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ABSTRACT
We prove a continuation condition in the context of 3 + 1 dimensional vacuum Einstein gravity in Constant Mean extrinsic Curvature
(CMC) gauge. More precisely, we obtain quantitative criteria under which the physical spacetime can be extended in the future indefinitely as
a solution to the Cauchy problem of the Einstein equations given regular initial data. In particular, we show that a gauge-invariant H2 Sobolev
norm of the spacetime Riemann curvature remains bounded in the future time direction provided the so-called deformation tensor of the unit
timelike vector field normal to the chosen CMC hypersurfaces verifies a spacetime L∞ bound. To this end, we implement a novel technique
to obtain this refined estimate by using Friedlander’s parametrix for tensor wave equations on curved spacetime and Moncrief’s subsequent
improvement. We conclude by providing a physical explanation of our result as well as its relation to the issues of determinism and weak
cosmic censorship.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0180076

I. INTRODUCTION
Given regular initial data for gravity, it is of mathematical and physical interest to obtain analytic criteria that codify whether the grav-

itational field will evolve to a unique singularity-free global solution to the Einstein equations, which are a system of quasi-linear hyperbolic
partial differential equations (PDEs) while expressed in a suitable gauge (e.g., spacetime harmonic gauge1 or constant mean curvature spatial
harmonic gauge2). The appeal for mathematicians is obvious as there is a plethora of literature studying the breakdown of solutions to non-
linear field equations. A few examples where global existence holds in 3 + 1 Minkowski space are: the nonlinear wave equation ◻φ = λ∣φ∣p−1φ
for 1 ≤ p ≤ 4,3–6,27 sine-Gordon equation 7 non-Abelian Yang–Mills–Higgs for a fixed choice of compact gauge group and specific restrictions
on the Higgs potential.8,9 Yang–Mills fields on a globally hyperbolic background are also known to exhibit a non-blow-up characteristic.10,11

In contrast, some equations that may have finite time blow-ups in 3 + 1 dimensions include: wave maps (also known as non-linear sigma
models),12 and relativistic perfect fluids.13 Any physically acceptable classical field is desired to be globally well-posed on any fixed globally
hyperbolic spacetime.

From the physics perspective, the breakdown/continuation of solutions to Einstein’s equations is essential to (in)validate the determin-
istic essence of classical general relativity theory. For if the maximal Cauchy development of regular initial data were to not be regular (in
a suitable sense), then the future cannot be fully predicted even with perfect knowledge about the present (therefore a loss of information
occurs). A more pathological situation would be if the evolved spacetime contains so-called naked singularities which in principle should be
observable by a timelike observer located in the future. These irregularities such as naked singularities and Cauchy horizons are hypothesized
to be absent from nature (or exist as purely mathematical objects which are to be unstable against perturbations) as stated in Penrose’s cosmic
censorship conjecture.14

Even though several interesting results in the context of small data global well-posedness problems have been established over the past
thirty years,15–25 the large data problem is far from being solved. While this is an extremely difficult issue to handle if one does not impose
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a smallness condition on the size of the data, it is a desirable first step to deduce the condition under which the Cauchy problem with large
data is indeed globally well-posed in the absence of any symmetry. Another important motivation lies in the field of numerical relativity.
If one attempts to solve the initial value problem for Einstein’s field equations numerically, then a choice of coordinates must be explicitly
made (there are infinitely many possible coordinates due to diffeomorphism invariance). During numerical evolution, it is indeed possible
to encounter fake singularities which are a result of the choice of coordinates. One such example occurs when working with Gaussian nor-
mal coordinates.26 Coordinate singularities are difficult to handle numerically and they can be wrongfully interpreted as intrinsic spacetime
singularities. In order to avoid such issue, one needs sharp criteria that can distinguish between the true and fake singularities.

In this paper, we attempt to find such breakdown/continuation condition for the special case of vacuum gravity, namely the equation

Ric ĝ = 0 (1.1)

is assumed to be satisfied everywhere in a time orientable globally hyperbolic spacetime M endowed with a metric tensor ĝ of Lorentzian
signature. We will work in Constant Mean extrinsic Curvature Spatial Harmonic (CMCSH) gauge.

Previous accounts on continuation criteria for vacuum include the work of Anderson,28 who showed that a breakdown occurs when the
L∞t L∞x⃗ norm of the Riemann tensor Rm ĝ of the spacetime (M, ĝ) blows up. Chen and Lefloch29 provided the full proof of the claim that was
partially achieved in Anderson’s work.28 Later, an improved breakdown criteria requiring one less degree of differentiability in the metric ĝ was
later found by Klainerman and Rodnianski,30 namely the L∞t L∞x⃗ blow-up of the deformation tensor nπ ∶= Lnĝ of the unit timelike vector field
n normal to a Constant Mean Curvature (CMC) foliation of M (here L is the Lie derivative). This in fact did not require all derivatives of the
metric (that would be non-geometrical) but rather certain components describing the extrinsic geometry of the chosen Cauchy hypersurfaces.
The work in Ref. 30 was extended by Shao31 to apply for Einstein-scalar field and Einstein-Maxwell spacetimes. A further improvement due to
Wang32 required the L1

t L∞x⃗ norm of nπ to be bounded for the continuation of the vacuum CMC foliation. Our treatment differs substantially
from that of the previous ones and attempts to shed light on the advantages of considering the Cartan/tetrad/frame bundle formalism that can
essentially handle any gauge-covariant tensor wave equations (e.g., Einstein’s equations, Yang-Mills equations). The parametrix used by Ref.
30 resembles Kirchoff-Sobolev type integral equation33 for the spacetime curvature. This integral equation is approximate but does not make
a substantial difference in obtaining the desired estimates. On the contrary, the integral equation used by us is exact in nature and it is built
on Fredlander’s theory of wave equations on curved spacetime and Moncrief’s34,35 subsequent refinement. Moncrief’s refinement crucially
depends on solving an appropriate characteristic initial value problem (see Refs. 34 and 35 more extensive detail).

The outline of this presentation is as follows. Section II will lay out the notations and definitions to be used. Section III states the
main theorem and provides examples of the continuation criteria for two different spacetimes [Taub-NUT and closed Friedman-Lemaitre-
Robertson-Walker (FLRW) universe], the methods of proof are also summarized. In particular, we will need two results due to Chen and
LeFloch36,37 and the analysis in Refs. 38–40 regarding lower bounds for the null and chronological injectivity radii of the exponential map at
a point p ∈M in order to invoke the representation formula for the Riemann curvature deduced by Friedlander41 and Moncrief.34 Section V
provides such representation formula after a review of the Cartan/tetrad/frame bundle formalism of GR. The full proof of the main theorem
is the subject of Secs. IV and VI, we use a bootstrap technique to bound the spacetime L∞ norm of the Riemann tensor which turns out to
be sufficient to conclude well-posedness through usual elliptic arguements in a CMC spatial harmonic or CMC-spatially transported gauge.
Concluding remarks are made in Sec. VII.

II. NOTATIONS AND DEFINITIONS
Let (M, ĝ) be a time orientable globally hyperbolic spacetime of dimension 3 + 1. Since it is globally hyperbolic, M can be foliated by a

family of Cauchy hypersurfaces {Σt} as level sets of a time function t. The spacetime topology is decomposed as Σ ×R. Each level set Σt1 is
diffeomorphic to a future one Σt2 thanks to the flow generated by

∂t = Nn + X, (2.1)

where n is a future unit vector field orthogonal to the level sets, N is called the lapse function, and X is called the shift vector field which is
tangent to the Cauchy hypersurfaces. Choosing local coordinates (t, xi

) gives the metric in Arnowitt-Deser-Misner (ADM) form

ĝ = −N2dt ⊗ dt + gij(dxi
+ Xidt)⊗ (dxj

+ X jdt), (2.2)

here gi j = g(∂i,∂ j) = ĝ(∂i,∂ j) is the induced Riemannian metric on Σ. Direct calculation shows that

n = −Ndt (2.3)

μ ĝ = Nμg. (2.4)

The second fundamental form of the constant time hypersurfaces is defined as ki j = (
1
2 Lng)i j . One has a valid Cauchy problem upon choosing

an initial level set with suitable regularity conditions (choosing a slicing of the spacetime or equivalently choosing a gauge). In this article we
are interested in spacetimes that are foliated by closed Cauchy hypersurfaces of negative Yamabe type (see Refs. 35 and 42 for detail about
negative Yamabe manifolds).
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Other objects and spaces relevant to our study
Lp
(X) Lebesgue function space of pth-order over the manifold X with density μ. The norm is given by ∣∣ f ∣∣Lp ∶= (∫X ∣ f ∣

pμ)1/p.
L∞(X) Space of measurable functions that are bounded almost everywhere. The supremum norm is ∣∣ f ∣∣L∞ ∶= supx ∈X ∣ f (x)∣. The

spacetime L∞ with coordinates (t, x⃗) is denoted as L∞t L∞x⃗ .
Hs Sobolev space of order s defined on a Cauchy hypersurface.
expp : V ⊂ TpM →M Exponential map at p ∈M with domain V a neighborhood of the origin.
Inj(M, p, E) Injectivity radius of expp with respect to a Riemannian metric E at p, it is defined as the largest positive number r such that

expp restricted to the E-ball BE(0, r) = {v ∈ TpM : E(0, v) ≤ r} is a diffeomorphism.
NullInj ĝ(M, p, E) Null injectivity radius of expp with respect to a Riemannian metric E and Lorentzian metric ĝ. It is the largest r

such that expp∣DE(0,r) is a diffeomorphism where DE(0, r) is the intersection of BE(0, r) with the bottom portion of the double null cone
{v ∈ TpM : ĝ(v, v) = 0}.

Dp Image of expp∣DE(0,r) where r is the null injectivity radius at p. Throughout the paper, we call it the “full past light cone of p.” Since it
extends down to Euclidean distance r, Dp will meet a family of spacelike Cauchy level sets {Σt}t ∈[tp−r,tp] where tp is the global time coordinate
of the point p. Declare Bp(t) ∶= Dp ∩ Σt for each t ∈ [tp − r, tp], this is a ball on the level set of t with topological two-sphere boundary σp(t).

Cp Mantle of full past light cone of a point p ∈M, by mantle we mean it does not include the interior of the cone nor the interior of the
ball at tp − r.

Jp Interior of past light cone of a point p ∈M plus the ball at tp − r. Note that Dp ∶= Cp ∪ Jp, σp(t) ∶= Cp ∩ Σt and ∂Dp = Cp ∪ Bp(tp − r).
χ, χ̄ Null second fundamental forms. Precisely, given two light-like/null future-directed vector fields L, L̄ (corresponding to outgoing and

incoming directions, respectively) which are perpendicular to each Σt , define χ(v,w) ∶= ĝ(∇vL,w) and χ̄(v,w) ∶= ĝ(∇v L̄,w) for any two
vector fields v,w ∈ TΣ. The traces in particular control the evolution of surface areas from spacelike spheres along the incoming and outgoing
null directions.

μ̂g(x) ∶=
√
−det ĝ(x) Canonical volume form for the Lorentzian manifold (M, ĝ).

ηab Minkowski metric.
δab Kronecker delta.

III. MAIN THEOREM AND IDEA OF THE PROOF
Global hyperbolicity allows us to cast the Einstein equations as a dynamical system with phase space coordinates (g(t), k(t)). Assume

Σt=0 is the initial Cauchy hypersurface and on it we prescribe the data (g0, k0) ∈ Hs
×Hs−1

(s ≥ 4) that verifies the constraint equations.
One may now begin to study the determinism of the system i.e., we want to understand if the solutions to the evolution equations can be
extended to the future without any obstruction or if there are any obstructions then we want to understand their nature. It is not clear how
to proceed at this point. We utilize the physical meaning of timelike Killing fields. Existence of a timelike Killing vector field implies that the
spatial hypersurface is stationary or the induced geometry does not change along the flow of this vector field. Therefore, if a timelike Killing
field exists, then from a physical perspective, the predictability should trivially hold since the data is not changing in time (in a rigorous
sense this is tied to Noether’s theorem and conservation laws). But a generic spacetime is almost always not stationary. Therefore, we do not
have a timelike Killing vector field. However, one can claim that in order for predictability to hold one does not require exact preservation
of the initial information but instead non-drastic change. In other words, the obstruction to the existence of a timelike Killing field is not
infinitely large so that the initial information is not completely deformed within a finite time interval in the future. In order for such a
property to hold, a physically plausible guess would be that the gauge-invariant L∞ norm of the deformation tensor of the unit timelike
vector field orthogonal to the Cauchy foliation nπ ∶= Lnĝ should remain finite. Indeed, if nπ vanishes then n is Killing and the spacetime
is stationary.

The next question is how do we show that this criteria of finiteness of nπ can be used to conclude that the CMCSH vacuum Cauchy
problem is globally well-posed in the future? In fact, an established result (e.g., see Ref. 43) states that non-blow up of the H2

(Σ) norm of
Riemann tensor in finite time leads to well-posedness. This is expected from a physical point of view since Riemann curvature is the mani-
festation of vacuum gravity (recall the geodesic deviation equation) and exhausts all degrees of freedom. The problem at hand has now been
reduced to the following: Suppose T∗ is the maximal time of existence of a solution, then the solution can actually be extended indefinitely
past T∗ provided we use the mild assumption of L∞t L∞x⃗ finiteness of nπ to control ∥Rm ĝ∥H2 at T∗ + ϵ, ϵ > 0 in terms of the initial data
at t = 0. Success means the validity of the following.

Main Theorem. Let (M = Σ ×R, ĝ) be a globally hyperbolic spacetime and Σt=0 be an initial Cauchy hypersurface of negative Yam-
abe type and on it (g0, k0) ∈ Hs

×Hs−1
(s ≥ 4) is the initial data for the Cauchy problem of the vacuum Einstein evolution equations in

Constant Mean extrinsic Curvature Spatial Harmonic (CMCSH) gauge satisfying the constraint equations. This CMCSH Cauchy problem
is well posed in C([0, t∗]; Hs

×Hs−1
). In particular, there exists a time t∗ > 0 dependent on ∥g0∥Hs , ∥k0∥Hs−1 such that the solution map

(g0, k0)↦ (g(t), k(t), N(t), X(t)) is continuous

Hs
×Hs−1

→ Hs
×Hs−1

×Hs+1
×Hs+1.
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Let T∗ be the maximal time of existence (i.e., T∗ ≥ t∗) of a solution to the CMCSH Cauchy problem with data (g0, k0), then either T∗ =∞ or

lim
t→T∗

sup ∥nπ(t)∥L∞(Σt) =∞. (3.1)

The proof is not straightforward. Direct energy-type argument for the Riemann curvature alone fails to yield the desired result since one
would require a point-wise bound to close such an argument (which by means of Sobolev embedding can only lead to an existence result for
a short time). Therefore, one must require an additional means to estimate the point-wise behavior of the Riemann curvature. To this end,
we utilize the integral equation for the Riemann curvature derived by Moncrief.34 In order to make sense of such an integral equation on a
dynamical spacetime, one needs to have a well-defined geodesically convex neighborhood. This in turn requires a bound on the point-wise
norm of the Riemann curvature. Once again, this leads to a circular argument. In order to circumvent this issue, we shall use the bootstrap
method (note that this “bootstrap” has nothing to do with the conformal “bootstrap” of field theory) that lies at the heart of hyperbolic partial
differential equations.44 We begin by assuming a point-wise upper bound of the Riemann curvature. This together with the bound on nπ and
Theorems 3.3 and 5.2 of Ref. 37 allows us to utilize Moncrief’s integral Eq. (5.13). Analysis of this equation yields a point-wise bound of the
Riemann curvature that is better than the bound we assumed in the first place. Upon closure of the bootstrap argument, the newly acquired
point-wise bound of Riemann curvature is then used to prove the main theorem via energy estimates.

We shall now sketch the plan of action in more detail. First and foremost we need to define the gauge-invariant L∞ norm, it will be with
respect to the Riemannian metric below

E ∶= ĝ + 2n⊗ n. (3.2)

The norm-squared of a continuous tensor field T is to be the contraction with itself via E

∣T∣2E ∶= Tab⋅ ⋅ ⋅
cd⋅ ⋅ ⋅T

ef ⋅ ⋅ ⋅
gh⋅ ⋅ ⋅EaeEb f ⋅ ⋅ ⋅E

cgEdh
⋅ ⋅ ⋅ (3.3)

Note that we will sometimes omit the subscript E for cleanliness. We then define the gauge-invariant L∞ norm over a CMC slice Σt ⊂M as
expected

∥T(t)∥L∞(Σt) ∶= sup
x⃗∈Σt

∣T(t, x⃗)∣E (3.4)

Our continuation criteria is L∞ finiteness of the deformation tensor of n over the slab [0, T∗] × Σ for any T∗ <∞

sup
t∈[0,T∗]

∥
nπ(t)∥L∞(Σt) <∞ (3.5)

From here on, we denote by C(nπ) any bounded function that solely depends on the estimate above.
With this in hand, one can begin performing the estimates. We require three definitions for total energy over a CMC slice at time t, these

are to be denoted by E0
(t), E1

(t), E2
(t) and must control the L2

(Σt) norm-squared of Rm ĝ , DRm ĝ , D2Rm ĝ respectively (the spacetime gauge
covariant derivative D is to be defined later). Appropriate choices of energies will lead to the following bounds

E0
(t2) ≤ eC(nπ)∣t2−t1 ∣E0

(t1) ≤ ⋅ ⋅ ⋅ ≤ C(nπ , t2)E0
(0) (3.6)

E1
(t2) ≤ eC(nπ)∣t2−t1 ∣(E1

(t1) + ∫

t2

t1

E0
(t)∥Rm ĝ(t)∥

2
L∞(Σt)

dt) (3.7)

E2
(t2) ≤ eC(nπ)∣t2−t1 ∣(E2

(t1) + ∫

t2

t1

E1
(t)∥Rm ĝ(t)∥

2
L∞(Σt)

dt) (3.8)

where t1 ≤ t2 are times in the interval [0, T∗]. Obviously, these inequalities are a consequence of general energy nonconservation as we do
not assume a timelike Killing field in the spacetime. Furthermore, the appearance of the L∞ norm of the Riemann curvature in the first and
second order bounds prevents the continuation proof from being trivial, if this term was absent then we can simply repeat the estimates until
we reach the initial data. We somehow need to bound this point-wise term by the energies at earlier times in order to apply an iteration
argument. To this end, we invoke Moncrief’s local integral equation for the Riemann tensor34 which holds in the geodesically convex causal
domain about a chosen point p ∈M (denoted Gp). The existence of this neighborhood relies on lower bounds for the null and chronological
injectivity radii of the exponential map about p. In the CMC gauge, this is guaranteed by the results of Chen and LeFloch36,37 as well as the
study of Klainerman and Rodnianski38–40 on causal geometry of vacuum spacetime.

Theorem 3.1 (Chen and LeFloch). Let p ∈M. Suppose the domain of the exponential map expp contains an E−ball of radius r BE(0, r)
= {v ∈ TpM : Ep(0, v) ≤ r} and the Riemann curvature satisfies

sup
γ

sup
a
∣Rm ĝ(γ(a))∣E ≤

1
r2 , (3.9)
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FIG. 1. Our assumptions yield a uniform lower bound for the null injectivity radius at any point p ∈ Σ × [0, T∗] which is controlled by the point-wise bound on the deformation
tensor of n and the regular L2 initial data for the curvature. DE(0, δ) is diffeomorphic to its image under the exponential map, the resulting cone Dp is well-behaved in the
sense that light rays emanating from the vertex will not have a common event within the region of existence (Euclidean length δ ≪ 1).

where supremum is taken over every ĝ−geodesic γ initiating from a vector lying in BE(0, r), then there exists a uniform constant C ∈ (0, 1) such
that the following bound is fulfilled by the injectivity radius

Inĵg(M, p, E)
r

≥ C
Vol̂g(BE(p, Cr))

r4
(3.10)

with BE(p, r) ∶= expp(BE(0, r)).

Theorem 3.2 (Chen, LeFloch, Klainerman and Rodnianski). The null injectivity radius of an observer located at p in an Einstein vac-
uum spacetime is uniformly controlled solely in terms of the lapse function, the second fundamental form of the foliation, finite initial L2 data of
curvature and lower volume bounds on some initial hypersurface.

In CMC time gauge, one can use the elliptic equation

ΔgN + ∣k∣2N =
∂ trg k
∂t

,

to obtain a point-wise estimate for the lapse function N in terms of the second fundamental form k (and therefore the deformation tensor of
n). The initial data is assumed to be finite, therefore we get a lower bound on the null injectivity radius. Consequently, we are now allowed to
draw a past light cone emanating from p that exists throughout the range of the null exponential map. Our analysis will require us to work
in the normal neighborhoods of several points inside the slab [0, T∗] × Σ and the past cones of such points will need to extend to a uniform
length δ. We declare

0 < δ ≤ inf
p∈Σ×[0,T∗]

NullInj ĝ(p, E) (3.11)

in order to meet our needs (see Fig. 1). Our bootstrap assumption on the curvature is

sup
t∈[0,T∗]

∥Rm ĝ(t)∥L∞(Σt) ≤
1
δ2 and Vol̂g(BE(p, Cδ)) ≥

δ4

C
∀p ∈ [0, T∗] × Σ (3.12)

Again, we must eventually justify the above by obtaining a refined point-wise bound. We can now safely invoke Moncrief’s integral
equation which has a mantle term and a two-sphere term in the following schematic form

Rm ĝ(x) ∼ ∫
Cp

( ⋅ ⋅ ⋅ ) + ∫
σp(tp−δ)

( ⋅ ⋅ ⋅ ), x ∈ Gp

here p is a point in the [0, T∗] slab and tp is its global time coordinate. The explicit expression is to be given in Sec. V. The L∞ squared norm of
the curvature at the tp Cauchy slice will be shown to obey

∥Rm ĝ(tp)∥
2
L∞(Σtp )

≤ C(E2
(tp − δ) + E1

(tp − δ) + δ−1E0
(tp − δ)) (3.13)

This bound is possible due to two fundamental reasons. Firstly, it will rely on the tetrad/SO(1,3) frame bundle formalism of GR which
yields curvature-dependent formulas for the connection and (co-)frame fields in the normal neighborhood of p (and so in Gp) thanks to the
defining properties of the bundles at play (exterior covariant derivatives, Cartan structure equations, etc.).34,35 One will then be able to use
such formulae in addition to (3.6)–(3.8) for an application of Grönwall’s inequality. Secondly, Moncrief’s equation utilizes a so-called null
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FIG. 2. The iteration mechanism bounds the energies at t∗ in terms of the initial data. Since the estimates involve integration over [t∗ − δ, t∗], take out Rm ĝ as sup norm and
let p be the point where it is achieved. Bound the sup norm by means of the light cone mantle estimates (3.13), they can only go down the length of Dp which is δ so run more
energy bounds starting at tp − δ. This now includes integration over [tp − 2δ, tp − δ], take out sup norm of Riemann again and let it happen at p′. Use light cone estimates
with new vertex at p′ to bound sup norm by energies at tp′ − δ. Repeat a finite number of times until we reach t = 0.

structure present in the non-linear gauge-covariant wave equation for the curvature. Long-time existence or finite time blow-up of the quasi-
linear hyperbolic Einstein equations is essentially determined by the relative strengths of the non-linearities and the geometric dispersion
associated with the wave characteristics (or energy decay caused by a rapid expansion of the spacetime). Oftentimes, the special structure of
the non-linearities makes them weak compared to the linear dispersive terms at the level of small data. A large number of studies exist in the
literature that deal with this issue of the structure of the non-linearities. Klainerman45 showed that if the non-linear terms satisfy the so-called
null condition in 3 + 1 dimensions, then the global existence holds for small data limit contrary to a generic non-linearity for which global
existence just fails in 3 + 1 dimensions. In the current context, the null structure present in some of the Cp non-linear terms is fined-tuned to
prevent finite time singularities, namely, there will be no causal focusing of curvature energy due to the absence of Ricatti-type self-interaction
(the dispersive effect dominates instead). The precise calculations will be given in Sec. VI.

Recall that p has been arbitrary so far, we now declare it to be the point where the supremum of Rm ĝ is attained over the slab [t∗ −
δ, t∗] × Σ (this is possible since the Cauchy slices are closed). Proceed by substituting (3.13) into the first and second-order energy estimates
over time intervals of length δ and iterate until we reach the initial data (see Fig. 2 for a pictorial view of this mechanism), we shall find a
pivotal factor of δ−1 which will allow us to close the bootstrap. More precisely, we will obtain

E2
(t∗) + E1

(t∗) + E0
(t∗) ≲ 1 + δ−1C(nπ , t∗, ∥Rm ĝ∥H2

(Σt=0)
) (3.14)

where C(nπ , t∗, ∥Rm ĝ∥H2
(Σt=0)

) is a constant dependent only on the initial hypersurface H2 data of the curvature, the time t∗, and the bound
for nπ . The next step is to use the above estimate as well as (3.13) to find the bootstrap refinement. This will then imply that the L∞([0, T∗] ×
Σ) norm of the Riemann tensor is actually bounded by C(nπ , T∗, ∥Rm ĝ∥H2

(Σt=0)
). Therefore, one can finally run the energy estimates (3.7)

and (3.8) over the time interval [0, t∗] and easily reach the data at t = 0. The conclusive result

∥Rm ĝ∥H2
(Σt∗ )

≤ C(nπ , T∗, ∥Rm ĝ∥H2
(Σt=0)

) <∞

gives the main theorem through standard elliptic arguments in CMCSH gauge.

A. Examples of globally hyperbolic spacetimes with compact Cauchy slices that do not satisfy
the continuation criteria

A first example of a vacuum spacetime for which the gauge-invariant sup norm of nπ is not point-wise bounded is the so-called Taub-
NUT solution which has the topology R × S3 and metric in Euler coordinates given by
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ĝ(t,ψ, θ,ϕ) = −U−1
(t)dt ⊗ dt+(2l)2U(t)(dψ + cos θdϕ)⊗ (dψ + cos θdϕ)

+ (t2
+ l2
)(dθ⊗ dθ + sin2 θdϕ⊗ dϕ)

where U(t) ∶= 2mt+l2−t2

t2
+l2 with m, l positive constants. One can immediately conclude that there is no shift X = 0 and the lapse reads as N(t)

= U(t)−1/2. Thus, the timelike unit vector field orthogonal to the Cauchy foliation is n = U(t)1/2∂t . Direct calculations show that the only
non-vanishing coordinate components of the deformation tensor of n are: nπψψ , nπθθ, nπϕϕ, nπψϕ. The L∞ norm-squared of nπ with respect to
E = ĝ + 2n⊗ n can be computed to be

∥
nπ(t)∥2

L∞(S3
t )
=

U′(t)2

U(t)
+

8t2

(t2
+ l2
)

2 U(t) (3.15)

which blows-up in finite time at t± = m ±
√

m2
+ l2.

Another example is the FLRW metric
ĝ = −dt ⊗ dt + a2

(t)gijdxi
⊗ dxj , (3.16)

where the scale factor a(t) has the property of going to zero as t → 0 (the Big Bang). This spacetime has topology R × Σ (Σ ≅ H3,E3, or S3

and their compact quotients) and satisfies Einstein’s equations with a perfect fluid source. Let us consider the case Σ ≅ S3. Despite not being
a vacuum solution, one would still expect non-blow up of the deformation tensor of n to give us information regarding the possibility of
extending the solution (equally as important, we would also like to examine the strength of the fluid to fully characterize the breakdown
condition, this is discussed in our final remark of Sec. VII). The shift vector field is zero and the lapse equals to unity. Thus, n = −dt and the
only non-vanishing components of the deformation tensor are the spatial ones nπi j = 2a′(t)a(t)gi j , this yields

∥
nπ(t)∥2

L∞(S3
t )
= 12

a′(t)2

a(t)2 (3.17)

Suppose we denote the pressure and density of the fluid by P and ρ respectively. In that case, we can examine the early time behavior of the
scale factor in the matter- and radiation-dominated regimes. The former is characterized by P = 0 and the condition a3ρ = const. in t. For t
close to 0 the Friedmann equations imply a(t) ∼ 1 − cos(t1/3

) ∼ t2/3 and a′(t) ∼ t−1/3, one then sees that the L∞ norm of nπ goes like t−2 and
becomes singular at t = 0. The radiation-dominant regime is described by an equation of state P = 1

3ρ and a4ρ = const. in t. The early time
behavior of the scale factor is then a(t) ∼ sin(t1/2

) ∼ t1/2 and a′(t) ∼ t−1/2. Once again, the L∞ norm of nπ blows up at t = 0. Similar behavior
persists in pure vacuum solution the Milne universe where the spacetime is foliated by compact hyperbolic manifolds.

As alluded to earlier, it is valuable to also examine the strength of the fluid. Concretely, study the gauge-invariant sup norm of the
pressure and density in the early time approximation. Do so by revisiting the equations of state. For the matter-dominated universe, P is no
issue since it always vanishes but ρ(t) ∼ a(t)−3

∼ t−2 which blows up as one approaches the Big Bang. Likewise, the radiation-dominant case
has P ∼ ρ ∼ a(t)−4

∼ t−2. The total quantity ∥nπ∥L∞ + ∥(P, ρ)∥L∞ captures the non-vacuum continuation criteria (at least in the form which
we posit at the end of Sec. VII) and its finiteness is not met at t = 0, hence no past extension beyond the Big-Bang is possible.

IV. GLOBAL ENERGY ESTIMATES OVER THE CMC CAUCHY SLICES
The ever-present issue of finding a suitable definition of gravitational energy makes its way into our analysis. The reason why there is

no clear a priori choice is attributed to the very nature of general relativity theory. Concretely, a universal definition of local energy density is
not allowed by the equivalence principle (nevertheless, there is a good definition of energy in a quasi-local sense, see Ref. 46). In Sec. III, we
stated the requirements needed for our purposes, namely three energy definitions which in conjunction will control the H2 squared-norm of
the Riemann curvature at a given CMC slice.

In the absence of sources, the Riemann tensor is equal to the Weyl tensor W whose role is to capture pure gravity as it is projected out of
the Einstein equations. With this in mind, we consider the Bel-Robinson tensor as our zeroth order candidate

Qαβγδ ∶=WαμγνWβ
μ
δ
ν
+ ∗Wαμγν ∗Wβ

μ
δ
ν

= RmαμγνRmβ
μ
δ
ν
+ ∗Rmαμγν ∗Rmβ

μ
δ
ν,

(4.1)

where ∗Wαβγδ =
1
2 ϵαβμνW

μν
γδ is the Hodge dual of W. Note that it models a gauge-theoretic stress tensor as it is generally traceless and

divergence-free in vacuum
tr̂g Q = 0,

div∇ Q = 0.

The total zeroth order energy over Σt is then defined as

E0
(t) ∶= ∫

Σt

Q(n, n, n, n) μg (4.2)
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To see that it is positive definite and indeed controls the L2
(Σt) norm of Rm ĝ we must set up a frame (L̂, L̂, e1, e2). L̂ and L̂ are null future-

directed and determined by the Eikonal equations in correspondence to a double null foliation of the spacetime (L̂ is the incoming direction
and L̂ is the outgoing, e.g., see Ref. 47). Moreover, e1 and e2 are tangent to the two−spheres that foliate the null cones. Performing a conformal
transformation L = a2L̂, L̄ = a−2L̂, a : M → R, demand the following to be satisfied

ĝ(L, eA) = ĝ(L̄, eA) = 0, ĝ(L, L̄) = −2, ĝ(eA, eB) = δAB (4.3)

for A, B running from 1 to 2. The metric in this null frame basis can then be written as

ĝ = −
1
2
(L⊗ L̄ + L̄⊗ L) + e1 ⊗ e1 + e2 ⊗ e2, (4.4)

The timelike unit vector field n orthogonal to the spacelike level sets has an expression in terms of L and L̄

n ≈
1
2
(L̄ + L), (4.5)

where ≈ indicates equality modulo a positive function that is uniformly bounded by means of (3.5). Let us explicitly write down the different
null components of the Riemann curvature

αAB ∶= Rm ĝ(eA, L, eB, L), ᾱAB ∶= Rm ĝ(eA, L, eB, L),

2βA ∶= Rm ĝ(L, L, L, eA), 2β̄A ∶= Rm ĝ(L, L, L, eA), (4.6)

ρ ∶=
1
4

Rm ĝ(L, L, L, L), e ∶=
1
4
∗Rm ĝ(L, L, L, L).

We then obtain the following for the energy density

C−1
(∣α∣2 + ∣α∣2 + ∣β∣2 + ∣β∣2 + ∣ρ∣2 + ∣e∣2) ≤ Q(n, n, n, n) ≤ C(∣α∣2 + ∣α∣2 + ∣β∣2 + ∣β∣2 + ∣ρ∣2 + ∣e∣2) (4.7)

where C is a uniform positive constant dependent only on the point-wise bound for nπ . Now that we have established control
of ∥Rm ĝ(t)∥2

L2
(Σt)

via E0
(t), we must do the same for the first and second derivatives. It is at this point that we resort to the

Cartan/tetrad/SO(1,3)-frame bundle formalism by considering a connection one-form ω relative to the Levi–Cività connection ∇ of (M, ĝ),
the defining local relation is

ωa
bμ = ⟨Θ

a,∇μhb⟩, (4.8)

where {ha = hμa∂μ}3
a,μ=0 and {Θa

= Θa
μdxμ}3

a,μ=0 are choices of SO(1,3)-orthonormal frame and co-frame fields, respectively. The a, b indices
(known as gauge indices in the physics literature) reflect the fact that ω is an endomorphism-valued one-form acting on R4

≅ the fibers of the
associated vector bundle to the SO(1,3)-frame bundle. The connection ω induces an exterior covariant derivative dω whose local action on the
base is to be denoted by Dμ. It acts on the Riemann tensor as

DαRma
bμν = ∇αRma

bμν + ω
a

cαRmc
bμν − ω

c
bαRma

cμν.

We demand higher order energies to specifically control the ∥D2Rm ĝ(t)∥2
L2
(Σt)
+ ∥DRm ĝ(t)∥2

L2
(Σt)

norm. This will be possible by defining
the following ad-hoc stress tensors which emulate a massless scalar field theory

T
1
μν ∶= DμRm ĝ ⋅DνRm ĝ −

1
2

ĝμνDαRm ĝ ⋅D
αRm ĝ , (4.9)

T
2
μν ∶= DμDRm ĝ ⋅DνDRm ĝ −

1
2

ĝμνDαDRm ĝ ⋅D
α DRm ĝ , (4.10)

where ⋅ denotes the inner product with respect to the Riemannian metric E (3.2). The energies over Σt are given by

E1,2
(t) ∶= ∫

Σt

T
1,2
(n, n) μg (4.11)

Direct calculation of the densities confirms that the above is positive definite and matches our demands, in particular, we find

T
1
(n, n) controls ∣DLRm ĝ ∣

2
+ ∣DL̄Rm ĝ ∣

2
+ ∑

A=1,2
∣DARm ĝ ∣

2 (4.12)

T
2
(n, n) controls ∣DLDRm ĝ ∣

2
+ ∣DL̄DRm ĝ ∣

2
+ ∑

A=1,2
∣DADRm ĝ ∣

2 (4.13)
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Computation of the∇-divergences produces terms with the deformation tensor nπ which are unable to be canceled out due to the Riemannian
metric E not being compatible with∇. One gets the following schematic expressions

div∇ T1
∼ DRm ĝ ⋅DRm ĝ ⋅

nπ +DRm ĝ ⋅ Rm ĝ ⋅ Rm ĝ , (4.14)

div∇ T2
∼ D2Rm ĝ ⋅D

2Rm ĝ ⋅
nπ +D2Rm ĝ ⋅DRm ĝ ⋅ Rm ĝ (4.15)

by means of the gauge wave equation for the curvature

D2Rma
bμν = 2Rma

cμβRmc
bν

β
− 2Rma

cνβRmc
bμ

β
− Rmγ

βμνRma
bγ

β

We re-derive the above in the next section. It is precisely these non-vanishing divergences that will account for the L∞ of the Riemann term
found in the energy estimates from Sec. III. We now begin to deduce such estimates.

Proposition 4.1. Let t1 ≤ t2 be times in [0, T∗] and J be either Q(n, n, n, ⋅) or T1,2
(n, ⋅), then the energies at t1 and t2 are related as follows

E(t2) ≤ E(t1) + C(nπ)∫
t2

t1
∫
Σt

∣div∇J∣ μgdt (4.16)

Proof. Pick any t ∈ [t1, t2], Stokes’ theorem and the assumption that each Σt is closed implies

∫
Σt

div∇JN μgdx1
∧ dx2

∧ dx3
= ∫

Σt

1
μ̂g

∂α(μ̂g J
α
)N μgdx1

∧ dx2
∧ dx3

=
d
dt∫Σt

J
tN μgdx1

∧ dx2
∧ dx3

Notice JtN = −J(n), therefore we arrive at the result by integrating both sides over [t1, t2] and taking N out of the divergence term as a
sup norm, which is controlled by nπ in CMC gauge. ■

Proposition 4.2. Suppose t, t1, t2 with t1 ≤ t2 are times in the interval [0, T∗], the zeroth, first, and second order energies verify the following

E0
(t) ≤ C(nπ , t)E0

(0) (4.17)

E1
(t2) ≤ eC(nπ)∣t2−t1 ∣(E1

(t1) + C(nπ , t2, E0
(0))∫

t2

t1

∥Rm ĝ(t)∥
2
L∞(Σt)

dt) (4.18)

E2
(t2) ≤ eC(nπ)∣t2−t1 ∣(E2

(t1) + C′(nπ)∫
t2

t1

E1
(t)∥Rm ĝ(t)∥

2
L∞(Σt)

dt) (4.19)

In particular, the L2 norm of the curvature over any time slice is bounded by the initial Cauchy data while the higher order norms require
point-wise control of Rm ĝ .

Proof. Begin with the zeroth-order estimates, these are quite simple since the Bel-Robinson tensor is divergence-free. Direct computation
shows div∇Q(n, n, n, ⋅) = 3

2 ⟨Q(n, n, ⋅, ⋅), nπ⟩, thus application of the last Proposition 4.1 leads to

E0
(t2) ≤ E0

(t1) + C(nπ)∫
t2

t1

E0
(t) dt (4.20)

Grönwall’s inequality implies

E0
(t2) ≤ eC(nπ)∣t2−t1 ∣E0

(t1) (4.21)

In particular, for t2 = t we directly estimate L2 energy at time t in terms of the initial energy E0
(0) up to a constant that solely depends on t as

well as the estimate for nπ .

E0
(t) ≤ eC(nπ)tE0

(0) (4.22)

Proceed with first and second orders. Here we find a bit more difficulty as the non-zero divergences of the stress tensors must be controlled.
The divergence of the current density is evaluated to be div∇J1,2

= 1
2 ⟨T

1,2, nπ⟩ + ⟨div∇T1,2, n⟩. Invoking the expressions (4.14) and (4.15)
yields the following inequalities for the energies
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E1,2
(t2) ≤ E1,2

(t1) + C(nπ)∫
t2

t1

E1,2
(t) dt + C′(nπ)∫

t2

t1
∫
Σt

∣D1,2Rm ĝ(t, x⃗)∣2 ⋅ ∣nπ(t, x⃗)∣ μgdt

+ C′(nπ)∫
t2

t1
∫
Σt

∣D1,2Rm ĝ(t, x⃗)∣ ⋅ ∣D0,1Rm ĝ(t, x⃗)∣ ⋅ ∣Rm ĝ(t, x⃗)∣ μgdt (4.23)

≤ E1,2
(t1) + C(nπ)∫

t2

t1

E1,2
(t) dt + C′(nπ)∫

t2

t1

E0,1
(t)∥Rm ĝ(t)∥

2
L∞(Σt)

dt

Application of Grönwall’s inequality yields the result

E1,2
(t2) ≤ eC(nπ)∣t2−t1 ∣(E1,2

(t1) + C′(nπ)∫
t2

t1

E0,1
(t)∥Rm ĝ(t)∥

2
L∞(Σt)

dt) (4.24)

For the 1st order estimate, the E0 present in the integral can be taken out since it is uniformly bounded by E0
(0), t2, and nπ . ■

V. LOCAL INTEGRAL EQUATIONS FOR THE CONNECTION, CO-FRAME FIELDS, AND CURVATURE
We now present formulae that will serve a crucial role in estimating the ∥Rm ĝ(t)∥2

L∞(Σt)
term in the first and second order energy

estimates.
Recall that the connection one-form ω depends on the choice of SO(1,3)-orthonormal frame and co-frame. If we let ha andΘa be initially

defined at p ∈M and parallel propagate them along the radial geodesics in the normal neighborhood of p (denoted N p), then this process
does not destroy the duality ⟨ha,Θb

⟩ = δb
a and orthonormality ĝ(ha, hb) = ηab. The metric thus has the following form in all of N p

ĝ = ηabΘ
a
⊗Θb (5.1)

Denoting the normal coordinates of a point x ∈ N p by xμ, the unique geodesic connecting p to x is radial and of the form γx(λ)
μ
= λxμ with

λ ∈ [0, 1]. The parallel transport equations for the frame and co-frame are then∇γ̇x ha = 0 and∇γ̇xΘ
a
= 0. In particular, we see

0 = ⟨Θa,∇γ̇x hb⟩ = xμ⟨Θa,∇μhb⟩ = xμωa
bμ = ⟨x,ωa

b⟩. (5.2)

which emulates the Cronström gauge condition in Yang-Mills theory. Contracting the coordinate of x with the curvature

xμRmμν = xμ(dω + ω ∧ ω)μν (5.3)

and using (5.2) along the radial geodesic results in

λxνRmμν(λx) = −
d

dλ
(λωμ(λx)) (5.4)

Integration over the entire curve parameter yields

ωa
bμ(x) = −∫

1

0
λxνRma

bμν(λx) dλ, ∀x ∈ N p (5.5)

As for the co-frame, note that because the tangent vectors of the radial geodesics are constant along the curve then their pairing with the
parallel propagated co-frame must also be independent of λ

⟨Θa, γ̇x⟩λ=0 = ⟨Θ
a, γ̇x⟩λ=1 (5.6)

Contract the coordinate of x (equivalently the coordinate function of the geodesic tangent vector) with the torsion-free equation

0 = dωΘa
= dΘa

+ ω ∧Θa (5.7)

and make use of (5.2) and (5.6) to obtain the following along the radial geodesic

0 =
d

dλ
(λΘa

μ(λx) − λΘa
μ(p)) − ω

a
bμ(λx)λxνΘb

ν(p) (5.8)

Integrate over the curve parameter to conclude

Θa
μ(x) = Θ

a
μ(p) + ∫

1

0
ωa

bμ(λx)λxνΘb
ν(p) dλ. (5.9)
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We now deduce a wave equation obeyed by the Riemann tensor. Begin with the second Bianchi identity

dωRm = 0 ⇐⇒ DαRma
bμν +DμRma

bνα +DνRma
bαμ = 0

Imposition of the vacuum Einstein equations yields the exact Yang–Mills type equation for the curvature

DνRma
bμν = 0. (5.10)

Using the following commutation relation

[Dα, Dβ]Rma
bμν =

Rma
cαβRmc

bμν − Rmc
bαβRma

cμν − Rmγ
μαβRma

bγν − Rmγ
ναβRma

bμγ

as well as the vacuum equation and the first Bianchi identity results in a gauge wave equation (a similar wave equation is satisfied by the
Yang–Mills curvature with a different gauge group)

DαDαRma
bμν = 2Rma

cμβRmc
bν

β
− 2Rma

cνβRmc
bμ

β
− Rmγ

βμνRma
bγ

β, (5.11)

Restoring∇ dependence yields the following

◻Rmμν = [∇
αωα, Rmμν] + 2[ωα,∇αRmμν] + [ωα, [ωα, Rmμν]]

+ 2[Rmμβ, Rmν
β
] − Rmγ

βμνRmγ
β (5.12)

where ◻ ∶= ∇α
∇α. Equipped with the lower bounds for the injectivity radii about p ∈ Σ × [0, T∗] discussed in Sec. III,34,35 used Friedlander’s

theory of wave operators41 to get the following integral equation for the frame components of the curvature Rma
bmn = Rma

bμνh
μ
mhνn evaluated

at any point x in the geodesically convex neighborhood Gp about p. Note that this equation is substantially different from the ones used by
Refs. 30 and 32 since the latter is approximate in nature while the current one is exact.

Rma
bmn(x) =

1
2π∫Cp ⊂ Gp

μΓ(x′){[−ωp
mσ(x′)Dσ

(k(x, x′)Rma
bpn(x

′
))

− ωp
nσ(x′)Dσ

(k(x, x′)Rma
bmp(x

′
)) − ωc

bσ(x
′
)Dσ
(k(x, x′)Rma

cmn(x′))

+ ωa
cσ(x′)Dσ

(k(x, x′)Rmc
bmn(x

′
))] + k(x, x′)[−2Rma

cmp(x′)Rmc
bn

p
(x′)

+ 2Rma
cnp(x′)Rmc

bm
p
(x′) + Rma

bpq(x
′
)Rmmn

pq
(x′)].

+ Rma
bmn(x

′
) ◻ k(x, x′) + 2∇σk(x, x′)[ωp

mσ(x′)Rma
bpn(x

′
) (5.13)

+ ωp
nσ(x′)Rma

bmp(x
′
) + ωc

bσ(x
′
)Rma

cmn(x′) − ωa
cσ(x′)Rmc

bmn(x
′
)]

+ k(x, x′)[Rma
bnp(x

′
)Rmp

m(x′) − Rma
bnp(x

′
)Rmp

n(x
′
)]}

+
1

2π∫σp ⊂ Gp

dσp{2k(x, x′)ξσ(x′)DσRma
bmn(x

′
)

+ k(x, x′)Φ(x′)Rma
bmn(x

′
) + k(x, x′)ξσ(x′)[Rma

bpn(x
′
)ωp

mσ(x′)

+ Rma
bmp(x

′
)ωp

nσ(x′) + Rma
cmn(x′)ωc

bσ(x
′
) − Rmc

bmn(x
′
)ωa

cσ(x′)]}.

Here Cp is the mantle of the past light cone of p and extends down to Euclidean length δ to the Cauchy hypersurface Σtp−δ (this is due to
the injectivity bounds). The second integration is over σp ≅ S2, which is the intersection of Cp with Σtp−δ . Γ = Γ(x, x′) is the squared geodesic
distance between points x, x′ ∈ Gp (also known as an optical function, see Theorem 1.2.3 of Friedlander41). Γ(p, x′) has a simple expression
due to the fact that geodesics in the normal neighborhood are radial. In particular, if we let x′μ be the normal coordinates of x′ and recall the
N p identity ĝμν(x′)x′μ = ĝμν(p)x′μ = ημνx′μ, one then concludes

Γ(p, x′) = ημνx′μx′ν. (5.14)

The measure of the Cp integral is a Leray form μΓ defined by the equation dx′Γ(x, x′) ∧ μΓ(x′) = μ̂g(x′). Transforming to spherical coordinates
(t, r, θ,ϕ). It is important to point out that the t present in the spherical coordinates is different from the global time function defined at the
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beginning of Sec. II allows us to find an explicit expression for μΓ(p,x′), first notice that the metric takes a block diagonal form due to Gauss’
lemma

ĝ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0

0 1

0 0

0 0

0 0

0 0
ĝθ,ϕ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.15)

Consequently one can then define null-spherical coordinates (u = t − r, ū = t + r, θ,ϕ). The geodesic squared distance between p and x′ is then

Γ(p, x′) = −uū + ĝθ,ϕ(x
′

S2 , x′S2) (5.16)

which leads to dx′Γ(p, x′) = −ūdu − udū + ∂θΓdθ + ∂ϕΓdϕ, hence a solution to the defining equation for the Leray form is given by

μΓ(p,x′) =

√
−det ĝ(u, ū, θ,ϕ)

u
du ∧ dθ ∧ dϕ (5.17)

Additionally, points in the mantle Cp correspond to ū = 0 and this results in the important relation

μΓ(p,x′)∣Cp =
1

u = −2r
μ̂g ∣Cp (5.18)

The interested reader may consult Sec. 2.9 of Ref. 41 for further discussion of Leray forms. The next relevant object in the integral equation is
the symmetric transport bi-scalar k(x, x′) which is expressed in local coordinates as

k(x, x′) =
∣det (∂2Γ(x, x′)/∂xμx′ν)∣1/2

4μ1/2
ĝ (x)μ

1/2
ĝ (x

′
)

Ô⇒ k(p, x′) =
μ1/2

ĝ (p)

μ1/2
ĝ (x

′
)

. (5.19)

TheΦ(x′) present in (5.13) is interpreted as the dialation of dσp along the outgoing null hypersurface emanating from σp (denote it by C+σp ), in
a sense it behaves as the trace of the null second fundamental form χ̄ associated to the outgoing null geodesic generator of C+σp since it controls
the evolution of the surface area of σp ≅ S2 along the outgoing null direction. Finally, ξ is tangent to C+σp and satisfies ĝ(ξ,∇Γ) = −1 (ξ,∇Γ, and
two orthonormal σp−tangent frame fields constitute a usual double null frame/tetrad on σp).

The most vital property of the integral Eq. (5.13) is that it does not contain divergence of the connection ωa
bμ. Using Eq. (5.5), one may

not evaluate the spacetime covariant divergence of the connections since the curvature is evaluated at a different point λx than the connection
(evaluated at x).

Remarks about the deduction of (5.13): A solution to a wave equation on the Minkowski background can be written at each point on
the spacetime in terms of the data on the intersection of the characteristics with that of a Cauchy hypersurface (past or future). This yields
a representation formula for the field satisfying a wave equation, the so-called Huygens’s principle. For non-linear wave equations, instead
of a representation formula, one obtains an integral equation. In the case of gravity, this is substantially more subtle since in order to write
down an integral equation for any spacetime entity, one first needs to ensure that the spacetime exists in the first place. This is where we
need Theorems 3.2 and 3.1. One also does not expect the validity of Huygens’s principle and as a consequence, the integral equation for the
curvature would contain Huygens violating tail terms that involve integration over the interior of the characteristics (light cones in relativity).
This would be problematic in terms of estimating the curvature using this integral equation. This technicality is described in Chap. 5 of
Freidlander’s book.41 Moncrief reduced the integral equations in terms of the integral over the mantle of the light cone [this is precisely the
form that is provided in (5.13)]. Concretely, one first notices that in Friedlander’s analysis the choice of the Cauchy hypersurface is not fixed.
Therefore, one may deform the initial topological ball (intersection of the interior of the past light cone with the initial Cauchy hypersurface)
and force it inside the cone such that at the limit it can coincide with the mantle. Therefore one should expect that the integral equation can
in fact be cast in terms of integrals over Cp and not Dp. This is achieved by clever application of integration by parts together with (5.5) and
(5.9).

VI. LIGHT CONE MANTLE ESTIMATES AND PROOF OF THE MAIN THEOREM
Controlling Moncrief’s integral Eq. (5.13) forces us to examine the light cone dynamics of gravitation due to the Cp term. If we want to

obtain an upper bound in terms of the zeroth, first, and second order energies then we better have estimates for the mantle fluxes (turns out
we only need zeroth and first order). These will be quasi-local since Cp ⊂ N p.
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A. Approximate quasi-local Killing fields
As mentioned previously, energy is not guaranteed to be a conserved quantity because we do not assume a timelike Killing field. However,

there are two timelike vector fields at hand: the unit orthogonal to the CMC foliation n and the parallel propagated h0. By definition, it is
already known that ĝ(h0, h0) = η00 = −1 so we might as well take h0∣p = n∣p and, as before, parallel propagate it along the radial geodesics in
the normal neighborhood of p. Note that h0∣N p ≠ n∣N p due to nontrivial holonomy effects. This vector field will be used to construct energy
densities adapted to the light cones whereas we use only n for CMC slice energies.

One would expect for h0 to yield approximately conserved energies within the light-cone. Moncrief34 developed this idea in more detail
and found that h0 satisfies Killing’s equation in the limit as one approaches p radially in the normal chart, as such h0 bears the name quasi-local
Killing field. This property will ultimately benefit our light cone analysis by obstructing the concentration of energy at the vertex, resulting in
the desired non-blow up of the L∞ norm of the Riemann curvature.

Explicitly, from the torsion-free condition

0 = DμΘa
ν = ∇μΘa

ν + ω
a

bμΘ
b
ν (6.1)

we obtain the following equation for the deformation tensor of h0

h0παβ = η00
Θ0

πμνĝ αμĝ βν

= −(∇μΘ0
ν +∇νΘ0

μ)̂g
αμĝ βν

= (ω0
bμΘ

b
ν + ω

0
bνΘ

b
μ)̂g

αμĝ βν

We can bound the above by means of the formulas for the connection (5.5), the co-frame (5.9), and the bootstrap assumption on the curvature
(3.12). In particular, for any point x in the normal neighborhood of p we have

∣ω(x)∣E ≲
∣x∣E
δ2 ≲

1
δ

(6.2)

where we have used the assumption that the injectivity radius of the exponential map of p is ≥δ. Θ(p) is O(1) by means of the orthonormality
of the co-frame and the fact that ĝ∣p = η in normal coordinates

∣η∣E = ∣̂g(p)∣E ∼ ∣η∣E∣Θ(p)∣2E, ∣η∣E = 1 Ô⇒ ∣Θ(p)∣E ∼ O(1)

The estimates above imply that Θ(x) is also O(1) throughout the normal chart

∣Θ(x)∣ ≤ ∣Θ(p)∣ + ∫
1

0
∣ω(λx)∥λx∥Θ(p)∣dλ ≲ 1 +

1
δ
δ ∼ O(1) (6.3)

An immediate corollary is that the metric over the normal chart is also O(1). Thus, we see that the deformation tensor of h0 linearly goes to
zero as we approach p radially [recall that xμ(p) = 0]

∣
h0π(x)∣ ≲

∣x∣
δ2

x→p
ÐÐÐ→ 0 (6.4)

B. Quasi-local mantle flux estimates
Define the zeroth and first order Cp fluxes as

F 0
Cp ∶= ∫Cp

Q(h0, h0, h0, L) μ̂g ∣Cp
, F 1

Cp ∶= ∫Cp

T
1
(h0, L) μ̂g ∣Cp

(6.5)

Direct calculation shows

C−1
(∣α∣2 + ∣β∣2 + ∣ρ∣2 + ∣e∣2 + ∣β∣2) ≤ Q(h0, h0, h0, L) ≤ C(∣α∣2 + ∣β∣2 + ∣ρ∣2 + ∣e∣2 + ∣β∣2)

C−1
(∣DLRm ĝ ∣

2
+ ∑

A=1,2
∣DARm ĝ ∣

2
) ≤ T

1
(h0, L) ≤ C(∣DLRm ĝ ∣

2
+ ∑

A=1,2
∣DARm ĝ ∣

2
)

(6.6)
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where the constants denoted by C are uniform in δ. An important feature is the absence of outgoing null components along L̄, e.g., the term
α = Rm ĝ(L̄, eA, L̄, eB) does not appear in the zeroth order flux density, indicating that F 0,1

Cp
only controls energy flowing across the past light

cone but not along it.

Proposition 6.1. Let p ∈ Σ × [0, T∗] and J be either Q(h0, h0, h0, ⋅) or T1
(h0, ⋅). We then obtain the following quasi-local flux estimate

FCp ≤ EB(tp − δ) + ∫
Dp

∣div∇J∣ μ̂g ∣Dp (6.7)

where EB(tp − δ) is the energy of the tp − δ CMC slice restricted to the ball Bp(tp − δ) = Dp ∩ Σtp−δ .

Proof. Recall that the cone with vertex p extends to Euclidean length δ. Stokes’ theorem tells us

FCp ∶= ∫
Cp

J(L) μ̂g ∣Cp = −∫
Bp(tp−δ)

J(−n) μg + ∫
Dp

div∇J μ̂g ∣Dp

We may repeat the same analysis of Sec. IV applied to the quasi-local Killing field h0 to say ∫Bp(tp−δ) J(n) controls the ∥D0,1Rm ĝ∥
2
L2
(Bp(tp−δ))

norm, which itself is controlled by E0,1
(tp − δ) due to Bp(tp − δ) ⊂ Σtp−δ and both being measurable sets.

■

Proposition 6.2. Suppose p is a point in the slab of Euclidean size T∗ and tp is its global time coordinate, then the zeroth and first order
mantle fluxes verify

F 0
Cp ≤ C(nπ , tp)E0

(0) (6.8)

F 1
Cp ≤ eC(nπ)δE1

(tp − δ) + C(nπ , tp, E0
(0))∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt (6.9)

where all the C’s found in the RHS are independent of δ.

Proof. Apply Proposition 6.1 and bound all ball integrals by CMC slice integrals. Proceed by using the zeroth and first order energy
estimates (4.17) and (4.18) to arrive at the result.

■

C. Iteration argument and closure of the bootstrap
The next step is to use Moncrief’s integral equation to bound the gauge-invariant L∞ norm of the Riemann tensor in terms of the H2

curvature data at an earlier time. We then substitute back into the energy estimates to perform the iteration argument described in Fig. 2.
Proceed by obtaining the refined point-wise bound for the curvature. In turn, this closure of bootstrap will lead to the well-posedness of the
Cauchy problem.

Before moving on, we redirect our attention to the following useful lemmas regarding the behavior of the transport bi-scalar k(x, x′)
present in (5.13).

Lemma 6.1. The bi-scalar k(x, x′) verifies supx′ ∈N p
∣k(p, x′)∣ ≤ 1 and hence ∥k(p)∥L2

(σp(tp−δ)) ≤ δ.

Proof. Simple. Use the local expression (5.19) and the fact that the volume form is a polynomial of the components of ĝ which are O(1)
in N p as seen in Sec. V A.

■

Lemma 6.2. supx′ ∈Dp
∣∇L,Ak(p, x′)∣ ≲ δ−1.

Proof. Do only for ∇L as the case of ∇A is similar. Computation in the normal coordinate system yields x′β = rNLβ ≤ δNLβ (cone is of
size δ). We know the lapse N is controlled by the deformation tensor of n, meaning

∣∇Lk(p, x′)∣ ≤ Cδ−1
∣x′β∂βk(p, x′)∣ = Cδ−1

∣x′β
1

2k(p, x′)
1
2

ĝ μν∂βĝμν∣
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where (5.19) and the identity ∂βμ̂g(x)/μ̂g(x) = 1/2 ĝ μν∂βĝμν are used to obtain the last equality. By the previous lemma, we have ∣∇Lk(p, x′)∣ ≤
Cδ−1

∣x′β∂βĝμν∣. Now invoke the following equation satisfied in normal coordinates which is actually obtained from the connection and co-
frame formulas (see Ref. 34)

xβ∂βĝμν = ηab{Θ
b
ν(x)(ω

a
μ f (x)(x

γΘ f
γ (0)) − ∫

1

0
ωa
μ f (λx)(λxγΘ f

γ (0)) dλ) + (a↔ b,μ↔ ν)}

The normal chart estimates (6.2) and (6.3) imply the result.
■

Lemma 6.3. The bootstrap assumption for the curvature (3.12) implies supx′ ∈Dp
∣ ◻ k(p, x′)∣ ≲ δ−2 and hence ∥ ◻ k(p)∥2

L2
(Cp)
≲ δ−1.

Proof. The covariant Laplacian of k(p, x′) is explicitly given by

◻k(p, x′) =
1

μ̂g(x′)
∂α(μ̂g(x

′
)̂g αβ∂βk(p, x′))

= −
μ1/2

ĝ (p)

4μ1/2
ĝ (x

′
)

ĝ αβĝ μν∂α∂βĝμν −
μ1/2

ĝ (p)

16μ1/2
ĝ (x

′
)

ĝ αβĝ μνĝ ab∂αĝab∂βĝμν

−
μ1/2

ĝ (p)

4μ1/2
ĝ (x

′
)
∂αĝ αβĝ μν∂βĝμν −

μ1/2
ĝ (p)

4μ1/2
ĝ (x

′
)

ĝ αβ∂αĝ μν∂βĝμν.

The most dangerous point is the vertex i.e., p, where the first derivatives of the metric vanish in the normal coordinate system

◻k(p, p) = −
1
4

ĝ μνĝ αβ∂α∂βĝμν.

Another property of normal coordinates is that the second derivatives of the metric capture the spacetime curvature, consequently the
following index symmetries hold at the origin

∂c∂d ĝab = ∂a∂bĝcd,
∂c∂d ĝab + ∂d∂bĝac + ∂b∂cĝad = 0.

The second derivative at the origin then satisfies

∂β∂νĝμα(p) = −
1
3
(Rmμναβ(p) + Rmανμβ(p)),

Therefore
◻ k(p, p) =

1
6

Scal ĝ(p) = 0. (6.10)

Here Scal ĝ is the scalar curvature and it vanishes as a result of the vacuum gravity equation. The claim follows since the origin is the only
possible blow up point and scaling leads to ∣ ◻ k∣ ≲ δ−2.

■

Proposition 6.3. Let p ∈ Σ × [0, T∗] and tp correspond to its global time coordinate, then the gauge-invariant L∞ norm of Rm ĝ over the
slice Σtp is bounded above by the zeroth, first, and second order energies at tp − δ. More precisely,

∥Rm ĝ(tp)∥
2
L∞(Σtp )

≤ C(nπ , tp, E0
(0))(E2

(tp − δ) + E1
(tp − δ) + δ−1E0

(tp − δ)) (6.11)

Proof. The goal is to estimate (5.13) evaluated at p and this will suffice for the L∞(Σtp) norm due to the least upper bound property.
Notice that each potentially dangerous term in the Cp integral belongs to one out of the following classes

I1(p) ∶= ∫
Cp

k(p, x′)ωd
eσ(x

′
)DσRma

bdf (x
′
) μΓ,

I2(p) ∶= ∫
Cp

k(p, x′)(Rm f d(x
′
)Rme

d
(x′) − Rmed(x

′
)Rm f

d
(x′)) μΓ,

I3(p) ∶= ∫
Cp

∇
σk(p, x′)ωd

eσ(x
′
)Rma

bdf (x
′
) μΓ, (6.12)
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I4(p) ∶= ∫
Cp

k(p, x′)Rma
bcd(x

′
)Rmef

cd
(x′) μΓ,

I5(p) ∶= ∫
Cp

◻ k(p, x′)Rma
bef (x

′
) μΓ.

Furthermore, we make use of (5.18) to replace the Leray forms with the canonical volume form restricted to Cp. Begin with I1(p). Invoke the
connection formula (5.5) and the fact that the normal coordinates obey x′β = rNLβ ≤ δC(nπ)Lβ in the cone,

∣I1(p)∣ ≤ C(nπ)∥k(p)∥L∞(Cp)∣∫Cp

Rd
eσL(x′)DσRma

bdf (x
′
) μ̂g ∣Cp ∣

≤ C(nπ)∣∫
Cp

(Rd
eL̄L(x

′
)DLRma

bdf (x
′
) + ∑

A=1,2
Rd

eAL(x′)DARma
bdf (x

′
)) μ̂g ∣Cp ∣

where Rd
eσL(x′) ∶= ∫

1
0 λRmd

eσL(λx′) dλ and the metric in the null basis (4.4) has been used to obtain the last inequality as well as Lemma 6.1.
Proceed by switching the order of integration and applying Cauchy–Schwarz,

∣I1(p)∣ ≤ C(nπ)∫
1

0
λ(∥Rmd

eL̄L(λ)∥L2
(Cp)
∥DLRma

bdf ∥L2
(Cp)

+ ∑
A=1,2
∥Rmd

eAL(λ)∥L2
(Cp)
∥DARma

bdf ∥L2
(Cp)
) dλ

= C(nπ)∫
1

0
λ ⋅ λ−3/2 dλ(∥Rmd

eL̄L∥L2
(Cp)
∥DLRma

bdf ∥L2
(Cp)

+ ∑
A=1,2
∥Rmd

eAL∥L2
(Cp)
∥DARma

bdf ∥L2
(Cp)
)

Notice that the factor of λ−3/2 is due to scaling and allows the λ integral to be bounded. For spatial dimensions n > 3, we would instead get
λ−n/2 and the λ integral would diverge. Moreover, the components of the curvature above are precisely controlled by the zeroth and first order
fluxes. Therefore, our final estimate for I1(p) is

∣I1(p)∣2 ≤ C(nπ)F 0
Cp F

1
Cp

≤ C(nπ , tp, E0
(0))(eC(nπ)δE1

(tp − δ) + ∫
tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt) (6.13)

Moving onto I2(p), the integrand contains the antisymmetric combination Rm f dRme
d
− RmedRm f

d which can be expanded using the
metric in the null basis. The first term reads as

Rm fdRmeμĝ μd
= −

1
2
(Rm f L̄RmeL + Rm f LRmeL̄) + ∑

A=1,2
Rm f ARmeA

∼ ∑
A=1,2
∣Rm ĝ(⋅, ⋅, L̄, eA)∣

2
+ (terms controlled by F 0

Cp)(terms not controlled by F 0
Cp)

The expansion of ∣Rm ĝ(⋅, ⋅, L̄, eA)∣
2 includes terms such as ∣Rm ĝ(L̄, eB, L̄, eA)∣

2 which do not appear in the flux density Q(h0, h0, h0, L). For-
tunately, the ( f ↔ e) antisymmetry of the I2 integrand results in a point-wise cancellation of this problematic term. This is a manifestation
of the null structure, i.e., the non-linearity responsible for the concentration of energy along the null cone (and a potential blow up at the
vertex) turns out to be weak—Ricatti type self-interaction is absent. In the end, every time RmL̄A appears it will be multiplied by a curvature
component that is controlled by the zeroth order flux F 0

Cp
(RmL̄A is then taken out as sup norm), therefore I2 is estimated as follows

∣I2(p)∣2 ≤ ∥k(p)∥2
L∞(Cp)

δ−2 F 0
Cp∫Cp

∣Rm ĝ(x
′
)∣

2 μ̂g ∣Cp

≤ C(nπ , tp, E0
(0))∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt (6.14)

Apply the connection formula and Lemma 6.2 to estimate I3(p),
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∣I3(p)∣2 ≤ C(nπ)∣∫
Cp

∇
σk(p, x′)Rd

eσL(x′)Rma
bdf (x

′
) μ̂g ∣Cp ∣

2

≤ C(nπ)(∫
1

0
λ ⋅ λ−3/2 dλ)

2
(∥Rmd

eL̄L∥
2
L2
(Cp)
∥∇Lk(p)Rma

bdf ∥
2
L2
(Cp)

+ ∑
A=1,2
∥Rmd

eAL∥
2
L2
(Cp)
∥∇Ak(p)Rma

bdf ∥
2
L2
(Cp)
) (6.15)

≤ C(nπ)F 0
Cp∥∇L,Ak(p)∥2

L∞(Cp)
δ2
∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt

≤ C(nπ , tp, E0
(0))∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt

Continuing with I4(p), one can explicitly compute the quadratic curvature factor appearing on the integrand

Rma
bcdRmef

cd
= ∑

A,B=1,2
Rma

bLBRmef L̄B + Rma
bL̄LRmef LL̄ + Rma

bL̄BRmef LB

+ Rma
bABRmef AB + Rma

bALRmef AL̄ + Rma
bAL̄Rmef AL + Rma

bLL̄Rmef L̄L

As in the case of I2, once each term is expanded it will include at least one curvature component controlled by the light cone mantle flux and
the other factor needs to be taken out as a sup norm. This means I4 shares the same bound as I2

∣I4(p)∣2 ≤ C(nπ , tp, E0
(0))∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt (6.16)

I5(p) is bounded by application of Lemma 6.3 and Cauchy–Schwarz inequality

∣I5(p)∣2 ≤ δ−2
∥ ◻ k(p)∥2

L2
(Cp)

δ2
∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt

≤ δ−1
∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt (6.17)

The integral over the topological two-sphere σp(tp − δ) =: σ located at the bottom of the cone is controlled by means of trace inequality.
Specifically, we have

∣
1

2π∫σp(tp−δ)
( ⋅ ⋅ ⋅ ) ∣ ≤ ∥ξ∥L∞(σ)∥k(p)∥L2

(σ)∥DRm ĝ∥L2
(σ)

+ ∥k(p)∥L∞(σ)∥Φ∥L2
(σ)∥Rm ĝ∥L2

(σ)

+ ∥k(p)∥L∞(σ)∥ξ∥L∞(σ)∥ω∥L2
(σ)∥Rm ĝ∥L2

(σ)

Note ∣ξ(x′)∣ ∼ ∣L̄(x′)∣ ∼ O(1) in the normal neighborhood and has dimension [length]−1, whereas Φ(x′) behaves like the trace of the second
fundamental form associated to the outgoing null hypersurface emanating from σp(tp − δ) thus ∣Φ(x′)∣ ≤ Cδ−1 in the normal chart where C
is a uniform constant with dimension [length]−1. Invoke (6.2) and Lemma 6.1, the estimate then reads

∣
1

2π∫σp(tp−δ)
( ⋅ ⋅ ⋅ ) ∣ ≤ δ∥DRm ĝ∥L2

(σ) + C∥Rm ĝ∥L2
(σ) + ∥Rm ĝ∥L2

(σ)

≤ δ
3
2 ∥D2Rm ĝ∥L2

(B(tp−δ)) + δ
1
2 ∥DRm ĝ∥L2

(B(tp−δ)) (6.18)

+ ∥ξ∥L∞(σ)δ
− 1

2 ∥Rm ĝ∥L2
(B(tp−δ))

The last inequality follows from Stokes’ theorem and scaling (one must check that both sides of the inequality share the same dimension,
∥ξ∥L∞ ≲ 1). The presence of δ−

1
2 could potentially be problematic. However, we will see this dangerous term appears multiplied by δ in the

later estimates.
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Combining all the bounds yields

∥Rm ĝ(tp)∥
2
L∞(Σtp )

≤ δ3E2
(tp − δ) + δE1

(tp − δ) + δ−1E0
(tp − δ)

+ C(nπ , tp, E0
(0))(eC(nπ)δE1

(tp − δ) + (1 + δ−1
)∫

tp

tp−δ
∥Rm ĝ(t)∥

2
L∞(Σt)

dt)

Apply Grönwall’s inequality for the last time and safely replace all positive exponents of δ with ≤1

∥Rm ĝ(tp)∥
2
L∞(Σtp )

≤ C(nπ , tp, E0
(0))(E2

(tp − δ) + E1
(tp − δ) + δ−1E0

(tp − δ))eC′(nπ ,tp ,E0
(0))(1+δ−1

)δ

≤ C(nπ , tp, E0
(0))(E2

(tp − δ) + E1
(tp − δ) + δ−1E0

(tp − δ)) (6.19)

which is the result we wanted to show.
■

We are now in place to apply the iteration argument to bound the CMC energies at t∗ in terms of the initial H2 data. Again, the idea is
to run the global energy estimates and quasi-local light cone estimates until we reach t = 0.

Proposition 6.4. Suppose t∗ is a time close to T∗, then

E2
(t∗) + E1

(t∗) ≤ 1 +
C(nπ , t∗, ∥Rm ĝ∥H2

(Σt=0)
)

δ
(6.20)

here C does not depend on δ and depends only on the bound for nπ (3.5), the time t∗, and the initial hypersurface H2 data of the curvature.

Proof. Combine the results from Propositions 4.2 and 6.3 to begin bounding the energies at t∗ in terms of the data at t∗ − δ up to the L∞

of Riemann which is taken out of the [t∗ − δ, t∗] integral as a sup norm. We gain a factor of δ which annihilates the δ−1 in front of the zeroth
order energy

E2
(t∗) + E1

(t∗) ≤ E2
(t∗ − δ) + E1

(t∗ − δ) + sup
t∈[t∗−δ,t∗]

(δE2
(t − δ) + δE1

(t − δ) + E0
(t − δ))

+ sup
t∈[t∗−δ,t∗]

(δE2
(t − δ) + δE1

(t − δ) + E0
(t − δ))

2
+ (E1

(t∗ − δ))
2

Since the interval [0, t] is finite for any t ≤ T∗, we may always cover it with a finite number of copies of δ intervals, say K(t) of them. In other
words, ∃K(t) such that t −K(t)δ = 0. Furthermore, the zeroth order energy is uniformly bounded in δ in terms of E0

(0), C(nπ), and t∗

E2
(t∗) + E1

(t∗) ≤ E2
(t∗ − δ) + E1

(t∗ − δ) + sup
t∈[t∗−δ,t∗]

(δE2
(t − δ) + δE1

(t − δ))

+ sup
t∈[t∗−δ,t∗]

(δE2
(t − δ) + δE1

(t − δ))
2
+ C

≤ eC(nπ)δE2
(t∗ − 2δ) + eC(nπ)δE1

(t∗ − 2δ) + sup
t∈[t∗−2δ,t∗−δ]

(δE2
(t − δ) + δE1

(t − δ))

+ sup
t∈[t∗−2δ,t∗−δ]

(δE2
(t − δ) + δE1

(t − δ))
2
+ sup

t∈[t∗−δ,t∗]
(δE2
(t − δ) + δE1

(t − δ))

+ sup
t∈[t∗−δ,t∗]

(δE2
(t − δ) + δE1

(t − δ))
2
+ 2C

≤ eC(nπ)K(t∗)δE2
(0) + eC(nπ)K(t∗)δE1

(0) +K(t∗)C + sup
t∈[t∗−δ,t∗]

(δE2
(t − δ) + δE1

(t − δ))

+ ⋅ ⋅ ⋅ + sup
t∈[t∗−K(t∗)δ,t∗−(K(t∗)−1)δ]

(δE2
(t − δ) + δE1

(t − δ))

+ sup
t∈[t∗−δ,t∗]

(δE2
(t − δ) + δE1

(t − δ))
2

+ ⋅ ⋅ ⋅ + sup
t∈[t∗−K(t∗)δ,t∗−(K(t∗)−1)δ]

(δE2
(t − δ) + δE1

(t − δ))
2
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Re-run estimates on the energies inside the supremums and note that it takes up to K(t∗) steps to reach initial energies. The sup terms contain
positive powers of δ. In the end, we obtain the following

E2
(t∗) + E1

(t∗) ≤ (E2
(0) + E1

(0))eC′K(t∗)δ
+ +K(t∗)C + (C′′δ)K(t∗)

≤ CeCK(t∗)δ
+K(t∗)C + (Cδ)K(t∗)

≤ 1 +
C(nπ , t∗, ∥Rm ĝ∥H2

(Σt=0)
)

δ
(6.21)

where all the constants involved depend on the deformation tensor bound, the time t∗, and the initial slice curvature data. ◻

Now we complete the bootstrap argument.

Theorem 6.1. The gauge-invariant L∞ norm of Rm ĝ over the slab Σ × [0, T∗] has a refined point-wise upper bound dependent only on
the initial data. Specifically,

sup
t∈[0,T∗]

∣∣Rm ĝ(t)∣∣
2
L∞(Σt)

≤ C(nπ , T∗, ∥Rm ĝ∥H2
(Σt=0)

) (6.22)

where the RHS does not depend on δ at all.

Proof. The last two propositions, namely 6.3 and 6.4, together with the uniform bound for the zeroth order energy yields

sup
t∈[0,T∗]

∥Rm ĝ(t)∥
2
L∞(Σt)

≤ C1 + C2δ−1 (6.23)

where C1 and C2 do not depend on the δ. C1 + C2
δ
δ2 can be made to be smaller than 1

4δ4 (the boot-strap assumption made in 3.12) after
choosing a sufficiently small but fixed δ > 0 that only depends on the initial H2 curvature data, the time T∗, and C(nπ) (i.e., δ2

≤ 1−4C2δ
4C1

).
Therefore supt ∈[0,T∗]∣∣Rm ĝ(t)∣∣2L∞(Σt)

≤ C(nπ , T∗, ∥Rm ĝ∥H2
(Σt=0)

).
■

Theorem 6.2. The H2
(Σt) norm of the Riemann curvature tensor at any t ∈ [0, T∗] is bounded above by a finite quantity dependent only

on the slab length T∗, the initial H2 curvature data, and the assumed point-wise bound on the deformation tensor of the unit timelike vector field
orthogonal to the CMC Cauchy foliation

∥Rm ĝ(t)∥H2
(Σt)
≤ C(nπ , T∗, ∥Rm ĝ∥H2

(Σt=0)
) <∞ (6.24)

Proof. Using Theorem 6.1, we apply the energy estimates of Proposition 4.2 over the time interval [0, t], this yields

E1
(t) + E0

(t) ≤ eC(nπ)t
(E1
(0) + E0

(0) + C(nπ , T∗, t, ∥Rm ĝ∥H2
(Σt=0)

)t)

≤ C(nπ , T∗, ∥Rm ĝ∥H2
(Σt=0)

)

where we have used the assumption that t ≤ T∗ and the monotonicity of the exponential and linear functions in order to get rid of the t
dependence on the RHS. The estimate for the second order energy at t is

E2
(t) ≤ eC(nπ)t⎛

⎝
E2
(0) + C(nπ , T∗, ∥Rm ĝ∥H2

(Σt=0)
) sup

t′∈[0,t]
E1
(t′) t

⎞

⎠

≤ C(nπ , T∗, ∥Rm ĝ∥H2
(Σt=0)

)

()The sum E2
(t) + E1

(t) + E0
(t) controls ∥Rm ĝ(t)∥H2

(Σt)
, thus implying the result.

■

Once we have established that the H2
(Σ) norm of the Riemann curvature cannot blow up in any finite time interval [0, T∗], the remaining

task is to use the necessary elliptic estimates. Using curvature bounds, one obtains necessary bound for the volume Vol̂g(BE(p, Cδ)). In terms
of the elliptic estimates, we refer to Refs. 30 and 43. An application of the local well-posedness theorem of Ref. 2 in CMC spatial harmonic
coordinates for spacetimes foliated by compact Cauchy slices of negative Yamabe type together with the arguments presented in Ref. 37
regarding recovery of the spacetime given curvature bound yields the main theorem.
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Remark. At this point, we want to conjecture a continuation criteria for Einstein equations coupled with sources. This is based on the
preliminary analysis of the elliptic equation for the lapse function in the CMC gauge. To satisfy one of the criteria in LeFloch and Chen’s theorem,
one has to obtain a point-wise bound on the lapse function. Let TT ∶= TTμνdxμ ⊗ dxν be the stress energy tensor of a source in the Einsteinian
spacetime. The lapse function N verifies the following elliptic equation in the CMC gauge

ΔgN + {∣k∣2 +
S

n − 1
+

n − 2
n − 1

E}N =
∂trgk
∂t

, (6.25)

where E ∶= TT(n, n) is the energy density and S ∶= gi j
(TT(∂i,∂ j)) is the trace of the momentum flux density. Maximum principle yields

∣
∂trg k
∂t ∣

∥k∥2
L∞+∥S∥L∞+∥E∥L∞

≤ ∥N∥L∞ ≤ ∣
∂trg k
∂t ∣. Therefore, the preliminary continuation criterion would be the finiteness of ∥ nπ∥L∞ + ∥S∥L∞ + ∥E∥L∞ .

For example,

(a) in coupled Einstein–Yang–Mills system one would expect that a preliminary continuation criteria would be the boundedness of ∥ nπ∥L∞ +

∥F∥L∞ (F is the Yang–Mills curvature).
(b) in coupled Einstein–Euler system, the preliminary continuation criteria can be cast as boundedness of ∥ nπ∥L∞ + ∥(P, ρ, v)∥L∞ , where P, ρ,

and v are the pressure, density, and velocity of the fluid.
Of course, one ought study the coupled light cone dynamics (sound cone as well for fluid) which is essentially the second important step.

VII. DISCUSSION
The weak cosmic censorship conjecture asserts that all spacetime singularities are hidden inside black holes, i.e., the future null infinity is

geodesically complete. In a globally hyperbolic vacuum with non-compact Cauchy hypersurfaces, Penrose’s singularity Theorem48 states that
spacetime cannot be future null complete whenever there exists a closed trapped surface. Thus if the weak cosmic censorship hypothesis holds,
then it would be impossible for naked singularities to occur. Addressing the question of cosmic censorship is important due to the potential
pathologies mentioned in Sec. I, but it also plays a vital role in other contexts where it is assumed to be true e.g., black hole radiation. The
first step to finding a solution to the conjecture is to determine the breakdown criteria for solutions to the Einstein equations. Although global
existence is not known to hold for general gravitational fields due to instability issues that can lead to the formation of black holes, a vacuum is
the easiest setting for determining the exact conditions that cause a breakdown of solutions. We tackled this problem using physical principles
as backbones to motivate what the continuation criteria should be, namely the L∞t L∞x⃗ bound for the deformation tensor of the unit timelike
vector field normal to the CMC Cauchy hypersurfaces. Inspiration was taken from the general Minkowski space Yang–Mills global existence
work by Eardley and Moncrief,9 but with the caveat that the spacetime curvature takes the role of the field strength, meaning the background
geometry is not fixed whereas it would be in non-gravitational field theories. The frame bundle formalism of GR led to formulae (connection,
co-frame field) that served a crucial role in arriving at the necessary estimates. Of course, injectivity bounds were needed to consider these
equations in the first place.

One would however wonder the physical appeal of our result. Recall that the deformation tensor nπ ∶= Lnĝ measures the obstruction
of n to be a timelike Killing vector field. This only requires certain derivatives of the spacetime metric. Therefore a point-wise bound on nπ
is rather quite rough in the sense that ∥nπ∥L∞t,x < Δ <∞ is a larger space that includes the space of classical solutions as a smaller subspace.
However, in a quantum theory of gravity, one ought to integrate over the space of Riemannian metrics, not just the smooth ones solving the
Einstein’s equations.49 The question then becomes which function space of metrics ought to be considered in the definition of the partition
function? It is matter of debate since these infinite dimensional moduli spaces are in general difficult to handle in mathematically rigorous
way. A reasonable choice would be the space where classical determinism is valid. In general one would not expect to have a smooth geometry
at quantum level and therefore a rough spacetime metric is often desirable (there are several propositions of lattice structure of quantum
spacetimes50,51).

In addition, the bound on the deformation tensor is a key obstruction to proving the weak cosmic censorship hypothesis. Even though
we only considered spacetimes that are foliated by the compact Cauchy hypersurfaces, one may obtain the same result for asymptotically
flat spacetimes foliated by maximal slices (the argument behind proving the point-wise bound of the spacetime curvature mostly remains
unchanged due to its quasi-local nature). However, the deformation tensor bound seems to be reasonable as most realistic physical systems
exhibit an almost-timelike symmetry at least in domains of outer communication. Of course, one can never have any a priori information
about this deformation tensor on a dynamical spacetime and as such it may blow up in finite time, hence obstructing the continuation of
the solution. Leaving aside the generic spacetimes, one may wonder if the global existence result can be proven to be true in certain special
spacetimes for the large data. Positive answers to this question are available for Gowdy spacetimes where a T3 symmetry is present.52,53

A quantum jump in the context of large data global existence result would be that of U(1) problem where a small data result is already
established.54,55 Another important direction would be to study large data Einstein–Yang–Mills dynamics without symmetry assumption
since Yang–Mills repulsion is expected to counterbalance gravity.
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