ||2Hs + ||vTT ||2Hs−1) for C > 0.

From here onward, we will write u and v (resp. v) for uTT +z and vTT +r, respectively for simplicity.
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2.5 Constructing the Lyapunov functional: definition of Energy

The spectrum of the self-adjoint operator Lg,γ will play a vital role in the definition of the energy.

In general for a closed manifold, the spectrum of Lg,γ is non-negative (because, we have assumed

that the compact negative Einstein spaces are stable) i.e., λ satisfying

Lg,γX = λX (2.176)

also satisfies

λ ≥ 0. (2.177)

We will observe later that λ = 0 case is trivially stable provided the smallness condition (Hs×Hs−1

norm) on the initial data is met. Let us re-write down the fully non-linear evolution equations for

(u, v) ∈ Bs,δ(0, 0),

∂Tu =
φ

τ
wv − φ

τ
Xm∇[γ]mu− hTT || + 2(w − 1)γij + Fu, (2.178)

∂T v = −(n− 1)v − φ

τ
n2wLg,γu−

φ

τ
Xm∇[γ]mv + Fv, (2.179)

where (Fu)ij = 2(w−1)uij−(Lφ
τX+Y ||γ)ij−φτ (uim∇[γ]jX

m+umj∇[γ]iX
m) and (Fv)ij = −2φτ n

2wJij+

2φ
τ n

2∇i∇jw+ φ
τ wvimv

m
j − 2φτ (w− 1)(uij + γij)− (n− 2)(w− 1)vij − φ

τ (vim∇[γ]jX
m + vmj∇[γ]i) +

8φ(τ)
τ n3wvimv

m
j , and they roughly satisfy a third order estimates. The exact estimates will be de-

rived later (when necessary).

Motivated by the energy associated with the linear stability analysis, we define a natural wave

equation type of energy (can be read off from the evolution equations) as follows

Ei =
1

2
< v|Li−1

g,γ v >L2 +
n2

2
< u|Lig,γu >L2 (2.180)

=
1

2

∫
M

(vijLi−1
gγ vkl)γ

ikγjlµg +
n2

2

∫
M

(uijLigγukl)γikγjlµg.

The lowest order term E1 may be explicitly calculated as follows

E1 =
1

2

∫
M

vijvklγ
ikγjlµg +

n2

2

∫
M

(∇[γ]muij∇[γ]nuklg
mnγikγjl

−2R[γ]i
m

j
numnuklγ

ikγjl)µg. (2.181)
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The total energy may be defined by summing all order energies up to s

Es =

s∑
i=1

Ei. (2.182)

This energy is positive semi-definite and it vanishes only when (u, v) ≡ 0, that is, on the centre

manifold. We will now check the non-negative definiteness of the hessian of the energy functional,

which will be used to obtain several useful estimates. The first variation of the energy with δu = h,

and δv = k at (0, 0) vanishes

DEs(h, k) = 0, (2.183)

i.e., (u, v) = (0, 0) is a critical point of Es. The second variation about the critical point yields

D2Es((h, k), (h, k)) =

s∑
i=1

< k|Li−1
γ,γ k >L2 +n2

s∑
i=1

< h|Liγ,γh >L2

and we immediately obtain the positive semi-definiteness of the hessian of energy using the spectrum

of Lγ,γ

D2Es((h, k), (h, k)) ≥ 0 (2.184)

with equality holding if and only if h = hTT || and k = 0. Therefore (0, 0) is a non-degenerate critical

point of Es. Once we have established the positive semi-definiteness of the hessian of the energy

functional, we use this property to obtain a control of the desired Hs×Hs−1 norm of the data (u, v)

in terms of the energy. The following two lemmas will in fact provide such control of the desired

norm.

Lemma 12: Let (γ, g,KTT ) be such that (g − γ) satisfies the shadow gauge and g − γ = u,

2nKTT = v. There exists a constant δ > 0 sufficiently small, and a constant C = C(δ) > 0 such

that if (u, v) ∈ Bδ(0, 0) ∈ Hs ×Hs−1, the following estimate holds

||u||||Hs ≤ C
(
||u⊥||2Hs + ||v||2Hs−1

)
. (2.185)
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Proof: Following the shadow gauge (u is L2-orthogonal to N ), we may write

< (g − γ), hTT || + LY ||γ >L2 = 0 (2.186)

< u|| + u⊥ + z, hTT || + LY ||γ >L2 = 0

< u||, hTT || >L2 + < z, hTT || + LY ||γ >L2 = 0

where we have used the facts that < u⊥, hTT || >L2= 0 and < uTT , LY ||γ >L2= 0. Using the relation

obtained, we may say that u|| is a smooth function of z which satisfies

||z||Hs ≤ C(||uTT ||2Hs + ||vTT ||2Hs−1), (2.187)

and therefore, u|| satisfies the following estimate

||u||||Hs ≤ C
(
||u⊥||2Hs + ||v||2Hs−1

)
. (2.188)

Using the above definition of the energy together with the positive definiteness of its hessian at

(0, 0), we have the following crucial lemma which together with the lemma (12) will yield a control

of the Hs ×Hs−1 norm of the data (u, v) in terms of the energy.

Lemma 13: Let s > n
2 + 2, γ ∈ Ein−n−1

n2
, and Es be the the total energy defined in (2.182). Then

∃ δ > 0, C = C(δ) > 0, such that ∀(u, v) ∈ Bδ(0, 0) ∈ Hs ×Hs−1, the following estimate holds

||u⊥||2Hs + ||v||2Hs−1 ≤ CEs. (2.189)

Proof: We have observed the positive semi-definiteness of the hessian of the energy functional while

restricted to the subspaceHsTT = Hs
TT⊥×H

s−1
TT (in local co-ordinates (u⊥, v)). Thus, D2Es : HsTT →

Image(D2Es) is an isomorphism leading to the following inequality

||u⊥||2Hs + ||v||2Hs−1 ≤ CD2Es · ((h, k), (h, k)), (2.190)

for some finite C > 0. Now, using a version of the Morse lemma (Hilbert space version) on the

non-degenerate critical point (0, 0), we obtain that there exists a δ > 0 such that for variations lying

within Bδ(0, 0) and restricted toHsTT , the following holds up to a possibly non-linear diffeomorphism

Es = Es(0, 0) +D2Es · ((h, k), (h, k)) = D2Es · ((h, k), (h, k)) (notice that Es(0, 0) = 0). Therefore, we
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prove the lemma

||u⊥||2Hs + ||v||2Hs−1 ≤ CEs. (2.191)

Using the previous two lemmas (12 and 13), we immediately obtain the following crucial result

||u||2Hs + ||v||2Hs−1 ≤ CEs, (2.192)

which clearly shows that the energy controls the desired norm of the data (u, v).

2.6 Decay of the energy (or the Lyapunov function)

In this section we study the time evolution of the total energy functional. In order to obtain the decay

property of the energy, we state several necessary lemmas. Utilizing these lemmas, we compute the

time evolution for the lowest order energy and following analogous calculations, the time evolution

of higher order energies are obtained. Since ||A||Hs1 . ||A||Hs2 for s1 < s2, we will bound every

Sobolev norm of a tensor or a vector field by its maximum available Sobolev norm. Occasionally we

will use the Sobolev embedding ||A||L∞ . ||A||Ha for a > n
2 and the following product estimates

||AB||Hs . (||A||L∞ ||B||Hs + ||A||Hs ||B||L∞), s > 0, (2.193)

||AB||Hs . ||A||Hs ||B||Hs , s >
n

2
, (2.194)

||[P,A]B||Ha . (||∇A||L∞ ||B||Hs+a−1 + ||A||Hs+a ||B||L∞), P ∈ OPs, s > 0, a ≥ 0,

where OPs denotes the pseudo-differential operators with symbol in the Hormander class Ss1,0 (see

[175] for details). The first and second inequalities essentially emphasize the algebra property of

Hs ∩ L∞ for s > 0 and of Hs for s > n
2 , respectively. In addition, we of course use integration by

parts, Holder’s and Minkowski inequality whenever necessary.

Lemma 14: Let s > n
2 + 2, γ ∈ Ein−n−1

n2
be the shadow of g ∈ M, g − γ = u, 2nKTT = v, and

assume there exists a δ > 0 such that (u, v) ∈ Bδ(0, 0) ⊂ Hs ×Hs−1, then the following estimates
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hold

(1)|
∫
M

< Lg,γu, hTT || > µg| ≤ C
φ

τ
||u||2Hs ||v||Hs−1 , (2.195)

(2)

∫
M

< u, ∂TLg,γu > µg =

∫
M

< ∂Tu|Lg,γu > µg +R, |R| ≤ C||u||2Hs ||v||Hs−1 ,

(3)

∫
M

< v, v > gij∂T gijµg ≤ C(
φ

τ
||v||3Hs−1 + ||v||4Hs−1),

(4)

∫
M

< u,Lg,γu > gij∂T gijµg) ≤ C(
φ

τ
||u||2Hs ||v||Hs−1 + ||u||2Hs ||v||2Hs−1),

(5)|
∫
M

φ

τ
< v,Xm∇[γ]mv > µg| ≤ C(

φ

τ
||v||3Hs−1 + ||v||4Hs−1),

(6)|
∫
M

φ

τ
< Lg,γu,Xm∇[γ]mu > µg| ≤ C(

φ

τ
||u||2Hs ||v||Hs−1 + ||u||2Hs ||v||2Hs−1),

and C = C(δ) > 0.

Proof: (1) Using the self-adjoint property of Lg,γ , we may write

∫
M

< Lg,γu, hTT || > µg =

∫
M

< u,Lg,γhTT || > µg. (2.196)

We have

(∆g,γh)ij = − 1

µg
∇[γ]m (gmnµg(∇[γ]nhij)) (2.197)

and the definition of Lg,γ

Lg,γhij = ∆g,γhij − 2R[γ]ikjlh
kl, (2.198)

= −gmn(∇[γ]m∇[γ]nhij)− V m∇[γ]mhij − 2R[γ]ikjlh
kl,

= −(gmn − γmn)(∇[γ]m∇[γ]nhij)− γmn∇[γ]m∇[γ]nhij

−2R[γ]ikjlh
kl,

= −(gmn − γmn)(∇[γ]m∇[γ]nhij) + Lγ,γhij ,

where we have used the identity ∇[γ]m(µgg
−1)mn = −V nµg, and set V m = 0. Replacing h by hTT ||

Lg,γhTT ||ij = −(gmn − γmn)(∇[γ]m∇[γ]nh
TT ||
ij ) (2.199)
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as a consequence of Lγ,γhTT || = 0. Now we will exploit the shadow gauge condition to obtain an

estimate of hTT ||. The shadow gauge reads

< g − γ| ∂γ
∂qα

>L2 = 0, (2.200)

< u|hTT ||α + LY ||αγ >L2 = 0 (2.201)

which upon time differentiation becomes

< ∂Tu|hTT ||α + LY ||αγ >L2 +second order terms = 0,

<
φ

τ
wv − φ(τ)

τ
Xm∇[γ]mu− hTT || + Fu|hTT ||α + LY ||αγ >L2

+second order terms = 0.

Now, using the estimates on (w − 1), X, and Fu, and the identity < ATT |LZγ >L2= 0 for any

transverse-traceless tensor ATT and vector field Z ∈ X(M), we immediately obtain

<
φ

τ
v − hTT |||hTT ||α >L2 +second order terms = 0 (2.202)

which leads to

hTT || =
φ

τ
v|| + second order terms, (2.203)

where v|| is the projection of v onto the subspace of TT tensors belonging to the kernel of Lg,γ . Now

using the equation (2.199), we observe that every term of < u,Lg,γhTT || >L2 is of at least third

order and the following claim follows

|
∫
M

< Lg,γu, hTT || >L2 µg| ≤ C
φ

τ
||u||2Hs ||v||Hs−1 . (2.204)

(2) We need the estimate for the term < u|∂TLgγu >L2 . Using the explicit expression for Lg,γ ,

we may write

∂TLg,γuij = ∂T
(
∆g,γuij − 2R[γ]ikjlu

kl
)
, (2.205)

= ∂T
(
−gmn(∇[γ]m∇[γ]nuij)− V m∇[γ]muij − 2R[γ]ikjlu

kl
)
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and imposing spatial harmonic gauge V i = 0

∂TLg,γuij = ∂T
(
−gmn(∇[γ]m∇[γ]nuij)− 2R[γ]ikjlu

kl
)
, (2.206)

= ∂T (−gmn(∇[γ]m∇[γ]nuij)− 2(DR[γ]ikjl · ∂T γ)ukl

−2R[γ]ikjl∂Tu
kl.

Let the operator gmn∇[γ]m∇[γ]n be denoted as D, then we write

∂TD[g, γ]uij = (
∂D[g, γ]

∂g
· ∂T g +

∂D[g, γ]

∂γ
· ∂T γ)uij +D[g, γ]∂Tuij (2.207)

which yields

∂TLg,γuij = Lg,γ∂Tuij − (
∂D[g, γ]

∂g
· ∂T g +

∂D[g, γ]

∂γ
· ∂T γ)uij (2.208)

−2(DR[γ]ikjl · ∂T γ)ukl.

Since the metric γ is now time dependent, we need to control the terms involving ∂T γ. Fortunately,

we do have the shadow gauge at our disposal. Utilizing the smoothing operation via shadow gauge

one readily bounds ∂γ
∂T in terms of ∂g

∂T

||∂T γ||Hs ≤ C||∂T g||Hs−1 . (2.209)

On the other hand, we of course have the estimate for ∂g
∂T from the evolution equation

|| ∂g
∂T
||Hs−1 . (

φ

τ
||KTT ||Hs−1 +

φ

τ
||X||Hs+1 + ||KTT ||2Hs−1) (2.210)

which yields through ||X||Hs+1 . (||KTT ||Hs−1 + τ
φ ||K

TT ||2Hs−1)

||∂T γ||Hs . ||KTT ||Hs−1 . (2.211)

In fact, following the C∞ topology of the deformation space N , one may write

||∂T γ||C∞ . ||KTT ||Hs−1 . (2.212)

Therefore, one is led to the conclusion that the term −(∂D[g,γ]
∂g ·∂T g+ ∂D[g,γ]

∂γ ·∂T γ)uij−2(DR[γ]ikjl ·
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∂T γ)ukl satisfies a second order estimate. This estimates together yields the desired result

< u|∂TLgγu >L2 = < ∂Tu|Lg,γu >L2 +C||u||2Hs ||v||Hs−1 , (2.213)

which concludes the proof of the second part. (3,4) Let us explicitly compute gij
∂gij
∂T using the

evolution equation

gij
∂gij
∂T

= −2n(1− N

n
)− φ

τ
(∇[g]iX

i). (2.214)

Therefore, we obtain the following expressions

∫
M

< v, v > gij∂T gijµg = −2n

∫
M

< v, v >

(
(1− N

n
) +

φ

τ
∇[g]iX

i

)
µg,∫

M

< u,Lg,γu > gij∂T gijµg = −2n

∫
M

< u,Lg,γu >
(

(1− N

n
) +

φ

τ
∇[g]iX

i

)
µg.

Now we invoke the elliptic equation for the lapse N

∆gN + (|KTT |2 +
1

n
)N = 1. (2.215)

An straightforward maximum principle yields the following estimate for N

N ≤ n (2.216)

throughout M yielding 1 − N
n ≥ 0 and since, < v, v > and < u,Lg,γu > are non-negative definite,

we may immediately write

∫
M

< v, v > gij∂T gijµg ≤ −2n
φ

τ

∫
M

< v, v > ∇[g]iX
iµg, (2.217)∫

M

< u,Lg,γu > gij∂T gijµg ≤ −2n
φ

τ

∫
M

< u,Lg,γu > ∇[g]iX
iµg

yielding the desired estimates

∫
M

< v, v > gij∂T gijµg ≤ C(
φ

τ
||v||3Hs−1 + ||v||4Hs−1), (2.218)∫

M

< u,Lg,γu > gij∂T gijµg ≤ C(
φ

τ
||u||2Hs ||v||Hs−1 + ||u||2Hs ||v||2Hs−1)

upon utilizing the estimate of X from lemma 7. (4) and (5) are straightforward to obtain using
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the estimates of X,N in terms of v. Importantly, it is clear that each one satisfies a third order

estimate. The following lemma characterizes the temporal evolution of the lowest order energy. The

higher order energy behaviour may be computed in a similar way.

Lemma 15: Let s > n
2 + 2, γ ∈ Ein−n−1

n2
be the shadow of g ∈M, and assume there exists a δ > 0

such that (u, v) ∈ Bδ(0, 0) ⊂ Hs ×Hs−1, , then the following holds

∂TE1 = −(n− 1) < v|v >L2 +A1, (2.219)

with A1 satisfying

A1 ≤ C(||u||Hs ||v||2Hs−1 + ||u||2Hs ||v||2Hs + ||v||4Hs−1 +
φ

τ
||u||Hs ||v||2Hs−1 (2.220)

+
φ

τ
||u||2Hs ||v||Hs−1 +

φ

τ
||v||3Hs−1),

and C = C(δ) > 0.

Proof: A direct calculation using equations (2.156)-(2.179) yields

∂TE1 =< v|∂T v >L2 +
n2

2
< ∂Tu|Lg,γu >L2 +

n2

2
< u|∂TLg,γu >L2

+
1

4

∫
M

((vijvkl)γ
ikγjl + n2(uijLgγukl)γikγjl)gmn

∂gmn
∂T

µg

−
∫
M

((vijvkl)µg + n2(uijLgγukl))γimγknγjl
∂γmn
∂T

µg

=< v| − (n− 1)v − φ

τ
n2wLg,γu−

φ

τ
Xm∇[γ]mv + Fv >L2

+
n2

2
<
φ

τ
wv − φ

τ
Xm∇[γ]mu− hTT || + 2(w − 1)γ + Fu|Lg,γu >L2

+
n2

2
< u|∂TLg,γu >L2 +B

= −(n− 1) < v|v >L2 −φ
τ
< v|Xm∇[γ]mv >L2 −n

2φ

2τ
< Xm∇[γ]mu|Lg,γu >L2

−n
2

2
< hTT |||Lg,γ >L2 +n2 < (w − 1)γ|Lg,γu >L2 −n

2φ

2τ
< wv|Lg,γu >L2

+
n2

2
< u|∂TLg,γu >L2 + < v|Fv >L2 +

n2

2
< Fu|Lg,γu >L2 +B.

Now utilizing point (2) of lemma (14), we may write

∫
M

< u, ∂TLg,γu > µg =

∫
M

< ∂Tu|Lg,γu > µg +R, |R| ≤ C||u||2Hs ||v||Hs−1 ,

and therefore the time derivative of first order energy (note that || ∂γ∂T ||Hs . ||
∂g
∂T ||Hs from shadow
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gauge) becomes

∂TE1 = −(n− 1) < v|v >L2 −φ
τ
< v|Xm∇[γ]mv >L2 −n

2φ

τ
< Xm∇[γ]mu|Lg,γu >L2

−n2 < hTT |||Lg,γ >L2 +2n2 < (w − 1)γ|Lg,γu >L2 −n
2φ

2τ
< wv|Lg,γu >L2

+
n2φ

2τ
< wv|Lg,γu >L2 + < v|Fv >L2 +n2 < Fu|Lg,γu >L2 +B

= −(n− 1) < v|v >L2 −φ
τ
< v|Xm∇[γ]mv >L2 −n

2φ

τ
< Xm∇[γ]mu|Lg,γu >L2

−n2 < hTT |||Lg,γ >L2 +2n2 < (w − 1)γ|Lg,γu >L2 + < v|Fv >L2

+n2 < Fu|Lg,γu >L2 +B.

We note that the potentially problematic term n2φ
2τ < wv|Lg,γu >L2 gets cancelled in the previous

expression. Now we will estimate each term in the energy expression utilizing lemma (14) and the

basic inequalities stated at the beginning of this section. Once again, we will bound every term by

their maximum available Sobolev norm (since ||A||Hs1 . ||A||Hs2 for s1 < s2). The following holds

| < v|Xm∇[γ]mv >L2 | . ||v||3Hs−1 +
τ

φ
||v||4Hs−1 , | < Xm∇[γ]mu|Lg,γu >L2 |

. ||u||2Hs ||v||Hs−1 +
τ

φ
||u||2Hs ||v||2Hs−1 , | < hTT |||Lg,γ >L2 | . φ

τ
||u||2Hs ||v||Hs ,

| < (w − 1)γ|Lg,γu >L2 | . ||u||Hs ||v||2Hs−1 ,B .
φ

τ
||v||3Hs−1 + ||v||4Hs−1

+
φ

τ
||u||2Hs ||v||Hs−1 + ||u||2Hs ||v||2Hs−1 .

Now, let us compute the product < v|Fv >L2 and < Fu|Lg,γu >L2

< v|Fv >L2= −2n2φ

τ
< v|wJ >L2 +2n2φ

τ
< v|∇ ⊗∇w >L2 +

φ

τ
< v|wv · v >L2

−2φ

τ
< v|(w − 1)(u+ γ) >L2 −(n− 2) < v|(w − 1)v >L2 +8n3φ

τ
< v|wv · v >L2

−φ
τ
< v|v ◦ ∇X >L2 ,

< Fu|Lg,γu >L2= 2n2 < (w − 1)u|Lg,γu >L2 −n2 < Lφ
τX+Y ||γ|Lg,γu >L2

−n2φ

τ
< u ◦ ∇X|Lg,γu >L2 ,

where (∇ ⊗ ∇w)ij = ∇i∇jw, (v · v)ij = vimv
m
j , and (v ◦ ∇X)ij = vim∇jXm + vjm∇iXm. Once

again utilizing lemma (14), basic inequalities, and the elliptic estimates for the lapse function and
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the shift vector field, each term of the above expressions may be estimated as follows

| < v|wJ >L2 | . ||u||2Hs ||v||Hs−1 , | < v|∇ ⊗∇w >L2 | . ||v||3Hs−1 , (2.221)

| < v|wv · v >L2 | . ||v||3Hs−1 , | < v|(w − 1)(u+ γ) >L2 | . ||u||Hs ||v||3Hs−1 ,

| < v|(w − 1)v >L2 | . ||v||4Hs−1 , | < v|wv · v >L2 | . ||v||3Hs−1 ,

| < v|v ◦ ∇X >L2 | . ||v||3Hs−1 +
τ

φ
||v||4Hs−1 , | < (w − 1)u|Lg,γu >L2 |

. ||u||2Hs ||v||2Hs−1 , | < Lφ
τX+Y ||γ|Lg,γu >L2 | . φ

τ
||u||2Hs ||v||Hs−1 +

||u||2Hs ||v||2Hs−1 , | < u ◦ ∇X|Lg,γu >L2 | . ||u||2Hs ||v||Hs−1 +
τ

φ
||u||2Hs ||v||2Hs−1 .

Note that the dangerous factor τ
φ cancel out in the time derivative of the energy by its inverse

φ
τ . Utilizing these estimates and carefully counting powers of φ

τ , we obtain the desired differential

equation for the first order energy E1

∂TE1 = −(n− 1) < v|v >L2 +A1, (2.222)

with A1 satisfying

|A1| ≤ C(||u||Hs ||v||2Hs−1 + ||u||2Hs ||v||2Hs + ||v||4Hs−1 (2.223)

+
φ

τ
||u||Hs ||v||2Hs−1 +

φ

τ
||u||2Hs ||v||Hs−1 +

φ

τ
||v||3Hs−1)

This proves the lemma.

Now we need to derive the time derivative of the higher order energies in order to obtain a time

evolution of the total energy. In order to do so, we need a few additional estimates. The next lemma

provides the required estimates.

Lemma 16: Let s > n
2 + 2, γ ∈ Ein−n−1

n2
be the shadow of g ∈M, and assume there exists a δ > 0
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such that (u, v) ∈ Bδ(0, 0) ⊂ Hs ×Hs−1, then the following estimates hold

(1)|
∫
M

< Lig,γu, hTT || > µg| ≤ C
φ

τ
||u||2Hs ||v||Hs−1 , (2.224)

(2)

∫
M

< u, ∂TLig,γu > µg =

∫
M

< ∂Tu|Lig,γu > µg +R
′
, |R

′
| ≤ C||u||2Hs ||v||Hs−1 ,

(3)

∫
M

< v,Li−1
g,γ v > gkl∂T gklµg ≤ C(

φ

τ
||v||3Hs−1 + ||v||4Hs−1),

(4)

∫
M

< u,Lig,γu > gkl∂T gklµg) ≤ C(
φ

τ
||u||2Hs ||v||Hs−1 + ||u||2Hs ||v||2Hs−1),

(5)|
∫
M

φ

τ
< Li−1

g,γ v,X
m∇[γ]mv > µg| ≤ C(

φ

τ
||v||3Hs−1 + ||v||4Hs−1),

(6)|
∫
M

φ

τ
< Lig,γu,Xm∇[γ]mu > µg| ≤ C(

φ

τ
||u||2Hs ||v||Hs−1 + ||u||2Hs ||v||2Hs−1),

for 2 ≤ i ≤ s and C = C(δ) > 0.

Proof: Following a calculation analogous to that of lemma (14) and using the formula for the

higher order estimates provided in the beginning of this section (i.e., the product estimates and the

commutator estimates) for s > n
2 + 2, each of the claims follows.

Now that we have the necessary estimates, we may obtain the time derivative of the higher order

energies. The following lemma states the time derivative of the higher order energies.

Lemma 17: Let s > n
2 + 2, γ ∈ Ein−n−1

n2
be the shadow of g ∈M, and assume there exists a δ > 0

such that (u, v) ∈ Bδ(0, 0) ⊂ Hs ×Hs−1, then the following holds for 1 < i ≤ s

∂TEi = −(n− 1) < v|Li−1
g,γ v >L2 +Ai, (2.225)

with Ai satisfying

|Ai| ≤ C(||u||Hs ||v||2Hs−1 + ||u||2Hs ||v||2Hs + ||v||4Hs−1 (2.226)

+
φ

τ
||u||Hs ||v||2Hs−1 +

φ

τ
||u||2Hs ||v||Hs−1 +

φ

τ
||v||3Hs−1),

for C = C(δ) > 0.

Proof: A calculation analogous to that of lemma (15) and the higher order estimates from lemma

(16) directly yield the desired result.

Now that we have concluded with the proofs of the important lemmas, we will study the time

evolution of the total energy. The time derivative of the total energy may be written using the
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lemma (15) and (17) as follows

∂E
∂T

= −(n− 1)

s∑
i=1

< v|Li−1
g,γ v >L2 +

s∑
i=1

Ai, (2.227)

where each Ai satisfies higher order estimate

Ai ≤ C(||u||Hs ||v||2Hs−1 + ||u||2Hs ||v||2Hs + ||v||4Hs−1 (2.228)

+
φ

τ
||u||Hs ||v||2Hs−1 +

φ

τ
||u||2Hs ||v||Hs−1 +

φ

τ
||v||3Hs−1)

The above expression may be rewritten as follows

∂E
∂T
≤ −

(
(n− 1)− C(||u||Hs + ||u||2Hs + ||v||2Hs)

) s∑
i=1

< v|Li−1
g,γ v >L2 (2.229)

+C
φ

τ
||v||Hs−1E ,

using the fact that ||v||2Hs−1 .
∑s
i=1 < v|Li−1

g,γ v >L2 , ||u||2Hs + ||v||2Hs−1 . E . Also note that

||u||Hs , ||v||Hs−1 . E1/2. Now notice that zero eigenvalues of Lg,γ would correspond to the trivially

stable case for small data. If (u, v) ∈ ker(Lg,γ), then

∂E
∂T
≤ −2(n− 1)E + C

φ

τ
E3/2 (2.230)

and if the initial data is sufficiently small in Hs × Hs−1, then E(T ) . e−2(n−1)(T−T0) as T → ∞.

Therefore, we will focus on perturbations (u, v), satisfying < v|Li−1
g,γ v >L2> 0 ∀1 ≤ i ≤ s. Note

an extremely important fact that the possible feedback term (which might lead to energy growth)

||v||Hs−1E is multiplied by a factor of φ
τ . Noting that φ

τ ∼ e−T as T → ∞, one immediate guess

would be that the energy at least remains bounded if the initial energy is chosen to be sufficiently

small. Now the time derivative of the energy may be further reduced to the following form

∂E
∂T
≤ −

(
(n− 1)− C

√
E
) s∑
i=1

< v|Li−1
g,γ v >L2 (2.231)

+C
φ

τ
||v||Hs−1E . (2.232)

Now, if the energy is sufficiently small (i.e., (u, v) ∈ Bδ(0, 0) ∈ Hs ×Hs−1 such that E < (n−1
2C )2 for

example), then the first term contributes a negative factor and for such small data limit, the linear
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terms ||v||Hs−1 are absorbed in the constant and the energy satisfies

∂E
∂T
≤ Cφ

τ
E , (2.233)

integration of which yields

E(T ) ≤ E(T0)e
C ln |

e−T0+
√
e−2T0+ 2nΛ

n−1

e−T+
√
e−2T+ 2nΛ

n−1

|
= E(T0)

e−T0 +
√
e−2T0 + 2nΛ

n−1

e−T +
√
e−2T + 2nΛ

n−1

C

. (2.234)

Therefore, we have the boundedness of energy at the limit T →∞ (limT→∞(e−T +
√
e−2T + 2nΛ

n−1 ) =√
2nΛ
n−1 )

lim
T→∞

E(T ) ≤ C
′
E(T0). (2.235)

In order to close the argument, the following must be satisfied

√
E(T ) <

n− 1

2C
(2.236)

to ensure that the first term in the inequality (2.231) contributes a negative term for all time (which

we assumed at the beginning). We enforce the following condition which will impose necessary

smallness condition on the initial energy E(T0)

lim
T→∞

E(T ) ≤ C
′
E(T0) <

(n− 1)2

4C2
. (2.237)

It yields the following smallness of the initial data

E(T0) <
(n− 1)2

4C2C ′
. (2.238)

Therefore, by ensuring that the initial data is small enough such that (2.237) holds, we ensure that

the first term in the differential inequality (2.231) always contributes a negative term. Therefore,

we close the argument and obtain that the suitable norm of the data remains bounded by the initial

data as T →∞ if the initial data is chosen small enough i.e.,

E(T ) . E(T0), (2.239)
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or

||u(T )||2Hs + ||v(T )||2Hs−1 . ||u(T0)||2Hs + ||v(T0)||2Hs−1 . (2.240)

Now, since the time interval of existence depends on the size of ||u||Hs and ||v||Hs−1 from the local

existence theorem, we obtain the global existence.

Even though we proved the boundedness of the suitable norm of the dynamical variables yielding

global existence, this is not satisfactory. We want to prove the attractor property of the Einstein-Λ

flow and as such we need to establish decay property of suitable norms. [206] showed the attractor

property of the Einstein flow with Λ = 0. Now, with Λ > 0 included, one would naturally expect that

the accelerated expansion should kill away the perturbations and drive the flow towards the centre

manifold (extended center manifold to be precise). However, we only seem to obtain a boundedness

of the energy without any decay. This is mainly due to the fact that we have underestimated the

large damping term −(n− 1)
∑s
i=1 < v|Li−1

g,γ v >L2 . Using an iterated scheme, we will now achieve

the sharp decay which does agree with the linear analysis as T →∞ (as it should).

The following analysis holds in the limit T → ∞. We will simply compute the time derivative of

Ev :=
∑s−1
i=1 < v|Li−1

g,γ v >L2 , s > n
2 + 2

dEv
dT
≤ −(n− 1)

s−1∑
i=1

< v|Li−1
g,γ v >L2 +C||v||4Hs−2 (2.241)

+
φ

τ
(||v||3Hs−2 + ||u||Hs−1 ||v||3Hs−2 + ||u||Hs ||v||Hs−2).

Note an important fact that we loose one degree of regularity because, in the computation of the

time derivative of Ev := 1
2

∑s
i=1 < v|Li−1

g,γ v >L2 alone, the dangerous term
∑s
i=1 < Lg,γu|Li−1

g,γ v >L2

does not get cancelled unlike the case of the time derivative of the total energy E . Therefore, we

loose one order of regularity. However, since we have s > n
2 + 2, we will still be able to obtain the

desired pointwise decay estimate. The previous inequality may also be expressed as follows

dEv
dT
≤ −((n− 1)− C||v||2Hs−2)

s−1∑
i=1

< v|Li−1
g,γ v >L2 (2.242)

+C
φ

τ
(||v||3Hs−2 + ||u||Hs−1 ||v||3Hs−2 + ||u||Hs ||v||Hs−2)
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Recalling ||v||2Hs−2 . δ2 < n−1
2C and ||u||Hs . δ, we obtain

dEv
dT
≤ −n− 1

2

s−1∑
i=1

< v|Li−1
g,γ v >L2 +C

φ

τ
||v||2Hs−2(1 + ||u||Hs−1) (2.243)

+C
φ

τ
||u||Hs ||v||Hs−2

= −(n− 1)Ev + C
φ

τ
||v||2Hs−2(1 + ||u||Hs−1) + C

φ

τ
||u||Hs ||v||Hs−2

integration of which yields (n ≥ 3)

Ev(T ) . e−(n−1)(T−T0)E(T0) + Ce−T , (2.244)

i.e.,

Ev . e−T or ||v||Hs−2 . e−T/2. (2.245)

Using s > n
2 + 2, we obtain applying Sobolev embedding on compact domain

||v||L∞ . e−T/2. (2.246)

Now, note that this decay is not optimal. An iteration scheme would yield a better decay rate. We

go back to the expression of dEv
dT and observe

dEv
dT
≤ −(n− 1)

s−1∑
i=1

< v|Li−1
g,γ v >L2 +C||v||4Hs−2 (2.247)

+C
φ

τ
(||v||3Hs−2 + ||u||Hs−1 ||v||3Hs−2 + ||u||Hs ||v||Hs−2)

to obtain

dEv
dT
≤ −2(n− 1)Ev + Ce−(1+1/2)T + Ce−2T (2.248)

since ||v||4Hs−2 . e−2T , φτ (||v||3Hs−2 + ||u||Hs−1 ||v||3Hs−2 + ||u||Hs ||v||Hs−2) . e−(1+1/2)T/2 using the

previous estimate. Therefore, the previous differential inequality yields

Ev . e−(1+1/2)T or ||v||Hs−2 . e−
(1+1/2)T

2 . (2.249)
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Notice that we have gained a factor of 1/4 in the decay estimate. Using this estimate, in the next

iteration, we obtain

dEv
dT
≤ −2(n− 1)Ev + Ce−{1+1/2(1+1/2)}T (2.250)

and subsequently

Ev . e−{1+1/2(1+1/2)}T , or ||v||Hs−2 . e−
1
2{1+1/2(1+1/2)}T . (2.251)

If we continue to iterate, we obtain the decay rate to be the sum of an infinite series, that is, the

final decay rate is computed to be

1 +
1

2
(1 +

1

2
(1 +

1

2
(1 +

1

2
(....... =

∞∑
k=0

1

2k
=

1

1− 1/2
= 2. (2.252)

Therefore, the final estimate reads

Ev . e−2T or ||v||Hs−2 . e−T . (2.253)

Note that this is optimal in a sense that substituting this decay back into the equation (2.247)

returns the same decay. Now we compute the time derivative of Es := n2

2

∑s−1
i=1 < u|Lig,γu >L2

+ 1
2

∑s−1
i=1 < v|Li−1

g,γ v >L2 which yields

dEs
dT
≤ −(n− 1)

s−1∑
i=1

< v|Li−1
g,γ v >L2 +C(||u||Hs−1 + ||u||2Hs−1 (2.254)

+||v||2Hs−2)||v||2Hs−2 + C
φ

τ
||v||Hs−2Es.

Utilizing the estimate ||v||s−2 . e−T and ||u||Hs−1 < δ, we observe that every term decays exponen-

tially as T → ∞ i.e., C(||u||Hs−1 + ||u||2Hs−1 + ||v||2Hs−2)||v||2Hs−2 . e−2T , φτ ||v||Hs−2Es . e−2T and∑s−1
i=1 < v|Li−1

g,γ v >L2. e−2T yielding

dEs
dT
. e−2T , (2.255)

i.e., dEsdT decays asT →∞. In fact, we may show that Es actually decays as T →∞. Using the decay
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estimate ||v||Hs . e−T and noting the order of each term

dEs
dT
≤ −(n− 1)δ2e−2T + Cδ3e−2T + Cδ3e−2T (2.256)

= − ((n− 1)− 2Cδ) δ2e−2T .

Now of course there exists a δ > 0 such that δ < n−1
2C yielding

dEs
dT

< 0 (2.257)

and dEs
dT = 0 if and only if ||v||Hs−2 ≡ 0 since every term in the right hand side is multiplied by a

factor of ||v||Hs−2 . This indicates that the re-scaled metric converges to a limit metric. Now, we go

back to the evolution equation of the metric since, we have not yet established a sharp decay of the

metric. The evolution equation for the metric reads

∂T gij =
2φ(τ)

τ
NKTT

ij − 2(1− N

n
)gij −

φ(τ)

τ
(LXg)ij . (2.258)

Now, we have estimated ||v||Hs−2 = 2n||KTT ||Hs−2 . e−T which yields through the elliptic estimate

(lemma 6 and 7)

(||N
n
− 1)||Hs . e−2T , ||X||Hs . e−T . (2.259)

Therefore, utilizing these estimates (s > n
2 + 2) we obtain

||∂T gij ||Hs−2 . e−2T or ||∂T gij ||L∞ . e−2T (2.260)

which implies that the re-scaled metric g decays to a limit metric γ i.e., utilizing the evolution equa-

tion ||g− γ†||Hs−1 . e−2T or equivalently ||g− γ†||L∞ . e−2T from Sobolev embedding on compact

domain. The question that remains is what are these limit metrics? Invoking the Hamiltonian

constraint

R+
n− 1

n
= |KTT |2, (2.261)

82



one obtains

lim
T→∞

(R+
n− 1

n
) = lim

T→∞
|KTT |2 = lim

T→∞
e−2T = 0. (2.262)

This precisely implies that the re-scaled metric gij converges to an element of the spaceMε
−n−1

n

∩Sγ

i.e., the extended centre manifold. The decay estimate is as follows

||g − γ†||Hs−1 . e−2T , (2.263)

where γ† ∈Mε
−n−1

n

∩ Sγ . In summary, the metric g along with (KTT , X,N) satisfies

lim
T→∞

||∂gij
∂T
||L∞ = 0, lim

T→∞
||KTT ||L∞ = 0, (2.264)

lim
T→∞

||N ||L∞ = n, lim
T→∞

||X||L∞ = 0, lim
T→∞

R[g] = −n− 1

n
,

that is

lim
T→∞

g(T ) = γ† (in Hs−1 topology) (2.265)

with γ† ∈ Mε
−n−1

n

∩ Sγ . This implies that metrics lying in Mε
−n−1

n

∩ Sγ simply evolves to another

point inMε
−n−1

n

∩Sγ and metrics lying sufficiently close to N yet not inMε
−n−1

n

∩Sγ exponentially

converges toMε
−n−1

n

∩Sγ in infinite time. This completes the proof of the attractor property of the

centre manifold (extended to be precise) under the Einstein flow. Theorem 5 formally summarizes

the result.

Once we have obtained the estimates for the perturbations to the primary dynamical variables

(u, v), the estimates for the lapse function and the shift vector field follow from lemma (6) and (7),

respectively

||N
n
− 1||Hs . e−2T , (2.266)

||X||Hs . e−T . (2.267)

and thus

||N
n
− 1||L∞ . e−2T , (2.268)

||X||L∞ . e−T (2.269)
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following Sobolev embedding theorem on compact domain with s > n
2 + 2. We proved earlier that

hTT || = φ
τ v
|| up to a second order correction and Y || is estimated by lemma (8). Therefore, the

following holds for hTT || and Y ||

||hTT ||Hs−1 . e−2T , or ||hTT ||L∞ . e−2T (2.270)

||Y ||||Hs . e−2T or ||Y ||||L∞ . e−2T . (2.271)

Therefore, we summarize the following decay estimates for the perturbations L2 orthogonal to the

deformation space N

|| ∂g
∂T
||L∞ . e−2T , ||g − γ†||L∞ . e−2T , ||KTT ||L∞ . e−T , (2.272)

||N
n
− 1||L∞ . e−2T , ||X||L∞ . e−T , ||hTT ||L∞ . e−2T , ||Y ||||L∞ . e−2T .

For purely tangential perturbations (tangential to the deformation space N ), the following decay

estimates hold using (2.230), the elliptic estimates (lemma 6, 7, and 8), and the evolution equations

|| ∂g
∂T
||L∞ . e−nT , ||g − γ†||L∞ . e−nT , ||KTT ||L∞ . e−(n−1)T , (2.273)

||N
n
− 1||L∞ . e−2(n−1)T , ||X||L∞ . e−(n−1)T , ||hTT ||L∞ . e−nT ,

||Y ||||L∞ . e−2nT .

Note an important fact that the asymptotic decay estimates of ∂g
∂T , (g − γ†), and KTT match with

the linear decay estimates as expected. Utilizing these asymptotic decay estimates for the relevant

fields, we therefore obtain the following theorem regarding the attractor property of the Einstein-Λ

flow

Theorem 5: Let (g0,K
TT
0 ) ∈ Bδ(γ0, 0) ⊂ Hs−1 × Hs−2, s > n

2 + 2 with γ0 ∈ N and assume the

triple (γ0, g0,K
TT
0 ) satisfies the shadow gauge condition. The Newtonian like time −∞ < T < ∞

is defined as the solution of the equation ∂T = − τ
2− 2nΛ

n−1

τ ∂τ , with τ ∈ (−∞,−
√

2nΛ
n−1 ) and Λ > 0

being the mean extrinsic curvature (constant) of the Cauchy hypersurface M and the cosmological

constant, respectively. Let T 7→ (γ(T ), g(T ),KTT (T )) be the maximal development of the Cauchy

problem for the system (2.35, 2.36, 2.37, 2.38, 2.39, 2.43,2.44) with shadow gauge condition imposed

and initial data (γ0, g0,K
TT
0 ). Then there exists a γ∗ ∈ N and a γ† ∈ Mε

−n−1
n

∩ Sγ such that the
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triple (γ, g,KTT )) flows toward (γ∗, γ†, 0) in the limit of infinite time that is

lim
T→∞

(γ(T ), g(T ),KTT (T )) = (γ∗, γ†, 0). (2.274)

and moreover either γ† = γ∗ or Pγ† = γ∗. Here P is the projection operator defined in (2.107).

In the limit of infinite time (infinite expansion of the physical metric), the complete solution satisfies

lim
T→∞

(γ(T ), g(T ),KTT (T ), N(T ), X(T )) = (γ∗, γ†, 0, n, 0). (2.275)

In order to establish the future completeness of the spacetime, we need to show that the length

of a timelike geodesic goes to infinity. In other words, the solution of the geodesic equation must

exist for an infinite interval of the affine parameter. Let’s designate the timelike geodesic by C. The

tangent vector α = dC
dλ = αµ∂µ to C for the affine parameter λ satisfies ĝ(α, α) = −1, where ĝ is the

spacetime metric. As C is causal, we may parametrize it as (T, Ci), i = 1, 2, 3. We must show that

limT→∞ λ(T ) = +∞, that is,

lim
T→∞

∫ T

T0

dλ

dT ′
dT
′

= +∞. (2.276)

Noting that α0 = dT
dλ , we must show

lim
T→∞

∫ T

T0

1

α0
dT
′

= +∞. (2.277)

We follow the method of [151] to achieve this. Showing that |N̄α0| is bounded and therefore

limT→∞
∫ T
T0
N̄dT

′
= +∞ is enough to ensure the geodesic completeness. We first show that |N̄α0|

is bounded. Let’s consider a co-vector field Zµ = N̄δ0
µ in local coordinates using the n + 1 decom-

position, where δνµ is the Kronecker delta. This shows that α may be expressed as

α = N̄α0Z +W, (2.278)

where W ∈ X(M). Noting ĝ(α, α) = −1, we obtain

|W |2g̃ = N̄2(α0)2 − 1. (2.279)
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Here g̃ is the induced Riemannian metric on M . Clearly we have

|W |2g̃ < N̄2(α0)2. (2.280)

Let us compute the entity d(N̄2(α0)2)
dT as follows

d(N̄2(α0)2)

dT
=

d

dT
(ĝ(α,Z))2 =

2

α0
ĝ(α,Z)ĝ(α,∇[ĝ]αZ), (2.281)

where, we have used the fact that for C being a geodesic, ∇[ĝ]αα = 0 and appealed to the Koszul

formula for the derivative. Using ĝ(α,Z) = −N̄α0 and writing the covariant derivative of the

spacetime metric as a direct sum of its projection onto the tangent space of M and the second

fundamental form of M , we obtain

d(N̄2(α0)2)

dT
= −2N̄(α0∇W N̄ − K̃ijW

iW j). (2.282)

Decomposing K̃ = K̃TT + τ
n g̃ and noting that τ < 0, we obtain

| d
dT

(ln(N̄2(α0)2))| ≤ ||∇N̄ ||L∞;g̃ + ||N̄K̃TT ||L∞;g̃. (2.283)

Now, in the time coordinate dτ
dt = 1 and −φ

2

τ
d
dτ = d

dT , the spacetime metric reads

ĝ = −Ñ2dt⊗ dt+ g̃ij(dx
i + X̃idt)⊗ (dxj + X̃jdt) (2.284)

= −Ñ
2φ4

τ2
dT ⊗ dT + g̃ij(dx

i − Xiφ2

τ
dT )(dxj − Xjφ2

τ
dT ), (2.285)

and therefore N̄ = Ñ2φ4

τ2 . Now, we utilize the estimate obtained for the lapse function and the

transverse-traceless second fundamental form. Note that these fields are not dimensionless and

therefore we need to multiply them with suitable powers of 1
φ ∼ e

T (2.34) to extract the dimensionless

part. We obtain, N̄ = Ñφ2

|τ | = N
|τ | and K̃TT = 1

φK
TT , where N and KTT are dimensionless. Utilizing

the estimates ||Nn −1||Hs . e−2T and ||KTT ||Hs−2 . e−T (for s > n
2 +2, from Sobolev embedding on

a compact domain, bounded Hs (resp. Hs−2) norm of N (resp. KTT ) implies bounded L∞ norm,

||∇N̄ ||L∞;g̃ := supM
√
g̃ij∇iN̄∇jN̄ , ||KTT ||L∞;g̃ := supM

√
g̃ij g̃klKTT

ik KTT
jl ), we observe that the

following holds

| d
dT

(ln(N̄2(α0)2))| . e−2T (2.286)
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as T →∞ and therefore N̄2(α0)2 is bounded, i.e.,

N̄2(α0)2(T ) ≤ C (2.287)

for some C < ∞. Therefore, we need to show that limT→∞
∫ T
T0
N̄dT

′
= +∞ in order to finish the

proof of timelike geodesic completeness. Once again using N̄ = N
|τ | , the estimate (2.49)

0 <
1

sup(|KTT |2) + 1
n

≤ N ≤ n, (2.288)

and ||KTT ||Hs−1 . e−T as T → ∞, we clearly see that N is bounded from below by a strictly

positive number and therefore

lim
T→∞

∫ T

T0

N̄dT
′

= +∞. (2.289)

Therefore, the solution of the geodesic equation must exist for a semi-infinite interval of the affine

parameter. This completes the proof timelike geodesic completeness. The case of null geodesics can

be handled exactly the same way.

This proves the future completeness of this family of spacetimes. Previous analysis together with

the attractor property stated in theorem 5 yields the following global existence theorem.

Theorem 6: Let N be the integrable deformation space of γ0. Then ∃δ > 0 such that for any

(g(T0),KTT (T0)) ∈ Bδ(γ0, 0) ⊂ Hs×Hs−1, with the triple (γ0, g(T0),KTT (T0)) satisfying the shadow

gauge condition, the Cauchy problem for the re-scaled Einstein-Λ system with constant mean extrinsic

curvature (CMC) and spatial harmonic (SH) gauge is globally well posed to the future and the space-

time is future complete.

One might recall for Λ = 0 case that in order to obtain a sharp decay of the energy, [206] added

a correction term to the ordinary wave equation type energy. One could naturally ask whether

introduction of such a correction term is necessary, that is, can one just initially bound the energy

and later use the iteration scheme to yield the improved decay. However, there is a major difference

between the Λ = 0 and Λ > 0 case. In Λ > 0 case, we have the ‘good’ term φ
τ (which decays as

e−T as T →∞) which plays an extremely important role in obtaining the decay estimate. Roughly,

one sees in the second iteration from equation (2.247) that given the boundedness of ||u||Hs−1 , and

||v||Hs−2 . e−T/2, the terms multiplied by φ
τ adds an extra factor of 1 in the decay estimate of

||v||2Hs−2 . In case of Λ = 0, the absence of φ
τ would lead to a circular argument in the first step

and prohibit one to obtain a decay estimate. Therefore, introduction of a corrected energy becomes
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essential. Physically, this behaviour is expected since addition of a positive cosmological constant

yields an accelerated expansion which is expected to destroy the perturbations. Sufficiently small

data and the positivity of the spectrum of the operator Lg,γ are sufficient to establish the asymptotic

stability.

2.7 Concluding remarks

We have proved a global existence theorem for sufficiently small however fully nonlinear perturbations

of a family of background solutions (conformal spacetimes) derived from Einstein’s equations in

the presence of a positive cosmological constant. However, our current result assumes the initial

data to be within a small neighbourhood (in the proper function space setting) of the background

solutions, and as such is very far from stating a global result for arbitrarily large data. Nevertheless,

several interesting physically relevant features are revealed through the analysis. Firstly, consider

the case of n = 3 i.e., the physical spacetimes. Following Mostow rigidity, the Einstein moduli space

consists of a single point that corresponds to the hyperbolic geometry. Therefore, the background

spacetime is essentially foliated by compact hyperbolic manifolds which are locally homogeneous and

isotropic thereby conforming to the cosmological principle (astronomical observations that motivate

the cosmological principle are local). Notice that if we start with an inhomogeneous anisotropic initial

spatial metric sufficiently close to the background (in suitable function space settings), this metric

does not only remain within a bounded neighbourhood of the background, it actually approaches

the space of metrics with constant scalar curvature sufficiently close and containing the Einstein

structure. In addition, recent astronomical observations support the claim that the spatial slice of

the physical universe is indeed negatively curved (slightly). This notion together with our result

opens up the possibility of a rather exotic spatial topology of the universe (hyperbolic 3-manifolds

are topologically rich). Of course, our result can only provide an indication of such a claim being

true. A complete analysis would entail inclusion of suitable matter sources on the one hand and

treating arbitrarily large data perturbations on the other. While [166] proved the non-linear stability

of the small perturbations to the FLRW background solutions in the presence of irrotational perfect

fluid and a positive cosmological constant on T 3×R (and therefore flat spatial topology), such non-

linear stability of spacetimes foliated by compact hyperbolic manifolds (which is of physical interest)

is still open and the flat model is not likely a viable candidate for the physical universe. A linear

stability of spacetimes foliated by compact hyperbolic spatial slices in the presence of a perfect fluid

and Λ > 0 (compact variants of the k = −1 FLRW model) is under preparation by the current
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author. [165] has recently studied the asymptotic behavior of a universe filled with matter sources

satisfying suitable energy conditions and a positive cosmological constant based on a monotonic

decay property of a suitably constructed Lyapunov function. While such a Lyapunov function can

treat arbitrarily large data, it can only control the lowest order norm (H1 × L2) of the data and

therefore, is unable to state a result regarding global existence (at the physically interesting classical

solutions we are interested). In a sense, any definite result regarding the evolution of the physical

universe requires global existence (or blow up in finite time) for large data perturbations.

This question of global existence is far from obvious and an extremely important (and difficult)

open problem in classical general relativity. Global existence is known to be violated for some

known examples of spacetime via formation of black holes. These include Schwarzschild, Reissner-

Nordström, Kerr spacetimes, where a true curvature singularity occurs within the event horizon of

the black hole. Even in the vacuum case, pure gravity could ‘blow up’ (curvature concentration)

i.e., gravitational singularities could prevent global existence or the spacetime could simply lose the

global hyperbolicity through formation of Cauchy horizons (Taub-NUT spacetimes for example). Of

course, such issues lead to the fundamental question of the Cosmic Censorship conjecture [111],

which still remains open. Available results related to the global existence address rather special

cases such as spacetimes with non-trivial symmetry groups [112, 114, 191] (and which therefore are

not generic) or where a certain smallness condition on the initial data is assumed [151,206]. There is

however a rather ambitious program under development by Moncrief to control the pointwise (L∞

norm) behaviour of the spacetime curvature through the use of light cone estimates [117]. This

method is recently applied to establish the global existence of Yang-Mills and Klein-Gordon fields

in curved spacetimes by the current author and Moncrief. Application of this light cone estimates

to establish the small data global existence for certain background solutions is currently under

investigation by the current author.

An interesting question which arises through our result is what role can these non-trivial exotic

topologies (H3/Γ, Γ ∈ SO+(3, 1) proper, discrete, and torsion free) play in answering the question of

global existence or finite time blow up. In a sense, can the topological properties of these interesting

manifolds have any control on the fundamental question of large data global existence (or finite time

blow up)? Can the interrelation between the dynamics and topology provide crucial information to

handle the issue of global existence or finite time blow up, at least in n = 3 dimensions?
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Chapter 3

The linear stability of the n+1 dimensional FLRW spacetimes

Here we prove the linear stability of a family of ‘n+1’-dimensional cosmological models of general rel-

ativity locally isometric to the Friedmann Lemâıtre Robertson Walker (FLRW) spacetimes including

a positive cosmological constant. We show that the solutions to the linearized Einstein-Euler field

equations around a class of FLRW metrics with compact spatial topology (negative Einstein spaces

and in particular hyperbolic for n = 3) arising from regular initial data remain uniformly bounded

and decay to a family of metrics with constant negative spatial scalar curvature. To accomplish the

result, we express the Einstein-Euler system in constant mean extrinsic curvature spatial harmonic

gauge and linearize about the chosen FLRW background. Utilizing a Hodge decomposition of the

fluid’s n−velocity 1-form, the linearized system becomes elliptic-hyperbolic (and non-autonomous)

in the CMCSH gauge facilitating an application of an energy type argument. Utilizing the estimates

derived from the associated elliptic equations, we first prove the uniform boundedness of a energy

functional (controlling an appropriate norm of the data) in the expanding direction. Utilizing the

uniform boundedness, we later obtain a sharp decay estimate which suggests accelerated expansion

(for Λ > 0) of this particular universe model may be sufficient to control the non-linearities (in-

cluding possible shock formation) of the Einstein-Euler system in a potential future proof of the

fully non-linear stability. In addition, the rotational and harmonic parts of the fluid’s n−velocity

field only couple to the remaining degrees of freedom in higher orders, which once again indicates a

straightforward extension of current analysis to the fully non-linear setting in the sufficiently small

data limit. In addition, our results require a certain integrability condition on the expansion factor

and a suitable range of the adiabatic index γad ((1, n+1
n ) i.e., (1, 4

3 ) in the physically relevant ‘3 + 1’

universe) if the barotropic equation of state p = (γad − 1)ρ is chosen.

Recent astronomical observations [119, 120] indicate a possibility that the spatial universe may

have slightly negative curvature. This leads to the consideration of the well-known FLRW spacetime

with negative spatial curvature as a possible cosmological model. Of course, the spatial manifold
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of this model is H3and it satisfies the global homogeneity and isotropy criteria as dictated by the

cosmological principle. However, the astronomical observations that motivate the cosmological prin-

ciple are necessarily limited to a fraction (possibly small) of the entire universe and such observations

are compatible with spatial metrics being locally but not globally homogeneous and isotropic. Once

the restriction on the topology (a global property) is removed, numerous closed manifolds may be

constructed as the quotients of H3 by discrete, proper, and torsion-free subgroups of SO+(1, 3),

with each satisfying the local homogeneity and isotropy criteria but no longer being globally ho-

mogeneous or isotropic. In other words, the indication of the spatial universe to have a constant

negative curvature opens up the possibility of quite ‘exotic’ topologies. In fact, there are infinitely

many closed (compact without boundary) hyperbolic 3−manifolds topologically distinct from each

other. Each such manifold may serve as a possible candidate model for the spatial universe. These

spatially compact model spacetimes may be written as the following warped product form in their

‘n+ 1’ dimensional generalization

n+1g = −dt⊗ dt+ a(t)2γijdx
i ⊗ dxj , (3.1)

where R[γ]ij = − 1
nγij , t ∈ (0,∞), a(t) is the scale factor satisfying ∂ta > 0 for this expanding

universe model, and R[γ]ij is the Ricci tensor of the metric γ. Restricting to n = 3 yields the

compact hyperbolic manifolds by Mostow rigidity [121]. However, an important question remains

to be answered. Are the FLRW models (variants of FLRW to be precise since spatial manifolds

of these models are not globally isotropic and homogeneous only locally so) predicted by general

relativity? To conclude that they are may seem to hinge on proof that the purely theoretical FLRW

models with compact hyperbolic spatial parts are dynamically stable. A natural first step towards

such proof would be to establish stability at the level of linear perturbation theory.

The theory of cosmological perturbations and linearization stability is not new. A substantial

amount of work has been done on the topic by several authors (e.g., [123, 124, 125, 126]) since the

first study by [122]. Despite the tremendous amount of existing work in the literature, these are

not the ‘true’ linear stability problem rather ‘formal’ mode stability results where the relevant

fields are decomposed into modes via eigenfunction (of Laplacian) decomposition and the problem

is subsequently reduced to ordinary differential equations in time. However, the true problem of

linear stability concerns general solutions to the linearized Einstein-Euler system about (3.1) arising

from regular initial data, not simply the fixed modes. Consider the following two linear stability

statements [129]: (a) whether all solutions of the linearized Einstein-Euler system about [3.1] remain
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bounded for all times in terms of a suitable norm of their initial data, (b) the asymptotic stability

i.e., whether all solutions to the linearized equations asymptotically decay. The mode analysis yields

necessary but not sufficient conditions for either (a) or (b) of ‘true’ linear stability. In addition,

the mode analysis does not work at the non-linear level due to ‘all to all’ coupling (of modes) and

therefore a straightforward extension of the linearized mode analysis to study the fully non-linear

problem (irrespective of the size of the data) becomes tremendously difficult if not impossible. In

particular, we want to extend our analysis in the future to study the fully non-linear problem in our

choice of gauge (CMCSH-to be described later) on spacetimes of topological type M ×R (where M

is compact negative Einstein for n > 3 and in particular compact hyperbolic for n = 3).

In the regime of fully non-linear stability of Einstein’s equations (vacuum or coupled to suitable

matter sources), there has been considerable progress in the last three decades. Global nonlinear

stability proof of de-Sitter spacetime by [147] marked the initiation of this progress. This was

followed by the proof of the stability of the Minkowski space by [148]. Later [149] provided with a

simplified proof of the same in spacetime harmonic or wave gauge. Andersson and Moncrief [151]

proved the global existence of ‘3 + 1’ dimensional vacuum Einstein’s equations for sufficiently small

however fully nonlinear perturbations of spacetimes of the type R×Mt in constant mean curvature

spatial harmonic (CMCSH) gauge, where Mt is a compact hyperbolic manifold. Following these

fundamental studies, numerous studies have been performed regarding the small data global existence

issues associated with Einstein’s equations including various sources [153,155,156,157,159,160]. Two

of the studies that will be most relevant to the current study are that by Rodnianski and Speck [166]

and Speck [176]. Rodnianski and Speck [166] studied the small data perturbations of the R × T3

type FLRW model with a positive cosmological constant in spacetime harmonic gauge, where an

irrotational perfect fluid model was assumed. Later Speck [176] extended this analysis on the same

topology (and same gauge) to include non-zero vorticity utilizing suitably defined energy currents.

Commonly, the perfect fluid matter model is considered to be ‘bad’ because of its finite time shock

singularity formation property without even coupling to gravity (e.g., [154,163]). One would surely

not hope that while coupled to gravity, this property may be ’suppressed’ by gravity since gravity

itself may yield finite-time singularity. However, [158, 166, 176] have utilized the property that

the presence of a positive cosmological constant induces an accelerated expansion of the physical

universe, which avoids shocks in the regime of a small data limit (rapid expansion obstructs energy

concentration by non-linearities). With an accelerated expansion, there are universally decaying

‘good’ terms in the evolution equations that dominate the nonlinearities and drive the universe

towards a stable configuration. Recently, [183] proved a nonlinear stability result for Milne universe
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including dust fluid source. This model is devoid of a positive cosmological constant and therefore

slowly expanding.

Our analysis indicates that if the expansion factor a(t) obeys a suitable integrability condition

and the adiabatic index γad lies in the range (1, n+1
n ) ((1, 4/3) in the physically relevant ‘3+1’

case; γad = 1 and γad = 4/3 correspond to a pressure-less fluid or ‘dust’ and a ‘radiation‘ fluid,

respectively), then the Lyapanuv functional remains uniformly bounded by its initial value and

moreover the perturbations decay in the expanding direction. This is in a sense equivalent to the

fact that if the perturbations to the matter part are restricted within a smaller cone contained in

the ‘sound’ cone (in the tangent space; to be defined later), that is, they do not propagate at speed

higher than
√

1
n (in the unit of light speed), then the asymptotic stability holds. On the other hand,

there exists a seemingly contradictory result in the purely non-relativistic case of a self-gravitating

fluid system. For a self gravitating non-relativistic 3-dimensional fluid body (Euler-Poisson system),

Chandrasekhar [128] used a virial identity argument to show that the static isolated compact solution

of the Euler-Poisson system is stable for γad >
4
3 . However, if one observes carefully, our result and

Chandrasekhar’s result are not contradictory since the notions of stability are different in the two

contexts. In the context of Chandrasekhar’s argument, the stability is defined by the negativity of

total energy i.e., the gravitational energy dominates (stable ⇐⇒ gravitationally bound system).

Now of course, a system with strong gravity is stable in the sense of Chandrasekhar (since total

energy is dominated by gravitational energy and therefore negative) which is nonsensical in our fully

relativistic context (ultra high gravity could focus and blow up forming a singularity, indicating

instability in our context).

The stability criteria is satisfied by the universe model in which one includes a positive cosmolog-

ical constant Λ and in such case, one obtains a uniform decay at the linear level. However, turning

off the cosmological constant results in losing the uniform boundedness property simply because one

does not have the integrability property for the scale factor. This may be attributed to the fact that

a positive cosmological constant induced accelerated expansion wins over the gravitational effect of

the fluid source at the level of linear theory. However, we do not claim that turning off the cosmo-

logical constant leads to instability but simply we are unable to reach a definite conclusion with the

currently available method. In addition, we also note that in the borderline case γad = n+1
n , we can

only prove uniform boundedness of the energy functional (no decay). We will investigate the border-

line cases of γad = 0 and γad = n+1
n using special techniques in the future. Considering this stability

criterion holds, we hope to extend our analysis in a potential future proof of non-linear stability of

(3.1) in the CMCSH gauge using the energy current method developed by Christodoulou [130].
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3.0.1 Notations and facts

The ‘n + 1’ dimensional spacetime manifold is denoted by M̃ . We are interested in spacetime

manifolds M̃ with the product topology R×M , where M denotes the n-dimensional spatial manifold

diffeomorphic to a Cauchy hypersurface (i.e., every inextendible causal curve intersects M exactly

once). We denote the space of the Riemannian metrics on M by M. A subspace M−1 of M is

defined as follows

M−1 = {γ ∈M|R(γ) = −1},

with R(γ) is the scalar curvature associated with γ ∈M. We explicitly work in the L2 (with respect

to a background metric γ) Sobolev space Hs for s > n
2 + 1. The L2 inner product on the fibres of

the bundle of symmetric covariant 2-tensors on (M,γ) with co-variant derivative ∇[γ] is defined as

〈u|v〉L2 :=

∫
M

uijvklγ
ikγjlµγ . (3.2)

The standard norms are defined naturally as follows

||u||L2 :=

(∫
M

uijuklγ
ikγjlµγ

) 1
2

(3.3)

||u||L∞ := sup
M

(uijuklγ
ikγjl)1/2 (3.4)

and so on. The inner product on the derivatives is defined

〈∇[γ]u|∇[γ]v〉L2 =

∫
M

∇[γ]muij∇[γ]nvklγ
mnγikγjlµγ ,

where µγ is the volume form associated with γ ∈M

µγ =
√

det(γij)dx
1 ∧ dx2 ∧ dx3 ∧ ......... ∧ dxn.

we will use µγ to denote both the volume form as well as
√

det(γij) (slight abuse of notation).

We define the rough Laplacian ∆γ on (M,γ) for any γ ∈ M in the following way so that it has a

non-negative spectrum i.e.,

∆γ ≡ −γij∇i∇j . (3.5)
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For a, b ∈ R>0, a . b is defined to be a ≤ Cb for some constant 0 < C < ∞. This essentially

means that a is controlled by b (in this context a and b could be norms of two different entities). For

example ||A||L2 . ||B||L2 means ||A||L2 ≤ C||B||L2 , where 0 < C < ∞. The spaces of symmetric

covariant 2-tensors and vector fields on M are denoted by S0
2(M) and X(M), respectively. The

adiabatic index in denoted by γad.

3.0.2 Overview of the paper

Section 2 provides the necessary detail about the formulation of the gauge fixed Einstein-Euler field

equations including a positive cosmological constant Λ, the motivation of the study, and the main

result. Note that we do not however discuss the technicalities associated with the main result in

this section rather a few physical consequences.

Next in section 3, we introduce the re-scaled system of Einstein-Euler field equations with a

positive cosmological constant and state the key properties of the re-scaled background solutions

describing a class of fixed points. In addition, we describe the center manifold of the re-scaled

dynamics when the Einstein moduli space is non-trivial. Lastly, we describe the kinematics of the

perturbations under the assumption of a shadow gauge condition (introduced by [206]) when the

center manifold is finite-dimensional in addition to computing a crucial term that appears in one of

the elliptic equations obtained through imposing the gauge condition.

In section 4 we linearize the re-scaled field equations about the background solutions described

in sections 2 and 3. Let us for the moment denote the field equations by O[A] = 0 where A

denotes the associated fields with their background values being AB.G. The linearized equations

about the background AB.G are obtained by setting the first variation to zero i.e., DO|AB.G · δA =

d
dtO(AB.G + tδA)|t=0 = 0, where the first variations to the fields are denoted by δA. The linearized

equations are studied with the assumption that the suitable function space norms of the higher-

order terms are significantly smaller compared to the linear terms. Note that the relativistic Euler’s

equations are essentially a hyperbolic system of partial differential equations that are derivable from

a Lagrangian (see [131, 132, 133] for a Hamiltonian structure of a relativistic perfect fluid). At the

linearized level, this may be shown explicitly by employing Hodge decomposition of the n−velocity

vector field (projection of the n + 1−velocity field onto the spatial hypersurface M). Doing so we

reduce the relativistic Euler’s equations to a wave equation for the associated scalar potential of the

irrotational part (with respect to the associated ‘sound’ metric) while the rotational part and the

harmonic part (a topological contribution) of the velocity field become decoupled and satisfy ordinary

differential equations in time. Therefore the linearized coupled Einstein-Euler field equations become
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an ‘elliptic- hyperbolic’ system in our choice of gauge. Lastly, we close this section by stating a local

well-posedness theorem for this coupled system and necessary elliptic estimates.

Section 5 is the most important chapter in terms of the proof of the main theorem of the paper.

To address stability issues of a dynamical system, the use of energy functional is indispensable.

On this particular occasion, we model the energy functional after the wave equation type energy

introduced by [206]. We construct a similar wave equation type energy and its higher-order analog.

First, we show the uniform boundedness of this energy functional in the expanding direction, and

later utilizing this uniform boundedness we prove the decay property of the desired fields. Doing so

we derive the required conditions for the stability results to hold. Finally, we close the section with

a sketch of the proof of the geodesic completeness of the perturbed spacetimes at the level of linear

perturbation theory.

3.1 Complete Einstein-Euler system and gauge fixing

The ADM formalism splits the spacetime described by an ‘n + 1’ dimensional Lorentzian manifold

M̃ into R × M . Here each level set {t} × M of the time function t is an orientable n-manifold

diffeomorphic to a Cauchy hypersurface (assuming the spacetime admits a Cauchy hypersurface)

and equipped with a Riemannian metric. Such a split may be executed by introducing a lapse

function N and shift vector field X belonging to suitable function spaces on M̃ and defined such

that

∂t = Nn +X, (3.6)

where t and n are time and a hypersurface orthogonal future directed timelike unit vector i.e.,

ĝ(n,n) = −1, respectively. The above splitting writes the spacetime metric ĝ in local coordinates

{xα}nα=0 = {t, x1, x2, ...., xn} as

ĝ = −N2dt⊗ dt+ gij(dx
i +Xidt)⊗ (dxj +Xjdt) (3.7)

and the stress-energy tensor as

T = En⊗ n + 2J� n + S, (3.8)
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where J ∈ X(M), S ∈ S2
0(M), and A�B = 1

2 (A⊗B+B⊗A). Here, X(M) and S2
0(M) are the space

of vector fields and the space of symmetric covariant 2-tensors, respectively. Here E := T(n,n)

is the energy density observed by a time-like observer with n + 1-velocity n, Ji = −T(∂i,n) is

the momentum density, Ji = −T(n, ∂i) = is the energy flux density, and Sij = T(∂i, ∂j) is the

momentum flux density (with respect to the chosen constant t hypersurface M). The choice of

a spatial slice in the spacetime leads to consideration of the second fundamental form kij which

describes how the slice is curved in the spacetime. The trace of the second fundamental form

(τ :=g k) is the mean extrinsic curvature of the slice, which will play an important role in the

analysis. Under such decomposition, the Einstein equations

Rµν −
1

2
Rĝµν + Λĝµν = Tµν (3.9)

take the form (8πG = c = 1)

∂tgij = −2Nkij + LXgij , (3.10)

∂tkij = −∇i∇jN +N{Rij + τkij − 2kikk
k
j

− 1

n− 1
(2Λ− S + E)gij − Sij}+ LXkij

along with the constraints (Gauss and Codazzi equations)

R(g)− |k|2 + τ2 = 2Λ + 2E, (3.11)

∇jkji −∇iτ = −Ji, (3.12)

where S = gijSij . The vanishing of the covariant divergence of the stress energy tensor i.e., ∇νTµν =

0 is equivalent to the continuity equation and equations of motion of the matter

∂E

∂t
= LXE +NEτ −N∇iJi − 2Ji∇iN +NSijkij , (3.13)

∂Ji

∂t
= LXJi +NτJi −∇j(NSij) + 2NkijJ

j − E∇iN. (3.14)

We want to study the Einstein-Euler system. Let the ‘n+1’ velocity field of a perfect fluid be denoted

by u which satisfies the normalization condition ĝ(u,u) = −1. One may for convenience decompose

the n+ 1 velocity u into its component parallel and perpendicular to constant t hypersurface M as
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follows

u = v − ĝ(u,n)n (3.15)

where v is a vector field parallel to the spatial manifold M i.e., v ∈ X(M). Importantly note that

ui = vi but ui 6= vi unless the shift vector field X vanishes. The stress energy tensor for a perfect

fluid with n+ 1 velocity field u reads

T = (P + ρ)u⊗ u + P ĝ, (3.16)

where P and ρ are the pressure and the mass energy density, respectively and ĝ is the spacetime

metric. After projecting onto the spatial manifold M , several components of the stress energy tensor

may be computed as follows

E = (P + ρ)(Nu0)2 − P,Ji = (P + ρ)
√

1 + g(v, v)vi, (3.17)

S = (P + ρ)v ⊗ v + Pg.

However, notice that the field equations do not close with the information of the stress-energy tensor

alone, and therefore one needs an equation of state relating pressure P and mass-energy density ρ.

The choice of the equation of state is a non-trivial fact and there is numerous study about the

equation of state alone in cosmology literature (e.g., [167, 168, 169]). In the standard model of

cosmology, one frequently uses a barotropic equation of state of the type P = (γad − 1)ρ, where

γad is the adiabatic index. The speed of sound Cs is defined as C2
s := ∂P

∂ρ , where the derivative is

computed at constant entropy. However, for the barotropic equation of state (for which pressure

is only a function of mass-energy density) chosen here, the entropy equation decouples from the

field equations and therefore plays no role in our analysis (e.g., see [130]). The speed of sound

is then a constant
√
γad − 1. Due to causality, one must have 0 ≤ C2

s ≤ 1 yielding γad ∈ [1, 2].

This is equivalent to the fact that the sound cone is contained within the light cone in the tangent

space. Here γad = 1 corresponds to pressure-less fluid or ‘dust’ and γad = 2 corresponds to a ultra-

relativistic stiff fluid. We note an important fact that choosing this equation of state, we ignore the

rest energy of the fluid which may be relevant in the late epoch of the universe evolution. In other

words, the equation of state P = (γad − 1)(ρ − ne), n being the baryon number density and e the

fluid rest energy per particle, may be more appropriate [134]. Here we will stick with the equation of
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state P = (γad − 1)ρ here for simplicity and in such case, the baryon number conservation equation

∇µ(nuµ) = 0 is a simple consequence of the Euler’s equations i.e., ∇νTµν = 0 [130]. With the

barotropic equation of state, the components of the stress energy tensor is computed to be

E = (P + ρ)(1 + g(v, v))− P = ρ+ γadρg(v, v) (3.18)

Ji = γadρ
√

1 + g(v, v)vi,S = γadρv ⊗ v + (γad − 1)ρg.

The complete system of evolution and constraint equations is expressible as follows

∂tρ+
γρN

[1 + g(v, v)]1/2
∇ivi = LXρ−

γadρg(∂tv, v)

1 + g(v, v)
+
γadρNk(v, v)

1 + g(v, v)
− 2γadρviLXv

i

1 + g(v, v)

− γadNρLvN

[1 + g(v, v)]1/2
+Nkiiρ−

NLvρ

[1 + g(v, v)]1/2
.

and

γadρ

[
u0∂tv

i − 2Nu0kijv
j − u0(LXv)i + vj∇jvi +

1 + g(v, v)

N
∇iN

]
(3.19)

+(γad − 1)
[
∇iρ+ viLvρ+ u0vi(∂tρ− LXρ)

]
= 0

∂tgij = −2Nkij + LXgij , (3.20)

∂tkij = −∇i∇jN +N

{
Rij + τkij − 2kikk

k
j −

2Λ

n− 1
gij (3.21)

−γadρvivj +
γad − 2

n− 1
ρgij

}
+ LXkij ,

R(g)− |k|2 + τ2 = 2Λ + 2ρ {1 + γadg(v, v)} , (3.22)

∇ikij −∇jτ = −γadρ
√

1 + g(v, v)vi. (3.23)

In order to obtain equations satisfied by the lapse function and the shift vector field, we need to

fix a choice of gauge. Setting the mean extrinsic curvature (τ) of the hypersurface M to a constant

allows it to be a suitable time function. This choice of temporal gauge yields an elliptic equation for

the lapse function N . However, not all spacetimes admit a constant mean extrinsic curvature (CMC)

hypersurface. Existence of a CMC slice is far from obvious and is a part of active mathematical

research (for detail see [136, 137, 138, 139]). Luckily the background spacetimes (3.1) that we are

interested in, do admit a CMC slice which is verified through explicit calculations. Therefore simply
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setting the mean extrinsic curvature of the perturbed spacetimes to be constant on each spatial slice

seems to be a reasonable choice

∂iτ = 0. (3.24)

Such an assumption can be made without loss of generality for solutions that are close to the

background solution [142,180]. This choice allows τ to play the role of time i.e.,

t = monotonic function of τ. (3.25)

To utilize the property ∂iτ = 0, one may simply compute the entity ∂τ
∂t to yield

∂τ

∂t
= ∆γN +

{
|k|2g + [

(nγ − 2)

n− 1
+ γadg(v, v)]ρ− 2Λ

n− 1

}
N + LXτ. (3.26)

Using equation (3.24), we obtain the desired elliptic equation for the lapse function

∆gN +

{
|k|2g + [

(nγ − 2)

n− 1
+ γadg(v, v)]ρ− 2Λ

n− 1

}
N = ∂τ

∂t . (3.27)

Once we have fixed the temporal gauge, we need to fix the spatial gauge which would yield an

equation for the shift vector field. We follow the work of [151, 206] regarding spatial gauge fixing.

Let ζ : (M, g) → (M,γ) be a harmonic map with the Dirichlet energy 1
2

∫
M
gij ∂ζ

k

∂xi
∂ζl

∂xj γklµg. Since

the harmonic maps are the critical points of the Dirichlet energy functional, ζ satisfies the following

formal Euler-Lagrange equation

gij
(
∂i∂jζ

k − Γ[g]lij∂lζ
k + Γ[γ]kαβ∂iζ

α∂jζ
β
)

= 0. (3.28)

Now, we fix the gauge by imposing the condition that ζ = id, which leads to the following equation

−gij(Γ[g]kij − Γ[γ]kij) = 0. (3.29)

where Γ̂[γ]kij is the connection with respect to some arbitrary background Riemannian metric γ.

Choice of this spatial harmonic gauge yields the following elliptic equation for the shift vector field
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X after time differentiating equation (3.29)

∆gX
i −RijXj = −2kij∇jN − 2N∇jkij + τ∇iN (3.30)

+(2Nkjk − 2∇jXk)(Γ[g]ijk − Γ[γ]ijk)− gij∂tΓ[γ]kij .

However, one natural question arises while imposing the spatial harmonic gauge. Does there exist

a harmonic map between the manifolds (M, g) and (M,γ)? This is an extremely important and

nontrivial issue. There are explicit results in geometry about the existence of harmonic maps be-

tween Riemannian manifolds. The one that is relevant to the current study is that of Eells and

Sampson [143] who proved if M is a compact manifold with non-positive Riemann curvature, then

any continuous map from a compact manifold into M is homotopic to a harmonic map. Andersson

and Moncrief [150] applied this gauge to prove a local existence theorem for the vacuum Einstein’s

equations in arbitrary dimensions. Later they have successfully implemented this gauge to prove a

small data nonlinear stability result of the ‘Milne’ model and its higher-dimensional generalization

(so-called ‘Lorentz cone spacetimes’) [151, 206]. We designate our gauge fixed system as CMCSH

Einstein-Euler-Λ system.

3.1.1 Motivation of the study and main result

In this section, we describe the motivation for the current study. Firstly, for a universe model to

be a viable candidate for a physical cosmological model, it must be stable against perturbations in

a suitable sense. Therefore, one should ideally prove the fully non-linear stability assuming certain

smallness condition on the data. A natural first step towards such stability would be to establish

the stability at the level of linear perturbation theory. In addition to this obvious motivation, based

on a few preliminary studies [161, 165, 229] we are led to believe that these expanding (accelerated

expansion since Λ > 0) spacetimes may be stable under small perturbations. From a physical

viewpoint, the accelerated expansion tends to kill off the perturbations. Let us describe this point

in a slightly more formal way. First, we decompose the second fundamental form k as follows

kij = kTTij +
trgk

n
gij + (LY g −

2

n
(∇ · Y )g)ij , (3.31)

where kTT is a transverse-traceless (with respect to the metric g) symmetric 2−tensor, trgk is the

trace of the second fundamental form with respect to the metric g, and Y is a vector field tangent
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to M . Now consider the Hamiltonian constraint (4.19)

n− 1

n
(τ2 − 2nΛ

n− 1
) = |kTT |2g + |LY g −

2

n
(∇ · Y )g|2g (3.32)

+2ρ(1 + γadg(v, v))−R(g)

and construct the following integral

n− 1

n

∫
M

(τ2 − 2nΛ

n− 1
)µg =

∫
M

(|kTT |2g + |LY g −
2

n
(∇ · Y )g|2g (3.33)

+2ρ(1 + γadg(v, v))−R(g))µg > 0,

then we readily observe that the integral contains the L2 norm of ktr = kTTij +(LY g− 2
n (∇·Y )g)ij in

addition to the physical energy density and is strictly positive since the re-scaled volume is positive

(note that τ2 > 2nΛ
n−1 for spacetimes of interest; spatial manifold is of negative Yamabe type; see [229]

for detail about Yamabe classification; this inequality can be showed as follows: The left hand side

of (3.32) contains non-negative term except −R(g). But since M is assumed to be negative Yamabe,

R(g) < 0 must hold at some point on M . But τ2 − 2nΛ
n−1 is constant on M due to constant mean

extrinsic curvature assumption on each spatial slice. Therefore τ2 > 2nΛ
n−1 ). Motivated by such

property, [161] studied the monotonic decay of the entity
∫
M
τ2µg for pure vacuum case and [229]

studied the same for
∫
M

(τ2 − 2nΛ
n−1 )µg in the vacuum case with Λ > 0 in the CMC gauge (also

see [140,141]). In each of these cases, this re-scaled volume acted as a Hamiltonian while expressed

in terms of suitable “reduced” phase space variables. Subsequently, [165] studied the monotonic

decay (in the expanding direction) of the entity
∫
M

(τ2 − 2nΛ
n−1 )µg in the presence of matter sources

satisfying suitable energy conditions in particular perfect fluids, where this entity played the role of

a Lyapunov functional.

Naively, monotonic decay of this Lyapunov functional indicates the stability of a class of expand-

ing solutions (on which the Lyapunov functional attains its infimum) against arbitrary large data

perturbations. Motivated by this result, we are interested in pursuing the stability property of a

perfect fluid-filled spatially compact universe model. Before proceeding to the fully nonlinear study

of the stability problem, it is important to prove the linear stability in a rigorous way (not simply

the mode stability) and obtain decay estimates if possible. In a sense, the linear stability and decay

should these hold provide motivation towards studying the fully non-linear stability and may also

become useful in handling the higher-order couplings and defining appropriate energies. However,

this does not imply stability since the Lyapunov functional does not control the norm that is required
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by the local existence theorem (for vacuum and Λ-vacuum the function space required for (g, k) by

the local existence is Hs ×Hs−1, s > n
2 + 1). It only controls the minimum regularity (H1 × L2 of

(g, k)) and therefore is not sufficient to state a global existence for arbitrarily large data (one may

therefore call this Lyapunov functional as a ‘weak’ Lyapunov functional). Even though the re-scaled

volume functional controlling the minimum norm decays monotonically in the expanding direction

and attains its infimum for a particular class of spacetimes (see the relevant sections of [161,165,229]

for details), the classical solution may form a finite time singularity via curvature focusing. In other

words, a suitable norm of arbitrarily large data (physically interesting solutions) may be obstructed

to decay monotonically to its infimum since pure gravity could blow up before the spatial volume of

the universe tends to infinity. The addition of perfect fluids adds additional problems since they are

known to form shock singularities in the fully non-linear setting. Christodoulou proved that perfect

fluids form shock on Minkowski background for arbitrary small data [163]. Of course, Minkowski

space does not have the expansion property (accelerated expansion including Λ > 0) like the space-

times (3.1) of the current investigation do. We denote a ball centered at (x, y, z, ..) with radius δ

by Bδ(x, y, z, ..). The Einstein structure of the manifold M (or the deformation space of an arbi-

trary Einstein metric γ on M) is denoted by N . This will be defined later in a rigorous way. Now

we summarize the result in terms of the following ‘rough’ version which is equivalent to the main

theorem stated in the later part of the paper.

A rough version of the main Theorem: Let (g0, k
tr
0 , ρ0, v0) ∈ Hs×Hs−1×Hs−1×Hs−1, s >

n
2 + 2 be the initial data for the re-scaled Einstein-Euler-Λ system with Λ > 0. Let us also consider

that the Cauchy data for the re-scaled background solutions are (gB.G, k
tr
B.G, ρB.G, vB.G) which satisfy

R[gB.G]ij = − 1
n (gB.G)ij , k

tr
B.G = 0, ρB.G = Cρ, v

i
B.G = 0, Cρ is a constant. Now assume that

the following smallness condition holds ||g0 − gB.G||Hs + ||ktr0 − ktrB.G||Hs−1 + ||ρ0 − ρB.G||Hs−1 +

||v0 − vB.G||Hs−1 < δ, δ is chosen sufficiently small. If t 7→ (g(t), ktr(t), ρ(t), v(t)) is the maximal

development of the Cauchy problem for the linearized re-scaled Einstein-Euler-Λ system about the

background solutions (gB.G, k
tr
B.G, ρB.G, vB.G) in constant mean extrinsic curvature spatial harmonic

gauge (CMCSH) (3.109-3.116) with initial data (g0, k
tr
0 , ρ0, v0), then the following holds in the limit

of infinite time

lim
t→∞

(g(t), ktr(t), ρ(t), v(t)) = (γ†, 0, ρ
′
, 0), (3.34)

where γ† satisfies R[γ†] = −1 and ρ
′

depends on the initial re-scaled density ρ0 and ∂iρ
′ 6= 0 in

general.
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Let us now explain the main theorem putting aside the technical details. The statement essen-

tially deals with the asymptotic stability of the solutions that are characterized by constant negative

scalar curvature (−1 to be precise in this occasion) and sufficiently close to the FLRW solutions In

other words this corresponds to a Lyapunov stability of the FLRW solutions. In other words, the

solutions of linearized Einstein-Euler-Λ equations about the background FLRW solutions (3.1) decay

to nearby solutions which have constant negative scalar curvature. While the background solutions

the FLRW spacetimes (3.1) are described by the property that the spatial metric gB.G is negative

Einstein i.e., R[gB.G]ij = − 1
n (gB.G)ij , the perturbed solutions decay in infinite time to the space

which does not share the same property. More specifically, the spatial metric γ† of the asymptotic

solution satisfies R[γ†] = −1. Now, the space of negative Einstein metrics is a subset of the space

of metrics with constant negative scalar curvature. Simple use of triangle inequality shows that the

asymptotic state should be the space of constant negative scalar curvature sufficiently close to and

containing the background FLRW solutions. Since the latter is a subspace of the former, one may

fine-tune the initial conditions to obtain the asymptotic solution to be exactly of FLRW type (i.e.,

the solution has a spatial metric that is negative Einstein). But such a procedure proves to be too

restrictive and physically undesirable.

If for the moment we focus on the physical 3+1 case, then ideally we want the asymptotic solution

to have constant negative sectional curvature (i.e., hyperbolic or negative Einstein by Mostow rigid-

ity) not just constant negative scalar curvature and a spatially uniform background energy density.

In other words, if one perturbs an FLRW solution, it does not generically come back to an FLRW

solution in infinite time. Now notice that the local spatial homogeneity and isotropy criteria required

constancy of the sectional curvature and as such in 3 spatial dimensions, a negative Einstein metric

automatically has constant sectional curvature. However, space of metrics with constant negative

scalar curvature is a much larger space and does not necessarily exhibit the local spatial homogeneity

and isotropy criteria (only a subspace that is described by negative Einstein metrics or hyperbolic

metrics do; these correspond to compact hyperbolic manifolds that are locally homogeneous and

isotropic by construction). This result is not completely satisfactory but on the other hand, maybe

physically expected as these inhomogeneous and anisotropic characteristics may be attributed to the

structure formation (see [122, 145] about the role of cosmological perturbation theory in structure

formation). This is a remarkable fact that indicates there is a dynamical mechanism at work within

the Einstein-Euler-Λ flow that naturally drives the physical universe to an anisotropic and inhomo-

geneous state leading to cosmological structure formation. We do not of course claim such a strong

result only based on our linear stability analysis.
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We note that [144] reported this behavior of the FLRW spacetimes as well considering ‘dust’ as

the matter source. They constructed a finite-dimensional dynamical system by spatially averaging

out the inhomogeneities and showed that FLRW cosmologies are unstable in some relevant cases:

averaged models are driven away from them through structure formation and accelerated expansion.

However, presently we do not claim that our theorem indicates such a strong result since we need to

execute the full nonlinear analysis to incorporate the possibility of shock formation. Nevertheless, the

phenomenon of accelerated expansion driving the solutions away from the background is previously

noted in [177] which dealt with a particular case of vacuum gravity (background solutions were

described by the negative Einstein spaces) including a positive cosmological constant. The solutions

decay asymptotically to the nearby ones described by constant negative scalar curvature. On the

other hand, in the same problem if the cosmological constant is turned off, then the perturbed

solutions do come back to the background solution asymptotically [151, 206]. Nevertheless, the

presence of a positive cosmological constant yields universal decay rates that do not depend on the

background geometry unlike the zero cosmological constant case, where the decay rate explicitly

depended on the spectra of a Lichnerowicz type Laplacian operator defined on the background

geometry (see [206] for detail).

3.2 Re-scaled field equations and background solutions

The background solution we are interested in is the constant negative sectional spatial curvature

FLRW model in ‘3 + 1’ dimensions. In higher dimensions (n > 3), however, the spatial metrics are

negative Einstein (not necessarily hyperbolic). The solution is expressible in the following warped

product form

n+1g = −dt⊗ dt+ a(t)2γijdx
i ⊗ dxj , (3.35)

where Rij(γ) = − 1
nγij and t ∈ (0,∞). Clearly we have N = 1, Xi = 0, gij = a(t)2γij . These

spacetimes are globally foliated by constant mean curvature slices which is evident from the following

simple calculations

kij = − 1

2N
∂tgij = −aȧγij , (3.36)

τ(t) = kijg
ij = −aȧγij

1

a(t)2
γij = −nȧ

a
.
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Note that in order to study the linearized perturbations, we need to re-scale the field equations. We

want to re-scale in such a way as to make the background time independent and then analyze the

associated re-scaled dynamical system. For this particular purpose, we will need the background

density and n−velocity. Let us now explicitly calculate the scale factor a(t), the background density,

and the velocity. Note that we are only interested in the asymptotic behaviour of the scale factor

at t→∞ for our stability analysis instead of its precise expression. The following lemma states the

asymptotic behaviour of the scale factor.

Lemma 1: Let γad be the adiabatic index. The background energy density, n−velocity vector field,

and the scale factor satisfy the following

ρ(t)a(t)nγad = Cρ,

vi = 0,

a ∼ eαt for Λ > 0,

a ∼ t as t→∞ for Λ = 0,

where α :=
√

2Λ
n(n−1) , a(0) := a(t = 0), and ∞ > Cρ > 0 is a constant.

Proof: The energy equation yields

∂ρ

∂t
= −nγad

ȧ

a
ρ, (3.37)

integration of which leads to

ρa(t)nγad = Cρ, (3.38)

for some finite positive constant Cρ. The momentum constraint (3.23) equation yields

vi = 0 (3.39)

since ktr = 0. Utilizing the Hamiltonian constraint, we obtain the following ODE for the scale factor

1

a

da

dt
=

√
1

n(n− 1)

(
2Λ +

1

a2
+

2Cρ
anγad

)
, (3.40)
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integration of which yields at t→∞

a ∼ eαt (3.41)

where α :=
√

2Λ
n(n−1) . Taking Λ = 0, integration of (3.40) yields

a ∼ a(0) +
t√

n(n− 1)
(3.42)

as t→∞, which completes the proof of the lemma.

Now let us focus on obtaining a re-scaled system of evolution and constraint equations. Recall

that the metric in local coordinate (t, x) may be written as

ĝ = −N2dt⊗ dt+ gij(dx
i +Xidt)⊗ (dxj +Xjdt) (3.43)

and the background solutions are written as

n+1gbackground = −dt⊗ dt+ a2γijdx
i ⊗ dxj , (3.44)

where R[γ]ij = − 1
nγij and t ∈ (0,∞). If we assign a the dimension of length (natural) (similar

to the re-scaling used by [206]), the dimensions of the rest of the entities follow t ∼ length, xi ∼

(length)0, gij ∼ (length)2, N ∼ (length)0, Xi ∼ (length)−1, τ ∼ (length)−1, κtrij ∼ length.

Therefore, the following scaling follows naturally

g̃ij = a2gij , Ñ = N, X̃i =
1

a
Xi, k̃trij = aktrij . (3.45)

Here, we denote the dimension-full entities with a tilde sign and dimensionless entities are left alone

for simplicity. The Hamiltonian constraint (4.19) and the momentum constraint (3.23) take the

following forms

R(g)− |ktr|2 + 1 + 2Cρa
2−nγ = 2a(t)2ρ̃ (1 + γadg̃(ṽ, ṽ)) , (3.46)

∇jktrij = a(t)3γadρ̃
√

1 + g̃(ṽ, ṽ)ṽi.

Notice that we are yet to re-scale the matter fields i.e., (ρ, v). Now, of course, in lemma 1, we have

already seen that the background energy density satisfies ρ(t) =
Cρ

anγad for some constant Cρ > 0
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depending on the initial density. Therefore, we naturally scale the energy density by 1
anγad i.e.,

ρ̃ =
1

a(t)nγad
ρ (3.47)

so that the background density becomes time independent. Notice that Cρ is a constant with

dimension of (length)nγad−2. now, since, the background n−velocity vanishes for the background

solution, we do not have a straightforward scaling. However, we have the normalization condition

for the n+ 1−velocity field u = −n+1g(u, n)n+ v

−(Ñ ũ0)2 + g̃ij ṽ
iṽj = −1, (3.48)

and therefore scaling of the metric g̃ij = a2gij yields the following natural scaling of vi

ṽi =
1

a
vi, (3.49)

since the right hand side is simply a constant. The complete evolution and constraints of the gravity

coupled fluid system may be expressed in the following re-scaled form

∂gij
∂t

= 2
ȧ

a
(N − 1) gij −

2

a
Nktrij +

1

a
(LXg)ij , (3.50)

∂ktrij
∂t

= − ȧ

a
((N − 1)(n− 2) + n− 1)︸ ︷︷ ︸

should be <0 to generate decay

ktrij −
2

a
Nktrikk

trk
j +

1

a
NRij︸ ︷︷ ︸

gauge fixing is required

(3.51)

−
(
a

n2
(τ2 − 2nΛ

n− 1
) +

nγad − 2

n(n− 1)
a1−nγadCρ −

N(1 + 2Cρa
2−nγ)

a(n− 1)

+
γad − 2

n− 1
a1−nγadNρgij

)
gij −

1

a
∇i∇jN − a1−nγadNγρvivj +

1

a
(LXk

tr)ij ,

∂tρ+
γadρN∇ivi

a[1 + g(v, v)]1/2
+

(N − 1)nγadρȧ

a︸ ︷︷ ︸
should contribute to higher order since N−1≤0

(3.52)

=
1

a
LXρ−

γadρg(∂tv, v)

1 + g(v, v)
− NLvρ

a[1 + g(v, v)]1/2
+

γadρN

1 + g(v, v)

(
1

a
ktr(v, v)− ȧ

a
g(v, v)

)
+
γadρviLXv

i

a[1 + g(v, v)]
− γadNρLvN

a[1 + g(v, v)]1/2
,
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γadρu
0∂tv

i + γadρu
0[2N − 1− n(γad − 1)]

ȧ

a︸ ︷︷ ︸
should be >0 to generate decay

vi −
2γadρNu

0ktrij vj

a
− γadρu

0

a
LXv

i

+
γadρ

a
vj∇jvi +

γadρ[1 + g(v, v)]

aN
∇iN +

(γad − 1)

a

(
∇iρ+ viLvρ+ au0vi∂tρ

−u0viLXρ
)

= 0,

R(g)− |ktr|2 − 2a2−nγadρ{1 + γadg(v, v)}+ 1 + 2Cρa
2−nγ = 0, (3.53)

∇jktrij = −γada2−nγadρ
√

1 + g(v, v)vi, (3.54)

∆gN +

|ktr|2 + a(t)2(
τ2

n
− 2Λ

n− 1
) + a2−nγad [

(nγad − 2)

n− 1
+ γadg(v, v)]ρ︸ ︷︷ ︸

should be >0 for elliptic regularity

N

= a2 ∂τ

∂t
, (3.55)

∆gX
i −RijXj = (1− 2

n
)τ∇iN − 2∇jNktrij − 2N∇jktrij (3.56)

+(2Nktrjk − 2∇jXk)
(
Γ[g]ijk − Γ[γ]ijk

)
− agij∂tΓ[γ]kij .

Note that an straightforward maximum principle argument applied to the lapse equation yields

N ≤ 1. In CMCSH gauge, the time function is obtained by setting τ =monotonic function of t

alone. Now, we have τ evaluated for the background solution which is a monotonic function of t

alone since utilizing the Hamiltonian constraint and the lapse equation at the background solution

one obtains

∂τ

∂t
=

1

n
(τ2 − 2nΛ

n− 1
) +

nγad − 2

n− 1
a−nγadCρ (3.57)

=
1

a(t)2(n− 1)

(
1 + nγadCρa

2−nγad
)
> 0.

We set the time function to be the solution of this equation

∂τ

∂t
=

1

a(t)2(n− 1)

(
1 + nγadCρa(t)2−nγad

)
, (3.58)

i.e., t = t(τ) which settles the business of choosing a time coordinate. Let us analyze the background

solutions in a bit more detail.
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Lemma 2(a): The background re-scaled solution of the Einstein-Euler system verifies the following

equations

NB.G = 1, Xi
B.G = 0, R[gB.G]ij = − 1

n
gB.Gij , k

tr
B.G = 0, viB.G = 0, ∂iρB.G = 0, (3.59)

and the spacetime is foliated by CMC slices.

Proof: The background spacetime

n+1g = −dt⊗ dt+ a(t)2γijdx
i ⊗ dxj (3.60)

yields ÑB.G = 1, X̃i
B.G = 0, g̃B.Gij = a2γij and therefore yields NB.G = 1, Xi

B.G = 0, gB.Gij = γij .

A simple calculation yields

k̃B.Gij = −aȧγij (3.61)

and therefore

ktrB.G = 0, τ = −nȧ
a
. (3.62)

The momentum constraint (3.54) yields

viB.G = 0 (3.63)

which together with the equations of motion (3.53) for the fluid leads to

∂iρB.G = 0. (3.64)

From the previous calculation τ = − ȧa , it is obvious that the spacetime is foliated by constant mean

curvature spatial slices.

Lemma 2(b): The transverse-traceless part of the traceless second fundamental form vanishes for

the background solutions i.e., ktrB.G = kTT +LY gB.G− 2
n (∇[gB.G]mY

m)gB.G reduces to ktr = kTT = 0

and moreover Y ≡ 0 for background solutions.

Proof: The vanishing of the re-scaled trace-less second fundamental form ktr = 0 for the background
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solutions yields the following through the decomposition of the symmetric trace-less 2− tensors

kTT + LY γ −
2

n
(∇[γ]mY

m)γ = 0, (3.65)

which may be converted to

∫
M

(kTT + LY γ −
2

n
∇[γ]mY

mγ)ij(k
TT + LY γ −

2

n
∇[γ]mY

mγ)ijµγ = 0 (3.66)∫
M

|kTT |2γµγ +

∫
M

|LY γ −
2

n
∇[γ]mY

mγ|2γµγ = 0

since kTT and LY γ − 2
n∇[γ]mY

mγ are L2 orthogonal with respect to the metric γ. Therefore we

readily obtain

kTT ≡ 0, (3.67)

LY γ −
2

n
∇[γ]mY

mγ ≡ 0, (3.68)

where we have used the fact that kTT and LY γ− 2
n∇[γ]mY

m are L2 orthogonal (with respect to the

background metric γ). Now the covariant divergence of the conformal Killing equation (3.68) yields

∇[γ]i
(
∇[γ]iYj +∇[γ]jYi −

2

n
(∇[γ]mY

m)γij

)
= 0 (3.69)∫

M

(
Yj∇[γ]i∇[γ]iY

j +RjiY
iYj + (1− 2

n
)Yj∇[γ]j(∇[γ]iY

i)

)
µγ = 0

−
∫
M

(
∇[γ]iYj∇[γ]iY j +

1

n
γijY

iY j + (1− 2

n
)|∇[γ]iY

i|2
)
µγ = 0

⇒ Y ≡ 0

throughout M since n ≥ 3. Here we have used R(γ)ij = − 1
nγij together with integration by parts

and the Stokes’ theorem for a closed (compact with ∂M = {0}) manifold. This is equivalent to the

fact that the isometry group of (M,γ) is discrete. The spacetimes (3.1) admit a timelike conformal

Killing field K := Kµ ∂
∂xµ = a(t) ∂∂t i.e.,

La(t) ∂∂t

n+1g = 2ȧ n+1g. (3.70)

The results obtained so far yields the following theorem characterizing a class of fixed points of the

re-scaled Einstein-Euler-Λ system.

Theorem: Let M be a closed (compact without boundary) connected orientable manifold that
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admits a negative Einstein metric. Then the fixed point solutions of the re-scaled Einstein-Euler-Λ

flow (3.50-3.56) in constant mean extrinsic curvature spatial harmonic gauge (CMCSH) on (t−, t+)×

M, 0 ≤ t− < t+ < ∞ have the Cauchy data (gB.G, k
tr
B.G, NB.G, XB.G, ρB.G, vB.G) that satisfy the

following equations

Rij [gB.G] = − 1

n
(gB.G)ij , k

tr
B.G = 0, NB.G = 1, XB.G = 0, ρB.G = Cρ,

viB.G = 0. (3.71)

The physical spacetimes (3.35) constructed by this Cauchy data admit K := a(t)∂t as a globally

defined time-like conformal Killing vector field. Here a(t) is the scale factor.

3.2.1 Center Manifold of the dynamics

The following mathematics concerning the center manifold dynamics in the setting of Einstein flow

was first established by the work of Andersson-Moncrief [151]. We now present some of this work and

adapt it to the Einstein-Euler-Lambda setting. A center manifold of a dynamical system is associated

with fixed points of the dynamics. Essentially a center manifold of a fixed point corresponds to

the nearby solutions (in phase space) that do not exhibit exponential growth or decay. This may

be zero-dimensional or a subspace of the phase space and admits a manifold structure (so the

name center ‘manifold’). For a more precise and mathematically rigorous definition, we refer the

reader to [170, 171]. There is a crucial theorem namely the ‘center manifold theorem’ which plays

a significant role in the analysis of dynamical systems. In general, center manifolds do not have

the uniqueness property, unlike stable and unstable manifolds which do [172, 173, 174]. In a finite-

dimensional setting, this roughly corresponds to the case when the linearization of the flow vector

field has purely imaginary spectra. In an infinite-dimensional setting, moduli spaces naturally play

the role of center manifold (in an appropriate sense of course). As we shall see, the center manifold

in this particular occasion is played by the Einstein moduli space, which consists of non-isolated

fixed points of the Einstein-Euler-Λ flow.

Unlike the n = 3 dimensional case where the negative Einstein spaces are hyperbolic (and the

center manifold of the gravitational dynamics consists of a point), the higher dimensional case is more

interesting. The matter degrees of freedom corresponding to the background solution (in its re-scaled

version) in CMCSH gauge are essentially described by vi = 0, ρ = ρB.G. It becomes more interesting

when we consider the gravitational degrees of freedom. In the case of n = 3, a negative Einstein

structure implies hyperbolic structure through Mostow rigidity theorem and therefore the manifold
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describing the fixed point of the dynamics is zero-dimensional. In other words, the particular solution

({γ|Ricci[γ] = − 1
3γ, k

tr = 0, ρ = Cρ, v
i = 0) serves as an isolated fixed point of the Einstein-Euler

dynamics. However, in the higher dimensional cases (n > 3), a new possibility arises of having non-

hyperbolic negative Einstein spaces. When we linearize about any member of such a non-isolated

family of negative Einstein metrics, the linearized equations will always admit a finite-dimensional

space of neutral modes. Naturally, this represents (modulo the matter degrees of freedom) the

tangent space to the background spacetimes (3.1). These smooth families of background spacetimes

determined by the corresponding families of negative Einstein metrics and zero-dimensional matter

degrees of freedom (vi = 0, ρ = Cρ) form the ‘center manifold’ for the dynamical system defined by

the re-scaled Einstein-Euler-Λ equations. A family of background solutions of the Einstein-Euler-Λ

system in CMCSH gauge is the spacetimes as described in the previous section. The spatial metric

component of these spacetimes is a negative Einstein metric i.e., the spatial metric satisfies

Rij(γ) = − 1

n
γij . (3.72)

Let us denote the space of metrics satisfying equation (4.16) by Ein− 1
n

Let γ∗ ∈ Ein− 1
n

and V be its connected component. Also consider Sγ to be the harmonic slice

of the identity diffeomorphism i.e., the set of γ ∈ Ein− 1
n

for which the identity map id : (M,γ) →

(M,γ∗) is harmonic (since any metric γ ∈ Ein− 1
n

verifies the fixed point criteria R[γ]ij = − 1
nγij ,

it should also satisfy the CMCSH gauge condition with respect to a background metric and in this

case the background metric is simply chosen to be γ∗, another element of Ein− 1
n

). This condition

is equivalent to the vanishing of the tension field −V k that is

−V k = −γij(Γ[γ]kij − Γ[γ∗]kij) = 0. (3.73)

For γ ∈ Ein− 1
n

, Sγ is a submanifold ofM for γ sufficiently close to γ∗ (easily proven using standard

procedure and therefore we omit the proof, see [206] for detail). The deformation space N of

γ∗ ∈ Ein− 1
n

is defined as the intersection of the γ∗−connected component V ⊂ Ein− 1
n

and the

harmonic slice Sγ i.e.,

N := V ∩ Sγ . (3.74)

N is assumed to be smooth (i.e., equipped with C∞ topology). In the case of n = 3, following

the Mostow rigidity theorem, the negative Einstein structure is rigid [121]. This rigid Einstein
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structure in n = 3 corresponds to the hyperbolic structure up to isometry. For higher genus Riemann

surfaces Σgenus (genus > 1), space of distinct hyperbolic structures is the classical Teichmüller space

diffeomorphic to R6genus−6. Tangent space to any point in the Teichmüller space corresponds to

the ‘neutral modes’ of 2 +1 gravity defined by transverse-traceless tensors. However, 2 +1 gravity is

fundamentally different from the higher dimensional cases since the former is devoid of gravitational

waves degrees of freedom. For n > 3, the centre manifold N is a finite dimensional submanifold of

M (and in particular of M−1). Following the analysis of [206], the formal tangent space TγN in

local coordinates is expressible as

∂γ

∂qa
= lTT ||a + L

W
||
a
γ, (3.75)

where l
TT ||
a ∈ ker(L) = CTT ||(S2M) ⊂ CTT (S2M), W || ∈ X(M) satisfies through the time derivative

of the CMCSH gauge condition −γij(Γ[γ]kij − Γ[γ∗]kij) = 0

−[∇[γ]m∇[γ]mW
||i +R[γ]imW

||m] + (lTT || + LW ||γ)mn(Γ[γ]kmn − Γ[γ∗]kmn)

= 0,

and, {qa}dim(N )
a=1 is a local chart on N , X(M) is the space of vector fields on M (in a suitable

function space setting), CTT (S2M) is the space of γ−fransverse-traceless 2−tensors on M . An

important thing to note is that all known examples of closed negative Einstein spaces have integrable

deformation spaces and that the deformation spaces are stable i.e., Spec{Lγ,γ} ≥ 0. The spectrum

of the operator Lγ,γ plays an important role determining the decay rates in the pure vacuum case

considered by [151,206].

3.2.2 Kinematics of the perturbations at the linear level

As discussed in the previous section, the Einstein moduli space is finite-dimensional for n > 3 and

serves as the centre manifold of the dynamics (the deformation space N to be precise). On the other

hand, for the n = 3 case, following Mostow rigidity, negative Einstein structure implies hyperbolicity

and therefore the moduli space reduces to a point. We will consider the general case when the

moduli space is finite-dimensional since the zero-dimensional moduli space case is trivial. Let N be

the deformation space of γ∗. Now suppose, we perturb the metric about γ∗. The perturbation is

defined to be h := g− γ∗ such that ||h||Hs < δ for a suitable δ > 0. Due to the finite dimensionality

of N , g in fact could be an element of N lying within a δ−ball of γ∗. But if g lies on N , then
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corresponding solution satisfies the fixed point condition Ric(g) = − 1
ng. Therefore these ‘trivial’

perturbations do not see the dynamics. The question is how to treat such perturbations which are

tangent to N . This was precisely handled by invoking a shadow gauge condition in the study of

a small data fully nonlinear stability problem of the vacuum Einstein’ equations by [206] and later

used in [177] to handle the case with a positive cosmological constant. The shadow gauge reads

(g − γ) ⊥ N (3.76)

for γ ∈ N , where the orthogonality is in the L2 sense with respect to the metric γ. This precisely

takes care of the motion of the orthogonal perturbations by studying the time evolution of h := g−γ,

while the motion of the tangential perturbations is taken care of by evolving γ ∈ N . This does not

really affect the characteristics of the background spacetimes as γ does not leave the moduli space

i.e., it is still a negative Einstein metric with Einstein constant − 1
n . However, if we write the

perturbations as hij = gij −γij , then
∂gij
∂t =

∂hij
∂t +

∂γij
∂t and therefore,

∂γij
∂t enters into the evolution

equation for the metric. But an important question is how exactly to control this term since it will

enter into the time derivative of the energy as well. We will obtain the necessary estimates in a later

section when we study the energy inequality. But how does the instability (if it occurs) materialize

in N ? The instability is precisely described by the fact that the curve γ(t) runs off the edge of N

(leaves every compact set of N ) similar to the case of 2 + 1 gravity where the solution curve runs off

the edge of the Teichmüller space (played by N in the current context) at the limit of the big-bang

singularity [146, 198]. See figure (1) which depicts the kinematics of the perturbations (notice that

this notion of stability/ instability is general; here we specialize to the linearized problem). This

notion of stability/instability is true in a general non-linear setting as well. Linearization is a special

case which we will consider here.

One subtle point left to discuss is how to control the time derivative term ‘gij∂tΓ[γ]kij ’ (or

‘γij∂tΓ[γ]kij ’ at the linear level) in the equation for the shift vector field (3.56). By a simple cal-

culation, we will show that this contribution vanishes at the linear level.
∂γij
∂t may be written as

(equation (3.75))

∂γij
∂t

= l
TT ||
ij + (LZ||γ)ij , (3.77)

115



where Z || satisfies through the CMCSH gauge condition (3.29),

−[∇[γ]m∇[γ]mZ
||i +R[γ]imZ

||m] + (lTT || + LZ||γ)mn(Γ[γ]kmn − Γ[γ∗]kmn) = 0.

At the linear level, however, the term ‘(lTT || + LZ||γ)mn(Γ[γ]kmn − Γ[γ∗]kmn)’ vanishes since it is of

second order. This yields

∇[γ]m∇[γ]mZ
||i +R[γ]imZ

||m = 0 (3.78)

leading to

−
∫
M

(∇[γ]iZ
||
j ∇[γ]iZ ||j +

1

n
γijZ

||iZ ||j)µγ = 0⇒ Z || = 0 (3.79)

on M. Therefore, the pure gauge part of the N−tangential velocity
∂γij
∂t vanishes yielding

∂γij
∂t

= l
TT ||
ij . (3.80)

A direct calculation yields the following

γij∂tΓ[γ]kij = γijDΓ[γ]kij ·
∂γ

∂t
(3.81)

= γki∇[γ]j(∂tγij)−
1

2
∇[γ]ktrγ(∂tγ)

= γki∇[γ]j l
TT ||
ij − 1

2
∇[γ]ktrγ(lTT ||)

= 0,

since lTT || is transeverse-traceless with respect to γ. We are left with one task of estimating the

tangential velocity lTT ||, which will be done in a later chapter.

3.3 Linearized Einstein-Euler system

In this section we linearize the complete Einstein-Euler system and state a local existence theorem for

such system. The background (re-scaled) solution obtained previously reads (gB.G, k
tr
B.G, NB.G, XB.G, ρB.G, vB.G) =

(γ, 0, 1, 0, Cρ, 0), where Rij(γ) = − 1
n and Cρ is a positive constant. Of course, in the previous section,

we have recalled that the Einstein structure is not rigid for the n > 3 cases. The perturbations to the

background solutions may be described as follows h := g−γ, δktr = ktr−ktrB.G = ktr−0 = ktr, δN =
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N−NB.G = N−1, δX := X−XB.G = X−0 = X, δρ := ρ−ρB.G = ρ−Cρ, δv := v−vB.G = v−0 = v.

Now we linearize the Einstein-Euler system about this background solution. The linearized Euler

equations read

∂δρ

∂t
= −Cρnγadȧ

a
δN − 1

a
γadCρ∇[γ]iv

i, (3.82)

∂vi

∂t
=
nȧ

a
(γad −

n+ 1

n
)vi − 1

a
∇[γ]iδN − γad − 1

aγadCρ
∇[γ]iδρ. (3.83)

Now, an obvious problem is that the n−velocity vector field vi consists of irrotational, rotational

and harmonic parts. Utilizing a Hodge decomposition [179] of the n−velocity 1−form on the spatial

manifold M , one may simply write the velocity vector field as follows

v = (dφ)] + (δψ)] + (H)], (3.84)

where φ ∈ Ω0(M), ψ ∈ Ω2(M),H ∈ Ω1(M), and ∆H = (dδ + δd)H = 0 (in the weak sense).

Existence of a metric ensures the required isomorphism between the space of vector fields and the

space of 1-forms and such isomorphism is denoted by ]. At the linear level, the covariant divergence

of the evolution equation for the velocity (3.83) yields

∆γ

(
∂φ

∂t
− nȧ

a
(γad −

n+ 1

n
)φ+

1

a
δN +

γ − 1

aγadCρ
δρ

)
= 0. (3.85)

Now clearly, the kernel of the rough Laplacian ∆γ on a closed connected M consists of constant

functions only and therefore

∂φ

∂t
− nȧ

a
(γad −

n+ 1

n
)φ+

1

a
δN +

γ − 1

aγadCρ
δρ = C(t). (3.86)

One may absorb C(t) in the scalar field φ since φ is unique up to functions constant on Mt. Let us

make the transformation φ 7→ φ+ F (t). The evolution equation for φ yields

∂φ

∂t
− nȧ

a
(γad −

n+ 1

n
)φ+

1

a
δN +

γ − 1

aγadCρ
δρ+

dF (t)

dt
− nȧ

a
(γad −

n+ 1

n
)F (t)

= C(t).

Now setting dF
dt −

nȧ
a (γad−n+1

n )F (t) = C(t) (which has a unique solution F (t) = F (t0)( a(t)
a(t0) )n(γad−n−1

n )+

a(t)n(γad−n−1
n )
∫ t
t0

C(t
′
)

a(t′ )n(γad−
n−1
n

)
dt
′
) , the fluid equations reduce to the following wave equation for
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the scalar potential φ (propagating with the speed of sound cs =
√
γad − 1)

∂φ

∂t
=
nȧ

a
(γad −

n+ 1

n
)φ− 1

a
δN − γad − 1

aγadCρ
δρ, (3.87)

∂δρ

∂t
= −Cρnγadȧ

a
δN +

1

a
γadCρ∆γφ.

Notice that this is precisely the wave equation with respect to the ‘sound’ metric Sµν := ĝµν +

(1− c2s)uµuν (this sound metric was first derived by [164] in the context of the stability of a black

hole accretion problem). Therefore, we observe that the irrotational part of the n−velocity field is

decoupled from the rotational and the harmonic parts. The question remains how do we extract

the evolution equations for the remaining parts of the velocity vector field. Let us now focus on the

harmonic contribution. For closed (closed negative Einstein in this case to be precise) manifolds,

the space of harmonic forms (1-forms in this particular case) is a finite-dimensional vector space.

Therefore, the harmonic form contribution of the n−velocity 1-form field may be written as

H =

L∑
k=1

mkAk, (3.88)

where {A}lk=1 form a basis of the space of harmonic forms. Here L is the first Betti number or

the dimension of the first de-Rham cohomology group (or the space of the first singular cohomology

group H1(M) with real coefficients). Now we may utilize the L2 orthogonality property of the three

constituents in the Hodge decomposition of the velocity field with respect to the natural Riemannian

metric γ i.e.,

∫
M

〈dφ,H〉γ =

∫
M

〈δψ,H〉γ = 0 (3.89)

since H ∈ ker(dδ+ δd). Therefore, the harmonic contribution decouples to yield the following set of

ordinary differential equations for each harmonic part

dmk

dt
=
nȧ

a
(γad −

n+ 1

n
)mk. (3.90)

Integration of this equation yields

mk(t) = mk(t0)

(
a(t)

a(t0)

)n(γad−n+1
n )

. (3.91)
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Once we have extracted the time evolution of the harmonic contribution, the pure rotational part

may be extracted by the application of a double ‘curl’ operator δ ◦ d. Notice that (δψ)], the pure

rotational contribution and H], the harmonic contribution to the velocity field, both have zero

covariant divergence (see the appendix). Let us denote the vector field counterparts (δψ)] of δψ and

H] of H by ξ and χ, respectively i.e.,

vi = ∇[γ]iφ+ ξi + χi. (3.92)

Here ξi and χi satisfy (in the weak sense of course since they belong to Hs−1, s > n
2 + 1)

∇[γ]iξ
i = 0, (3.93)

∇[γ]iχ
i = 0. (3.94)

(i.e., ∃Θ ∈ C∞(M) such that
∫
M

(∇[γ]iΘ)ξi = 0 =
∫
M

(∇[γ]iΘ)χi) The action of double curl δ ◦ d

on the evolution equation for the velocity (3.83) yields

∂[(δ ◦ dv[)]]i

∂t
=
nȧ

a
(γad −

n+ 1

n
)[(δ ◦ dv[)]]i, (3.95)

since the action of curl annihilates the gradient by definition (exterior derivative to be precise).

Noting (δA)i = ∇[γ]jAij ∀A ∈ S0
2(M), d2φ = 0 = dχ[, One may explicitly evaluate [(δ ◦ dv[)]]i to

yield

[(δ ◦ dv[)]]i = ∇[γ]j(∇[γ]iξj −∇[γ]jξi), (3.96)

= −∇[γ]j∇[γ]jξi +∇[γ]i∇[γ]jξ
j +Rijξ

j

= (δij∆γ +R[γ]ij)ξ
j ,

where we have used the divergence free property of ξ. Therefore, one obtains the following evolution

equation for ξ

(δij∆γ +R[γ]ij)

(
dξj

dt
− nȧ

a
(γad −

n+ 1

n
)ξj
)

= 0. (3.97)

Now, the kernel of the Hodge Laplacian (dδ+δd) is precisely the space of harmonic forms. Therefore,

∂ξi

∂t
− nȧ

a
(γad −

n+ 1

n
)ξi = ζi(t, x) (3.98)
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for ζ[ ∈ ker(dδ + δd). On the other hand, ξ[ is always unique up to a harmonic form κ[ since

δξ[ = δ(ξ[ + κ[). Therefore, if we make a transformation ξ(t, x) 7→ ξ(t, x) + κ(t, x), the evolution

equation becomes

∂ξi

∂t
− nȧ

a
(γad −

n+ 1

n
)ξi +

(
∂κi

∂t
− nȧ

a
(γad −

n+ 1

n
)κi
)

= ζi(t, x). (3.99)

Now setting ∂κi

∂t −
nȧ
a (γad−n+1

n )κi = ζi(t, x) (which has a unique solution κi(t, x) = κi(t0, x)( a(t)
a(t0) )n(γad−n−1

n )+

a(t)n(γad−n−1
n )
∫ t
t0

ζi(t
′
,x)

a(t′ )n(γad−
n−1
n

)
dt
′
), the evolution equation for the rotational part ξ reduces to

dξi

dt
− nȧ

a
(γad −

n+ 1

n
)ξi = 0 (3.100)

from which one obtains the following stability criteria

γad <
n+ 1

n
. (3.101)

Direct integration of the evolution equation for the curl part (3.100) yields

ξi(t) = ξi(t0)

(
a(t)

a(t0)

)n(γad−n+1
n )

. (3.102)

Clearly, the curl part satisfies an ordinary differential equation in time and therefore we may control

its Sobolev norm of arbitrary order. Provided that the adiabatic index γad lies in the suitable range

(3.101), the curl part of the n−velocity field decays.

Notice another remarkable fact that the three parts of the velocity field are decoupled at the linear

level. In other words, the coupling is necessarily of higher order. Now we turn to the linearized Ein-

stein’s equations imposing constant mean extrinsic curvature spatially harmonic (CMCSH) gauge.

Note that the following lemma holds

Lemma 3: Let hij be the perturbation to the metric γij. The perturbation to the Ricci tensor in

CMCSH gauge satisfies

δRij +
1

n
hij = DR[γ]ij · h+

1

n
hij =

1

2
Lγ,γhij , (3.103)

where Lγ,γhij is defined to be

Lγ,γhij := ∆γhij + (R[γ]k ij
m +R[γ]k ji

m)hkm. (3.104)
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Proof: Using the Frechet derivative formula for the connection coefficentsDΓ[γ]ijk·h = 1
2γ

il(∇[γ]jhlk+

∇[γ]khjl −∇[γ]lhij), one may readily obtain the first variation of the Ricci tensor in the direction

of h

δRij = DR[γ]ij · h =
1

2
{∆γhij + (R[γ]k ij

m +R[γ]k ji
m)hkm (3.105)

+∇[γ]j∇[γ]mh
m
i +∇[γ]i∇[γ]mh

m
j +R[γ]kjh

k
i +R[γ]kih

k
j −∇[γ]i∇[γ]jtrγh}.

The linearized version of the spatial harmonic gauge ‘id : (M,γ + h)→ (M,γ) is harmonic’ yields

γijDΓ[γ]kij · h = 0 (3.106)

2∇[γ]jh
ij −∇[γ]itrγh = 0.

Therefore, the potentially problematic term ∇[γ]j∇[γ]mh
m
i +∇[γ]i∇[γ]mh

m
j obstructing the ellip-

ticity of hij 7→ DR[γ]ij · h becomes

∇[γ]j∇[γ]mh
m
i +∇i∇mhmj =

1

2
(∇[γ]i∇[γ]j +∇[γ]i∇[γ]j)trγh (3.107)

= ∇[γ]i∇[γ]jtrγh,

which gets cancelled with −∇[γ]i∇[γ]jtrγh and therefore

δRij = DR[γ]ij · h =
1

2
{∆γhij + (R[γ]k ij

m +R[γ]k ji
m)hkm +R[γ]kjh

k
i

+R[γ]kih
k
j }

=
1

2
{∆γhij + (R[γ]k ij

m +R[γ]k ji
m)hkm}

− 1

n
hij ,

i.e.,

δRij +
1

n
hij = DR[γ]ij · h+

1

n
hij = Lγ,γhij , (3.108)

where we have used the fact that the background metric is negative Einstein (R[γ]ij = − 1
nγij). This

concludes the proof of the lemma.

Therefore, we establish that h 7→ DR[γ]ij · h is linear elliptic, which will help us to cast the
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Einstein evolution equations as a linear hyperbolic system. The linearized Einstein-Euler evolution

and constraint equations read

∂hij
∂t

= −2

a
ktrij +

2ȧ

a
δNγij + l

TT ||
ij︸︷︷︸
I

+
1

a
(LXγ)ij , (3.109)

∂ktrij
∂t

= −(n− 1)
ȧ

a
ktrij −

1

a
∇[γ]i∇[γ]jδN + +

γ − 2

n− 1
a1−nγadδργij +

1

2a
Lγ,γhij

+
1

a

{
1

n− 1
(1 + γada

2−nγadCρ)γij −
1

n
γij

}
δN, (3.110)

∂φ

∂t
=

nȧ

a
(γad −

n+ 1

n
)︸ ︷︷ ︸

<0

φ− 1

a
δN − γad − 1

Cργada
δρ, (3.111)

∂δρ

∂t
= −Cρnγadȧ

a
δN +

Cργad
a

∆γφ, (3.112)

dξi

dt
=

nȧ

a
(γad −

n+ 1

n
)︸ ︷︷ ︸

<0

ξi, (3.113)

dχi

dt
=

nȧ

a
(γad −

n+ 1

n
)︸ ︷︷ ︸

<0

χi, (3.114)

∆γtrγh+∇[γ]i∇[γ]jhij −R[γ]ijh
ij = 2a2−nγadδρ, (3.115)

∇[γ]jk
trij = −γada2−nγadCρv

i. (3.116)

along with the elliptic equations for the lapse function (perturbation) and the shift vector field

arising as a consequence of the gauge fixing

∆γδN +
1

n− 1

(
1 + Cρnγada

2−nγad
)
δN = −nγad − 2

n− 1
a2−nγadδρ, (3.117)

∆γX
i −R[γ]ijX

j = −(n− 2)
ȧ

a
∇[γ]iδN − 2∇[γ]jk

trij . (3.118)

Notice that the negativity of the underlined terms in the linearized evolution equations is crucial in

our analysis since these will generate uniform decay of the matter fields. Here we have used the fact

that the term ‘gij∂tΓ[γ]kij ’in the shift equation (3.56) vanishes at the linear level (as shown in section

3.2). Notice that a problematic term ∇[γ]jk
trij arises in the right hand side of the shift equation,

which requires a higher regularity of the trace-less second fundamental form ktr. However, we may

immediately utilize the momentum constraint (3.23) to get rid of this term and obtain

∆γX
i −R[γ]ijX

j = −(n− 2)
ȧ

a
∇[γ]iδN + 2γadCρa

2−nγadvi. (3.119)
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Here v = (dφ)] + ξ + χ. Observe that the N−tangential velocity lTT || entered into the linearized

evolution equation for the metric perturbations hij and we need to estimate it (term I in the

equation). Choosing a basis ∂γ
∂qa = m

TT ||
a + L

W
||
a
γ for the formal tangent space of N at γ, the time

derivative of the shadow gauge condition yields at the linear level

〈∂th,mTT ||
a + L

W
||
a
γ〉γ = 0 (3.120)

〈−2

a
ktr +

2ȧ

a
δNγ + lTT || +

1

a
LXγ,m

TT ||
a + L

W
||
a
γ〉γ = 0

〈−2

a
ktr + lTT ||,mTT ||

a + L
W
||
a
γ〉γ = 0

〈−2

a
(kTT + LY γ −

2

n
∇[γ]mY

mγ) + lTT ||,mTT ||
a + L

W
||
a
γ〉γ = 0

〈−2

a
kTT + lTT ||,mTT ||

a 〉γ = 0⇒ lTT || =
2

a
kTT ||.

Here we have utilized the L2 orthogonality between ATT and LBγ for B ∈ X(M) and ATT is a

TT-tensor with respect to γ. kTT || denotes the projetion of the transverse-traceless part of ktr onto

the kernel of Lγ,γ (as we have discussed in section 3.1). In the energy inequality, we will observe

that the term lTT || is rather innocuous at the linear level since action of Lγ,γ annihilates it (and

only contributes at higher order).

3.3.1 Local Well-posedness

[150] proved a well-posedness theorem for the Cauchy problem for a family of elliptic-hyperbolic

systems that included the ‘n + 1’ dimensional vacuum Einstein equations in CMCSH gauge. [229]

sketched how to apply the theorem of [150] to a gauge fixed system of ‘Einstein-Λ’ field equations.

However, a local existence theorem for the fully non-linear Einstein-Euler system in CMCSH gauge

remains open till today. [180] utilized a CMC transported spatial coordinate condition (zero shift)

to establish a local and subsequently a global existence result for the sufficiently small however

fully non-linear irrotational Einstein-Euler system on (0,∞) × T3. In the case of an irrotational

fluid, one readily has a nonlinear wave equation (in a ‘sound metric’) for the scalar potential. One

potential complication that arises in the case of a general Einstein-Euler system is that the rotational

contribution and the harmonic contribution of the n−velocity vector field are coupled non-linearly

to the scalar field. Such questions are not however relevant at the linear level and left for future

study. At this linear level, the system (3.109)-(3.119) forms a coupled linear elliptic hyperbolic

system. A straightforward energy argument together with a contraction mapping on the Banach

space C0([0, T ];Hs ×Hs−1 ×Hs−1 ×Hs ×Hs−1 ×Hs−1) (i.e., (h(t), ktr(t), δρ(t), φ(t), ξ(t), χ(t)) ∈
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Hs×Hs−1×Hs−1×Hs×Hs−1×Hs−1) with s > n
2 +1 would yield an existence result. However, a

subtlety is that in the energy expressions, we will have the shift vector field X and the perturbation

to the lapse function δN . Therefore, we need to ensure that they are uniquely determined or in

other words that the following elliptic equations have unique solutions

∆γδN +
1

n− 1

(
1 + Cρnγada

2−nγad
)
δN = −nγad − 2

n− 1
a2−nγadδρ, (3.121)

∆γX
i −R[γ]ijX

j = −(n− 2)
ȧ

a
∇[γ]iδN + 2γadCρa

2−nγadvi (3.122)

inHs+1×Hs+1. But, this is equivalent to showing that the operators ∆γ+ 1
n−1

(
1 + Cρnγada

2−nγad
)
id

and δij∆γ − R[γ]ij have trivial kernels on Hs+1 × Hs+1. However, this follows from the fact that

1 +Cρnγada
2−nγad > 0 and R[γ]ij = − 1

nγij [150,206]. Note that once the perturbation to the lapse

is uniquely determined in terms of δρ, the shift vector field is then uniquely determined in terms

of v (φ, ξ, χ) and δρ. The detailed elliptic estimates are stated in the next section. Uniqueness

and the continuation criteria is straightforward for this linear elliptic-hyperbolic system. The only

difference between our equations here and the vacuum work studied by [150] is the appearance of

matter terms. However these appear with good signs and so the analysis proceeds in the same way.

For completeness we state the following theorem concerning the local well-posedness.

Local well-posedness theorem: Let s > n
2 +1. The CMCSH Cauchy problem of the linearized

Einstein-Euler−Λ system with initial data (h0, k
tr
0 , δρ0, φ0, ξ0, χ0) ∈ Hs×Hs−1×Hs−1×Hs×Hs−1×

Hs−1 and Λ ≥ 0 is strongly well posed in C0([0, T †];Hs×Hs−1×Hs−1×Hs×Hs−1×Hs−1). In par-

ticular, there exists a time T † > 0 depending on ||h0||Hs , ||ktr0 ||Hs−1 , ||δρ0||Hs−1 , ||φ0||Hs , ||ξ0||Hs−1 , ||χ0||Hs−1

such that the solution map (h0, k
tr
0 , δρ0, φ0, ξ0, χ0) 7→ (h(t), ktr(t), δρ(t), φ(t), ξ(t), χ(t), N(t), X(t)) is

continuous as a map

Hs ×Hs−1 ×Hs−1 ×Hs ×Hs−1 ×Hs−1 → (3.123)

Hs ×Hs−1 ×Hs−1 ×Hs ×Hs−1 ×Hs−1 ×Hs+1 ×Hs+1.

Let T † be the maximal time of existence of the solution to the CMCSH Cauchy problem with data

(h0, k
tr
0 , δρ0, φ0, ξ0, χ0). Then either T † = +∞ or

lim
t→T †

sup max(||h(t)||Hs , ||ktr(t)||Hs−1 , ||δρ(t)||Hs−1 , (3.124)

||φ(t)||Hs , ||ξ(t)||Hs−1 , ||χ(t)||Hs−1) = +∞.
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In addition to the local well-posedness, one needs to ensure the conservation of gauges and con-

straints, that is, the following entities must vanish identically along the solution curve

Ai := ∇[γ]iτ, (3.125)

Bk := γij(Γ[γ + h]kij − Γ[γ]kij) = γijDΓk[γ]ij · h, (3.126)

D := ∆γtrγh+∇i∇jhij −R[γ]ijh
ij − 2a2−nγδρ, (3.127)

Ei := ∇[γ]jk
trij + γa2−nγCvi. (3.128)

The vanishing of the entity Ai precisely states the imposition of the constant mean extrinsic curvature

gauge i.e., τ is a function of time t alone. Vanishing of D is essentially the conservation of the

linearized version of the Hamiltonian constraint. One might naturally expect the conservation of

the gauges and constraints due to the Bianchi identities. However, utilizing the evolution equations

of the relevant fields, one may also directly obtain a system of coupled PDEs after a lengthy but

straightforward calculation. Utilizing an energy argument similar to [150], one may show that if

(A,B,D,E) = 0 for the initial data (h0, k
tr
0 , δρ0, v0), then (A,B,D,E) ≡ 0 along the solution curve

t 7→ (h(t), ktr(t), δρ(t), v(t), δN(t), X(t)). At the linear level, one sees trivially that Ai ≡ 0. Here, of

course, by v we mean the triple (φ, ξ, χ).

3.3.2 Elliptic Estimates

In this section, we estimate δN and Xi from their respective elliptic equations. These estimates are

necessary to derive the desired energy inequality. At each step, we carefully keep track of the time

dependent expansion factor.

Lemma 4: Let s > n
2 + 1 and assume (δN,Xi, hij , k

tr
ij , δρ, v

i) solves the linearized Einstein-Euler

system expressed in CMCSH gauge. The following estimate holds for the linearized perturbation to

the lapse function δN

||δN ||Hs+1 ≤ Ca2−nγad ||δρ||Hs−1 , (3.129)

where a is the scale factor for the background solution and C > 0 is a suitable constant dependent

on the background solution (3.1).

Proof: The elliptic equation for the perturbation to the lapse function reads

∆γδN +
1

n− 1

(
1 + Cρnγada

2−nγad
)
δN = −nγad − 2

n− 1
a2−nγadδρ. (3.130)
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Now, we have shown in the previous section that the operator ∆γ + 1
n−1

(
1 + Cρnγada

2−nγad
)
id :

Hs+1 → Hs−1 is injective and following its self adjointness, also surjective (it has closed range).

Therefore, following this isomorphism, we immediately obtain

||δN ||Hs+1 ≤ Ca2−nγad ||δρ||Hs−1 . (3.131)

A short proof may be as follows. Let us denote the operator ∆γ + 1
n−1

(
1 + Cρnγada

2−nγad
)
id by

A. Assume that an estimate of the type ||u||Hs+1 . ||Au||Hs−1 does not hold. Then there exists

a sequence {ui}∞i=1 with ||ui||Hs+1 = 1 and ||Aui||Hs−1 → 0 as i → ∞. Now M is compact and

thereforeHs+1 is compactly embedded intoHs−1 (notice s > n
2 +1). This yields a sub-sequence {uij}

converging to u∗ ∈ Hs+1 strongly in Hs−1, which by construction satisfies Au∗ = 0. This contradicts

the fact that the operator A is injective. Therefore an estimate of the type ||u||Hs+1 . ||Au||Hs−1

holds ∀s ≥ 1 (which is satisfied here since s > n
2 + 1). Here, the constant C depends on the

background entities as evident from the elliptic equation.

Lemma 5: Let s > n
2 + 1 and assume (δN,Xi, hij , k

tr
ij , δρ, v

i) solves the linearized Einstein-Euler

system expressed in CMCSH gauge. The following estimate holds for the linearized perturbation to

the shift vector field

||X||Hs+1 ≤ C(ȧa1−nγad ||δρ||Hs−1 + Cρa
2−nγad ||v||Hs−1), (3.132)

where a is the scale factor for the background solution and C > 0 is a suitable constant dependent

on the background solution (3.1).

Proof: The elliptic equation for the shift vector field reads

∆γX
i −R[γ]ijX

j = −(n− 2)
ȧ

a
∇[γ]iδN + 2γadCρa

2−nγadvi. (3.133)

Now given that γ is negative Einstein i.e., R[γ]ij = − 1
nγij , the operator P := δij∆γ−R[γ]ij : Hs+1 →

Hs−1 has trivial kernel. We may use a similar argument as that of the previous case to obtain the
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following estimate

||X||Hs+1 ≤ C

(
||−(n− 2)ȧ

a
∇[γ]iδN + 2γadCρa

2−nγadvi||Hs−1

)
(3.134)

≤ C

(
ȧ

a
||∇[γ]iδN ||Hs−1 + Cρa

2−nγad ||vi||Hs−1

)
≤ C

(
ȧ

a
||δN ||Hs + Cρa

2−nγad ||vi||Hs−1

)
≤ C

(
ȧa1−nγad ||δρ||Hs−1 + Cρa

2−nγad ||v||Hs−1

)
.

Here we have used the fact that ||A||Hs1 . ||A||Hs2 for s1 < s2 and the estimate for the perturbation

to the lapse function from the previous lemma (4). This concludes the proof of the lemma.

3.4 Energy functional

In the study of hyperbolic PDE, the use of an energy functional is indispensable. Since the linearized

Einstein-Euler system is a linear coupled hyperbolic system (except that the rotational and harmonic

parts of the velocity field are decoupled), one may naturally define a wave equation type of energy

and its higher-order extension which controls the desired norm of the data (h, ktr, δρ, φ, ξ, χ). Note

that at the linear level, the rotational (ξ) and the harmonic (χ) parts of the velocity field simply

satisfy ordinary differential equations in time and therefore, we may control their Sobolev norm of

any order. Let us first define the lowest order energy E1

E1 :=
(γad − 1)

2γ2
adC

2
ρ

〈δρ, δρ〉L2 +
1

2
〈φ,∆γφ〉L2 +

1

2
〈ξ, ξ〉L2 (3.135)

+
1

2
〈H,H〉L2 +

1

2
〈ktr, ktr〉L2 +

1

8
〈h,Lγ,γh〉L2 .

Here ∆γ ,∆, and Lγ,γ are defined as follows

∆γ := −γij∇[γ]i∇[γ]j ,∆ξ
i := ∆γξ

i +R[γ]ijξ
j ,Lγ,γhij := ∆γhij (3.136)

+(R[γ]k ij
m +R[γ]k ji

m)hkm.
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Clearly, ∆ and Lγ,γ are the Hodge Laplacian and a Lichnerowicz type Laplacian, respectively. They

both have non-negative spectrum on M . The lowest order energy may explicitly be written as follows

E1 =
(γad − 1)

2γ2
adC

2
ρ

∫
M

(δρ)2µγ +
1

2

∫
M

∇[γ]iφ∇[γ]jφγ
ijµγ +

1

2

∫
M

ξiξjγijµγ

+
1

2

∫
M

HiHjγijµγ +
1

2

∫
M

ktrij k
tr
klγ

ikγjlµγ

+
1

8

∫
M

(∇[γ]khij∇[γ]lhmnγ
klγimγjn + (R[γ]k ij

m +R[γ]k ji
m)hkmhlnγ

ilγjn)µγ .

Using the structure of the lowest order energy, the higher order energies may be defined as follows

Ei :=
(γad − 1)

2γ2
adC

2
ρ

〈δρ,∆i−1
γ δρ〉L2 +

1

2
〈φ,∆i

γφ〉L2 +
1

2
〈ξ,∆i−1ξ〉L2

+
1

2
〈H,∆i−1

γ H〉L2 +
1

2
〈ktr,Li−1

γ,γ k
tr〉L2 +

1

8
〈h,Liγ,γh〉L2 ,

for 1 ≤ i ≤ s. The total energy is naturally defined as

E :=

s∑
i=1

Ei. (3.137)

The energy is positive semi-definite and it only vanishes precisely when (h, ktr, δρ, φ, ξ, χ) ≡ 0. The

first variation of the energy about 0 in the direction of X := (u, v, w, x, y, z) vanishes

DE(0) · X = 0, (3.138)

that is, 0 is a critical point of E in the space Q := Hs ×Hs−1 ×Hs−1 ×Hs ×Hs−1 ×Hs−1. The

Hessian of E at 0 reads

D2E(0) · (X ,X ) =
(γad − 1)

γ2
adC

2
ρ

s∑
i=1

〈w,∆i−1
γ w〉L2 +

s∑
i=1

〈x,∆i
γx〉L2 (3.139)

+

s∑
i=1

〈y,∆i−1y〉L2 +

s∑
i=1

〈z,∆i−1
γ z〉L2 +

s∑
i=1

〈v,Li−1
γ,γ v〉L2

+
1

4

s∑
i=1

〈u,Liγ,γu〉L2 ≥ 0.

The equality hold iff u = uTT ||, v = x = y = z = 0 (at the linear level uTT || = 0). Therefore, the

positive semi-definiteness of the Lyapunov function on Bδ(0)−{0} ⊂ Q is heavily dependent on the

non-negativity of the spectrum of the associated rough Laplacian ∆γ , Hodge Laplacian ∆, and the

128



Lichnerowicz type Laplacian Lγ,γ . Now, since the hessian is positive definite on Bδ(0) − {0}, the

map D2E(0) : Bδ(0)− {0} → Image(D2E(0)) is an isomorphism yielding

||h||2Hs + ||ktr||2Hs−1 + ||δρ||2Hs−1 + ||φ||2Hs + ||ξ||2Hs−1 + ||χ||2Hs−1 (3.140)

. D2E(0) · (X ,X ).

Now, using a version of the Morse lemma (Hilbert space version) on the non-degenerate critical point

(0, 0), we obtain that there exists a δ > 0 such that for variations lying within Bδ(0), the following

holds up to a possibly non-linear diffeomorphism E = E(0)+D2E(0)·(X ,X ) = D2E(0)·(X ,X ) (notice

that E(0) = 0). Therefore, we prove that the energy controls the desired norm of the perturbations

i.e.,

||h||2Hs + ||ktr||2Hs−1 + ||δρ||2Hs−1 + ||φ||2Hs + ||ξ||2Hs−1 + ||χ||2Hs−1 . E . (3.141)

3.4.1 Uniform boundedness of the energy functional

In this section, we prove the uniform boundedness of the energy functional and it’s possible in

time decay. In the process, we obtain the necessary and sufficient conditions for such estimates to

hold. To obtain the uniform boundedness property of the energy, the necessary ingredients such as

elliptic estimates are at hand. We therefore explicitly compute the time derivative for the lowest

order energy defined in the previous section. An analogous calculation holds for the time derivative

of the higher-order energies as well. We will use the Sobolev embedding on a compact domain

||A||L∞ . ||A||Ha for a > n
2 and the following product estimates

||AB||Hs . (||A||L∞ ||B||Hs + ||A||Hs ||B||L∞), s > 0, (3.142)

||AB||Hs . ||A||Hs ||B||Hs , s >
n

2
, (3.143)

||[P,A]B||Ha . (||∇A||L∞ ||B||Hs+a−1 + ||A||Hs+a ||B||L∞), (3.144)

P ∈ OPs, s > 0, a ≥ 0,

where OPs denotes the pseudo-differential operators with symbol in the Hormander class Ss1,0

(see [175] for details). The first and second inequalities essentially emphasize the algebra property

of Hs ∩L∞ for s > 0 and of Hs for s > n
2 , respectively. In addition, we of course use integration by

parts, Holder’s and Minkowski’s inequalities whenever necessary.

Lemma 6: Let s > n
2 +1, γ ∈ Ein− 1

n
be the shadow of g ∈M and assume (h = g−γ, ktr, δρ, φ, ξ, χ)
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satisfy the linearized Einstein-Euler system. Also assume there exists a δ > 0 such that (h, ktr, δρ, φ, ξ, χ) ∈

Bδ(0) ⊂ Hs ×Hs−1 ×Hs−1 ×Hs ×Hs−1 ×Hs−1. The time derivative of the lowest order energy

reads

∂E1
∂t

= −(n− 1)
ȧ

a
〈ktr, ktr〉L2 +

nȧ

a
(γad −

n+ 1

n
)〈φ,∆γφ〉L2 (3.145)

+
nȧ

a
(γad −

n+ 1

n
)〈ξ,∆ξ〉L2 +

nȧ

a
(γad −

n+ 1

n
)〈H,∆γH〉L2

+B,

where B satisfies

|B| . (γad − 1)
ȧ

a
||δρ||Hs−1 ||δN ||Hs+1 +

1

a
||φ||Hs ||δN ||Hs+1 +

1

a
||δN ||Hs+1 ||ktr||Hs−1

+
ȧ

a
||δN ||Hs+1 ||h||Hs +

1

a
||X||Hs+1 ||h||Hs +

1

a
(||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)E1.

Proof: A direct calculation using the evolution equations (3.109)-(3.116) yields

∂E1
∂t

=
γad − 1

γ2
adC

2
ρ

〈∂tδρ, δρ〉L2 + 〈∂tφ,∆γφ〉L2 + 〈∂tξ, ξ〉L2 (3.146)

+〈∂tχ, χ〉L2 + 〈∂tktr, ktr〉L2 +
1

4
〈∂th,Lγ,γh〉L2 + ER

=
γad − 1

γ2
adC

2
ρ

〈−Cρnγadȧ
a

δN +
1

a
Cργad∆γφ, δρ〉L2

+〈nȧ
a

(γad −
n+ 1

n
)φ− 1

a
δN − γad − 1

aCργad
δρ,∆γφ〉L2

+〈nȧ
a

(γad −
n+ 1

n
)ξ, ξ〉L2 + 〈nȧ

a
(γad −

n+ 1

n
)χ, χ〉L2

+〈−(n− 1)
ȧ

a
ktr − 1

a
∇[γ]⊗∇[γ]δN +

1

a

{
1

n− 1
(1 + γada

2−nγadCρ)γ −
1

n
γ

}
δN

+
γad − 2

n− 1
a1−nγadδργ +

1

2a
Lγ,γhij , ktr〉L2 +

1

4
< −2

a
ktr +

2ȧ

a
δNγ + lTT ||

+
1

a
LXγ,Lγ,γh〉L2 + ER

=
nȧ

a
(γad −

n+ 1

n
)〈φ,∆γφ〉L2 +

nȧ

a
(γad −

n+ 1

n
)〈ξ, ξ〉L2

+
nȧ

a
(γad −

n+ 1

n
)〈χ, χ〉L2 − (n− 1)

ȧ

a
〈ktr, ktr〉L2

− (γad − 1)n

γadCρ

ȧ

a
〈δN, δρ〉L2 − 1

a
〈δN,∆γφ〉L2 − 1

a
〈∇[γ]⊗∇[γ]δN, ktr〉L2

+
1

2

ȧ

a
〈δNγ,Lγ,γh〉L2 +

1

4a
〈LXγ,Lγ,γh〉L2 + ER.

Here (∇[γ] ⊗ ∇[γ]δN)ij := ∇[γ]i∇[γ]jδN . Now the rationale behind choosing the coefficients of

different terms in the energy expression (such as γad−1
γ2
adC

2
ρ

term with 〈δρ, δρ〉L2) may be seen as follows.
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Note that in the time evolution of the lowest order energy, we have terms like 〈δρ,∆γφ〉L2 and

〈ktr,Lγ,γh〉L2 . These terms are dangerous because, when we reach the term with highest Sobolev

regularity, the higher order versions of these mixed terms 〈δρ,∆s
γφ〉L2 , 〈ktr,Lsγ,γh〉L2 require regu-

larity more than the maximum available regularity. Therefore, we want these terms to get cancelled

with their negative counterparts. Note that with this particular choice of the positive coefficients of

different terms in the energy expression, these dangerous terms are cancelled point-wise. Therefore,

we are able to control the time derivative of the energy functional in terms of the maximum available

Sobolev norms of the perturbations.

There are additional terms that appear when we apply ∂t on the volume form µγ since ∂tγ =

lTT || = 1
ak

TT ||. However, since ∂tµγ = 1
2µγγ(∂tγ), this term does not contribute as a result of

γ−trace-less property of kTT ||. In addition there are terms that arise due to appearance of the

metric γ in the definition of the inner product. We denote these additional terms by ER. Making

use of the γ−traceless property of ktr and kTT || i.e., γijktrij = 0 = γijk
TT ||
ij and Lγ,γkTT || = 0, the

error term ER may be written as follows (using Sobolev embedding ||kTT ||||L∞ . ||kTT ||||Hs−1 for

s > n
2 + 1)

|ER| . 1

a
||kTT ||||Hs−1E1. (3.147)

Now using the momentum constraint (3.116), ktrij = kTTij + (LY γ − 2
n∇mY

mγ)ij , (LY γ)ij :=

γik∇[γ]jY
k + γki∇[γ]iY

k, and 2∇mY m =γ (LY γ), we obtain

|ER| . 1

a

(
||ktr||Hs−1 + ||Y ||Hs

)
E1 (3.148)

where Y satisfies the following elliptic equation

∇[γ]i∇[γ]iY
j +R[γ]jiY

i + (1− 2

n
)∇[γ]j(∇[γ]iY

i) = a2−nγadCρv
i. (3.149)

Elliptic regularity yields the following estimate for Y

||Y ||Hs+1 . Cρa
2−nγad ||v||Hs−1 . (3.150)

Therefore, ER satisfies |ER| . 1
a (||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)E1. Putting everything together,
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we obtain

∂E1
∂t

= −(n− 1)
ȧ

a
< ktr, ktr >L2 +

nȧ

a
(γad −

n+ 1

n
) < φ,∆γφ >L2 (3.151)

+
nȧ

a
(γad −

n+ 1

n
) < ξ, ξ >L2 +

nȧ

a
(γad −

n+ 1

n
) < H,H >L2

+B.

Trivial power counting of a and ȧ yields the desired estimate of B

|B| . (γad − 1)
ȧ

a
||δρ||Hs−1 ||δN ||Hs+1 +

1

a
||φ||Hs ||δN ||Hs+1 +

1

a
||δN ||Hs+1 ||ktr||Hs−1

+
ȧ

a
||δN ||Hs+1 ||h||Hs +

1

a
||X||Hs+1 ||h||Hs +

1

a
(||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)E1.

Similarly, the time derivatives of the higher order energies may be computed. The following lemma

states the time derivatives of the higher order energies.

Lemma 7: Let s > n
2 +1, γ ∈ Ein− 1

n
be the shadow of g ∈M and assume (h = g−γ, ktr, δρ, φ, ξ, χ)

satisfy the linearized Einstein-Euler system. Also assume there exists a δ > 0 such that (h, ktr, δρ, φ, ξ, χ) ∈

Bδ(0) ⊂ Hs ×Hs−1 ×Hs−1 ×Hs ×Hs−1 ×Hs−1. The time derivative of the higher order energy

reads

∂Ei
∂t

= −(n− 1)
ȧ

a
〈ktr,Li−1

γ,γ k
tr〉L2 +

nȧ

a
(γad −

n+ 1

n
)〈φ,∆i

γφ〉L2

+
nȧ

a
(γad −

n+ 1

n
)〈ξ,∆i−1ξ〉L2 +

nȧ

a
(γad −

n+ 1

n
)〈H,∆i−1

γ H〉L2

+Bi,

where B satisfies

|Bi| . (γad − 1)
ȧ

a
||δρ||Hs−1 ||δN ||Hs+1 +

1

a
||φ||Hs ||δN ||Hs+1 +

1

a
||δN ||Hs+1 ||ktr||Hs−1

+
ȧ

a
||δN ||Hs+1 ||h||Hs +

1

a
||X||Hs+1 ||h||Hs +

1

a
(||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)Ei

for 1 ≤ i ≤ s.

Proof: With a similar type of calculation using the evolution equations of the Einstein-Euler system

together with the inequalities (3.142-3.144) whenever necessary, we obtain the time derivatives of

the higher order energies. The estimate of the residue terms Bi may be obtained by carefully keeping

track of the explicitly time dependent terms a and ȧ.

Utilizing the previous two lemmas, we may now obtain the time derivative of the total energy. The
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total energy satisfies the following differential equation

∂E
∂t

(3.152)

= −(n− 1)
ȧ

a

s∑
i=1

〈ktr,Li−1
γ,γ k

tr〉L2 +
nȧ

a
(γad −

n+ 1

n
)

s∑
i=1

〈φ,∆i
γφ〉L2

+
nȧ

a
(γad −

n+ 1

n
)

s∑
i=1

〈ξ,∆i−1ξ〉L2 +
nȧ

a
(γad −

n+ 1

n
)

s∑
i=1

〈H,∆i−1
γ H〉L2

+G,

where G satisfies

|G| . (γad − 1)
ȧ

a
||δρ||Hs−1 ||δN ||Hs+1 +

1

a
||φ||Hs ||δN ||Hs+1 +

1

a
||δN ||Hs+1 ||ktr||Hs−1

+
ȧ

a
||δN ||Hs+1 ||h||Hs +

1

a
||X||Hs+1 ||h||Hs +

1

a
(||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)E .

Now we make use of the elliptic estimates (lemma 4-lemma 5). An estimate of the shift vector field

reads

||X||Hs+1 ≤ C(ȧa1−nγad ||δρ||Hs−1 + Cρa
2−nγad ||v||Hs−1). (3.153)

Now the n−velocity field v may be estimated in terms of its irrotational, rotational, and harmonic

parts as follows

||v||Hs−1 ≤ ||(dφ)]||Hs−1 + ||ξ||Hs−1 + ||H||Hs−1 (3.154)

≤ ||φ||Hs + ||ξ||Hs−1 + ||H||Hs−1 .

Therefore, the shift vector field may be estimated as follows

||X||Hs+1 . ȧa1−nγad ||δρ||Hs−1 + a2−nγad(||φ||Hs + ||ξ||Hs−1 + ||H||Hs−1) (3.155)

which together with the estimate of the lapse perturbation (lemma 4)

||δN ||Hs+1 . a2−nγad ||δρ||Hs−1 , (3.156)
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yields

G . ȧa1−nγad ||δρ||2Hs−1 + a1−nγad(||φ||2Hs + ||δρ||2Hs−1) + a1−nγad(||δρ||2Hs−1 (3.157)

+||ktr||2Hs−1) + ȧa1−nγad(||δρ||2Hs−1 + ||h||2Hs) + a1−nγad(||φ||2Hs + ||ξ||2Hs−1

+||χ||2Hs−1 + ||h||2Hs) +
1

a
(||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)E

. (ȧa1−nγad + a1−nγad)||δρ||2Hs−1 + a1−nγad ||φ||2Hs + (ȧa1−nγad + a1−nγad)||h||2Hs

+a1−nγad ||ktr||2Hs−1 +
1

a
(||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)E

. (ȧa1−nγad + a1−nγad)E +
1

a
(||ktr||Hs−1 + Cρa

2−nγad ||v||Hs−1)E .

In the view of small data we may absorb ||ktr||Hs−1 and ||v||Hs−1 in 1
a (||ktr||Hs−1+Cρa

2−nγad ||v||Hs−1)E

with a suitable constant. Therefore, the energy inequality becomes

dE
dt

≤ −(n− 1)
ȧ

a

s∑
i=1

〈ktr,Li−1
γ,γ k

tr〉L2 +
nȧ

a
(γad −

n+ 1

n
)

s∑
i=1

〈φ,∆i
γφ〉L2

+
nȧ

a
(γad −

n+ 1

n
)

s∑
i=1

〈ξ,∆i−1ξ〉L2 +
nȧ

a
(γad −

n+ 1

n
)

s∑
i=1

〈H,∆i−1
γ H〉L2

+C(ȧa1−nγad + a1−nγad + a−1)E ,

which upon utilizing the first stability criterion

γad ≤
n+ 1

n
(3.158)

becomes

dE
dt
≤ C(ȧa1−nγad + a1−nγad + a−1)E . (3.159)

Integration of the energy inequality yields

E(t) . E(t0)e
C
(
− 1
nγad−2a

2−nγad+
∫ t
t0
a1−nγaddt

′
+
∫ t
t0
a−1dt

′)
. (3.160)

Noting that nγad − 2 > 0 (n ≥ 3), a second stability criterion in the expanding universe is obtained

as

∫ ∞
t0

a1−nγaddt <∞,
∫ ∞
t0

a−1dt <∞. (3.161)
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Analysis up to now holds for Λ ≥ 0. However, in order to conclude that the FLRW models considered

are stable, we need to consider two separate cases: 1. Λ > 0, 2 Λ = 0.

3.4.2 Λ > 0 case

We may immediately check whether the stability is satisfied by the spacetimes under consideration

including a positive cosmological constant Λ. From lemma (1), we know that the scale factor exhibits

the following asymptotic behaviour for Λ > 0

a ∼ e
√

2Λ
n(n−1)

t
(3.162)

as t→∞. Let
√

2Λ
n(n−1) = α > 0. The integrability conditions

∫∞
t0
a1−nγaddt <∞ and

∫∞
t0
a−1dt <

∞ are trivially satisfied since, 1 − nγad < 0 for γad ∈ (1, n+1
n ), n ≥ 3 and

∫∞
t0
e−(nγad−1)αtdt <

∞,
∫∞
t0
e−αtdt <∞. We may in fact establish the decay of the re-scaled perturbations (in a suitable

norm) once we have established the uniform boundedness condition, that is,

||h(t)||Hs + ||ktr(t)||Hs−1 + ||δρ(t)||Hs−1 + ||v(t)||Hs−1 (3.163)

. ||h(t0)||Hs + ||ktr(t0)||Hs−1 + ||δρ(t0)||Hs−1 + ||v(t0)||Hs−1 < δ

for t > t0 and sufficiently small δ. Following this uniform boundedness of the appropriate norm of

the perturbations, we may immediately apply the local existence theorem to yield a global existence

result. However, we may achieve better than the uniform boundedness in a rapidly expanding

background since expansion is expected to ‘kill’ off the perturbations. We may in fact obtain decay

of the perturbations in an appropriate norm. Since, the rotational and harmonic parts of the

n−velocity field exhibit decay, we will focus on the scalar field φ, density perturbation δρ, and the

geometric entities h and ktr. First we obtain the estimates for the lapse and the shift. Utilizing the

elliptic estimates (lemma 4 and 5) and boundedness of ||δρ||Hs−1 ,||v||Hs−1 (3.163) one may obtain

the following estimates in a straightforward way

||δN ||Hs+1 . e−α(nγad−2)t, (3.164)

||X||Hs+1 . e−α(nγad−2)t. (3.165)

135



Now let us evaluate the time derivative of the following entities

Ek :=
1

2

s−1∑
i=1

〈ktr,Li−1
γ,γ k

tr〉L2 (3.166)

and

Eφ :=
1

2

s−1∑
i=1

〈φ,∆i
γφ〉L2 . (3.167)

An explicit calculation yields

∂Ek
∂t
≤ −2

nȧ

a
Ek + C(

1

a
||ktr||Hs−2 ||h||Hs +

1

a
||δN ||Hs ||ktr||Hs−2

+a1−nγad(t)||δρ||Hs−2 ||ktr||Hs−2) +
C

a
,

∂Eφ
∂t
≤ 2nȧ

a
(γad −

n+ 1

n
)Eφ + C(

1

a
||δN ||Hs−1 ||φ||Hs−1 +

1

a
||δρ||Hs−1 ||φ||Hs−1)

+
C

a

Now notice the following extremely important fact. Since the dangerous term 〈ktr,Liγ,γh〉L2 does

not get cancelled in ∂Ek
∂t , we lose one order of regularity i.e., we may only obtain a decay of ||ktr||Hs−2

instead of ||ktr||Hs−1 (similarly for φ, we may only control ||φ||Hs−1). However, since we can consider

s > n
2 + 2, we will still obtain the desired point-wise decay. Utilizing the boundedness of the fields

as t→∞, we may write the previous inequalities as follows

∂Ek
∂t
≤ −2

nȧ

a
Ek +

C

a
, (3.168)

∂Eφ
∂t
≤ 2nȧ

a
(γad −

n+ 1

n
)Eφ +

C

a
. (3.169)

Noticing a ∼ eαt and ȧ
a ∼ α as t→∞, we have

∂Ek
∂t
≤ −2nαEk + Ce−αt, (3.170)

∂Eφ
∂t
≤ 2nα(γad −

n+ 1

n
)Eφ + Ce−αt (3.171)

yielding

Ek . e−αt, (3.172)

Eφ . e−ζt, (3.173)
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where 0 < ζ := min
(
α, 2nα(n+1

n − γad)
)
. Note here that we need γad <

n+1
n for a decay. This is

extremely important. These decay estimates yield

||ktr||Hs−2 . e−
α
2 t, ||φ||Hs−1 . e−

ζ
2 t. (3.174)

One may actually obtain a better decay estimate for ||ktr||Hs−2 by an iterative argument. Going

back to the evolution equation of Ek

∂Ek
∂t
≤ −2

nȧ(t)

a
Ek + C(

1

a
||ktr||Hs−2 ||h||Hs +

1

a
||δN ||Hs ||ktr||Hs−2

+a1−nγad(t)||δN ||Hs ||ktr||Hs−2 + a1−nγad(t)||δρ||Hs−2 ||ktr||Hs−2)

and substituting the estimate ||ktr||Hs−2 . e−αt/2 yields

∂Ek
∂t
≤ −2nαEk + Ce−α(1+ 1

2 )t (3.175)

as t→∞. Integrating the previous inequality, one immediately obtains

Ek . e−α(1+ 1
2 )t (3.176)

and therefore,

||ktr||Hs−2 . e−
α
2 (1+ 1

2 )t. (3.177)

Notice that we have gained an extra factor α/4 in the rate of decay. Continuing in a similar way,

we obtain the final decay rate of Ek to be the following sum

α

{
1 +

1

2
(1 +

1

2
(1 +

1

2
(1 + .........

}
= α

∞∑
k=0

1

2k
= 2α (3.178)

and therefore we obtain

||ktr||Hs−2 . e−αt or ||ktr||L∞ . e−αt. (3.179)
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Now using the equation of motion for the metric gij (3.50), the estimates for lapse and shift

(3.164,3.165), and the uniform boundedness result (3.163), one readily obtains

||∂g
∂t
||Hs−1 . e−αt (3.180)

which upon integration yields

||g(t)− g†||Hs−1 . e−αt as t→∞, (3.181)

where g† ∈ Hs−1. We need to identify the limit metric g†. Since M is compact, HI is compactly

imbedded in HI−1, ∀I ≥ 1. From uniform boundedness (3.163), the limit metric g† must therefore be

in Hs. Now we need to estimate the density function. Using the evolution equation for ρ = Cρ+ δρ,

we obtain

||ρ(t)− ρ
′
||Hs−2 . e−βt as t→∞ (3.182)

for ρ
′ ∈ Hs−2 and β = min(α(nγad − 2), α + ζ/2). From uniform boundedness (3.163) and com-

pact imbedding, ρ
′ ∈ Hs−1. Now utilizing the Hamiltonian constraint (3.53), Sobolev embedding

(HI(M) ↪→ L∞(M), I > n
2 ), and the decay estimate of the relevant fields, one readily obtains

lim
t→∞

R(g) = −1 (3.183)

i.e.,

||g − g†||Hs−1 . e−αt (3.184)

as t→∞. Here g† ∈Mε
−1, whereMε

−1 is a sufficiently small neighbourhood of the space of Einstein

metrics N in the space of constant negative scalar curvature −1. Application of Sobolev embedding

on compact domains (since we are now considering s > n
2 + 2), the final pointwise decay estimates

of the fields are as follows

||g(t)− g†||L∞ . e−αt, ||ktr(t)||L∞ . e−αt, ||ρ(t)− ρ
′
||L∞ . e−βt, (3.185)

||N(t)− 1||L∞ . e−α(nγad−2)t, ||X(t)||L∞ . e−α(nγad−2)t, ||lTT ||(t)||L∞ . e−2αt.
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The individual constituents of h and ktr may be estimated by using constraints. Using the momen-

tum constraint (3.116) and ktrij = kTTij + (LY g − 2
n∇mY

mg)ij , one obtains

∇[γ]i∇[γ]iY
j +R[γ]jiY

i + (1− 2

n
)∇[γ]j(∇[γ]iY

i) = a2−nγadCρv
i (3.186)

Now of course the kernel of the elliptic operator on the left is trivial since the background metric is

negative Einstein. Therefore, noting ||v||Hs−1 < C, the following elliptic estimate holds

||Y ||Hs+1 . e−α(nγad−2)t (3.187)

as t→∞ and therefore

||kTT ||Hs−2 . e−αt. (3.188)

Notice that, by virtue of the transverse-traceless property of kTT , we do not lose regularity of Y .

Similarly, the Hamiltonian constraint (4.19) together with the spatial harmonic gauge condition may

be utilized to obtain decay of the individual parts of hij = hTTij + fgij + (LW g)ij [184]. The first

variation of the Hamiltonian constraint (4.19) with respect to (g, ktr, ρ, v) at (g = γ, ktr = 0, ρ =

Cρ, v = 0) yields

DR[γ] · h = 2a2−nγadδρ, (3.189)

∆γtrgh+∇i∇jhij −R[γ]ijh
ij = 2a2−nγadδρ,

where R[γ]ij = R(γ)
n γij = − 1

nγij . Upon substituting the decomposition hij = hTTij + fγij +

(LW γ)ij into the variation of the Hamiltonian constraint (4.19) and noticing that ∆γtrγ(LW g) +

∇i∇j(LW γ)ij −R[γ]ij(LW γ)ij ≡ 0 yields

n∆γf + γij∇i∇jf −R[γ]f = 2a2−nγadδρ (3.190)

(n− 1)∆γf −R[γ]f = 2a2−nγadδρ.

Following the injectivity of 2∆γ −R[γ] for R[γ] < 0 (which is the case here), we immediately obtain

the following estimate

||f ||Hs+1 . a2−nγad ||δρ||Hs−1 . (3.191)
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The remaining is the estimation of the vector field W . The vector field W is estimated in terms of

f through the following elliptic equation, which follows from the spatial harmonic gauge, that is,

‘id : (M,γ + h)→ (M,γ) is harmonic’. The linearized version of the spatial harmonic gauge yields

γijDΓijk[γ] · h = 0 (3.192)

2∇[γ]jh
ij −∇itrγh = 0

∆γW
i −R[γ]ijW

j = −n− 2

2
∇if.

Once again, δij∆γ −R[γ]ij is injective since γ is negative Einstein. The estimate of W reads

||W ||Hs+2 . ||f ||Hs+1 . (3.193)

Since, ||δρ||Hs−1 . C and a ∼ e−αt, one immediately obtains the following decay

||f ||Hs+1 . e−(nγad−2)αt, (3.194)

||W ||Hs+2 . e−(nγad−2)αt (3.195)

as t→∞. Using Sobolev embedding on compact domains, we may of course deduce the point-wise

decay

||kTT (t)||L∞ . e−αt, ||Y ||L∞ . e−α(nγad−2)t, ||f(t)||L∞ . e−(nγad−2)αt, (3.196)

||W (t)||L∞ . e−(nγad−2)αt, ||lTT ||(t)||L∞ . e−2αt

as t → ∞. Notice that the decay property of the matter fields are only possible if the adiabatic

index lies in the interval (1, n+1
n ). In the border line case of γad = n+1

n , one can only prove a uniform

boundedness at the linear level. The uniform boundedness and decay property lead to the following

main theorem.

Main Theorem: Let (g0, k
tr
0 , ρ0, v0) ∈ Bδ(γ, 0, Cρ, 0) ⊂ Hs × Hs−1 × Hs−1 × Hs−1, where

s > n
2 + 2 and δ > 0 is sufficiently small. Also consider that N is the integrable deformation

space of γ and Λ > 0 is the cosmological constant. Assume that the adiabatic index γad lie in

the interval (1, n+1
n ). Let t 7→ (g(t), ktr(t), ρ(t), v(t)) be the maximal development of the Cauchy

problem for the linearized Einstein-Euler-Λ system about (3.71) in constant mean extrinsic curvature

spatial harmonic gauge (CMCSH) (3.109-3.116) with initial data (g0, k
tr
0 , ρ0, v0). Then there exists
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a γ† ∈ Mε
−1 ∩ Sγ and γ∗ ∈ N such that (g, γ, ktr, ρ, v) flows toward (γ†, γ∗, 0, ρ

′
, 0) in the limit of

infinite time, that is,

lim
t→∞

(g(t, x), γ(t, x), ktr(t, x), ρ(t, x), v(t, x)) = (γ†(x), γ∗(x), 0, ρ
′
(x), 0)

and moreover either γ† = γ∗ or γ∗ is the shadow of γ†. Here Mε
−1 denotes the space of metrics of

constant negative (−1) scalar curvature sufficiently close to and containing the deformation space

N . Sγ denotes a harmonic slice through the metric γ. ρ
′

is dependent on the initial density. The

convergence is understood in the strong sense i.e., with respect to the available Sobolev norms.

3.4.3 Λ = 0 Case

In our linearized analysis, the scale factor a associated with the background solution plays an impor-

tant role. In the time coordinate t, we needed an integrability condition on a(t) (3.161) in addition

to the suitable range of the adiabatic index γad (3.101). This integrability condition was satisfied by

the scale factor associated with our background solutions since it exhibits asymptotically exponential

behavior (3.42)

a ∼ eαt as t→∞, (3.197)

where α =
√

2Λ
n(n−1) . Now an important question arises. Do we need a positive cosmological con-

stant? In other words: do we need accelerated expansion to stabilize the self-gravitating relativistic

fluid on a background that is already expanding? If we turn off the cosmological constant, then we

have

a ∼ t as t→∞, (3.198)

and therefore a satisfies the first integrability condition of (3.161) (i.e.,
∫∞
t0
a1−nγaddt < ∞) but∫∞

t0
a−1dt < ∞ is no longer satisfied. Therefore, we do not even obtain boundedness. However, we

cannot claim that turning off the cosmological constant leads to instability but are simply unable

to establish stability with the current method. Note that recently, using a special technique, [183]

showed asymptotic stability of Milne universe in the presence of dust, where the cosmological con-

stant is turned off (the scale factor behaves ∼ t). However, we want to point out that the FLRW

models considered here are different from the Milne model since the latter has a vanishing back-

ground energy density.
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3.4.4 Geodesic Completeness

In order to establish the future completeness of the perturbed spacetime, we need to show that

the solutions of the geodesic equation must exist for an infinite interval of the associated affine

parameter. Here we need to be more precise about what we mean by the perturbed spacetimes.

If the first variation of the metric is denoted by δĝ which satisfies the linearized equations along

with a certain smallness condition (a re-scaled version of the physical perturbations to be precise).

We show the geodesic completeness for the perturbed spacetimes ĝ = ĝFLRW + δĝ. We provide a

rough sketch of the proof in this context following [151]. Let’s designate a timelike geodesic in the

homotopy class of a family of timelike curves by C. The tangent vector β = dC
dλ = βµ∂µ to C for the

affine parameter λ satisfies ĝ(β, β) = −1, where ĝ is the spacetime metric. As C is causal, we may

parametrize it as (t, Ci), i = 1, 2, 3. We must show that limt→∞ λ = +∞, that is,

lim
t→∞

∫ t

t0

dλ

dt′
dt
′

= +∞. (3.199)

Noting that β0 = dt
dλ , we must show

lim
t→∞

∫ t

t0

1

β0
dt
′

= +∞. (3.200)

Showing that |Ñβ0| is bounded and therefore limt→∞
∫ t
t0
Ñdt

′
= +∞ is enough to ensure the

geodesic completeness. We first show that |Ñβ0| is bounded. Proceeding the same way as that

of [177] together with the estimates obtained in section 5.2, we obtain

Ñ2(β0)2 ≤ C (3.201)

as t→∞ for some C <∞. Therefore, we only need to show that the following holds

lim
t→∞

∫ t

t0

Ñdt =∞ (3.202)
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in order to finish the proof of timelike geodesic completeness. Notice that Ñ = N = 1 + δN . Now

|δN(t)| ≤ C ′e−α(nγad−2)t, 0 < C
′
<∞ as t→∞ yielding

lim
t→∞

(∫ t

t0

dt− C
′
α(nγ − 2)(e−α(nγad−2)t0 − e−α(nγad−2)t)

)
≤ lim
t→∞

∫ t

t0

Ñdt

≤ lim
t→∞

(∫ t

t0

dt+ C
′
α(nγad − 2)(e−α(nγad−2)t0 − e−α(nγad−2)t)

)
=> lim

t→∞

∫ t

t0

Ñdt =∞.

This completes the proof of the geodesic completeness of the spacetimes of interest under linearized

perturbations. The following theorem summarizes the results obtained so far.

Theorem: Let N be the integrable deformation space of γ∗. Then ∃δ > 0 such that for any

(g(t0), ktr(t0), δρ(t0), φ(t0), ξ(t0), χ(t0) ∈ Bδ(γ∗, 0, Cρ, 0, 0, 0) ⊂ Hs ×Hs−1 ×Hs−1 ×Hs ×Hs−1 ×

Hs−1 ×Hs−1,s > n
2 + 1, the Cauchy problem for the re-scaled linearized Einstein-Euler system in

constant mean extrinsic curvature (CMC) and spatial harmonic (SH) gauge is globally well posed to

the future and the space-time is future complete.

3.5 Concluding Remarks

We have proved a global existence result for the linearized Einstein-Euler-Λ system about a spatially

compact negative spatial curvature FLRW solution (and its higher-dimensional generalization). In

addition to the uniform boundedness of the evolving data in terms of its initial value, we proved

a decay (in suitable norm) of the perturbations as well. This is an indication of the fact that the

accelerated expansion-induced linear decay term may dominate the nonlinearities at the level of

small data in a potential future proof of the fully non-linear stability. However, a serious difficulty -

namely the possibility of shock formation - arises at the non-linear level in the perfect fluid matter

model even without the presence of gravity. Coupling to gravity could make the scenario even more

troublesome since pure gravity could itself blow up in finite time through curvature concentration.

On the other hand, [166, 176] utilized the accelerated expansion (i.e., included a positive Λ) of the

background solution on the spacetime of topological type T3 × R to avoid the shock formation at

the small data limit. Our study is significantly different from that of Rodnianski and Speck [166]

or Speck [176] in a sense that we are concerned with negatively curved background (for physically

interesting three spatial dimensions, we consider compact hyperbolic manifolds) unlike their study

where compact flat torus T3 is used. As mentioned earlier, our study is motivated by the recent

observations that do tend to indicate a negatively curved spatial universe. Secondly, they study
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the fully nonlinear stability (of small data perturbations) while we restrict ourselves with linear

theory only. In terms of choice of gauge, [166] and [176] used a space-time harmonic gauge or wave

gauge first by Choquet-Bruhat to prove a local existence theorem for vacuum Einstein’s equations.

We, on the other hand, used a constant mean extrinsic curvature spatial harmonic gauge (CMCSH)

introduced by [150]. An advantage of choosing the CMCSH gauge is that one readily has nice elliptic

estimates for the associated lapse function and the shift vector field. Despite these distinctions, we

will observe a similar decay property in the current study with the presence of a positive cosmological

constant. We also obtain a similar stability criterion that is similar to [166, 176]. A fully nonlinear

analysis of the spacetimes of our interest is currently under intense investigation.

Even though there are numerous studies of cosmological perturbation theory [122, 123, 124, 125,

126, 127], they are primarily ‘formal’ mode stability results and in a sense (described in the intro-

duction) do not address the ‘true’ linear stability problem. Our study, on the other hand, casts

the Einstein-Euler-Λ system into a coupled initial value PDE problem (a ‘Cauchy’ problem to be

precise). This facilitates the study of the ‘true’ linear stability of suitable background solutions

via energy methods. In addition, even the ‘formal’ mode stability analysis is absent in the case of

the spatially compact negatively curved FLRW model. This model is particularly interesting since

there are infinitely many topologically distinct manifolds mathematically constructible by taking

quotients of H3 by discrete and torsion-free subgroups of SO+(1, 3) acting properly discontinuously.

The existence of non-trivial harmonic forms precisely encodes such topological information, which as

we have seen, inevitably appear in the field equations. In addition, we study the more general ‘n+1’

model where the spatial part is described by a compact negative Einstein manifold (which, while

restricted to the n = 3 case becomes compact hyperbolic through the application of the Mostow

rigidity theorem). Our study recovers the mode stability results in a straightforward way (briefly

described in the appendix). One interesting aspect of our study is that it hints towards the following

fact: the FLRW spacetimes with a compact spatial manifold of constant negative sectional do not

exhibit an asymptotic stability property with Λ > 0. Simply put, any perturbations to FLRW solu-

tions may not return to solutions of the same type rather converge to nearby solutions characterized

by a compact spatial manifold with constant negative scalar curvature. Simultaneously, the matter

density perturbations may not approach zero as well. Since the local homogeneity and isotropy

criteria require constancy of sectional curvature, not just the scalar curvature and a homogeneous

matter distribution, a natural conclusion would be that the Einsteinian evolution asymptotically

drives the homogeneous and isotropic universe (local) to an inhomogeneous and anisotropic state.

This may indicate a possibility of ‘structure formation’ [145] which tends to break the homogeneity
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and isotropy of the physical universe. We do not however claim that such a mechanism is yet so

compelling based on only a linear stability analysis.

Lastly, it is worth mentioning that our results indicate the linear stability if the adiabatic index

γad lies in the range (1, n+1
n ). Such a result, while is a necessary condition for stability, is only valid

in the linear regime. It would certainly be interesting to check if this criterion persists in the fully

nonlinear level as well. As mentioned previously, in the presence of accelerated expansion, Rodnianski

and Speck [166] and Speck [176] obtained the same condition for nonlinear stability of small data on

R× T3. In addition to [166] and [176], avoidance of shock formation by exponential expansion was

also studied by [182] for radiation fluid (S3 spatial topology), by [181] for γad ∈ (4/3, 3/2) (T3 spatial

topology), [185] for dusts (T3 spatial topology). Recently by [183] removed the positive cosmological

constant and proved the asymptotic stability of the Milne universe including dust. We will extend

our study to the fully non-linear case in the future.
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Chapter 4

The Thurston boundary of Teichmüller space is the space of big bang singularities of

2+1 gravity

We study the asymptotic behaviour of the solution curves of the dynamics of spacetimes of the

topological type Σg × R, g > 1, where Σg is a closed Riemann surface of genus g, in the regime of

2 + 1 classical general relativity. The configuration space of the gauge fixed dynamics is identified

with the Teichmüller space (T Σg ≈ R6g−6) of Σg. Utilizing the properties of the Dirichlet energy

of certain harmonic maps, estimates derived from the associated elliptic equations in conjunction

with a few standard results of surface theory, we show that every non-trivial solution curve runs

off the edge of the Teichmüller space at the limit of the big bang singularity and approaches the

space of projective measured laminations/foliations (PML PMF), the Thurston boundary of the

Teichmüller space. This result which identifies the complete solution space of the Einstein equations

on flat spacetimes of the type Σg × R, also yields yet another way to compactify the Teichmüller

space.

4.1 Introduction

2+1 gravity formulated for spacetimes of the type Σg ×R, where Σg is the closed (compact without

boundary) Riemann surface of genus g > 1, is of considerable interest in mathematical relativity

despite the fact that it does not allow for gravitational wave degrees of freedom and as such is

devoid of straightforward physical significance. However, it becomes extremely important while

studying ‘3 + 1’ gravity on spacetimes of a certain topological type. [194] studied the Einstein’s

equations for U(1) symmetric vacuum spacetimes with spatial topology being a circle bundle over

S2. Later [191,192,193] studied the vacuum Einstein equations for U(1) symmetric spacetimes with

spatial topology being circle bundles over higher genus Riemann surfaces (g > 1), where 3 + 1

gravity is reduced to 2 + 1 gravity coupled to a wave map which has the hyperbolic plane as its

target space. In addition to these classical analyses, considerable attention has been paid quantum
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mechanically [189, 190, 195, 196], where 2 + 1 gravity is essentially treated as a toy model for 3 + 1

quantum gravity.

Despite such physical motivations to study 2 + 1 gravity as a tool for studying physically inter-

esting 3 + 1 gravity, 2 + 1 gravity is itself a mathematically rich topic with several open issues even

at the purely classical level. A considerable amount of work has been done on purely classical 2 + 1

gravity. Moncrief [186] reduced the Einstein equations in 2 + 1 dimensions to a Hamiltonian system

over Teichmüller space, where the phase space of the dynamics was identified with the co-tangent

bundle of Teichmüller space (≈ R12g−12). Later [197] proved the global existence of the Einstein

equations on spacetimes of the topological type Σg ×R, g > 1 by controlling the Dirichlet energy (a

proper function on Teichmüller space) of an associated harmonic map. Moncrief’s extensive analysis

of 2 + 1 gravity (using constant mean curvature spatial harmonic gauge) in [198] led to several clas-

sical results of Teichmüller theory, which were obtained by means of purely relativistic/Riemannian

geometric analysis. This included, e.g., the homeomorphism between the Teichmüller space and the

space of holomorphic quadratic differentials (transverse-traceless tensors in the context of relativity)

etc. In the same paper, the term ‘Relativistic Teichmüller theory ’ was coined. Through studying a

Hamilton Jacobi equation whose complete solution determines all the solution curves of the reduced

Einstein equations and a Monge-Ampere type equation which allows for a more explicit characteri-

zation of these solution curves, he defined a family of ray structures on the Teichmüller space of Σg.

Studying the behaviour of the associated Dirichlet energy, Moncrief [198] conjectured that each of

these non-trivial solution curves runs off the edge of Teichmüller space at the limit of the big-bang

singularity and attaches to the Thurston boundary of the Teichmüller space, that is, the space of

projective measured laminations or foliations (PML, PMF). This, in principle, if it holds true,

then classifies the big bang singularities of ‘2 + 1’ gravity as the points on the Thurston boundary

and serves as another means to compactify Teichmüller space.

[199] studied the spacetimes of simplicial type (a dense subset in the space of all such spacetimes)

in cosmological time gauge and obtained a similar result that the past singularity corresponds to

the isometric action of the fundamental group of Σg on a certain real tree, in other words, that a

point on the Thurston boundary is associated to the initial singularity. Later, based on the work

of [199], [200] used barrier arguments to control the constant mean curvature slices relative to the

cosmic time ones near the big bang singularities and thereby to show that Thurston boundary points

are attained in the limit, by the former as well as the latter. Despite the fact that these results

conform to the conjecture of Moncrief to a large extent, they lack direct arguments and also differ

in the choice of gauge. Whether this result is gauge invariant is currentsly unknown. Therefore, it is
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worth proving the conjecture by a direct analysis of the Einstein evolution and constraint equations

in CMCSH gauge.

In addition to the general relativistic perspective, M. Wolf [215] established the homeomorphism

between the space of holomorphic quadratic differential and the Teichmüller space of Σg by utiliz-

ing the complex analytic properties such as the Beltrami differential (stretching) of the associated

harmonic map. One may naively expect that Wolf’s result might be directly applicable to the rela-

tivistic case since the transverse-traceless tensor of GR may be associated to a holomorphic quadratic

differential. However, in Wolf’s case, the domain is kept fixed while the dynamics occurs on the

target surface and therefore the available machinery from complex analysis became useful. But, in

the relativistic case, the domain (conformal structure) is varying while the target is fixed (an interior

point of the Teichmüller space). Therefore, the traditional machinery becomes useless and we are

left with tools which are only seemingly accessible through GR.

In this paper, we aim to study the ’2 + 1’ gravity on vacuum spacetimes of topological type

Σg ×R in constant mean extrinsic curvature spatial harmonic gauge (CMCSH). Utilizing the direct

estimates from the Einstein evolution and constraint equations in conjunction with a few established

results from [198] and the theory of Riemann surfaces, we show via a direct argument that indeed

Moncrief’s conjecture holds true, that is, at the limit of the big-bang singularity, the conformal

geometry degenerates and every corresponding non-trivial solution curve attaches to the Thurston

boundary. The structure of the paper is as follows. We begin with introducing necessary background

for the theory of Riemann surfaces such as harmonic maps, holomorphic quadratic differentials,

the associated measured foliations and their transverse measures etc. Then we study the reduced

Einstein equations through a conformal technique and obtain the estimates necessary from the

associated elliptic PDEs. Finally, we state the relativistic interpretation of the concepts introduced

from surface theory and show using the estimates obtained that the conjecture holds true, that is, at

the limit of big-bang singularity, every non-trivial solution curve runs off the edge of the Teichmüller

space and attaches to the space of projective measured foliations/laminations and exhausts these

spaces. We conclude by discussing the potential validity of the conjecture with the inclusion of a

cosmological constant and suitable matter sources.

4.2 Notations and facts

We denote the ‘2+1’ spacetime by M̃ with its topology being Σg×R. Here, Σg is a closed (compact

without boundary) Riemann surface with genus g > 1. The space of Riemannian metrics on Σg is
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denoted by M and its closed submanifold M−1 is defined as follows

M−1 = {γ ∈M|R(γ) = −1}, (4.1)

where R(γ) is the scalar curvature of the metric γ. The space of symmetric 2-tensor fields is denoted

by S0
2(Σg). The L2 inner product with respect to the metric γ ∈ M between any two elements A

and B of S0
2(Σg) is defined as

< A,B >L2 :=

∫
Σg

AijBklγ
ikγjlµγ , (4.2)

where µγ =
√

det(γij)dx
1 ∧ dx2 is the volume form on Σg. Abusing notation we will use µγ for

both
√

det(γij) and the volume form. Unless otherwise stated, we will consider an element ofM in

isothermal coordinates that is M 3 γ := eη(z)|dz|2, η : Σg → R. The Laplacian ∆γ is defined so as

to have non-negative spectrum on Σg, that is, ∆γ := −γij∇i∇j . For, a, b > 0, a ≤ Cb (≥ resp.) for

some∞ > C > 0 is denoted by a . b (a & b resp.). C1b ≤ a ≤ C2b, 0 < C1 < C2 <∞ is denoted by

a ≈ b (this essentially denotes that one is controlled by the other or two entities are bounded by one

another). By a nontrivial element of π1(Σg), we will always mean a non-trivial closed curve since,

there is a one to one correspondence between the homotopy classes of essential (not homotopic to a

point or neighbourhood of a puncture) closed curve and the conjugacy classes of non-trivial elements

in π1(Σg). The group of diffeomorphisms (of Σg) and its identity component are denoted by D and

D0, respectively.

4.3 Background on Teichmüller space

Teichmüller space is studied from an algebraic topologic perspective [201, 202], a complex analytic

perspective [201, 203], and a Riemannian geometric perspective [204]. Here, we will focus mainly

on the latter as the Teichmüller space while viewed from a Riemannian geometric perspective nat-

urally appears as the configuration space of vacuum Einstein gravity (with or without a positive

cosmological constant) on Σg × R. Nevertheless, we will state the algebraic topologic definition of

Teichmüller space and show how this is connected to Einstein gravity. The Teichmüller space of Σg

is defined as the space of homomorphisms (more accurately the discrete and faithful representations)

of the fundamental group of Σg into the isometry group of its universal cover that is the hyperbolic

plane modulo the action of the isometry group by conjugation. If the Poincaŕe disk model of the
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hyperbolic plane is assumed, then the Teichmüller space is defined to be

T Σg := ρ(π1(Σg), PSL2R)/PSL2Rconj (4.3)

⊂ Hom(π1(Σg), PSL2R)/PSL2Rconj,

where ρ denotes the space of discrete and faithful representations (sometimes representations abusing

notation). Here note that Hom(π1(Σg), PSL2R)/PSL2Rconj is also called character variety and

T Σg is a connected component of this character variety. Dimension of T Σg may be calculated as

follows. The space of homomorphisms Hom(π1(Σg), PSL2R) is moded out by the PSL2R conjuga-

tion so as to remove the base point of the homotopy (at the level of loops). This definition precisely

identifies the ways to equip Σg with distinct conformal structures (or hyperbolic structures). The

fundamental group π1(Σg) is to be viewed as a discrete and faithful subgroup of PSL2R and as

such is finitely generated (2g generators). The dimension of PSL2R is 3 and action by conjuga-

tion by an element of PSL2R produces equivalence classes (with respect to gauge transformation

in physics terminology). In addition, the generators (Ai, Bi)
g
i=1 satisfy the commutation relation∏g

i=1AiBiA
−1
i B−1

i = id implying the representation ρ ∈ Hom(π1(Σg), PSL2R)/PS2R conj would

satisfy
∏g
i=1 ρ(Ai)ρ(Bi)ρ(Ai)

−1ρ(Bi)
−1 = id as well. Therefore we lose 3 + 3 = 6 degrees of freedom

out of 2g × 3 = 6g and the dimension of the Teichmuller space turns out to be 6g − 6. Let us now

show how this is related to vacuum Einstein dynamics. The vacuum Einstein equations in 2 + 1

dimension reads

Rµν = 0, (4.4)

where (µ, ν) correspond to the spacetime indices. Now, in 2 + 1 dimension, vanishing of the Ricci

tensor (Rµν) implies vanishing of the full Riemann tensor (or the sectional curvature) and therefore,

the solutions of the Einstein equations are necessarily the flat spacetimes and consequently are

locally isometric to the Minkowski spacetime. Now we are interested in flat spacetimes foliated by

Σg. In order to obtain the solution space, we therefore need to identify the space of homomorphisms

(once again space of discrete and faithful representations to be precise) of π1(Σg × R) into the

isometry group of the flat spacetimes, which in this case is the full Poincare group ISO(2, 1). Now

π1(Σg ×R) ≈ π1(Σg) and therefore the solution space is described as

EinS = ρ(π1(Σg), ISO(2, 1))/ISO(2, 1)conj, (4.5)
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where EinS is the space of solutions of the equation (4.4). In the similar way, we may compute

the dimension of EinS . Note that now the isometry group ISO(2, 1) has dimension 6 and therefore

following the exact same procedure, we obtain the dimension of EinS to be 12g−12. Therefore, the

full solution space is twice the dimension of the Teichmüller space. One immediate guess would be

that the co-tangent bundle T ∗T Σg of the Teichmüller space acts as the full solution space, which is

precisely the case as shown in [186,198]. T ∗T Σg is indeed the phase space of the reduced dynamics.

We will get back to this point in detail later. Let us first develop the concepts of geodesic currents,

measured laminations and foliations, which will be required to prove the conjecture.

Let us now introduce a few elementary concepts from the theory of Riemann surfaces. From

elementary hyperbolic geometry, we know that there exists a unique geodesic between any two

distinct points lying on the boundary of the Poincaŕe disc (in this model of the hyperbolic 2-space).

Therefore, we define the set of all un-oriented geodesics on Σ̃g (lift of Σg to its universal cover)

as the Z2 graded double boundary of Σ̃ i.e., G(Σ̃g)={The set of all un-oriented geodesics on Σ̃}

≈ (S1
∞ × S1

∞ − ∆)/Z2, where ∆ represents the diagonal. A geodesic current is a radon measure

on G(Σ̃) which is invariant under the π1(Σg) action (see [209, 210] for more details and see [207]

for details about radon measures). The property of a radon measure which would be of particular

interest to us is that it is locally finite. In a sense, a geodesic currents is essentially an assignment

of a radon measure to the open sets of G(Σ̃), which remain invariant under the action of the

fundamental group π1(Σg). This π1(Σg) invariance property of the geodesic currents allows one to

define it on the space of geodesics on Σg i.e., G(Σg) = G(Σ̃g)/π1(Σg) (note that the action of π1(Σg)

extends continuously to ∂Σ̃g). Now, for a closed hyperbolic surface of genus greater than 1, π1(Σg)

while viewed as a proper discrete subgroup of the isometry group of the hyperbolic plane that is

PSL2R, consists of hyperbolic (also called loxodromic) elements only (see [202, 208] for a detailed

classification of the types of isometries of H2). Each element of π1(Σg) has an axis geodesic along

which it acts by translation and in general it has two fixed points: one attracting, one repelling.

Therefore each element of π1(Σg), a homotopy class of nontrivial loops (rectifiable), has a unique

geodesic representative. Whenever we will consider the length of a non-trivial closed curve on Σg

we will always mean the length of the geodesic in its homotopy class. A geodesic lamination is

a closed subset of Σg which is the union of disjoint geodesics. A measured lamination is defined

as a geodesic lamination equipped with a transverse measure (invariant under translations along

the leaves of the lamination). Clearly, the space of measured laminations is a subset of the space

of geodesic currents. A geodesic foliation may be thought of as the union of the geodesics which

are also integral curves of a vector field. Zeros of the vector field correspond to the singularities

151



of the foliation. One may similarly assign a transverse measure to the foliation promoting it to a

measured foliation. There is a natural homeomorphism between the space of measured laminations

and measured foliations (via a straightening map; see Fig [??]). This homeomorphism persists at

the level of corresponding projective spaces. This projective space (projective measured laminations

or foliations) is the Thurston boundary of the Teichmüller space. At this point, it suffices to know

this fact and therefore, we do not dwell on this matter further rather provide a small detail in the

appendix. Interested readers are referred to the same.

4.3.1 Homeomorphism between ML, MF , and QD

Let us first define a holomorphic quadratic differential on a Riemann surface Σg. A holomorphic

quadratic differential is a holomorphic section of the symmetric square of the holomorphic cotangent

bundle of Σg. It may be defined locally as follows. Let {za : Ua → C} be an atlas for Σg. A

holomorphic quadratic differential Φ on Σg is locally expressible on the chart za as Φa(za)dz2
a with

the following properties: [1] Φa : za(Ua)→ C is holomorphic, i.e., ∂Φa
∂z̄a

= 0, and [2] Φa(za)(dzadzb )2 =

Φb(zb) for two different overlapping charts za : Ua → C and zb : Ub → C. The second condition

precisely states the invariance of Φdz2 under coordinate transformations. Let us denote the space

of holomorphic quadratic differentials on Σg by QD. By the famous theorem of Hubbard and

Masur [216], there is a homeomorphism between the space of holomorphic quadratic differential QD

and the space of measured foliations MF on Σg. One may simply associate a vertical or horizontal

foliation with Φ ∈ QD (up to isotopy and Whitehead moves; see [215] for details about Whitehead

moves). For details, the reader is referred to [217]. For now we will only need this homeomorphism

property. Given a holomorphic quadratic differential Φ(z)dz2 in some chart, the transverse measures

of a non-trivial element A of π1(Σg) (except at the zeros of Φ, which correspond to the singularities

of the foliation) with respect to the vertical foliation and the horizontal foliation associated with Φ

are defined as follows

µvert(A) :=

∫
A
|R
(√

Φ(z)dz
)
|, (4.6)

µhor(A) :=

∫
A
|I
(√

Φ(z)dz
)
|, (4.7)

where R and I denote the real and imaginary parts, respectively. We will use these definitions later

while considering the Einstein flow on Σg exclusively. Given a measured foliation, one may obtain

a measured lamination via a suitable straightening map [214,218] (or collapsing a lamination yields

a foliation). Therefore, there is a homeomorphism between MF and ML. Figure (??) depicts
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the mechanism of yielding a lamination from a foliation. For our purposes, we will only use the

homeomorphism between QD and MF . All of these spaces remain homeomorphic to each other at

the level of projective spaces.

4.3.2 Harmonic Maps

Let us now introduce another essential ingredient of our analysis: the harmonic maps. These will

be crucial later in studying the Einsteinian dynamics. Let us consider a map E : (M, g) → (N, ρ)

(where M and N are considered to be two closed Riemann surfaces) and define the Dirichlet energy

E[E ; g, ρ] =
1

2

∫
M

ραβ
∂Eα

∂xi
∂Eβ

∂xj
gijµg. (4.8)

From the expression of the Dirichlet energy, it is obvious that it only depends on the conformal

structure of the domain, that is, a conformal transformation gij 7→ e2δgij , δ : M → R leaves E

invariant. Harmonic maps are defined to be the critical points of this Dirichlet energy functional in

the space of E . The critical points of E may be computed as follows. On the bundle T ∗M ⊗E−1
∗ TN

(while restricted to the image), one has the following connection

∇iAαj := ∂iA
α
j +N ΓαβγA

β
j

∂ξγ

∂xi
−M ΓkijA

β
k , (4.9)

for A ∈ {sections(T ∗M⊗E−1
∗ TN)}. Using this definition of the connection, a few lines of calculation

yields the harmonicity condition

gij∂i∂jξ
α − gij MΓkij∂kξ

α +N Γαβγ∂iξ
β∂jξ

γgij = 0. (4.10)

From [219, 220], we know that there is a harmonic map homotopic to the identity i.e., E ∈ D0 and

in fact such a map is an orientation preserving diffeomorphism. If we take E to be the identity map,

then the harmonicity condition reduces to the following

−gij
(
Γ[g]αij − Γ[ρ]αij

)
= 0. (4.11)

This condition will be of extreme importance when we fix the spatial gauge of the Einstein equations

and also in the later part of the analysis. The Dirichlet energy of this identity map is computed to
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be

E[id; g, ρ] =
1

2

∫
Σg

ρijg
ijµg. (4.12)

Note that the conformal and diffeomorphism invariance of E[id; g, ρ] allow it to be a function on

the Teichmüller space of Σg and in particular a proper function (that is the inverse images of the

compact sets are compact) [204,215,220,221].

4.4 Einstein flow on Σg × R

We will use the ADM formalism of general relativity in order to obtain a Cauchy problem for ‘2 + 1’

gravity. The ADM formalism of ‘2+1’ gravity splits the spacetime described by a ‘2+1’ dimensional

Lorentzian manifold M̃ into R × Σg with each level set {t} × Σg of the time function t being an

orientable 2-manifold diffeomorphic to a Cauchy hypersurface (assuming the spacetime admits a

Cauchy hypersurface) and equipped with a Riemannian metric. Such a split may be executed by

introducing a lapse function N and shift vector field X belonging to suitable function spaces and

defined such that

∂t = Nn̂+X (4.13)

with t and n̂ being time and a hypersurface orthogonal future directed timelike unit vector i.e.,

g̃(n̂, n̂) = −1, respectively. The above splitting writes the spacetime metric g̃ in local coordinates

{xα}2α=0 = {t, x1, x2} as

g̃ = −N2dt⊗ dt+ gij(dx
i +Xidt)⊗ (dxj +Xjdt) (4.14)

where gijdx
i ⊗ dxj is the induced Riemannian metric on Σg. In order to describe the embedding

of the Cauchy hypersurface Σg into the spacetime M̃ , one needs the information about how the

hypersurface is curved in the ambient spacetime. Thus, one needs the second fundamental form k

defined as

Kij = − 1
2N (∂tgij − (LXg)ij), (4.15)
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the trace of which (trgK = τ = gijKij , g
ij ∂
∂xi ⊗

∂
∂xj := g−1) is the mean extrinsic curvature of Σg

in M̃ and L denotes the Lie derivative operator. The vacuum Einstein equations

Rµν(g̃)− 1

2
R(g̃)g̃µν = 0 (4.16)

may now be expressed as the evolution and constraint (Gauss and Codazzi equations) equations of

g and k

∂tgij = −2NKij + (LXg)ij , (4.17)

∂tKij = −∇i∇jN +N(Rij + τKij − 2kki kjk) + (LXk)ij , (4.18)

0 = R(g)− |K|2 + (trgK)2,

0 = ∇iKij −∇jtrgK. (4.19)

Note that there is no canonical way way to split the spacetimes, that is, the choice of a spacelike

hypersurface is not unique. In order to choose a slice and study its evolution under the Einstein

flow, we must fix the gauge. In our case, the most convenient choice is the constant mean extrinsic

curvature spatial harmonic gauge used by [222]. In this gauge, τ = trgK is constant throughout the

hypersurface (∂iτ = 0) and therefore is chosen to play the role of time

t = monotonic function of τ. (4.20)

Spatial harmonic gauge is precisely the vanishing of the tension vector field −gij
(
Γ[g]kij − Γ[ĝ]kij

)
,

where ĝ is an arbitrary background metric or in other words, the harmonicity of the identity map

defined in the previous section. This choice of gauge yields the following two elliptic equations for

the lapse function and the shift vector field, respectively

∆gN +N(|KTT |2g +
τ2

2
) = ∂tτ, (4.21)

∆gX
i −RijXj = (∇iN)τ − 2∇jNKi

j + (2NKjk − 2∇jXk) (4.22)

(Γ[g]ijk − Γ̂[ĝ]ijk).

This Cauchy problem (with initial data (g0, k0)) with constant mean extrinsic curvature and spatially

harmonic gauge is referred to as ?CMCSH Cauchy? problem.

155



4.4.1 Well-posedness:

[222] proved a local well posedness theorem for the Cauchy problem for a family of elliptic- hyperbolic

systems that included the ‘n+ 1’ dimensional vacuum Einstein equations in CMCSH gauge, n ≥ 2.

They also proved the conservation of gauges and constraints. In addition to the local well-posedness,

[197] proved a global existence theorem for the expanding solutions in the same gauge through

controlling the Dirichlet energy of an associated harmonic map for any τ ∈ (−∞, 0). Therefore, the

well-posedness of the Cauchy problem is established and we do not wish to repeat the same here.

Interested readers are referred to these articles.

4.4.2 Reduced Dynamics

Given a scalar function ϕ : Σg → R, we define a set of conformal variables (γ, kTT ) (kTT is transverse-

traceless with respect to the metric γ) in terms of the physical variables (g, kTT ) by setting

(gij ,K
TTij) = (e2ϕγij , e

−4ϕkTTij), (4.23)

where R(γ) = −1 (the Uniformization theorem guarantees that such γ exists if genus(Σg) > 1)) and

the second fundamental form is written as follows

K = KTT +
τ

2
g, (4.24)

by using the momentum constraint with KTT being transverse-traceless with respect to g. Here

kTT is transeverse-traceless with respect to γ, that is,

∇[γ]jk
TTij = 0, (4.25)

γijk
TTij = 0, (4.26)

if and only if KTT is transverse-traceless with respect to g. Naturally

kTTij = KTT
ij , (4.27)

kTTij = γikγjlkTTkl . (4.28)
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ϕ can be found by solving the Hamiltonian constraint which now takes the form of the following

semilinear elliptic PDE namely the Lichnerowicz equation

−2∆γϕ+ 1 + e−2ϕ|kTT |2γ −
e2ϕτ2

2
= 0. (4.29)

Using the sub and super solution technique [223,224], it is established that there is a unique solution

ϕ[γ, kTT , τ ] of the Lichnerowicz equation. Indeed, this equation will be crucial to our analysis

towards proving the main theorem. The phase space of the reduced dynamics now may be defined

as {(γij , kTTij)|γ ∈M−1, trγk
TT = 0 = ∇[γ]jk

TTij}. In reality, the true dynamics assumes a metric

lying in the orbit spaceM−1/D0, D0 being the group of diffeomorphisms (of Σg) isotopic to identity.

This is a consequence of the fact that if γij ∈M−1, k
TTij , ϕ,N , and Xi solve the Einstein equations,

so do ((φ−1)∗γ)ij , (φ∗k
TT )ij , (φ−1)∗ϕ = ϕ ◦ φ−1, (φ−1)∗N = N ◦ φ−1, and (φ∗X)i, where φ ∈ D0

and ∗, and ∗ denote the pullback and push-forward operations (time independent) on the cotangent

and tangent bundles of M , respectively. Let us now consider a time dependent φt ∈ D0 and go

back to the un-scaled dynamical equation (4.17) (note that the un-scaled fields (g,K,N,X)) solve

the Einstein’s dynamical and constraint equations (4.17-4.19) iff (γ, k, ϕ,N,X) solve the reduced

equations)

∂t((φ
−1
t )∗g)ij = −2(φ−1

t )∗)(NKij) + (Lφt∗X(φ−1
t )∗g)ij , (4.30)

(φ−1
t )∗∂tgij + (∂t(φ

−1
t )∗)gij = −2(φ−1

t )∗(NKij) +
∂

∂s
((φ−1

t ϕXs φt)
∗(φ−1

t )∗g)|s=0,

(φ−1
t )∗∂tgij + (∂s(φ

−1
t+s)

∗)gij |s=0 = −2(φ−1
t )∗(NKij) + (φ−1

t )∗(LXg)ij ,

(φ−1
t )∗∂tgij + (φ−1

t )∗(LY g)ij = −2(φ−1
t )∗(NKij) + (φ−1

t )∗(LXg)ij ,

(φ−1
t )∗ {∂tgij = −2NKij + (LX−Y g)ij} .

Here Y is the vector field associated with the flow φt and ϕXs is the flow of the shift vector field X.

A similar calculation for the evolution equation for the second fundamental form shows that if we

make a trasformation X 7→ X+Y , the Einstein evolution and constraint (due to their natural spatial

covariance nature) equations are satisfied by the transformed fields. Action of φt on the un-scaled

fields naturally extends to the conformally scaled fields. Therefore, the true reduced dynamics

occurs on the quotient space M−1/D0. Now, M−1/D0 is precisely the Teichmüller space of Σg

and following [204], the transverse-traceless tensor kTT models the tangent space at γ. Therefore,

we obtain the Teichmüller space (6g − 6 dimensional) T Σg as the configuration space, while the

cotangent bundle (12g− 12 dimensional) of T Σg serves as the phase space of the reduced dynamics.
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This is precisely what was stated previously in section 2 while relating the full solution space of the

vacuum Einstein equations and the Teichmüller space through its algebraic topologic definition.

Now we will obtain a series of estimates which will be useful for the later analysis. The following

lemma provides a point-wise estimate for the conformal factor e2ϕ.

Lemma 1: Let ϕ : Σg → R solves the Lichnerowicz equation (4.29). Then e2ϕ := e2ϕ(τ,kTT ,γ)

verifies the following point-wise estimate

2

τ2
≤ e2ϕ ≤

1 +
√

1 + 2τ2 supΣg |kTT |2γ(τ)

τ2
∀ τ ∈ (−∞, 0). (4.31)

Proof: A standard maximum principle argument while applied to the Lichnerowicz equation (4.29),

yields the following

τ2e4ϕ − 2e2ϕ − 2 sup
Σg

|kTT |2γ(τ) ≤ 0. (4.32)

Noting that the discriminant of the quadratic form τ2e4ϕ−2e2ϕ−2 supΣg |k
TT |2γ(τ), 4+8τ2 supΣg |k

TT |2γ(τ),

is strictly positive, the inequality is satisfied only for a specific range of e2ϕ i.e.,

e2ϕ −
1 +

√
1 + 2τ2 supΣg |kTT |2γ(τ)

τ2

 (4.33)

e2ϕ −
1−

√
1 + 2τ2 supΣg |kTT |2γ(τ)

τ2

 ≤ 0.

But, e2ϕ > 0 and therefore, we must have

e2ϕ ≤
1 +

√
1 + 2τ2 supΣg |kTT |2γ(τ)

τ2
. (4.34)

Similarly, at a minimum, the following holds

τ2e4ϕ − 2e2ϕ ≥ 0, (4.35)

that is,

e2ϕ ≥ 2

τ2
, (4.36)
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where the equality holds if and only if

kTT ≡ 0. (4.37)

In summary, we have the following estimate of the conformal factor from the Lichnerowicz equation

2

τ2
≤ e2ϕ ≤

1 +
√

1 + 2τ2 supΣg |kTT |2γ(τ)

τ2
, (4.38)

which will be useful later. This concludes the proof of the lemma. �

Now we will obtain an estimate for |KTT |2g = e−4ϕ|kTT |2γ . In order to do so, we first obtain an

elliptic equation for |KTT |2g. The following lemma provides the necessary elliptic equation |KTT |2g.

Lemma 2: Let K := KTT + 1
2 g
Kg solves the momentum constraint (4.19) in CMC gauge

∂iτ := ∂igK = 0, then |KTT |2g satisfies the following quasi-linear elliptic equation on a constant

time hypersurface

−∆g(|KTT |2g)− 2|KTT |2g(|KTT |2g −
1

2
τ2) = 2∇[g]k(KTT

ij )∇[g]k(KTTij). (4.39)

Proof: Note that in 2 dimensions, the momentum constraint

∇[g]jK
j
i −∇itrgK = 0 (4.40)

implies that K is a Codazzi tensor [197,198] i.e.,

∇[g]jK
i
k −∇[g]kK

i
j = 0. (4.41)

After substituting the decomposition K = KTT + gK
2 g in the Codazzi equation, Covariant divergence

yields

∇[g]j∇[g]jK
TTi
k −∇[g]j∇[g]kK

TTi
j = 0, (4.42)

∇[g]j∇[g]jK
TTi
k −∇[g]k∇[g]jK

TTij −R[g]i mjkK
TTmj −R[g]j mjkK

TTim = 0,

which upon utilizing ∇[g]jK
TTij = 0 and R[g]i mjk = R(g)

2 (δijgmk − δikgmj) reduces to

∇[g]j∇[g]jK
TTi
k = R(g)KTTi

k . (4.43)
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∆g(|KTT |2g) may be evaluated as follows

∆g(|KTT |2g) = −∇[g]j∇[g]j |KTT |2g = −∇[g]j∇[g]j(K
TTi
k KTTk

i ) (4.44)

= −2(∇[g]j∇[g]jK
TTi
k )KTTk

i − 2∇[g]jKTTi
k ∇[g]jK

TTk
i ,

= −2R(g)|KTT |2g − 2∇[g]jKTTi
k ∇[g]jK

TTk
i ,

= −2(|KTT |2g −
τ2

2
)|KTT |2g − 2∇[g]jKTTi

k ∇[g]jK
TTk
i ,

i.e.,

−∆g(|KTT |2g)− 2|KTT |2g(|KTT |2g −
1

2
τ2) = 2∇[g]k(KTT

ij )∇[g]k(KTTij). (4.45)

Here, we have used the Hamiltonian constraint (4.19) |KTT |2g = R(g)+ τ2

2 . This concludes the proof

of the lemma. �

Remarkably, the quasi-linear term appearing in the right hand side of the elliptic equation (4.38)

has a favourable sign that is conducive to an application of a standard maximum principle.

Lemma 3: |KTT |2g satisfies the estimate

|KTT |2g ≤
τ2

2
(4.46)

for all τ ∈ (−∞, 0).

Proof: The quasi-linear term satisfies ∇[g]k(KTT
ij )∇[g]k(KTTij) ≥ 0. Application of a standard

maximum principle argument yields

|KTT |2g ≤
τ2

2
. � (4.47)

Lastly, we will obtain an estimate for the lapse function after choosing the following time coor-

dinate

t := −1

τ
. (4.48)

The allowed time range in this coordinate is (0,∞). The lapse equation (4.21) now reads

∆gN +N(|KTT |2g +
τ2

2
) = τ2. (4.49)

160



Once again, a standard maximum principle argument applied to the lapse equation together with

the estimate (4.47) yields the following estimate of N

1 ≤ N ≤ 2. (4.50)

Now we will describe Moncrief’s ray structure [198] of the Teichmüller space, which will be of

crucial in obtaining the main result. The ray structure defined by Moncrief is the following equation

ρij = |K|2ggij + 2τ(Kij −
1

2
τgij) (4.51)

= (|KTT |2g +
τ2

2
)gij + 2τKTT

ij

= (e−4ϕ|kTT |2γ +
τ2

2
)e2ϕγij + 2τkTTij

together with an associated Hamilton-Jacobi equation. Here ρ is a fixed metric satisfying R(ρ) = −1

(and therefore lies inside the Teichmüller space) and gij is solved in terms of ρij . This computes

the end point of a ray in terms of the data along the ray. For the detailed derivation of this

expression, one may consult the relevant section of [198]. This is designated in [198] as the ‘Gauss’

map equation. For our purpose, the derivation of this map is tangential and hence, we do not wish

to repeat the same here. The vital question is whether such (gij ,K
TTij , N,X) actually solves the

Einstein equations for all τ given an initial (gij0,K
TTij
0 , N0, X0) satisfying the constraint equations.

This is equivalent to solving for conformal variables (γij , k
TTij , ϕ) and associated lapse function N

and shift vector field X. This is exactly shown in [198] through studying the associated Hamilton

Jacobi equation for the reduced dynamics. When this lagrangian formulation is cast into a more

natural Hamiltonian one, one clearly sees that the original Einstein-Hilbert action may be written

as follows

S =

∫
I⊂R

∫
Σg

(
µg(−Kij + τgij)

∂gij
∂t
−NH−XiPi

)
d2xdt, (4.52)

whereH := µgK
TT
ij KTTij− 1

2τ
2µg−µgR(g), and Pi := 2∇[g]j(µgK

j
i −τµgδ

j
i ). Note that vanishing of

H and Pi is precisely equivalent to (gij ,K
ij) satisfying the Hamiltonian and momentum constraints.

When both of these constraints are satisfied we obtain the reduced action

Sreduced =

∫
I⊂R

∫
Σg

µg(−Kij + τgij)
∂gij
∂t

d2xdt, (4.53)
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which through the conformal transformation (4.23) becomes

Sreduced =

∫
I⊂R

(∫
Σg

(−µγkTTij
∂γij
∂t
− ∂τ

∂t
µg)d

2x

)
dt, (4.54)

where the boundary in time terms are ignored, because, they do not contribute to the equations of

motions at the classical level. The Hamiltonian of this reduced dynamics can be read off as follows

from the expression of the previous action

Hreduced =

∫
Σg

∂τ

∂t
µg. (4.55)

Substituting the time coordinate from equation (4.48) into the expression of the reduced Hamiltonian

together with the Hamiltonian constraint yields

Hreduced = 2

∫
Σg

|KTT |2g − 8πχ, (4.56)

where χ = 2(1−g) < 0 is the Euler characteristics of Σg. This reduced Hamiltonian can be related to

the Dirichlet energy of the Gauss map. The Dirichlet energy (conformally invariant on the domain)

associated to the Gauss map (4.51) is given as

E[id; g, ρ] =
1

2

∫
Σ

µgg
ijρij =

1

2

∫
Σ

µγγ
ijρij = E[id; γ, ρ] (4.57)

= 2

∫
Σ

|KTT |2gµg − 4πχ.

Therefore, we have the following relation between the Dirichlet energy of the Gauss map and the

reduced Hamiltonian of the dynamics

Hreduced = E[id; γ, ρ]− 4πχ. (4.58)

Let us consider that the Teichmüller space T Σg is parametrized by {qα}6g−6
alpha=1, which may be of the

Fenchel-Neilsen type (see [202] for details about Fenchel-Neilsen parametrization). Now we observe

the following

∂E[id; γ(q), ρ]

∂qα
=

1

4

∫
Σg

µγ
(
γmnγijρij − 2γimγjnρij

) ∂γmn
∂qα

, (4.59)
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which after substituting ρij = (|KTT |2g + τ2

2 )gij + 2τKTT
ij = (e−4ϕ|kTT |2γ + τ2

2 )e2ϕγij + 2τkTTij yields

∂E[id; γ(q), ρ]

∂qα
= −τ

∫
Σg

µγk
TTij ∂γ

mn

∂qα
. (4.60)

Now let us go back to equation (4.54) and substitute γ = γ(q). We immediately obtain

Sreduced =

∫
I⊂R

(
(

∫
Σg

−µγkTTij
∂γij
∂qα

)q̇α −Hreduced(γ(q), p, ρ)

)
dt (4.61)

=

∫
I⊂R

(pαq̇α −Hreduced(γ(q), p, ρ)) dt,

which upon utilizing equations (4.58) and (4.60) leads to

∂Hreduced(γ(q), p, ρ)

∂qα
= τpα. (4.62)

Here {(qα, pα)}6g−6
α=1 parametrizes the phase space i.e., the co-tangent bundle of T Σg. Now using the

time defined in (4.48), we may construct a principle functional after substituting T = − 1
τ

S(q, γ(q), ρ) = −T (E[id; γ(q), ρ]− 4πχ) (4.63)

which then clearly satisfies

pα =
∂S
∂qα

, (4.64)

−∂S
∂T

= E[id; γ(q), ρ]− 4πχ = Hreduced(q, p, γ(q)), (4.65)

that is, S satisfies the Hamilton-Jacobi equation

−∂S
∂T

= Hreduced(q, p, γ(q)) (4.66)

for all T ∈ (0,∞). In other words S is dynamically complete. For detailed analysis (arguments

underlying dynamical completeness of S), the reader is referred to the relevant sections of [198].

Here we only require the fact that through the solution of this Hamilton-Jacobi equation, the Gauss

map equation defined in (4.51) solves the Einstein equation for all T ∈ (0,∞) or equivalently for all

τ ∈ (−∞, 0) and defines a ray-structure based at ρ of the Teichmüller space parametrized by the

transverse-traceless conformally invariant 2-tensor kTTij . The conformal metric γij = e−2ϕgij ∈ T Σg

indeed approaches to ρij in the limit τ → 0−. Therefore, if we run the Einstein flow in the reverse
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direction, then the expression of γij in terms of ρij and kTTij obtained from the Gauss map equation

defines a ray-structure of the Teichmüller space parametrized by kTTij i.e., for a fixed ρ, two different

kTTij correspond to two different rays. An implicit solution [198] of the Gauss map equation (4.51)

gives

γij = e2ϕgij = e2ϕ

2τ3

µρ

ρikµγγ
jlkTTkl

1 +

√
1 +

2τ2µ2
γ |kTT |2γ
µ2
ρ

+ τ2

√
1 +

2τ2µ2
γ |kTT |2γ
µ2
ρ

1 +

√
1 +

2τ2µ2
γ |kTT |2γ
µ2
ρ

ρij

 .

Using this equation (which is effectively the same as the Gauss map equation), [198] constructed a

fully non-linear elliptic equation of Monge-Ampere type and showed that a unique solution of such

equation exists. Recently [226] showed using a direct analytic technique that such a unique solution

exists for all τ ∈ (−∞, 0). Essentially, these analyses are in a sense complementary to the Hamilton-

Jacobi theory and provide a more explicit description of the ray structure of the Teichmüller space.

Analyzing the associated Monge-Ampere equation, [198] explicitly showed that every non-trivial

solution curve of the reduced dynamics in the configuration space (T Σg) approaches a point (ρ)

lying in the interior of the Teichmüller space, that is,

lim
τ→0−

γij = ρij . (4.67)

Note that the choice of ρ is arbitrary as long as it does not leave the compact sets of T Σg, and

therefore, one may vary ρ over T Σg to obtain the full ray-structure of the Teichmüller space. We do

not provide the complete calculations regarding the τ → 0− behavior of the solution curve as it is

derived and described in detail by Moncrief in [198]. Readers are referred to the relevant sections of

the same. We only need the information that the Gauss map equation together with the Hamilton-

Jacobi equation indeed describes ray structures of the Teichmüller space and every such ray solves

the reduced Einstein equation. Forward time asymptotics of each such ray corresponds to an interior

point which also realizes the infimum of the Dirichlet energy (and the reduced Hamiltonian). Each

member of a family of rays which asymptotically approach the point ρ ∈ T Σg corresponds to a

unique choice of kTT and none of the two rays of a same family intersect each other (except at ρ,

where they approach as τ → 0−).

The forward in time limit of the solution curves is well studied in [198]. Therefore, without

repeating the same here, we will proceed to study the other limit, that is, the τ → −∞ limit which

corresponds to the big bang singularity. In this limit the solution curve leaves every compact set of
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the Teichmüller space, a conclusion which may be obtained through studying the time evolution of

the Dirichlet energy (a proper function on T Σg) of the Gauss map. The time is chosen to be t = − 1
τ

(4.48). From equation (4.57), the time derivative of the |KTT |2g reads

d

dt

∫
Σ

|KTT |2gµg =
d

dt

∫
Σ

(
τ2

2
+R(g))µg, (4.68)

= τ2 d

dτ

∫
Σ

(
τ2

2
+R(g))µg, (4.69)

= τ3

∫
Σ

µg +
τ2

2

∫
Σ

µg(−2Nτ), (4.70)

= τ

∫
Σ

N |KTT |2gµg,

= −1

t

∫
Σ

N |KTT |2gµg,

where, we have used the lapse equation ∆gN + N(|KTT |2g + τ2

2 ) = τ2, the Hamiltonian constraint

|KTT |2g = τ2

2 +R(g), and the evolution equation
∂gij
∂t = −2NKij + (LXg)ij . Utilizing the estimate

of the lapse function (4.50), we immediately obtain

−2

t

∫
Σ

|KTT |2gµg ≤
d

dt

∫
Σ

|KTT |2gµg ≤ −
1

t

∫
Σ

|KTT |2gµg, (4.71)

integration of which yields at the t→ 0 limit

const.

t
≤
∫

Σ

|KTT |2gµg ≤
const.

t2
. (4.72)

Using the expression of the Dirichlet energy E[id; γ, ρ] from equation (4.57), the following estimate

is obtained in the limit τ → −∞ i.e., t→ 0

2C2

t
− 4πχ ≤ Eγ ≤

2C3

t2
− 4πχ, (4.73)

which clearly implies that the Dirichlet energy blows up at the limit of the big bang singularity

i.e., in the limit t → 0 or equivalently τ → −∞ unless
∫

Σg
|KTT |2g ≡ 0, 0 < C2, C3 < ∞. An

immediate interpretation of such limiting behavior would be that the corresponding Einstein solution

curve leaves every compact set in the Teichmüller space (configuration space). This is precisely

a consequence of the fact that the Dirichlet energy is a proper function on the Teichmüller space

(see [204] for the detailed proof of the properness of the Dirichlet energy). Therefore, every non-trivial

solution curve leaves the Teichmüller space at the limit of the big-bang. However, we do not know
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where they converge in the space of projective currents. Note that the space of projective currents

is compact and therefore every sequence has a convergent subsequence (since for a metric space,

compactness and sequential compactness are equivalent). However, in our context, convergence is a

bit more subtle since we are necessarily dealing with curves. We have to extract a sequence {lτi}∞i=1

and show that it converges in the space of projective currents in the limit i→∞ (limi→∞ τi = −∞)

and that the limit does not depend on the choice of the sequence. We want to identify this limit set

in the space of projective currents. In fact we would like to show in the following sections that every

non-trivial solution curve indeed attaches to the Thruston boundary of the Teichmüller space. In

addition to the backward in time asymptotic behavior of the Dirichlet energy, we also observe the

monotonic decay of the same in the time forward direction

d

dt
E[id; γ, ρ] = 2

d

dt

∫
Σ

|KTT |2gµg, (4.74)

= 2τ

∫
Σ

N |KTT |2gµg < 0.

d
dtE[id; γ, ρ] ≡ 0 if and only if KTT ≡ 0 (or kTT ≡ 0) and d

dtE[id; γ, ρ] → 0 at the limit τ → 0.

The solutions corresponding to kTT ≡ 0 are nothing but the fixed points of the reduced Einstein

evolution equations (i.e., the trivial solutions). Substituting kTT = 0 into the Lichnerowicz equation

(4.29) yields

−2∆γϕ+ 1− e2ϕτ2

2
= 0, (4.75)

which has a unique solution

e2ϕ =
2

τ2
. (4.76)

The reduced evoluion equation reads

∂γij
∂t

= e−2ϕ
(
−(∂te

2ϕγij − 2NkTTij − e2ϕNτγij + (LXe
2ϕγ)ij

)
, (4.77)

which, upon substituting e2ϕ = 2
τ2 , kTT = 0 and utilizing the lapse equation, shift equation, and

Hamiltonian constraint yields

∂γij
∂t

= 0. (4.78)
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A few lines of simple calculation yields ∂tk
TT
ij = 0 as well. These fixed points characterized by

(γij , k
TT
ij = 0, N = 2, Xi = 0), R(γ) = −1, are indeed fixed points for arbitrary large data (even

though the Dirichlet energy controls the (H1 ×L2) norm of the data (γ, kTT ), finite dimensionality

of the phase space implies that control on this norm is sufficient). This is precisely a consequence

of the monotonic decay of the Dirichlet energy and dtE[id; γ, ρ] ≡ 0 precisely at these fixed points

(the Dirichlet energy acts as a Lyapunov function). Every solution curve approaches one of this

fixed points in forward infinite time t. This point even though it is described in detail in [197,198],

is extremely important and will be of use in obtaining the main result. Summarizing this section

together with the results of [198], we have the following theorem

Theorem 1: Let Σg be a closed (compact without boundary) Riemann surface of genus g > 1. The

data (γ, kTT , τ,N,X) defined through the Gauss map equation (4.51) and elliptic equations (4.21-

4.22) solve the Einstein Einstein dynamical equations iff they also solve the constraints and the

associated Hamilton-Jacobi equation (4.66) is satisfied. Such a solution asymptotically approaches

the fixed point solution (R(γ) = −1, kTT = 0, N = 2, Xi = 0) of the dynamical equations in the

limit τ → 0 and every such non-trivial solution curve runs off the edge of the configuration space

(Teichmüller space) in the limit of the big-bang singularity (τ → −∞).

Now we enter into the final phase where we utilize available results stated in the previous sections

and obtain the main result.

4.5 Asymptotic behavior of the solution curve at big-bang and Thurston boundary

In the previous section, we have established that every non-trivial solution curve runs off the edge

of the Teichmüller space. However, we do not apriori know whether they actually attach to the

Thurston boundary. However, when realizing the Teichmüller space as a subset of the space of

projective currents (which is compact), if we extract a sequence from the solution curve, this must

converge somewhere at the limit τ → −∞ (after passing to a subsequence and the limit should not

depend on the choice of the sequence). Here, we will show that this limit set will be characterized by∫
Σg

√
|kTT |2γµγ = C, C <∞ is an uniform constant. Let us designate this boundary as the ‘Einstein

boundary’ of the Teichmüller space and denote it by Eing. Our goal in this section is to show that

this boundary is indeed equivalent to the Thurston boundary that is ¯T Σg
Th

= T Σg ∪ ∂T ΣThg ≈

T Σg∪Eing. Note that Michael Wolf [215] obtained a compactification of Teichmüller space through

the use of holomorphic quadratic differentials and he proved that his compactification is indeed

equivalent to the Thurston compactification. In our case, we are automatically equipped with
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a holomorphic quadratic differential kTT (the transverse-traceless tensor). However, importantly,

Wolf’s analysis is quite different from ours (and complementary in nature) in a sense that the

Einsteinian dynamics occurs in the domain of the associated harmonic map while Wolf’s dynamics

materializes in the target space.

Now we will show the boundedness of |kTT |2γ in the limit τ → −∞.

Lemma 4: Let (kTT , γ) solve the reduced Einstein equations after imposing the constraints and

gauge conditions. Then the following estimates hold for |kTT |2γ at the limit τ → −∞

0 < lim
t→0

∫
Σ

√
|kTT |2γµγ ≤ C <∞. (4.79)

Proof: Note that the following entity is conformally invariant

P =

∫
Σg

√
|KTT |2gµg =

∫
Σg

√
|kTT |2γµγ . (4.80)

Applying the Cauchy-Swartz inequality, Hamiltonian constraint |KTT |2g = τ2

2 + R(g), and time

defined in (4.48), we immediately obtain

(∫
Σg

√
|kTT |2γµγ

)2

=

(∫
Σg

√
|KTT |2gµg

)2

(∫
Σg

√
|kTT |2γµγ

)2

≤

(∫
Σg

|KTT |2gµg

)(∫
Σg

µg

)

=

(∫
Σg

(
τ2

2
+R(g))µg

)(∫
Σg

µg

)

=
τ2

2

(∫
Σg

µg

)2

+ 4πχ

∫
Σg

µg ≤
1

2t2
V (g)2,

where we have the used Gauss-Bonet theorem
∫

Σg
R(g)µg = 4πχ, where χ = 2(1 − g) < 0 is the

Euler characteristic. On the other hand, we know that the volume V (g) of (Σg, g) approaches zero

at the big-bang. However, we will study the evolution of V (g) and obtain a more precise estimate in

terms of |τ |. Time differentiating V (g) =
∫

Σg
µg (here ‘g’ in Σg denotes genus while g in µg denotes

the volume form associated to metric g) yields

dV (g)

dt
=

1

2

∫
Σg

gij∂tgijµg, (4.81)
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which together with the evolution equation ∂tgij = −2N(KTT
ij + τ

2 gij) + (LXg)ij yields

dV (g)

dt
=

∫
Σg

(−Nτ +∇[g]iX
i)µg = −τ

∫
Σg

Nµg, (4.82)

where the total covariant divergence term is dropped following Stokes’ theorem. Utilizing the es-

timate of the lapse function 1 ≤ N ≤ 2 (4.50) and t = − 1
τ (4.48), we immediately achieve the

following bound for the time derivative of the volume V (g)

1

t
V (g) ≤ dV (g)

dt
≤ 2

t
V (g), (4.83)

integration of which yields the following at the limit τ → −∞ or t→ 0

constant1 · t2 ≤ V (g(t)) ≤ constant2 · t (4.84)

Therefore, by using the inequality 0 <
(∫

Σg

√
|kTT |2γµg

)2

≤ 1
2t2 (V (g))2, we obtain

0 < lim
t→0

∫
Σ

√
|kTT |2γµγ ≤ C <∞, (4.85)

for a uniform constant C (uniform over the conformal structure). Since, kTT ≡ 0 implies convergence

to a point lying in the interior of T Σg, the left inequality in (4.85) is strict (by the blow up of Dirichlet

energy). This concludes the proof of the lemma. �

More importantly, supΣg

√
|kTT |2γ(τ) appears explicitly in a later part where we analyze the

Gauss-map equation. In that particular analysis, we require a point-wise control of
√
|kTT |2γ . Notice

that this is the L∞ norm of the holomorphic quadratic differential φτ := (kTT11 − ikTT12 )dz2 with

respect to the metric γ. The obvious problem is that φτ may have singularities on measure zero

sets. Remarkably, an integrable holomorphic quadratic differential enjoys the property of possessing

at most simple poles at punctures of Σg. Now, even though Σg in question does not have punctures, it

forms δ−thin regions in the limit of τ → −∞. This is precisely the consequence of the blow up of the

Dirichlet energy. If we parameterize the Teichmüller space in the space of projective currents by the

lengths of 9g−9 nontrivial elements of π1(Σg) (9g−9 theorem), then the properness of the Dirichlet

energy yields geodesics with large hyperbolic length. As a consequence of the Collar lemma [204], a

geodesic transverse to such a long geodesic shrinks (again relative to hyperbolic length) leading to

development of a δ−thin region. We will shortly show via the thick-thin decomposition of Σg that

an integrable holomorphic quadratic differential is bounded (in the sense of L∞ norm with respect
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to the metric γ) even if Σg develops “bad” parts. Let us first define the norms we are interested in.

The L1 norm and the L∞ norm (with respect to γ := e2η(dx ⊗ dx + dy ⊗ dy)) or Ber’s supremum

norm of φτ are defined as follows

||φτ ||L1(Σg) := 1√
2

∫
Σg

|φτ | =
∫

Σg

√
|kTT |2γµγ , (4.86)

||φτ ||L∞(Σg) := sup
Σg

√
|kTT |2γ (4.87)

:= sup
Σg

√
γikγjlkTTij kTTkl

= sup
Σg

√
e−4ηδikδjlkTTij kTTkl

=
√

2 sup
Σg

e−2η
√

(kTT11 )2 + (kTT12 )2.

Here, we have used the symmetry and traceless property of kTT i.e., kTT12 = kTT21 , and kTT11 +kTT22 = 0.

These norms are the natural ones defined for sections of vector bundles defined on Σg. Both norms

make the space of holomorphic quadratic differentials on Σg to be a Banach space. Since, the

dimension (real) of this space is 6g−6 (therefore, finite), the L1 norm is equivalent to Ber’s supremum

norm. However, let us explicitly establish the equivalence between L1 and L∞ in the case when Σg

contains “bad” parts by invoking the thick-thin decomposition of Σg.

Let Σg be a hyperbolic Riemann surface. We will think of π1(Σg) as the set of the non-trivial

loops up to homotopy. For δ > 0, the thin and thick parts of Σg are defined as follows

Σg(0,δ] := {x ∈ Σg : ∃ < α >∈ π1(Σg)| lγ(α) ≤ δ} (4.88)

Σg[δ,∞) := {x ∈ Σg : ∃ < α >∈ π1(Σg)| lγ(α) ≥ δ}.

Here, lγ(α) indicates the length of the geodesic in the homotopy class < α > with respect to the

hyperbolic metric γ. The thin part may consist of cusps and Margulis tubes. Since, we are dealing

with the compact case, the thin part contains a Margulis tube (S1 × I, I ⊂ R) only. The obvious

problem arises in the δ−thin region since, in this region, the length of a geodesic decreases without

bound as we approach the big-bang. Here we fix a δ > 0 and focus on the behaviour of the L∞

norm (w.r.t γτ ) of the holomorphic quadratic differential (φτ ) in the δ−thin region since, in the

δ−thick region, the L∞ norm is always controlled by the L1 norm. We now state two lemmas which

conclude the business of controlling the L∞ norm (with respect to γ) in terms of the L1 norm of φτ .

Note that an integrable holomorphic quadratic differential on a closed (no punctures, no boundary
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components) Riemann surface does not have poles and therefore has zero principle part. For such

an integrable holomorphic quadratic differential on Σg (since it is compact without boundary), the

following lemma holds. Proof of this lemma uses results from elementary complex analysis such as

the maximum principle for holomorphic functions.

Lemma 5a: [225] For δ > 0 and any closed Riemann surface Σg, there exists a constant C < ∞

depending only on the genus g of Σg and independent of δ such that for every hyperbolic metric γ

on Σg the following holds for the holomorphic quadratic differential in the δ−thin region

||φ||L∞(M(0,δ]) ≤ Ce
−π/δ/δ2||φ||L1(Σg). (4.89)

Of course the boundedness follows from the boundedness of e−π/δ/δ2. In the δ−thick region, L∞

(with respect to the metric γ) control in terms of L1 (with respect to the metric γ) is trivial and

follows from the following lemma.

Lemma 5b: [225] For any δ > 0 and any closed Riemann surface Σg, there exists a constant

Cδ < ∞ depending only on δ and the genus g of Σg such that for every hyperbolic metric γ on Σg

the following holds for the holomorphic quadratic differential in the δ−thick region

||φ||L∞(M[δ,∞)) ≤ Cδ||φ||L1(Σg). (4.90)

Now consider the case when Σg completely degenerates and forms punctures (From the Deligne-

Mumford compactness theorem, punctured surfaces are achieved as a limit of a Riemann surface

degenerating via collapsing non-trivial simply closed geodesics). Now, the analysis becomes a little

more subtle since integrable holomorphic quadratic differentials may have a simple pole at a puncture

(at worst). A neighbourhood of this puncture corresponds to a cusp and is equivalent to a punctured

open disc (punctured at 0) equipped with the metric e2η(dx2 + dy2) = 1
|z|2(log(|z|))2 |dz|2. Now,

roughly it is clear that the simple pole of φτ cancels in the norm ||φ||L∞ := e−2η
√
k2

11 + k2
12. But

for completeness we state the following lemma from [225].

Lemma 5c: Let (Σg, γ) be a hyperbolic Riemann surface with finite area. Then for any holomorphic

quadratic differential φ of Σg the following are equivalent

1. ||φ||L1(Σg) . C,C <∞

2.||φ||L∞(Σg) . C,C <∞

3. At each of the punctures of Σg the differential φ has at worst a simple pole.
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Now let us consider a sequence {(γτj , φτj , τj}∞i=1 lying on the solution curve of the Einstein flow

(on the phase space) with limj→∞ τj = −∞. If each member of the sequence satisfies ||φτj ||L1(Σg) ≤

C with the limit satisfying limi→∞ ||φτj ||L1(Σg) ≤ C (this is precisely what we have derived in (4.85)),

then from the lemmas 1a,b,c, we conclude that the L∞ norm of the limit is also bounded, that is,

the following is satisfied

lim
j→∞

sup
Σg

√
|kTT |2γτj ≤ C,C <∞. (4.91)

Since ||φτj ||L1(Σg) can only increase as τj → −∞, we may set C as the uniform upper bound for the

L1 norm of each element of the sequence. We may therefore conclude the following boundedness of

the L∞ norm of the limit of the sequence {φτj} (w.r.t {γτj}) i.e.,

lim
τj→−∞

||φτj ||L∞ ≤
√

2C∞ (4.92)

or

lim
τj→−∞

sup
Σg

√
|kTT |2γτj ≤ C∞, (4.93)

for some uniform C∞ <∞. Now we go back to the following point-wise inequality (4.31)

2

τ2
≤ e2ϕ ≤

1 +
√

1 + 2τ2 supΣg |kTT |2γ(τ)

τ2
. (4.94)

Using the fact that supΣg

√
|kTT |2γ ≤ C∞ < ∞, we may conclude that the following estimate of

supΣg e
2ϕ holds in the limit τ → −∞

2

τ2
≤ e2ϕ ≤ Cϕ

|τ |
, (4.95)

for a suitable constant 0 < Cϕ <∞.

In summary, we have obtained the two following crucial estimate which will be utilized later

sup
Σg

|kTT |2γ ≤ C2
∞, (4.96)

2

τ2
≤ e2ϕ ≤ Cϕ

|τ |
, (4.97)

as τ → −∞. We have now obtained the necessary estimates from Einstein’s equations in CMCSH
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gauge. Utilizing these estimates we want to establish a relation between the hyperbolic length of a

nontrivial element of π1(Σg) and its transverse measure against the measured foliation associated

with the holomorphic quadratic differential. As mentioned previously, we have a natural holomorphic

quadratic differential associated to the Einstein flow due to the fact that corresponding to each

transverse-traceless tensor kTT , we may associate a holomorphic quadratic differential. Here, we

define the following quadratic differential

φτ = (kTT11 − ikTT12 )dz2 (4.98)

= φτ (z)dz2, (4.99)

= kTT11 (dx2 − dy2) + 2kTT12 dxdy +

−i(kTT12 (dx2 − dy2)− 2kTT11 dxdy),

= k + iξ,

where i =
√
−1. Note that the transverse-traceless tensor kTT may be recovered as follows

kTT = R
(
φτ (z)dz2

)
. (4.100)

The transverse-traceless property of kTTij precisely implies ∂φτ
∂z̄ = 0 i.e., φτ is holomorphic. This

establishes the well known homeomorphism between the space of holomorphic quadratic differentials

and the space of transverse-traceless tensors. In addition, we have a natural homeomorphism between

the space of transverse traceless tensors on (Σg, γ) and the Teichmüller space from the Einstein

flow (for detailed analysis see [198]). Once we have a quadratic differential we immediately obtain

horizontal and vertical measured foliations associated with this holomorphic quadratic differential.

The transverse measures of the vertical measured foliation and horizontal measured foliation are (as

follows from (4.6) and (4.7))

µvert(C) =

∮
C

√
k +

√
k2 + ξ2

2
, (4.101)

µhor(C) =

∮
C

√√
k2 + ξ2 − k

2
, (4.102)

respectively. Let us consider that the tangent vector field to the curve C be u1 ∂
∂x1 + u2 ∂

∂x2 and

denote this by (u1, u2)T . The term k2 may be written as the bi-linear form kTTij uiuj(dλ)2, where λ

is the parameter along C. Similarly, the term ξ may be written as kTTim Jmj u
iuj = kTTim uivm, where
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J =

 0 1

−1 0

 , and vm = Jmj u
j that is v = (−u2, u1)T . More importantly, we see that the

following holds in isothermal coordinates (γ = γ(z)|dz|2, γ(z) = eδ(z), δ(z) : Σg → R)

γ(u, v) = γ(z)(−u1u2 + u2u1) = 0, (4.103)

that is, u and v are orthogonal to each other with respect to the metric γ. This is precisely a

consequence of the existence of an isothermal chart around any point on Σg and since γ(u, v) is a

scalar, vanishing in one coordinate chart implies vanishing in every coordinate chart (as mentioned

in the begining, we use isothermal coordinates throughout). The transverse measure to the vertical

foliation may be written as follows

µvert(C) =

∮
C

√√√√
|
kTTij uiuj +

√
(kTTij uiuj)2 + (kTTij uivj)2

2
|dλ. (4.104)

Let us now compute the γ−length of a geodesic in the homotopy class [C] and relate it to its

transverse measure associated to the measured foliation of the holomorphic quadratic differential φτ .

Through the unique solution of the Monge-Ampere equation, the Gauss map equation defines a ray

structure of the Einstein equations. Therefore analyzing the asymptotic behaviour of the Monge-

Ampere equation is in principle the same as analysing the Gauss map equation while satisfying the

Einstein’s equations through the associated Hamilton-Jacobi equation. In addition, analysis of the

Gauss map equation seems more tractable (and relevant) because we have a handful of estimates

from the elliptic equations associated with the Einstein dynamics. Using the Gauss map equation,

we obtain

ρiju
iuj = |K|2ggijuiuj + 2τKiju

iuj (4.105)

−τ2giju
iuj ,

= (|KTT |2g +
τ2

2
)giju

iuj + 2τKTT
ij uiuj

= (e−4ϕ|kTT |2γ +
τ2

2
)e2ϕγiju

iuj

+2τkTTij uiuj .

We do know the fact that ρ ∈ T Σg is fixed and the ρ−length of C is bounded (due to the

properness of the Dirichlet energy which remains finite in the interior of the Teichmüller space).
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Following the Gauss map equation, we have the following

|ρijuiuj | = |
{
|KTT |2g +

τ2

2

}
giju

iuj + 2τkTTij uiuj |, (4.106)

≥ |
{
|KTT |2g +

τ2

2

}
giju

iuj | − 2|τkTTij uiuj |,

= ||kTT |2γe−2ϕγiju
iuj +

τ2

2
e2ϕγiju

iuj | − 2|τkTTij uiuj |,

≥ 2|

√
|kTT |2γτ2

2
(γijuiuj)2| − 2|τkTTij uiuj |,

that is,

1√
2

√
|kTT |2γγijuiuj ≤ |kTTij uiuj |+ 1

2|τ |
ρiju

iuj . (4.107)

Here, we have used a2 + b2 ≥ 2ab for a, b ∈ R. Now point-wise norm of
√
|kTT |2γ satisfies

0 ≤ |kTT |2γ ≤ C2
∞. (4.108)

Notice that the infimum of |kTT |2γ may be zero since the holomorphic quadratic differential φτ :=

(kTT11 − ikTT12 )dz2 has finite number of zeros. Let us consider that the infimum of
√
|kTT |2γ be Cf

which is strictly positive provided that we stay away from the zeros (finite number) of the quadratic

differential φτ (which correspond to the singularities of the associated measured foliation). Let us

consider that the quadratic differential has zeros at (z1, z2, ...., zn), n <∞. Consider ε disks Dε(zi)

around each of the zeros. As these zeros correspond to the singularities of the associated measured

foliation, we will consider the trasnverse measure on Σ
′

g = Σg − {∪ni=1Dε(zi)} (a detailed rationale

is sketched in Wolf’s paper and therefore we do not repeat the same here). On Σ
′

g, the previous

inequality becomes

|Cf |√
2
γiju

iuj ≤ |kTTij uiuj |+ 1

2|τ |
ρiju

iuj , (4.109)

lim
τ→−∞

|Cf |√
2
γiju

iuj ≤ lim
τ→−∞

|kTTij uiuj |+ lim
τ→−∞

1

2|τ |
ρiju

iuj . (4.110)

Now notice the fact that ρ−length of C is finite and independent of τ since ρ lies in the interior of

the Teichmüller space and therefore

lim
τ→−∞

1

2|τ |
ρiju

iuj = 0. (4.111)
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We obtain the following inequality

lim
τ→−∞

|Cf |√
2
γiju

iuj ≤ lim
τ→−∞

|kTTij uiuj |. (4.112)

Let us analyze the Gauss-map equation in a different way

|ρijuiuj − 2τkTTij uiuj | = |
{
|KTT |2g +

τ2

2

}
giju

iuj . (4.113)

Now utilizng the estimate of |KTT |2g from (4.31), we obtain

|2τkTTij uiuj | − |ρijuiuj | ≤ τ2e2ϕγiju
iuj , (4.114)

which utilizing the estimate (4.31) yields

|2τkTTij uiuj | − |ρijuiuj | ≤

(
1 +

√
1 + 2τ2 sup

x∈Σ′g

|kTT |2γ(τ)

)
γiju

iuj . (4.115)

Substituting the estimate (4.96) into the previous inequality leads to

|kTTij uiuj | ≤

(
1

2τ
+

√
1 + 2C2

∞τ
2

2τ

)
γiju

iuj +
1

2|τ |
ρiju

iuj ,

that is,

|kTTij uiuj | ≤

(
1

2τ
+

√
1 + 2C2

∞τ
2

2τ

)
γiju

iuj +
1

2|τ |
ρiju

iuj (4.116)

and therefore, in the limit τ → −∞

lim
τ→−∞

|kTTij uiuj |
γijuiuj

≤ lim
τ→−∞

(
1

2τ
+

√
1 + 2C2

∞τ
2

2τ

)
(4.117)

=
|C∞|√

2
.

In a sense, we have as τ → −∞

|Cf |√
2
γiju

iuj ≤ |kTTij uiuj | ≤ |C∞|√
2
γiju

iuj , (4.118)

with 0 < C2
f < C2

∞ < ∞. This is an important expression obtained at the limit of the big-bang

(τ → −∞). On the other hand, the expression for the transverse measure of the vertical foliation
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reads (4.104)

µvert(C) =

∮
C

√√√√
|
kTTij uiuj +

√
(kTTij uiuj)2 + (kTTij uivj)2

2
|dλ. (4.119)

We still need to obtain an estimate for the term kTTuivj . In addition to the transverse measure to

the vertical foliation, we also have the following transverse measure to the horizontal foliation of the

holomorphic quadratic differential φτ

µhor(C) =

∮
C

√√√√
|

√
(kTTij uiuj)2 + (kTTij uivj)2 − kTTij uiuj

2
|dλ. (4.120)

In the analysis of Wolf [215], it is shown that this transverse measure associated to the horizontal

foliation collapses asymptotically. In Wolf’s [215] construction, the domain is fixed while the target

is varied, that is the dynamics occurs in the target space. In our case, the dynamics takes place in

the domain. Therefore, we can not utilize the available machinery such as the Beltrami differential

ν := |Wz̄|
|Wz| (W : Σg(γ) → Σg(ρ) and harmonic) or the associated Bochner equation controlling the

behaviour of ν to show that µhor vanishes and therefore, kTTij uivj approaches zero asymptotically.

Once again the Gauss map equation (4.51) together with the Lichnerowicz equation (relativistic

version of the Bochner equation) come to the rescue and notably they are of purely relativistic

origin. The Gauss-map equation reads

ρij = (e−4ϕ|kTT |2γ +
τ2

2
)e2ϕγij + 2τkTTij , (4.121)

which upon contracting with ζ and η yields

ρijζ
iηj = (e−4ϕ|kTT |2γ +

τ2

2
)e2ϕγijζ

iηj + 2τkTTij ζiηj . (4.122)

Performing an exactly similar analysis as before, we may arrive without much difficulty to the

following relation in the limit of the big-bang (τ → −∞)

Ca|γijζiηj | ≤ |kTTij ζiηj | ≤ Cb|γijζiηj |, (4.123)

for 0 < Ca < Cb < ∞. Now using (4.104), we immedeately obtain the following at the limit when
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τ approaches −∞

∮
C

√√√√
|
kTTij uiuj +

√
(kTTij uiuj)2 + Ca2(γijuivj)2

2
|dλ (4.124)

≤ µvert(C) ≤∮
C

√√√√
|
kTTij uiuj +

√
(kTTij uiuj)2 + Cb2(γijuivj)2

2
|dλ.

But, from the orthogonality of u and v i.e., γiju
ivj = 0 (4.103) and using the bound Ca|γijuivj | ≤

|kTTij uivj | ≤ Cb|γijuivj | , we immediately observe that |kTTij uivj | = 0 which leads to the following

expression for the transverse measure of curve C with respect to the vertical foliation defined by the

holomorphic quadratic differential φτ

µvert(C) =

∮
C

√
|kTTij uiuj |dλ. (4.125)

The asymptotic vanishing of the term ξ = kTTij uivj precisely implies that the transverse measure of

the associated horizontal folitaion vanishes i.e.,

µhor(C) =

∮
C

√√√√
|

√
(kTTij uiuj)2 + (kTTij uivj)2 − kTTij uiuj

2
|dλ (4.126)

= 0.

Thus, the high Dirichlet energy limit (while viewed as a proper function on the Teichmüller space of

the domain) precisely indicates that the transverse measure to the horizontal foliation associated to

the quadratic differential φτ defined in terms of kTT (or equivalently kTT ) vanishes. Note that the

metric γ, the quadratic differential φτ , and the dynamics of the associated measured foliations are

related to each other via the Einstein flow. In a sense, the Einstein flow drives the solution curve in

such a way that the measured foliation behaves in this way at the limit of the big-bang singularity.

Therefore, we obtain the following crucial relation in the big-bang limit (τ → −∞)

µvert(C) = C

∮
C

√
γijuiujdλ = Clγ(C), (4.127)

for a suitable constant
|Cf |1/2

21/4 ≤ C ≤ |C∞|1/2

21/4 . An important point to notice is that the constants

Cf and C∞ are uniform in a sense that they do not depend on the chosen homotopy class [C]. Now

this does not imply that C is independent of the homotopy class chosen. In fact we need to show
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that C does not depend on the homotopy class of loops at the limit τ → −∞. This follows since

we will show that |kTT |2γ behaves as a constant modulo factors involving inverse power of the mean

extrinsic curvature τ as τ approaches −∞ (i.e., big bang). We claim the following.

Lemma 6: The following is a solution of the Lichnerowicz equation (4.29) as τ → −∞ i.e.,

e2ϕ =

√
2a

|τ |
+

2

τ2
+O(

1

|τ |3
), (4.128)

where a2 := limτ→−∞ supΣ |kTT |2γ = Cf (as shown previously by the equivalence of norm property)

if

|kTT |2γ = a2 +O(
1

|τ |2
) a.e on Σg as τ → −∞. (4.129)

The corresponding lapse function N and the shift vector field X satisfy

N = 1 +

√
2

|τ |a
+O(

1

τ2
) a.e. on Σg as τ → −∞. (4.130)

and

γ(X,X) = O(
1

|τ |
) a.e on Σg as τ → −∞. (4.131)

Proof: Substitute this form of e2ϕ in the Lichnerowicz equation (4.29) to yield

−2∆γϕ+ e−2ϕ(|kTT |2γ − a2) = O(
1

|τ |
) (4.132)

integration of which yields at τ → −∞

∫
Σ

e−2ϕ(|kTT |2γ − a2)µγ = O(
1

|τ |
). (4.133)

However, by definition, supΣg |k
TT |2γ = a2 ≥ |kTT |2γ everywhere on Σg and therefore

|kTT |2γ = a2 +O(
1

|τ |2
) a.e on Σ as τ → −∞. (4.134)

179



Substituting |kTT |2γ = a2 +O( 1
|τ |2 ) a.e on Σ as τ → −∞ into the lapse equation yields

N = 1 +

√
2

|τ |a
+O(

1

τ2
) as τ → −∞ (4.135)

which yields through the shift equation and an integration by parts argument (4.22)

∫
Σg

(∇[γ]iX
j∇[γ]kX

lγikγjl + γijX
iXj)µγ = O(

1

|τ |
) (4.136)

yielding

γ(X,X) = O(
1

|τ |
) a.e on Σg as τ → −∞. � (4.137)

Now we have to show that |kTT |2γ obtained in (4.134) satisfies the evolution equation at the limit

τ → −∞.

Lemma 7: g− norm of the transverse-traceless tensor kTT i.e., |kTT |2g satisfies the following

evolution equation

∂t|kTT |2g = LX |kTT |2g + 2Nτ |kTT |2g + 2∇[g]i∇[g]jNkTTij . (4.138)

Moreover |kTT |2γ = e4ϕ|kTT |2g = a2 + O( 1
τ2 ) satisfies this evolution equation almost everywhere on

Σg up to O( 1
|τ | ) as τ → −∞.

Proof: Explicit calculation using |kTT |2g = gijgklkTTik kTTjl and the Einstein evolution equations

(4.17-4.18) yields the desired evolution equation for |kTT |2g. Now utilizing the conformal transfor-

mation gij = e2ϕγij and noting kTTij is conformally invariant, the evolution equation for |kTT |2g may

be transformed into an evolution equation for |kTT |2γ

∂t|kTT |2γ + e4ϕ|kTT |2γ∂te−4ϕ = 2Nτ |kTT |2γ + LX |kTT |2γ − e4ϕLXe
−4ϕ (4.139)

+γikγjl∇[γ]i∇jNkTTkl −
1

2
e−2ϕ(γikγml∂ie

2ϕ + γmkγjl∂je
2ϕ)∇mNkTTkl ,

where we have utilized the fact∇[g]i∇jN = ∇[γ]i∇jN− 1
2g
mn(∇[γ]ignj+∇[γ]jgin−∇[γ]ngil). Using

|kTT |2γ = a2 + O( 1
τ2 ), N = 1 +

√
2

|τ |a + O( 1
τ2 ), e2ϕ =

√
2a
|τ | + 2

τ2 + O( 1
|τ |3 ), e−2ϕ = |τ |√

2a
− 1

a2 + O( 1
|τ | ),
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and γ(X,X) = O( 1
|τ | ), we may compute each term of the evolution equation (4.139) as follows

e4ϕ|kTT |2γ∂te−4ϕ (4.140)

=

(
(
2a2

τ2
+

4

τ4
+

4
√

2a

τ3
) +O(

1

τ4
)

)
(a2 +O(

1

τ2
))(
τ3

a2
−
√

2τ2

a3
+O(|τ |))

= 2a2τ + 2
√

2a+O(
1

|τ |
),

2Nτ |kTT |2γ = 2τa2 + 2
√

2a+O(
1

|τ |
) (4.141)

e4ϕLXe
−4ϕ = O(

1

τ5/2
), (4.142)

γikγjl∇[γ]i∇jNkTTkl = O(
1

τ2
), (4.143)

1

2
e−2ϕ(γikγml∂ie

2ϕ + γmkγjl∂je
2ϕ)∇mNkTTkl = O(

1

τ4
). (4.144)

After substituting into the evolution equation (4.139), we observe that the dangerous terms (O(|τ |)

and O(1) terms) are precisely cancelled with their respective negative counterparts. Therefore we

observe that the evolution equation for |kTT |2γ is solved by |kTT |2γ = a2 +O( 1
τ2 ) almost everywhere

on Σg as τ → −∞. �

This property is extremely important and indicates an asymptotically velocity dominated be-

haviour i.e., the evolution equations are effective ordinary differential equations in time as one

approaches the big-bang since the spatial parts are weighted by the inverse power of the mean cur-

vature. Velocity term dominated behaviour (VTD) has also been previously noted in the context of

big-bang singularity [230]. Since |kTT |2γ asymptotically approaches a constant a2, we obtain at the

limit τ → −∞, C∞ = Cf = a and therefore the constant C in equation (4.127) is independent of

the homotopy class of curve i.e., C = a
21/4 =constant on Σg as τ → −∞.

In the proof of the compactification, we will need to choose a sequence ({γτj , kTTτj , τj}) from

the Einstein solution curve (here fτ ≡ f(τ) and both of these notations are used interchangeably).

However, the limit should not depend on the sequence chosen as long as limj→∞ τj = −∞. In other

words, the ratio of the transverse measure of a curve λ 7→ C(λ) with respect to the vertical foliation

corresponding to kTT and its length with respect to the hyperbolic metric γ does not depend on

the chosen sequence on the solution curve as one approaches the big-bang singularity. The following

lemma establishes such a property.

Lemma 8: Let {γτj , kTTτj , τj} be any sequence on the solution curve τ 7→ (γτ , k
TT
τ , τ) such that
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limj→∞ = −∞. Let C be a curve in any homotopy class. Then the following holds

lim
j→∞

µvert,τj (C) =
C1/2

21/4
lim
j→∞

lγτj (C), (4.145)

where the constant C = limτ→∞ |kTT |2γ and therefore is universal.

Proof: Let us consider a slightly general case where τ ∈ (−∞, 0) instead of τ → −∞. Let us

define the following entities

In(τ) := inf
Σ′g

√
|kTT |2γ(τ) (4.146)

S(τ) := sup
Σ′g

√
|kTT |2γ(τ). (4.147)

Both In(τ) and S(τ) are continuous functions of τ by existence-uniqueness-continuity (or well-

posedness) of the Einstein’s equations [197]. Clearly the following holds by continuity and the result

of lemma 7

lim
τ→−∞

In(τ) = Cf = a (4.148)

lim
τ→−∞

S(τ) = C∞ = a. (4.149)

Performing a similar analysis on the Gauss-map equation as previously, we obtain

1√
2
In(τ)γτ (u, u) ≤ |kTTτ (u, u)|+ 1

|τ |
ρ(u, u) (4.150)

|kTTτ (u, u)| ≤

(
1

2|τ |
+

√
1 + 2S(τ)2τ2

2|τ |

)
γτ (u, u) +

1

|τ |
ρ(u, u) (4.151)

|kTTτ (u, v)| ≤ 1

|τ |
|ρ(u, v)|, (4.152)

where the metric ρ is fixed i.e., independent of τ and lies in the interior of the Teichmüller space.

Let us now define

A(τ) :=
1

2|τ |
+

√
1 + 2S(τ)2τ2

2|τ |
. (4.153)

Thus, the second inequality of the three inequalities stated above reads

|kTTτ (u, u)| ≤ A(τ)γτ (u, u) +
1

|τ |
ρ(u, u) (4.154)
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Now, we go back to the formula for the transverse measure to the vertical foliation and obtain the

following inequality for τ ∈ (−∞, 0)

∮
C

√
kTTij (τ)uiujdλ ≤ µvert,τ (C) = (4.155)

∮
C

√√√√
|
|kTTij (τ)uiuj |+

√
(kTTij (τ)uiuj)2 + (kTTij (τ)uivj)2

2
|dλ

since (kTTij (τ)uivj)2 ≥ 0. Now utilizing (4.152), we obtain

∮
C

√
|kTTij (τ)uiuj |dλ ≤ µvert,τ (C) ≤ (4.156)

∮
C

√√√√
|
|kTTij (τ)uiuj |+

√
(kTTij (τ)uiuj)2 + ( 1

|τ |ρiju
iuj)2

2
|dλ.

Now consider any sequence {γτj , kTTτj , τj} on the solution curve τ 7→ (γτ , k
TT
τ , τ) such that limj→∞ τj =

−∞. We have the following limits as j →∞

lim
j→∞

A(τj) = lim
j→∞

 1

2|τj |
+

√
1 + 2S(τj)2τ2

j

2|τj |

 =
1√
2

lim
j→∞

S(τj) =
C∞√

2

lim
j→∞

1

|τj |
ρ(u, u) = 0, (4.157)

Cf√
2

lim
j→∞

γτj(u, u) ≤ lim
j→∞

|kTTτj (u, u)| ≤ C∞√
2

lim
j→∞

γτj (u, u) (4.158)

and therefore

lim
j→∞

µvert,τj = lim
j→∞

∮
C

√
|kTTik (τj)uiuk|dλ (4.159)

(The last equality may be obtained from (4.156) more formally as

∮
C

√
|
|kTTij (τk)uiuj |+

√
(kTTij (τk)uiuj)2+( 1

|τk|
ρijuiuj)2

2 |dλ =
∮
C

√
|kTTij (τk)uiuj |

√
|
1+

√
1+

|ρijuiuj |2

|τk||k
TT
ij

(τk)uiuj |2

2 |dλ

≤ supC

√
|
1+

√
1+

|ρijuiuj |2

|τk||k
TT
ij

(τk)uiuj |2

2 |
∮
C

√
|kTTij (τk)uiuj | and noting that supC

√
|
1+

√
1+

|ρijuiuj |2

|τk||k
TT
ij

(τk)uiuj |2

2 |

approaches 1 as τk → −∞). Finally, we have the following result as j →∞

|Cf |1/2

21/4
lim
j→∞

lγτj (C) ≤ lim
j→∞

µvert,τj ≤
|C∞|1/2

21/4
lim
j→∞

lγτj (C). (4.160)
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However Cf = C∞ = C yielding

lim
j→∞

µvert,τj =
C1/2

21/4
lim
j→∞

lγτj (C). (4.161)

and clearly both of these entities have the same limit at the level of projective space as they are

proportional to each other by finite constant (as will be discussed in detail in the next section). This

completes the analysis that the limiting behaviour does not depend on the chosen sequence as long

as lim→∞ τj = −∞. �

Summarizing this section, we state the following theorem.

Theorem 2: Let Σg be a closed (compact without boundary) Riemann surface of genus g > 1 and

the data (γ, kTT , τ, eϕ, N,X) defined by the solution of the Gauss map equation (4.51), Lichnerowicz

equation (4.29), and the elliptic equations (4.21-4.22) solve the reduced Einstein equations via the

associated Hamilton-Jacobi equation. The ratio of the transverse measure of any non-trivial element

C of π1(Σg) with respect to the vertical measured foliation of the natural holomorphic quadratic

differential φτ := (kTT11 − ikTT12 )dz2, and its hyperbolic length that is the length with respect to the

metric γ approaches to a finite constant independent of any homotopy class in the limit of the big-

bang singularity i.e., τ → −∞ along every sequence on the solution curve. The transverse measure

associated with the horizontal foliation collapses to zero in the same limit.

4.6 Compactification

In this section we claim that the Thurston compactification of the Teichmüller space is equivalent

to our relativistic compactification. Let us denote the Einstein compactification of T Σg by ¯T Σg
Ein

.

In this section, we claim that the following theorem holds

Theorem 3: ¯T Σ
Th
g ≈ ¯T Σ

Ein
g .

Before proving this theorem, we need a few additional concepts and two lemmas. Let us consider the

functional space Ω = RG(Σg)
>0 , where the space of geodesics on Σg is denoted as G(Σg), which may

be obtained by the π1(Σg) action on the space of geodesics on H2, that is S1
∞×S1

∞−∆, ∆ being the

diagonal. Essentially Ω consists of functionals which take elements of G(Σg) and associate a positive

number to each (in this case, length of the geodesic representative of each homotopy class to be

precise). It can essentially be viewed as the space of geodesic currents given that the association of a

measure (Radon measure to be precise) G(Σg) is π1(Σg) invariant. We may construct the following
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map

l : T Σg → Ω (4.162)

γ 7→ lγ : G(Σg)→ R>0.

We may projectivize the space Ω as follows

PΩ = Ω/(β ∼ tβ, t > 0, β ∈ Ω) (4.163)

and subsequently obtain the following map

π ◦ l : T Σg → PΩ. (4.164)

Clearly, the map l can be identified with the Liouville currents (see appendix) (or the ‘9g− 9’ map).

The injectivity of π ◦ l follows from the injectivity of the map L of section (2). Similarly, we may

construct the following map from the space of measured laminations to Ω

ν :MF → Ω (4.165)

F 7→ (i(F , γ) =

∮
[γ]∈G(Σg)

µF ).

Here, µF corresponds to the transverse measure associated with F ∈ MF and [γ] is a homotopy

class. Clearly the space of measured geodesic foliations is a subset of the space of all geodesics and

therefore, we have the following

PMF := (MF − {0})/(F ∼ tF , t > 0,F ∈MF) (4.166)

= π ◦ ν(MF) ⊂ PΩ.

Note that π ◦ ν is injective. Let the space of holomorphic quadratic differentials with respect to the

conformal structure (M,γ) and (M,ρ) be defined as HQD(γ) and HQD(ρ), respectively. Now we

define another important map namely the Hubbard-Masur homeomorphism

F : HQD(γ) → MF (4.167)

φ 7→ F(φ). (4.168)
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Recall that PMF and T Σg are disjoint in the space of projective currents i.e., PΩ. The Thurston

compactification, essentially, is given as ¯T Σg
Th

= T Σg ∪PMF . Now we state the following crucial

lemma.

Lemma 9: Let the sequence {γτj} leave all the compact sets in T Σg at the limit of big-bang i.e.,

j →∞ (τj → −∞). Then π◦l(γτj ) converges if and only if π◦ν(Fτj ) converges and subsequently both

have the same limit in PΩ. Here Fτj is the vertical measured foliation associated to the holomorphic

quadratic differential φτj = (kTT11τj − ik
TT
12τj )dz

2 through the Hubbard-Masur homeomorphism F .

Proof: {γτj} diverges in T Σg (identified with its image in PΩ under the map π ◦ l) and therefore

limj→∞ lγτj (C) =∞ for some C ∈ G(Σg). Now, It must converge to PΩ due to the fact that the later

is compact (passing to the level of a subsequence). Therefore, ∃ {λτj} with limj→∞ λτj = 0 such

that limj→∞ λτj lγτj (C) = L < ∞. Now, utilizing the theorem 2 or the following equality (4.145)

derived in lemma 8, we have in the limit j →∞

lγ(C) =
21/4

C1/2
i(F , C) = i(

21/4

C1/2
F , C), (4.169)

and since the constant C does not depend on the homotopy class of curves C, we may immediately

obtain limj→∞ λτj i(
21/4

C1/2Fτj , α) = L i.e., equal to the limit of λτj lγτj . Moreover, λτj
21/4

C1/2Fτj con-

verges in PΩ or 21/4

C1/2Fτj converges in PMF (the image of PMF in PΩ under π◦ν is identified with

PMF and multiplication of a measured foliation by an overall constant yields the same foliation

only measure gets scaled. But it makes no difference at the level of projective space by definition).

The reverse may be obtained in a similar way. This lemma essentially tells us that a sequence on

solution curve (of Einstein’s reduced equations) diverging (leaving every compact set) in the config-

uration space (T Σg), converges in the space of projective measured foliations as τj → −∞ (big-bang

limit). The space of projective measured foliations is well known to be the Thurston boundary of

the Teichmüller space. This establishes the fact that any solution curve approaches the Thurston

boundary at the big-bang singularity.

Proof of Theorem 3: We now want to establish the homeomorphism between the Thurston com-

pactified Teichmüller space ¯T Σg
Th

and the Einstein compactified Teichmüller space ¯T Σg
Ein

. Let

us first define the space of holomorphic quadratic differential in our setting. Recall that the holo-

morphic quadratic differential φτ := (kTT11 − ikTT12 )dz2 is defined with respect to the metric γτ . Using

φτ , we may obtain a holomorphic quadratic differential Φ(φτ ) with respect to the fixed metric ρ

as follows. First, decompose kTT into ρ−transverse-traceless part and ρ−Lie derivative part in the
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following ρ− L2 orthogonal sense

kTTij = ζTTij + (LY ρ)ij , (4.170)

where ∇[ρ]jζTTij = 0 = ρijζTTij and Y ∈ X(Σg). Define the homolorphic quadratic differential

with respect to ρ as Φ(φτ ) := (ζ11 − iζ12)dz2. This identification is not obvious in the current

context since kTT is transverse-traceless with respect to γ where as ζTT is transverse-traceless with

respect to ρ. Therefore, one may simply add Y
′

to Y to yield another γ−transverse-traceless tensor

kTT
′

while keeping ζTT fixed. Therefore, two different γ−transverse-traceless tensor can have same

ρ−transverse-traceless part. However, in the current context, this decomposition is not arbitrary.

Through imposition of the spatial harmonic gauge condition ‘id : (Σ, γ) → (Σ, ρ) is harmonic’, Y

and ζTT are related to each other through a truly non-linear elliptic PDE (Monge-Ampere type

equation). Moncrief [198] proved the existence of a unique solution of this Monge-ampere type

equation (see sections 6 through 8 of [198]). Given a ζTT , one may retrieve kTT through solving

Moncrief’s Monge-Ampere equation. kTT always have a unique ζTT due to the fact that (Σg, ρ)

does not have Killing/conformal Killing vector fields. Through the well-posedness of Moncrief’s

Monge-ampere equation, kTT depends continuously on ζTT or ζTT depends continuously on kTT .

In other words, we may also write φτ = φτ (Φ) := (kTT11 (ζTT )− ikTT12 (ζTT ))dz2. In summary

Φ(φτ ) := (ζ11 − iζ12)dz2, φτ = φτ (Φ) := (kTT11 (ζTT )− ikTT12 (ζTT ))dz2. (4.171)

This identification yields a curve in the space of holomorphic quadratic differentials with respect to

ρ corresponding to a solution curve τ 7→ (γτ , k
TT
τ , τ) and also allows us to talk about the boundary

of the space of holomorphic quadratic differentials without any ambiguity .

Now let QD(ρ) be the space of homlomorphic quadratic differentials with respect to ρ. Let

{γτj , kTTτj , τj} be a sequence. Through the correspondence (4.171), this identifies a sequence {ζTTτj }

in QD(ρ). In the limit τj → −∞, we have established in theorem 1 that the Dirichlet energy

corresponding to the associated harmonic map blows up and subsequently every sequence {γτj}

leaves all the compact sets of T Σg. On the other hand, we also have the associated “velocity”

variable, the transverse-traceless tensor {kTTτj }. It was shown in section 5 that its L1 norm remains

bounded as τj → −∞ and moroever

lim
τj→−∞

∫
Σg

√
|kTTτj |2γτjµγτj = C. (4.172)
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Note that the constant C is universal and does not depend on the chosen solution ray. Following the

boundedness of the L1 norm of kTTτj at the limit τj , we immediately obtain that the L1 norm of the

associated quadratic differential φτj remains bounded as well (norms of φ were defined in section 5

and considerable detail was presented there) i.e.,

lim
τj→−∞

||φτj || = C (4.173)

which essentially means that the space of γτ−holomorphic quadratic differential is S6g−7 at the

limit τ → −∞ and through the homeomorphic correspondence (4.171), this can be identified with a

boundary of a ball B̄ in QD(ρ) radius of which may be set to 1 after a suitable re-normalization i.e.,

||Φ|| = 1. Let us denote this unit ball in QD(ρ) by B̄(1). In order to prove theorem 3, it is sufficient

to establish the homeomorphism between the ball B̄(1) and the Thurston compactified Teichmüller

space ¯T Σg
Th

. The Einstein boundary of the Teichmüller space is therefore PQD(ρ) and the Einstein

compactification of the Teichmüller space is ¯HQD(ρ) (naturally through the Einstein flow and the

correspondence (4.171)). The procedure to demonstrate the homeomorphism between ¯T Σg
Th

and

¯HQD(ρ) is routine and similar to the one described in Wolf’s work. Nevertheless, we sketch the

proof for the sake of completeness. More specifically, let us explicitly define the following spaces

HQD(ρ) := {Φ ∈ QD(ρ)| ||Φ|| < 1} (4.174)

PQD(ρ) := {Φ ∈ QD(ρ)| ||Φ|| = 1} (4.175)

¯HQD(ρ) := HQD(ρ) ∪ PQD(ρ). (4.176)

Following the homeomorphism between T ΣEing and ¯HQD(ρ), our problem reduces to establishing

the homeomorphism between T ΣThg and ¯HQD(ρ). Let us define the following map after using polar

coordinates (r, θ) for the space ¯HQD(ρ)

ϕ : ¯T ΣThg ⊂ PΩ → HQD(ρ) ∪ PQD(ρ) ≈ ¯HQD(ρ) ≈ T ΣEing ⊂ PΩ (4.177)

x 7→
(
||Φ(x)||, Φ(x)

||Φ(x)||

)
,∀π ◦ l(x) ∈ T Σg ⊂ PΩ

7→
(

1, lim
n→∞

Φ(xn)

||Φ(xn)||

)
, π ◦ l(xn)→ ∂T ΣThg ⊂ PΩ.

Here T Σg and ∂T Σg are realized as the image of π ◦ l in PΩ. In addition, through the Hubbard-

Masur homeomorphism F and π ◦ ν, HQD(ρ) and PQD(ρ) may also be realized as their images in

PΩ. First we want to show that this map is well defined. Consider two solutions xn, x
′

n ∈ T Σg that
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approach the boundary

lim
n→∞

π ◦ l(xn) = lim
n→∞

π ◦ l(x
′

n) = y ∈ ∂T Σg. (4.178)

But, then following lemma 9 and the correspondence (4.171), we immediately have

lim
n→∞

π ◦ ν ◦ F ◦ φτn ◦ Φ(xn) = lim
n→∞

π ◦ ν ◦ F ◦ φτn ◦ Φ(x
′

n) (4.179)

and following the Hubbard-Masur homeomorphism

lim
n→∞

Φ(xn)

||Φ(xn)||
= lim
n→∞

Φ(x
′

n)

||Φ(x′n)||
. (4.180)

Now we establish the injectivity, surjectivity and continuity of Ψ as well as continuity of Ψ−1. Here,

by a sequence, we will mean a sequence chosen from a solution curve.

Continuity of Ψ: Since, limn→∞ ||Φ(xn)|| = 1, the continuity in the first component follows.

Continuity in the second component is obvious.

Injectivity of Ψ: Injectivity of Ψ on T Σg is clear (corresponding to each metric, Φ assigns exactly

one holomorphic quadratic differential or transverse-traceless tensor). Now, suppose xn, x
′

n ∈ T Σg

such that π◦ l(xn)→ ∂T Σg, π◦ l(x
′

n)→ ∂T Σg and Ψ(x) = Ψ(x
′
). We want to show that limn→∞ π◦

l(xn) = limn→∞ π ◦ l(x′n) ∈ ∂T Σg. Following Ψ(x) = Ψ(x
′
), we have

lim
n→∞

Φ(xn)

||Φ(xn)||
= lim
n→∞

Φ(x
′

n)

||Φ(x′n)||
(4.181)

which following the Hubbard-Masur homeomorphism implies

lim
n→∞

π ◦ ν ◦ F ◦ φτn ◦ Φ(xn) = lim
n→∞

π ◦ ν ◦ F ◦ φτn ◦ Φ(x
′

n). (4.182)

But, then lemma 9 (together with the correspondence (4.171)) implies

lim
n→∞

π ◦ l(xn) = lim
n→∞

π ◦ l(x
′

n) ∈ ∂T Σg (4.183)

concluding injectivity of Ψ.

Surjectivity of Ψ: Obviously, Ψ is onto from T Σg to HQD. Let (1, α) ∈ PQD and anα→ α. Now,

following lemma 9, since, π ◦ ν ◦ F ◦ φτn(anα) = constant, π ◦ l(φ−1(anα)) converges to y ∈ ∂T Σg.

189



Therefore, using continuity of Ψ

Ψ(y) =

(
1, lim
n→∞

Φ(Φ−1(anα))

||Φ(Φ−1(anα))||

)
= (1, α), (4.184)

which concludes surjectivity.

Continuity of Ψ−1: For, the continuity of Ψ−1, we only need to verify the continuity on PQD.

Let us consider that (an, αn)→ (1, α). Following the Hubbard-Masur homeomorphism, π ◦ ν ◦ F ◦

φτn(anαn) converges. On the other hand, lemma 9 implies

lim
n→∞

π ◦ ν ◦ F ◦ φτn(anαn) = lim
n→∞

π ◦ l(Φ−1(anαn)) ∈ ∂T Σg. (4.185)

But, from the definition of Ψ, we obtain

Ψ(π ◦ l(Φ−1(anαn))) =

(
||Φ(Φ−1(anαn))||, Φ(Φ−1(anαn))

||Φ(Φ−1(anαn))||

)
= (an, αn),

since limn→∞ ||αn|| = 1. On the other hand, we also have

Ψ( lim
n→∞

π ◦ l(Φ−1(anαn))) =

(
1, lim
n→∞

Φ(Φ−1(anαn))

||Φ(Φ−1(anαn))||

)
= (1, α). (4.186)

Therefore, we finally have

Ψ−1(1, α) = lim
n→∞

π ◦ l(Φ−1(anαn)) = lim
n→∞

Ψ−1(an, αn) (4.187)

which concludes the continuity of Ψ−1. which completes the proof of

¯T Σ
Th
g ≈ ¯T Σ

Ein
g . � (4.188)

An important observation would be that we are essentially showing the homoemorphism be-

tween ¯HQD and ¯T Σg
Th

. Simultaneously, Einsteinian dynamics provides a natural homeomorphism

between ¯HQD and ¯T Σg
Ein

. Therefore, one might naively expect that Wolf’s analysis would be

directly applicable to obtain the desired result. However, as mentioned previously, Wolf’s dynamics

occurs in the target space while ours does in the domain. In addition, to establish the homeomor-

phism between ¯HQD and ¯T Σg
Th

, lemma 6 and the correspondence (4.171) play the most important

role. However, lemma 6 is obtained by completely relativistic means i.e., by utilizing the Gauss

map and Hamilton-Jacobi equation in addition to the estimates derived from the elliptic equations
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associated to the Gauge and constraints of the Einstein’s equations. Similarly the correspondence

(4.171) is made solely through solving Moncrief’s Monge-Ampere equation which once again is of

purely relativistic origin. Let us explain the mechanism in a little less technical way. Notice the

diagram above. Moncrief has shown in [198] that no two solution rays originating at an interior

point ρ (defined by the Gauss-map, satisfying constraint and gauges, and uniquely satisfying the

reduced Einstein equations through the Hamilton-Jacobi equation) intersect each other (except at

the limit τ → 0, where they may asymptotically approach each other). This gives a homoemorphism

between the Teichmüller space T Σg and the space of transverse-traceless tensors. However, each

such transverse-traceless tensor kTT has a holomorphic quadratic differential φτ associated to it.

Morover, each such holomorphic quadratic differential represents a measured foliation (with zeros

of the quadratic differential being the singularities of the foliation), which follows from the classical

result of Hubbard and Masur [216]. Now let us consider that {γτj} leaves every compact set in the

Teichmüller space and converges to the ∂T ΣEing . Associated with the sequence {γτj}, there is a

sequence of quadratic differentials {φτjdz2} (defined in 4.98) from relativistic dynamics and such a

unique sequence satisfies

lim
τj→−∞

||φτj ||L1 = C, (4.189)

for some suitable constant 0 < C < ∞. Through the correspondence (4.171), this is precisely

equivalent to saying that as the sequence {γτj} converges in ∂T ΣEing , {Φ(φτj )} approaches the

6g − 7 dimensional sphere PQD(ρ) in the space of holomorphic quadratic differential HQD(ρ) and

is defined by

||Φ||L1 = 1 (4.190)

after suitable re-scaling. Now associated to the sequence {φτj}, there exists a unique sequence of

measured foliations {Fτj} corresponidng to Φ(φτj ). Now, the lemma 6 enters into the picture. lemma

6 precisely states that the limits of the sequence {γτj} and the sequence {Fτj} are the same in the

space of projective currents (PCurr) and lie in the space of projective measured foliations (PMF).

Therefore, the space ∂T ΣEing is precisely the space of projective measured foliations PMF . But,

PMF is nothing but the Thurston boundary of the Teichmüller space in PCurr. Therefore

∂T ΣEing ≈ ∂T ΣThg . (4.191)
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In addition note that each of ∂T ΣEing and PMF are homeomorphic to PQD. Is a sense the maps

T T , F , F ◦ T T are all homeomorphisms. In a sense, we thus obtained a proof of Moncrief’s

conjecture that each of the non-trivial solution curves of the reduced Einsteinian dynamics runs off

the edge of the Teichmüller space at the limit of big-bang singularity and attaches to the Thurston

boundary of the Teichmüller space, that is, the space of projective measured laminations or foliations

(PML, PMF). As a bonus, we also have in this relativistic setting that the space PQD ⊂ QD is

homoemorphic to ∂T ΣEing and therefore PMF . In a sense, we also recover Wolf’s result. Now we

will describe the possible two mechanisms of approaching the boundary of the Teichmüller space in

the next section.

4.7 Approaching ∂T Σg

Let us consider the Fenchel Neilsen coordinates of the Teichmüller space. Figure (??) shows the pants

decomposition of the Teichmüller space and the associated Fenchel-Neilen co-ordinates (see [217] for

the details of the Fenchel-Neilsen parametrization and pants decomposition). Such parametrization

is given by the lengths of 3g−3 nontrivial (nontrivial in π1(Σg)) geodesics {li}3g−3
i=1 along with 3g−3

associated twist parameters {θ3g−3
i=1 } (twist is performed about the same geodesic). The two possible

mechanisms of attaining the boundary of the Teichmüller space are descried below.

4.7.1 Pinching of Σ

Let γ(lni ) denotes a sequence of hyperbolic metrics and let θi = 0 ∀i = 1, 2, 3, ...., 3g−3. Letting any

one of the li tend to infinity i.e., limn→∞ lni = ∞ implies approaching the boundary ∂T Σ. Using

the collar lemma (see [204] for the detailed proof of the collar lemma), we immediately obtain that

there is a non-trivial geodesic transverse to lni with length ≈ limn→∞ e−l
n
i . This is the pinching

mechanism described in figure (??). Note that the nontrivial (in π1(Σg)) geodesic γ2 collapses

while the hyperbolic length l1 of γ1 approaches infinity. Now, the Dirichlet energy of the harmonic

map id : (Σg, γ(lni )) → (Σg, ρ) i.e., between fixed domain (with metric ρ) and the varying target

(with metric γ(li)) defined is a continuous proper function on the Teichmüller space. Therefore, the

sequence of Dirichlet energies associated with the diverging sequence of metrics (or degenerating to

be precise) γ(lni ) can not stay in a compact set; that is the sequence blows up. Therefore we have

the following correspondence

lim
n→∞

lni →∞ => lim
n→∞

Eγ(lni ) →∞. (4.192)
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Notice that multiple non-trivial geodesics γi (and the corresponding transverse ones) may show the

pinching behavior at once and each such limit corresponds to distinct points on ∂T Σg.

4.7.2 Wringing of Σg by its neck

In order to explain the approach to ∂T Σg through wringing of Σg, we need to introduce the symplec-

tic geometry of the Teichmuller space [227,228]. Using the parametrization (li, θi)
3g−3
i=1 of Teichmuller

space, define the symplectic form

ω =

3g−3∑
i=1

dli ∧ dθi, (4.193)

which is preserved under the flow of the vector field v = − ∂
∂θi

and satisfies

ω(− ∂

∂θi
, ·) = dli. (4.194)

The conserved Hamiltonian is nothing but the length li. Here, θi is the twist parameter about the

ith geodesic. Therefore, flow of the vector field − ∂
∂θi

preserves the length li of the geodesic about

which Σg is twisted. After n such twists, the length of the geodesic transverse to the ith geodesic

increases by nli. The wringing of Σg about the ith geodesic corresponds to the limit n → ∞. Let

the length of the transverse geodesic before the twist be LT . After performing n twists, the length

becomes ∼ LT + nli and therefore, the wringing corresponds to the fact that limn→∞
li

LT+nli
= 0.

This is the other mechanism to approach the boundary of the Teichmüller space. Note that every

point on the boundary ∂T Σg can be obtained through a combination of these two basic operations

and in every situation, the Dirichlet energy approaches infinity.

4.8 Conclusion

Despite the fact that ‘2+1’ gravity is devoid of a straightforward physical significance due to the lack

of gravitational wave degrees of freedom, it is of extreme importance while studying ‘3+1’ gravity

on spacetimes of certain topological type (S2 × S1 ×R,T2 × S1 ×R, and Σg × S1 ×R, non-trivial S1

bundles over Σg×R). As mentioned in the introduction, several studies have been done of this topic

where the ‘3 + 1’ gravity has been realized as the ‘2 + 1’ gravity coupled to a wave map,and where

the Teichmüller space of Σg plays a crucial role. In the 2 + 1 case, the configuration space is the

Teichmüller space and we’ve shown here that the space of big-bang singularities is realized as the

Thurston boundary of Teichmüller space. At the big-bang, the conformal geometry degenerates via
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pinching and wringing of (Σg, γ). This result essentially characterizes the complete solution space

as well as verifies that the reduced Einstein flow can naturally be used to compactify Teichmüller

space. While such a result is obtained by studying puerly vacuum gravity, a natural question arises

whether inclusion of a positive cosmological constant might yield the same result. [197, 229, 231]

studied vacuum GR with a positive cosmological constant in 2 + 1 case, where the future in time

behavior seems to persist. Therefore, it would be interesting to include a positive cosmological

constant and check whether the Thurston boundary is approached in the big-bang limit. In addition,

if one includes matter source and focuses on the evolution of the gravitational degrees of freedom

(due to the presence of matter sources, the configuration space is now infinite dimensional), can the

big-bang limit be realized as the Thurston boundary? Could the Teichmüller degrees of freedom

of ‘3+1’ gravity on U(1) symmetric S1 bundles over Σg × R realize the Thurston boundary in the

same limit? What is the implication of such limiting behavior at the classical level in quantizing

‘2+1’ gravity or ‘3+1’ gravity on these special topologies? Can this characterization of the space of

singularities be extended to higher dimensional gravity? Can the Einstein flow be used further to

study classical Teichmüller theory?

Appendix

Space of projective laminations as the Thurston boundary of the Teichmüller space

In this section, we provide a rough sketch of the proof of Thurston compactification of the Te-

ichmüller space by the space of projective measured laminations (PML). The details may be found

in [211, 212]. Here we show that a sequence diverging in Teichmüller space converges in the space

of projective measured laminations (PML), which is a compact subset of the space of geodesic

currents. A π1(Σg)−invariant measure on G(Σ̃g) may be defined as

L̂ =
dαdβ

|eiα − eiβ |2
, (4.195)

where (eiα, eiβ) ∈ (S1 × S1) \ ∆ and ∆ represents diagonal. This measure is called the Liouville

measure.The Liouville measure corresponding to X is denoted by L̂X , which satisfies the following

for any γ ∈ G(Σg)

i(γ, L̂X) = lX(γ), (4.196)
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where i denotes the bilinear function ’intersection number’ and lX(γ) denotes the length of γ with

respect to the hyperbolic metric on X. The intersection property may be interpreted as follows. Let

us consider a closed non-trivial geodesic γ ∈ G(Σg). Lift γ to the universal cover and consider its

intersection with the set of geodesics transverse to its lift γ̃ that is i(γ, L̂) is defined as
∫
E
L̂(E ∩ γ̃),

where E ⊂ G(Σ̃g) is the set of geodesics transverse to γ̃. A few lines of calculations show that

this integral is indeed the length of γ with respect to the hyperbolic metric (scalar curvature =-

1). Note that Liouville measure may be used to define a geodesic currents on G(Σg) due to its

π1(Σg)−invariance property. Now, let (X, f) be a hyperbolic surface (and thus ∈ T Σ) such that

f : Σg → X = H2/π1(Σg) is a homeomorphism. Liouville measure provides a well defined map from

the Teichmüller space T Σ to the space of currents. Here we just provide a brief description of the

Thurston compactification of the Teichmüller space, necessary for the currents purpose. For details,

the readers are referred to the excellent book [211], where the proof of the stated theorems may be

found.

Lemma 0 [211,212] The map (X, f)→ L̂X is a proper embedding of T Σg into the space of currents

Curr(Σg) given by the intersection number i that is, for all closed curves α in Σg,

i(α, L̂X) = lX(α) (4.197)

defines a proper embedding of T Σg into Curr(Σg).

Proof: See [211,212].

We are now ready to establish the Thurston compactification. Let us first state a lemma.

Lemma 1 [211,212] For any hyperbolic surface Σg with the marking (X, f), we have the following

result

i(L̂X , L̂X) = π2|χ(Σg)|, (4.198)

where χ(Σg) = 2(1−g)) is the Euler characteristics of Σg. Remarkably, this is a topological invariant.

Let’s denote the map (X, f)→ L̂X by L̂. We have the following lemma

Lemma 2:

L̂ : T Σg → IPCurr(Σg) = (Curr(Σg)− 0)/(µ ∼ tµ, µ ∈ Curr(Σg), t ∈ IR>0)
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is injective.

Proof: Let [f : Σg → X] and [h : Σg → Y ] be two elements of T Σg. Then

[L̂X ] = [L̂Y ] => L̂X = tL̂Y . (4.199)

Now we use the previous lemma and obtain

π2|χ(Σg)| = i(L̂X , L̂X) = i(tL̂Y , tL̂Y ) (4.200)

= t2i(L̂Y , L̂Y ) = t2π2|χ(Σg)|,

i.e.,

t = 1, (4.201)

as t ∈ IR>0 and therefore LX = LY .

As we have defined earlier, a lamination L on Σg is a closed subset which is the union of disjoint

simple geodesics and the geodesics in L are called the leaves of the lamination. An important

property of these leaves is that they do not intersect each other that is if λ, α ∈ L, then the following

is satisfied

i(λ, α) = 0. (4.202)

If we associate a transverse measure to the leaves of L, then we obtain a measured lamination

denoted by ML. We may of course construct the projective measured laminations PML through

the following identification

PML = (ML− {0})/(λ ∼ tλ, λ ∈ML, t > 0). (4.203)

Clearly the leaves of a measured lamination define a subset in the space of all geodesics and

therefore, the projective measured lamination PML may be identified as a subset of the space

of geodesic currents. It is in fact a compact subset, which may be proven utilizing an elementary

result from topology namely Tychonof’s theorem [213]. Another important observation is to note

that the image of the Teichmüller space under the map L̂ i.e., L̂(T Σg) and PML are disjoint.

This follows from the definition of the geodesic lamination that is i(λ, λ) = 0 ∀λ ∈ PML, while
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i(L̂X , L̂X) = π2|χ(Σg)| 6= 0, ∀X ∈ T Σg. Now we finish the Thurston compactification

Lemma 3: The closure of T Σg ⊂ IPCurr(Σ) is precisely T Σg ∪ IPML.

Proof: Let say [fn : Σg → Xn] is a sequence that diverges in T Σg. Then obviously, {[L̂Xn ]} ⊂

PCurr(Σg) converges to some element of PCurr(Σg) due to the fact that PCurr(Σg) is a compact sub-

set of Curr(Σg) (passing to a subsequence). Then ∃ tn such that Limn→∞tnL̂Xn = µ ∈PCurr(Σg).

Now from the divergence criteria, there exists a simply closed curve α ∈ Σg, such that

Limn→∞lXn(α) =∞. (4.204)

But, ∞ > i(α, µ) = i(α, tnL̂Xn) = tnlXn(α) and thus we must have

Limn→∞tn = 0. (4.205)

Now we see the following

i(µ, µ) = i(limn→∞tnL̂Xn , limn→∞tnL̂Xn), (4.206)

= limn→∞t
2
ni(L̂Xn , L̂Xn), (4.207)

= limn→∞t
2
nπ

2|χ(Σ)|, (4.208)

= 0, (4.209)

and therefore, µ ∈ PML.
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2005.

[22] D. Fajman, G. Heißel, Kantowski-Sachs cosmology with Vlasov matter, Classical and Quantum

Gravity, vol. 36, 135002, 2019.

[23] A.D. Rendall, K.P. Tod, Dynamics of spatially homogeneous solutions of the Einstein-Vlasov

equations which are locally rotationally symmetric, Classical and Quantum Gravity, vol. 16,

1705, 1999.

[24] L. Andersson, V. Moncrief, Future complete vacuum spacetimes, The Einstein equations and

the large scale behavior of gravitational fields, 299-330, 2004, Springer

199



[25] Y. Choquet-Bruhat, General relativity and the Einstein equations, Oxford University Press,

2009.

[26] J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed

manifolds, Classical and Quantum Gravity, vol. 12, 2249, 1995.

[27] E. Hebey, F. Pacard, D. Pollack, A Variational Analysis of Einstein–Scalar Field Lichnerowicz

Equations on Compact Riemannian Manifolds, Communications in mathematical physics, vol.

278, pages 117-132, 2008.

[28] V. Moncrief, Global properties of Gowdy spacetimes with T3 ×R topology, Annals of Physics,

vol. 132, pages 87-107, 1981.

[29] P.T. Chrusciel, J. Isenberg, V. Moncrief, Strong cosmic censorship in polarised Gowdy space-

times, Classical and Quantum Gravity, vol. 7, pages 1671, 1990.

[30] D. Fajman, M. Ofner, Z. Wyatt, Slowly expanding stable dust spacetimes, arXiv preprint

arXiv:2107.00457, 2021.

[31] J. Isenberg, V. Moncrief, Asymptotic behavior of the gravitational field and the nature of

singularities in Gowdy spacetimes, Annals of Physics, vol. 199, pages 84-122, 1990.

[32] L. Anderson, V. Moncrief, On the global evolution problem in 2+ 1 gravity, Journal of Geometry

and Physics, vol. 23, pages 191-205, 1997.

[33] M.T. Anderson, Geometrization of 3-manifolds via the Ricci flow, Notices AMS, vol. 51, 184-193,

2004.

[34] M.T. Anderson, Canonical metrics on 3-manifolds and 4-manifolds, Asian Journal of Mathe-

matics, vol. 10, 127-164, 2006.

[35] J. Speck, The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein

system with a positive cosmological constant, Selecta Mathematica, vol. 18, pages 633-715, 2012.

[36] L. Andersson, V. Moncrief, Einstein spaces as attractors for the Einstein flow, Journal of

differential geometry, vol. 89, 1-47, 2011.

[37] P. Mondal, Attractors of ‘n+1’ dimensional Einstein-Λ flow, Classical and Quantum Gravity,

vol. 37, 235002, 2020.

200
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