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Abstract

People believe that, even in very large samples, proportions of binary signals might depart
significantly from the population mean. We model this “non-belief in the Law of Large Numbers”
by assuming that a person believes that proportions in any given sample might be determined
by a rate different than the true rate. In prediction, a non-believer expects the distribution
of signals will have fat tails. In inference, a non-believer remains uncertain and influenced by
priors even after observing an arbitrarily large sample. We explore implications for beliefs and
behavior in a variety of economic settings.
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1 Introduction

Psychological research has identified systematic biases in people’s beliefs about the relationship

between sample proportions and the population from which they are drawn. Following Tversky

and Kahneman (1971), Rabin (2002) and Rabin and Vayanos (2010) model the notion that people

believe in “the Law of Small Numbers (LSN),” exaggerating how likely it is that small samples

will reflect the underlying population. Yet evidence indicates that people also do not believe in

the Law of Large Numbers: they believe that even in very large random samples, proportions

might depart significantly from the overall population rate. This paper develops a formal model of

this error, which we call “non-belief in the Law of Large Numbers” and abbreviate by NBLLN.1

Our goal is not to explain the source of this bias, nor to provide a unifying model of it and other

biases, but rather to explore NBLLN’s implications and assess its potential importance in economic

decision-making. We show that NBLLN has a range of economic consequences, including causing

too little or too much risk-taking, a lack of demand for information, and a persistence of incorrect

beliefs despite large amounts of data. In addition, we identify and explore conceptual challenges

with modeling NBLLN that are also likely to arise in modeling other biases in statistical reasoning.

Even though NBLLN has received far less attention from economists than other biases, extensive

experimental evidence establishes that people have incorrect beliefs about and inferences from large-

and medium-sized samples. An early example is Kahneman and Tversky (1972), who find that

subjects seem to think sample proportions reflect a “universal sampling distribution,” virtually

neglecting sample size. In doing so, subjects vastly exaggerate the probability of unbalanced ratios

in large samples. For instance, independent of whether a fair coin is flipped 10, 100, or 1,000 times,

the median subject thinks that there is about 1
5 chance of getting between 45% and 55% heads,

and about 1
20 chance of between 75% and 85%. These beliefs are close to the right probabilities of

1
4 and 1

25 for the sample size of 10, but wildly miss the mark for the sample size of 1,000, where the

sample is almost surely between 45% and 55% heads.

In Section 2, we develop our model of non-belief in the Law of Large Numbers in a simple

setting, where a person is trying to predict the distribution of—or make an inference from—a fixed

sample size. Throughout, we refer to our modeled non-believer in the Law of Large Numbers as

Barney, and compare his beliefs and behavior to a purely Bayesian information processor, Tommy.2

Tommy knows that the likelihood of different sample distributions of an i.i.d. coin biased θ towards

heads will be the “θ-binomial distribution.” But Barney, as we model him, believes that large-

1NBLLN is pronounced letter by letter, said with the same emphasis and rhythm as “Ahmadinejad.”
2“Tommy” is the conventional designation in the quasi-Bayesian literature to refer somebody who updates

according to the dictums of the Reverend Thomas Bayes.
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sample proportions will be distributed according to a “β-binomial distribution,” for some β ∈ [0, 1]

that itself is drawn from a distribution with mean θ. This model directly implies NBLLN: whereas

Tommy knows that large samples will have proportions of heads very close to θ, Barney feels that

the proportions in any given sample, no matter how large, might not be θ. Although the model

largely reflects the “universal sample distribution” intuition from Kahneman & Tversky (1972),

it also embeds some sensitivity to sample sizes, consistent with other evidence (e.g., Griffin and

Tversky’s 1992 Study 1).3 Other models would share the basic features of NBLLN that we exploit

in this paper; we discuss in Section 6 the merits and drawbacks of our particular formulation.

After defining the model, Section 2 describes some of its basic features for Barney’s predictions

about the likelihood of occurrence of different samples and his inferences from samples that have

occurred. While Barney makes the same predictions as Tommy about sample sizes of 1, his beliefs

about sample proportions are a mean-preserving spread of Tommy’s for samples of two or more

signals. In situations of inference, we show that if Barney applies Bayesian updating based on his

wrong beliefs about the likelihood of different sample realizations, NBLLN implies under-inference

from large samples: Barney’s posterior ratio on different hypotheses is less extreme than Tommy’s.

Importantly, for any proportion of signals—including the proportion corresponding to the true

state—Barney fails to become fully confident even after infinite data. Consequently, Barney’s

priors remain influential even after he has observed a large sample of evidence. In Appendix B,

we review and meta-analyze the extensive experimental evidence on inference. Consistent with the

general features of our model—and contrary to the widespread impression that overconfidence is

the pervasive direction of mistakes in beliefs—this evidence clearly indicates that the typical finding

is under-inference, and this under-inference is especially severe in large samples.4

In the remainder of the paper, we draw out some of the consequences of NBLLN in a wide range

of applications that cover many of the major areas in the economics of uncertainty, such as valuation

3Even though we are not aware of any evidence on people’s beliefs regarding sample sizes larger than
1,000, our model imposes—consistent with Kahneman and Tversky’s (1972) interpretation—that Barney
puts positive probability on sample proportions other than θ even in an infinite sample. We conjecture that
people’s beliefs regarding much larger samples do indeed resemble the same “universal sampling distribution”
as for a sample size of 1,000. Nonetheless, we emphasize that even if the literal implications of our model
for infinite sample sizes were not true, our large-sample limit results would still have substantial bite for
the applications where we invoke them. This is because, as per the frequent reliance on large-sample limit
results in econometrics, the Law of Large Numbers typically provides a good approximation for Tommy’s
beliefs in the finite, moderately-sized samples that are realistic for those applications.

4In light of this evidence, we do not know why NBLLN has not been widely embraced or emphasized by
judgment researchers or behavioral economists. Perhaps it is largely because findings of under-inference have
been associated with an interpretation called “conservatism” (e.g., Edwards, 1968)—namely, that people tend
not to update their beliefs as strongly as Bayesian updating dictates—that does not mesh comfortably with
other biases that often imply that people infer more strongly than Bayesian. In our view, summarizing people
as overly conservative or not conservative enough is manifestly the wrong way to parse human judgment.
By focusing on the concrete biases at play and highlighting the co-existence of NBLLN with other biases,
we hope to make clear that there is no contradiction.
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of risky prospects, information acquisition, and optimal stopping. The applications highlight which

features of the economic environment determine in which direction (e.g., more risk averse or less)

Barney is biased relative to Tommy. Two basic properties of NBLLN appear throughout these

analyses and tie them together: Barney under-infers from large samples, and Barney believes just

about anything has a real chance of occurring.

Section 3 illustrates some of the basic economic implications of NBLLN, beginning with will-

ingness to pay for information. If Barney and Tommy can choose what sample size of signals to

acquire, then Barney (because he expects to learn less from any fixed sample size) may choose

a larger sample and can therefore end up being more certain about the state of the world. But

because Barney thinks that his inference would be limited even from an infinite sample, he un-

ambiguously has a lower willingness to pay for a large sample of data than Tommy. This lack of

demand for statistical data is a central implication of NBLLN and contributes to explaining why

people often rely instead on sources of information that provide only a small number of signals,

such as anecdotes from strangers, stories from one’s immediate social network, and limited personal

experience. Indeed, direct real-world evidence of the propensity to over-infer from limited evidence

might be more ubiquitous than evidence of under-inference precisely because people rarely choose

to obtain a large sample.

Section 3 also explores how Barney’s mistaken beliefs about the likelihood of different samples

matters for choice under risk. For example, Barney believes that the risk associated with a large

number of independent gambles is greater than it actually is. This magnifies aversion to repeated

risks, whether that risk aversion is due to diminishing marginal utility of wealth or (more relevantly)

reference-dependent risk attitudes. Because he does not realize that the chance of aggregate losses

becomes negligible, Barney may refuse to accept even infinite repetitions of a small, better-than-fair

gamble. This refusal must come from a plausible model of risk preferences, such as loss aversion,

generating the intrinsic aversion to small risks. But even such an improvement in assumptions about

risk attitudes would not generate the observed behavior if a person believed in LLN. Benartzi and

Thaler (1999), in fact, demonstrate clearly the role of both loss aversion and what we are calling

NBLLN. However, in other contexts, where payoffs depend on extreme outcomes, Barney’s mistaken

sampling beliefs could instead make him appear less risk averse than Tommy, such as playing a

lottery in which whether he wins a prize depends on correctly guessing all of several numbers that

will be randomly drawn.

Both Sections 2 and 3 analyze a model of NBLLN when there is a single, “given” sample that

Barney will observe. Yet information does not always arrive in a single package of signals. A

person may hear a series of individual reports from random strangers at cocktail parties about
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their car experiences, while also reading large-sample statistics of car performance. If Barney

pools each of his interlocutors’ tales with the statistics from Consumer Reports, his inferences will

be very different than if he separately updates his beliefs following each cocktail party anecdote,

and then treats the Consumer Reports data as one big sample. Such cases confront us with a

conceptual challenge intrinsic to the very nature of NBLLN: because Barney under-infers more

for larger samples than smaller ones, he will infer differently if he lumps observations together

versus separately. A model of NBLLN must involve a theory of how Barney groups information

as a function of how it is presented to him and other features of his decision-making environment.

Our dynamic model also makes clear, in turn, that to be generally applicable in economics, any

model of biased sample inference must specify what a person believes about her future information

processing. With little empirical research to guide us, in Section 4 we discuss and formalize various

combinations of assumptions on how Barney “retrospectively groups” signals—how he interprets

evidence once he sees it—and “prospectively groups” signals—how he predicts ahead of time he will

interpret evidence he might observe in the future. Different combinations of assumptions may be

warranted by different perceptual, framing, and decisionmaking environments. Of special interest

for some of our dynamic applications below is the possibility that Barney retrospectively groups

signals differently than he prospectively anticipates he will. He may, for instance, plan to separately

ask people at cocktail parties about their experiences, and prospectively focus on each conversation

as if it is a separate signal; but then in retrospect, he may pool the conversations together as a

single sample.

In Section 5, we explore Barney’s behavior in various environments involving learning and

inference. A number of conclusions follow from the central fact that, even when observing extensive

evidence, Barney fails to reach appropriately strong confidence. For example, NBLLN acts as an

“enabling bias” for distinct psychological biases, such as “vividness bias” and optimism about

one’s own abilities or preferences, that would otherwise be rendered irrelevant by the Law of Large

Numbers. Absent NBLLN, after having processed from Consumer Reports a summary of the

experiences of thousands of random strangers, hearing one random stranger recount a vivid story

about her car experience—even if the story is overweighted a hundredfold—could not plausibly

affect an agent’s beliefs. Similarly, absent NBLLN, optimistic priors would give way to more

realistic self-assessments after a lifetime of experience.

When agents gather information, variants of NBLLN predict not only that people will never

figure out the truth when they rationally should, but that their efforts to learn may be enormously

costly. Like Tommy, Barney will plan to quit his costly information acquisition once he reaches

some threshold of confidence. And, like Tommy, he may stop gathering signals very quickly if
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information is decisive. But because Barney tends to infer far less from signals than Tommy, when

the initial signals are mixed, Barney may continue trying to learn even after many signals. Indeed,

if Barney prospectively anticipates separately updating using each arriving signal but actually pools

them retrospectively, Barney may become stuck in a “learning trap”: he persistently expects to

soon be confident enough to stop experimenting, or buying information, but, because he never

achieves the confidence he anticipates, continues his costly efforts forever.

In Section 6, we discuss why we think our model is more compelling than alternative possible

explanations and modeling approaches—both fully rational and not fully rational—that might seem

to accommodate the psychology evidence. Our model, of course, ignores other important departures

from Bayesian inference—such as base-rate neglect and belief in the Law of Small Numbers—that

seem separable from NBLLN. But it also omits features—including the psychophysics of diminishing

sensitivity, as well as unwillingness to hold or express extreme beliefs—that, as alternative sources

of under-inference from large samples, are less separable. In Appendix A, in fact, we present a

(complicated) formal model embedding some of these other errors along with NBLLN. Guided by

this formal model, in Appendix B we attempt to give a fairly exhaustive review of the empirical

work on sampling predictions and inference. We believe this review makes clear that our model of

NBLLN is capturing a broad empirical reality.

2 The Single-Sample Model

Throughout the paper, we study a stylized setting where an agent observes a set of binary signals,

each of which takes on a value of either a or b. Given a rate θ ∈ Θ ≡ (0, 1), signals are generated

by a binomial (i.i.d.) process where the probability of an a-signal is equal to θ. Signals arrive in

clumps of size N . We denote the set of possible ordered sets of signals of size N ∈ {1, 2, ...} by

SN ≡ {a, b}N , and we denote an arbitrary clump (of size N) by s ∈ SN .5 Let As denote the total

number of a’s that occur in the clump s ∈ SN , so that As
N is the proportion of a’s that occur in a

clump of N signals. For a real number x, we will use the standard notations “dxe” to signify the

smallest integer that is weakly greater than or equal to x and “bxc” to signify the largest integer

that is weakly less than or equal to x. For any random variable y that takes as possible values the

elements of set Y , let beliefs by Tommy (who believes in the Law of Large Numbers) be denoted by

cumulative distribution function FY (·), implying probability density function fY (·), expectation

EY (·), and variance V arY (·). Let corresponding beliefs by Barney (the non-believer in the LLN)

5Note that we forego the conventional strategy of providing notation for a generic signal, indexed by its
number. It is less useful here because (within a clump) what matters to Barney is just the number of a
signals, not their order. Conserving notation here, in Section 5.4 we use t to index the clumps of signals.
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be denoted by FψY (·), fψY (·), EψY (·), and V arψY (·), where ψ signifies Barney’s beliefs (and is a

parameter for the degree of NBLLN in the parameterized special case of the model described in

equation (3) below).

In this section, we develop our model of Barney for the case where he is considering a single

clump of N signals. This case corresponds to most of the experimental evidence about NBLLN,

which has been collected in settings where subjects were presented with a single, fixed sample

of signals or outcomes, in which subjects presumably process all the information together. This

special case also allows us to lay bare the essential features of how our model captures NBLLN.

When generalizing the model, complicating conceptual challenges arise. Some of our analysis in

fact concerns precisely these complications, but we defer discussion of these issues and ways to

handle them until Section 4.

According to the Law of Large Numbers, with probability 1 in the limit as the sample size gets

large, the mean of a random sample equals the rate: For any interval (α1, α2) ⊆ [0, 1],

lim
N→∞

dα2Ne∑
x=bα1Nc

fSN |Θ (As = x|θ) =

 1 if θ ∈ (α1, α2)

0 otherwise
.

How might we capture the possibility that Barney believes (say, as per an example in Kahneman

and Tversky, 1972) that it is reasonably likely that at least 600 of 1000 births at a hospital in a

given year are boys, even though he knows that boys are born at a rate of 50%? The essence of

our model is to assume that Barney believes samples are generated as if a rate of θ, here 50%,

means that the rate is θ on average, but might be higher or lower for any given sample. For a given

true rate θ, we model Barney as believing that for the sample he is considering: first, a “subjective

rate” β ∈ [0, 1] is drawn from a distribution centered at θ. Then the i.i.d. sample of 1000 babies

is generated using rate β. The key implication is that if a given value of β were the actual rate,

it would (by the Law of Large Numbers!) exactly determine the proportion of signals in the limit

of a very large sample. Therefore, the probability density that Barney assigns to any proportion

β of signals (say, 60% of babies are boys) in a large sample is equal to the probability density

that Barney assigns to the possibility that β equals that value. Although this modeling approach

is “as if” Barney is unsure that the rate is θ—and indeed exactly our parametric version of the

model described below is commonly used in statistics to capture unobserved heterogeneity—true

parameter uncertainty is not at all our interpretation. Instead, consistent with the underlying

NBLLN psychology, we interpret it as Barney’s belief that even his certainty that the underlying

rate is θ is not a guarantee that the proportion in very large samples will approximate θ.6

6In keeping with this interpretation, Barney does not believe the realized β is a real feature of the coin,
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Formally, we assume that when Barney knows the rate is θ, he believes that signals are generated

by a binomial (i.i.d.) process where the probability of an a-signal is equal to β. This β ∈ [0, 1] is

called the subjective rate, and it is drawn from a density fψß|Θ (β|θ). We refer to fψß|Θ as Barney’s

subjective rate distribution and assume that it has the following properties:

A1. For all β and θ, Fψß|Θ (β|θ) is absolutely continuous in β, and fψß|Θ (β|θ) has full support on

(0, 1) and is point-wise continuous in θ. We will sometimes make the more restrictive assumption:

A1′. The same as A1, except fψß|Θ (β|θ) has full support on [0, 1].

A2. For all β and θ, Fψß|Θ (β|1− θ) = 1− Fψß|Θ (1− β|θ).

A3. For all θ and θ′ > θ,
fψ
ß|Θ(β|θ′)

fψ
ß|Θ(β|θ)

is increasing in β.

A4. For all β and θ, Eψß|Θ (β|θ) = θ.

Assumptions A1 and A2 are mild and consistent with the experimentally elicited densities of

people’s beliefs about the distribution of signals in large samples. A1 differs from A1′ in allowing

the density functions to converge to zero at proportions 0 and 1. The available experimental

evidence cannot distinguish between A1 and A1′ because people’s beliefs about the likelihood of

the most extreme sample proportions have not been elicited. While A1′ generally allows us to draw

sharper theoretical conclusions, A1 accommodates our parametric example of the beta distribution

discussed below. Any results below that assume A1 also hold with A1′ a fortiori.

Assumptions A3 and A4 are substantive assumptions that do not follow easily from the psychol-

ogy. Assumption A3 is a monotone-likelihood-ratio property: fixing any two rates, Barney believes

that the likelihood of drawing any particular subjective rate given the high rate relative to the low

rate is increasing in the subjective rate. It is easy to imagine specifications of fψß|Θ (β|θ)—especially

in the spirit of the type of diminishing-sensitivity evidence discussed in Appendix A—that would

violate A3. But A3 is in accord with the most directly relevant evidence, namely Griffin and Tver-

sky’s (1992) Study 3, which examines a range of parameters of the sort that seems most likely for

violating it.7 It holds for our main example of the beta distribution and more generally is useful for

and is certainly not an object he makes inferences about. Instead, it is a representation of Barney’s subjective
uncertainty that the θ will manifest itself in a given sample. By comparison, Acemoglu, Chernozukov, and
Yildiz (2009) analyze a model that is formally similar to ours but is a model of parameter uncertainty.
Similar to our Proposition 2 below, they show that a Bayesian agent fails to learn the state with certainty
even after observing an infinite number of signals if he is uncertain about the meaning of signals. In contrast,
we assume that Barney has a concrete belief about the meaning of signals, but he thinks that their meaning
can vary from one sample to the next. In the dynamic applications we develop below, this interpretation
will be much more than an aspiration to get the psychology right but rather an integral part of the formal
model. For instance, in situations where Barney must predict further signals after observing his first 100
signals, we assume his expected proportions are still θ, rather than being influenced by the first signals as
the parameter-uncertainty interpretation would suggest.

7In particular, Griffin and Tversky asked subjects to infer the likelihood that a coin is biased θA =
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establishing some of our results. Especially because the range of samples for which it is potentially

false are inherently very unlikely, we think it is probably not an important caveat to our results.

Assumption A4 says that the mean of Barney’s subjective rate distribution is the known objective

rate. Although we rely on A4 extensively in the analysis, it is in fact violated in existing data.

Below we discuss how it is violated, and in Appendix A, we propose a more comprehensive model

that captures the psychology that we believe underlies the violations.

When Barney knows the rate is θ, he believes the likelihood of observing a particular clump of

N signals, s ∈ SN , is

fψSN |Θ (s|θ) =

∫
β∈[0,1]

fSN |ß (s|β) fψß|Θ (β|θ) dβ, (1)

where fSN |ß (s|β) is the (correct) probability of observing s if the rate were β, and this is averaged

over the density of subjective rates, fψß|Θ (β|θ). Consequently, Barney’s belief that a large sample

will have a proportion of a signals in some range [α1, α2] is exactly equal to Barney’s belief that

the subjective rate β is in that range.8

Lemma 1. Assume A1-A4. Barney does not believe in LLN: for any θ ∈ Θ and interval

[α1, α2] ⊆ [0, 1],

lim
N→∞

dα2Ne∑
x=bα1Nc

fψSN |Θ (As = x|θ) = Fψß|Θ (β = α2|θ)− Fψß|Θ (β = α1|θ) > 0.

Because we assume that Barney’s beliefs about the distribution of β puts positive probability

density on the entire interval (0, 1), the subjective-rate model captures the essence of our interpre-

tation of NBLLN: Barney believes that the proportion of heads from flipping a coin known to be

fair may not be 50% in any given sample, no matter how large.

Since Barney’s belief about the distribution of signals in large samples coincides with his

subjective-rate distribution, the most appropriate density of β|θ would correspond to the empirical

beliefs in studies such as those illustrated in Figure 1, drawn from Kahneman and Tversky (1972).

The black, gray, and white bars—which correspond to people’s reported beliefs regarding samples

of size 10, 100, and 1000, respectively—are virtually the same height. This distribution presumably

corresponds to people’s large-sample beliefs about sample proportions and thus could be directly

.6 in favor of heads rather than θB = .25 in favor of heads, depending on different possible outcomes
from flipping the coin 12 times. According to the (statistically erroneous) diminishing-sensitivity intuition,
extreme samples, such as 10 heads out of 12, seem so unexpected in the case of either rate that they do not
provide strong evidence about which rate is generating the flips. Yet consistent with A3, Griffin and Tversky
find that subjects’ posterior beliefs in favor of the .6-biased coin are monotonically increasing in the number
of heads.

8All proofs are elevated to Appendix C.
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Figure 1: Evidence from Kahneman and Tversky (1972)

assumed to be the density of β|θ.

Although Assumptions A1 and A2 are consistent with Figure 1, A4 is not. Beliefs for θ = .5,

depicted in the left panel, naturally have mean approximately equal to .5. However, beliefs for

θ = .8, depicted in the right panel, have mean approximately equal to .6. The mean of the

distribution of signals is displaced toward .5 apparently because the long tail of the distribution is

fat. As we discuss in Appendices A and B, we believe that the fatness of the tail is in turn due

to even more flatness of the tail than implied by NBLLN alone. Because such extreme flatness

is omitted from the model, it will not match some features of the empirical evidence, especially

when the agent observes an extreme sample. We nonetheless assume A4 for two reasons: analytical

convenience, and our contention that the violation of the assumption is due to psychological biases

unrelated to NBLLN (see Appendix A for a model of flatness as resulting from a form of “diminishing

sensitivity”) whose robustness and general properties are poorly understood.

A subjective sampling distribution specifies an agent’s belief about the likelihood of each possible

combination of signals when the rate θ is known. Whereas Lemma 1 shows that Barney’s subjective

sampling distribution (for the number of a-signals) in the large-sample limit equals his “subjective

rate distribution,” Proposition 1 shows some implications of NBLLN for finite-sample subjective

sampling distributions.

Proposition 1. Assume A1-A4. For any θ ∈ Θ and N ∈ {1, 2, ...}:

1. EψSN |Θ
(
As
N |θ

)
= ESN |Θ

(
As
N |θ

)
= θ.

2. FSN |Θ (As|θ) second-order stochastically dominates (SOSD) FψSN |Θ (As|θ), and V arψSN |Θ
(
As
N |θ

)
≥
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V arSN |Θ
(
As
N |θ

)
with strict inequality for N > 1.

3. V arψSN |Θ
(
As
N |θ

)
is strictly decreasing in N .

4. FψSN |Θ (As|θ′) first-order stochastically dominates (FOSD) FψSN |Θ (As|θ) whenever θ′ > θ.

Part 1 states that Barney, like Tommy, expects the average proportion of a’s in the sample to be

θ. An immediate and important corollary of Part 1 is that Barney’s beliefs coincide with Tommy’s

when N = 1. Part 2 states that Barney has a riskier subjective sampling distribution than Tommy.

Combined with the fact that the mean of Barney’s subjective sampling distribution is the same as

Tommy’s, this implies that Barney’s subjective sampling distribution is a mean-preserving spread

of Tommy’s. This naturally implies that the variance of Barney’s subjective sampling distribution is

larger than Tommy’s. Part 3 states that the variance of Barney’s subjective sampling distribution

(for the sample proportion) is strictly decreasing in N . Part 4 states that a higher true rate

generates a rightward shift in Barney’s entire subjective sampling distribution in the sense of first-

order stochastic dominance.

We now turn to inference problems, where an agent with prior beliefs must infer from observed

signals what the underlying rate is; e.g., determining the likelihood that a coin is head-biased

rather than tail-biased, after observing a sample of coin flips. Let Θ ⊆ (0, 1) denote the set of rates

that have positive prior probability. For simplicity, we assume Θ is a finite set. Without loss of

generality, we consider the agent’s beliefs about the relative likelihood of two of the rates θA > θB,

given priors fΘ (θA) , fΘ (θB) > 0 and fΘ (θA) + fΘ (θB) ≤ 1.

We maintain the conventional assumption that an agent draws inferences by applying Bayes’

Rule to his subjective sampling distributions. We do so both to highlight the role played per se

by NBLLN, and because (as we discuss in Appendix B) our reading of the experimental evidence

is that except for the well-established phenomenon of “base-rate neglect” (i.e., underweighting of

priors), people’s inferences are actually well-approximated by Bayes’ Rule applied to their subjective

sampling distributions.9 Consequently, Barney’s beliefs after observing a particular clump s ∈ SN
are fψΘ|SN (θA|s) =

fψ
SN |Θ

(s|θA)fΘ(θA)∑
θ∈Θ fψ

SN |Θ
(s|θ)fΘ(θ)

and fψΘ|SN (θB|s) =
fψ
SN |Θ

(s|θB)fΘ(θB)∑
θ∈Θ fψ

SN |Θ
(s|θ)fΘ(θ)

.

Due to the LLN, after observing a sufficiently large number of signals, Tommy will be arbitrarily

close to certainty on the true rate. In contrast, the central implication for inference of Barney’s

NBLLN—which plays a large role in many of the applications later in this paper—is that Barney

remains uncertain even after observing an infinite number of signals. To boot:

9Therefore, in applications where priors are equal—and hence base-rate neglect is neutralized as a factor—
our assumption of Bayesian inference is fully appropriate. In applications where we do not assume equal
priors, however, base-rate neglect could modify some of our results. Appendix A discusses and formalizes
how to combine NBLLN with base-rate neglect.
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Proposition 2. Assume A1-A4 . Let θ ∈ Θ be the true rate. Then for any θA, θB ∈ Θ and

prior fΘ (θA) , fΘ (θB) ∈ (0, 1) , Barney draws limited inference even from an infinite sample: as

N → ∞, Barney’s posterior ratio converges almost surely (with respect to the true probability

distribution over events) to a positive, finite number:

fψΘ|SN (θA|s)

fψΘ|SN (θB|s)
→a.s.

fψß|Θ (β = θ|θA)

fψß|Θ (β = θ|θB)

f (θA)

f (θB)
. (2)

Because Barney’s asymptotic sampling distribution coincides with the subjective-rate distri-

bution, his limit inference depends on the relative weights that the pdfs of the subjective-rate

distributions for θA and θB assign to the proportion θ of a’s. Since the subjective-rate distribu-

tions put positive density on every proportion in (0, 1), Barney’s likelihood ratio will be finite. An

immediate and important implication is that Barney’s priors—i.e., his ex ante theories about the

world—influence his beliefs even in the limit of an infinite sample.

Tommy not only will learn the true rate for sure after observing a sufficiently large number

of signals, he also correctly anticipates that a sufficiently large number of signals will make him

certain of the true rate. In contrast, Barney mistakenly thinks that his posterior probability of rate

θA after observing an infinite number of signals is a stochastic function of the true rate. The reason

is that, even though Barney knows that his inferences in a large sample will be pinned down by the

proportion of a’s, he incorrectly thinks the proportion of a’s is determined by the subjective rate,

which could be any number between 0 and 1.

Proposition 3. Assume A1-A4. Fix rates θA, θB ∈ Θ such that θA > θB and any prior fΘ (θA) =

1− fΘ (θB) ∈ (0, 1). Before having observed any data, Tommy believes: if the rate is θA, then his

limit posterior probability that the rate is θA is 1. In contrast, before having observed any data,

Barney believes: if the rate is θA, then his limit posterior probability that the rate is θA is a random

variable that has positive density on a nondegenerate interval in [0, 1]. If we strengthen assumption

A1 to A1 ′, then, in addition, the interval is closed and is a strict subset of [0, 1].

Moreover, because, given his wrong model of the data-generating process, Barney’s model of the

world at any given moment is Bayesian, he mistakenly believes that his subjective beliefs satisfy

the “Law of Iterated Expectations”: Barney expects that for any sample size, the mean of his

posterior beliefs will equal the mean of his prior beliefs: for any N ≥ 1, EψΘ|SN (θ|s) = EψΘ (θ). In

fact, however, Barney’s actual beliefs do not have this martingale property. As per Proposition 2,

Barney’s posterior beliefs will converge to a point mass that is not equal to the mean of his prior

beliefs.

12



We next turn to inference in finite samples. Because Barney’s subjective sampling distribution

is correct when the sample size is 1, he will draw correct inferences in that case.

Proposition 4. Assume A1-A4. Fix rates θA, θB ∈ Θ such that θA > θB and prior fΘ (θA) =

1 − fΘ (θB) ∈ (0, 1). For N = 1, Barney and Tommy infer the same. If θA = 1 − θB, then for

any set of N ∈ {1, 2, ...} signal realizations s ∈ SN , neither Tommy’s beliefs nor Barney’s beliefs

change from the priors when As
N = 1

2 .

In many of the inference experiments reviewed in Appendix B and in many of our applications

involving inference, the two rates are “symmetric” in the sense that θA = 1−θB, e.g., an urn might

have either 60% red balls or 40% red balls. In that case, when exactly half the signals are a-signals,

the sample is uninformative for both Barney and Tommy, and neither updates his beliefs about the

rate.

For further analysis of the finite-sample case—as well as for some theoretical applications and

empirical analysis—it is useful to have a parametric model of Barney’s subjective rate distribution.

For some of our results, we impose the functional form of the beta distribution:

fψß|Θ (β|θ) = βθψ−1 (1− β)(1−θ)ψ−1 Γ (ψ)

Γ (θψ) Γ ((1− θ)ψ)
, (3)

where 0 < ψ <∞ is the exogenous parameter of the model, and Γ (x) ≡
∫

[0,∞) y
x−1e−ydy, defined

on x > 0.10 The properties A1-A4 are satisfied (see Appendix C, Lemma β5), and this family

of beta densities shares many qualitative features of people’s empirically-observed large-sample

beliefs about the distribution of signals. A major advantage of this formulation is tractability:

since the beta distribution is the conjugate prior for the binomial distribution, standard results

from probability theory can be used to characterize Barney’s beliefs.11 “Parameterized-Barney” is

more biased for smaller ψ—with more dispersed subjective sampling distributions in the sense of

SOSD—and Barney coincides with Tommy in the parameter limit ψ →∞.

Although we do not conduct a careful structural estimation, we estimate from studies that elicit

subjects’ subjective sampling distribution as well as inference studies that ψ falls within a range

of 7-15. This parameterized model of Barney gives a sense of magnitudes for how Barney’s under-

10The more common way of writing this beta density is fψß|Θ (β|θ) =

βθψ−1 (1− β)
(1−θ)ψ−1 (ψ−1)!

(θψ−1)!((1−θ)ψ−1)! . Our formulation is equivalent, except it allows for non-integer

values of ψ. Recall that the Gamma Function, Γ (x), is the standard generalization of the factorial
function: it has the properties that Γ (x+ 1) = xΓ (x) and Γ (1) = 1, so that for any positive integer x,
Γ (x) = (x− 1)!.

11The functional form (3) has a few implications about asymmetric inference (i.e., inference problems
where θA 6= 1− θB) that do not have general intuitions related to NBLLN. These are presented in Lemma
β4 in Appendix C. In the text, we avoid stating implications of these properties of the functional form that
would not generalize to other models that are equally consistent with existing evidence.
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inference depends on the rates θA and θB. Suppose ψ = 10, Barney begins with equal priors on

the two states, and the true rate is θA. If the difference between the rates is relatively large—with

θA = 1 − θB = .8—then the role of NBLLN is relatively small. In an infinite sample, Barney’s

subjective posterior probability of rate θA will converge to .9998. However, if the two rates are

closer together—with θA = 1− θB = .6—then in an infinite sample, Barney’s subjective posterior

probability of rate θA will converge to only .69 (which is what Tommy’s posterior would be after

only 6 heads and 4 tails!). As a reminder about the role of priors, this means if Barney initially

had beliefs more extreme than 2.25:1 in favor of rate θB, he will, in an infinite sample, surely end

up believing rate θB is more likely, even when θA is the true rate.

While most dramatic in large samples, NBLLN has implications for all sample sizes larger than

1. Since Barney’s subjective sampling distribution is too dispersed when N > 1, Barney will

generally under-infer when the sample size is larger than 1. In order to make that claim precise,

we measure Barney’s (and Tommy’s) “change in beliefs” by the absolute difference between his

posterior probability that θA is the true rate and his prior probability:
∣∣∣fψΘ|SN (θA|s)− fΘ (θA)

∣∣∣.
Unlike in large samples, in small samples it is no longer universally true that Barney under-infers

relative to Tommy. For particular realizations Barney can over-infer or under-infer relative to

Tommy—or even infer in the opposite direction, so that a sample that causes Tommy to think

rate θA is more likely, causes Barney to think rate θB is more likely!12 Nonetheless, we believe

that Barney under-infers in expectation, taken with respect to the true sampling distribution.

Proposition 5 proves this statement for the case of ψ sufficiently small, but we conjecture that it

holds for any 0 < ψ <∞.13

Proposition 5. Assume Barney has the beta-distribution functional form given by equation (3).

Fix rates θA, θB ∈ Θ such that θA > θB, prior fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1) and a set of

N ∈ {1, 2, ...} signal realizations s ∈ SN . Regardless of whether the true rate is θA or θB, for

ψ sufficiently small, the expected change in Barney’s beliefs is smaller than the expected change

in Tommy’s beliefs. Furthermore, suppose θA = 1 − θB. Then for any sample of N > 1 signals

such that As
N 6=

1
2 and any ψ, Barney under-infers relative to Tommy. In addition, while Tommy’s

inference depends solely on the difference in the number of a and b signals, Barney’s change in

beliefs is smaller from larger samples with the same difference.

12For example, using the parameterized model, set ψ = 10, θA = .7, and θB = .6, and assume equal
priors on the two states. Then if the realizations of 80 signals are 53 a-signals and 27 b-signals, then Tommy
believes that state A is more likely, while Barney believes state B is more likely.

13We have simulated Barney’s and Tommy’s expected change in beliefs for a range of parameter values:
for each of ψ ∈ {1, 2, ..., 30} and N ∈ {5, 10, 15, 20}, we examined each of θA, θB ∈ {.5, .6, .7, .8, .9}. We also ran a
number of simulations for θA = .99 and .999 and for ψ = 100. In every case we examined, Barney’s expected
change in beliefs was smaller than Tommy’s.
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Intuitively, on average Barney under-infers because he partially attributes the information in

the realized sample to the subjective rate, rather than extracting all of the information about the

true rate.

In symmetric inference problems (i.e., θA = 1 − θB), Proposition 5 shows that stronger com-

parisons can be made between Barney and Tommy: as long as the realized sample is informative,

parameterized-Barney will under-infer, not just in expectation. Proposition 5 also notes a key

feature of Barney’s updating that shows how it leads to a bias toward “proportional thinking” in

inference along the lines suggested by researchers such as Griffin and Tversky (1992). Consider

samples where the difference between the number of a-signals and the number of b-signals is the

same, e.g., (2 a, 0 b) and (5 a, 3 b). Tommy will draw the same inference from the two samples.

But because his asymptotic sampling distributions depend on the proportion of a and b signals

rather than their number, Barney infers less from the larger sample.

3 Static Applications

This section explores the implications of the simple model from the last section. First, we explore

what is perhaps the most direct and important economic implication of NBLLN: because people do

not expect to learn much from large samples, they are more likely to rely on small-sample sources

of information than to incur the cost of obtaining a large-sample data source. We then turn to

how NBLLN’s basic implications for an agent’s subjective sampling distribution play out in various

gambling and investment environments. Finally, we build on that analysis to examine the value of

information in an environment of choice under risk.

3.1 Lack of Demand for Large Samples

Suppose Barney is trying to decide what make of car to buy, a Volvo or a Lada.14 The state is

ω = A if the Volvo is superior and ω = B if the Lada is superior. Barney is choosing whether to

acquire information by asking a friend, which will provide him with a single signal at cost cf > 0,

or by purchasing Consumer Reports, which will provide him with the aggregate information from

a large number N of signals, at cost cr > cf . After observing the information, Barney must take

an action µ, either buying the Volvo (µ = µA) or the Lada (µ = µB). Barney’s payoff is u(µ, ω),

which equals 1 if the action matches the state and 0 otherwise.

The comparison between Barney’s and Tommy’s valuations of an intermediate-sized sample is

ambiguous: even though Barney might expect to infer less on average than Tommy would, Barney

14A Lada is a type of car. So is a Volvo.
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also overestimates the probability of an extreme outcome that would allow for stronger inferences.

Therefore, perhaps counterintuitively, if Barney and Tommy can both choose the total number of

signals to purchase, Barney can actually end up being more certain about the state of the world.

For a large sample, however, Barney unambiguously has a lower willingness to pay than Tommy

does. Tommy correctly anticipates that—due to the Law of Large Numbers—reading Consumer

Reports will make him virtually certain about the true state, but as per Proposition 3, Barney

expects to remain uncertain. Because Barney expects to learn less from Consumer Reports than

Tommy does, Barney is more likely to ask the friend.

Proposition 6. Assume A1-A4. Fix payoffs u(µ, ω), rates θA, θB ∈ Θ such that θA > θB, prior

fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1), and the cost of asking a friend cf > 0. Suppose that knowing the

state is valuable: u(µA, A) > u(µB, A) and u(µA, B) < u(µB, B). Furthermore, suppose that cf

is small enough that if Consumer Reports were not available, Tommy would ask the friend. If the

number of signals N in Consumer Reports is sufficiently large, then there exist thresholds c′r and

c′′r with cf < c′r < c′′r such that: if cr < c′r, then both Tommy and Barney buy Consumer Reports;

if cr > c′′r , then both Tommy and Barney ask the friend; and if cr ∈ (c′r, c
′′
r), then Tommy buys

Consumer Reports while Barney asks the friend.

Barney’s lack of demand for statistical data is a central implication of NBLLN. We believe it is

consistent with obvious facts: we live in a world in which people are not persuaded by statistical

evidence that should be convincing, people do not demand such information, and such information

is therefore rarely supplied by the market. Public health announcements are more effective if they

feature vivid anecdotes rather than statistics, and the car purchaser who actually consults Con-

sumer Reports is the exception rather than the rule. In some cases, such as restaurant satisfaction

ratings, people may correctly expect large samples not to be very useful because preferences are

heterogeneous. When preference heterogeneity is less of an issue, however, e.g., the frequency of

car battery failure, the lack of demand for statistical data is a major “dog that didn’t bark” clue

that implicates NBLLN.15

The flip side of people’s failure to demand large numbers of signals is their willingness to rely

instead on sources of information that provide only a small number of signals. Indeed, given the

amount of other information people may be able to obtain at relatively low cost, NBLLN helps

explain why they nonetheless often instead rely on limited personal experience, stories from one’s

15In principle, people may distrust large datasets because of selection issues—worrying (say) that those
getting vaccines are less prone to autism than those not and finding statistics that vaccines do not increase
autism unpersuasive. Yet it seems much more common that people attend too little to selection issues;
indeed, we would live in a very different world if concerns with selection bias pervaded public reaction to
statistical evidence.
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immediate social network, or anecdotes from strangers.

The lack of demand for large samples generated by NBLLN is especially severe when Barney is

initially confident about the state or when each individual signal is relatively uninformative, i.e., θA

is close to θB. Tommy understands that a sufficiently large number of such signals will nonetheless

reveal the state. In contrast, when Barney has a confident prior or when signals are relatively

uninformative, Barney may be unwilling to pay any positive cost for even an infinite number of

signals!

Proposition 7. Assume A1 ′ and A2-A4. Suppose that the agent is deciding whether to buy

Consumer Reports at cost cr or not obtain any signals. Furthermore, fix payoffs u(µ, ω) so that

knowing the state is valuable: u(µA, A) > u(µB, A) and u(µA, B) < u(µB, B). For Tommy: for

all rates θA, θB ∈ Θ such that θA > θB and priors fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1), there exists

a threshold c∗r > 0 such that if cr < c∗r, then as long as the number of signals N in Consumer

Reports is sufficiently large, he buys Consumer Reports. In contrast, for Barney: (i) for all rates

θA, θB ∈ Θ such that θA > θB, there exist priors fΘ (θA) such that for any cr > 0 and any N ,

he does not buy Consumer Reports; and (ii) for all priors fΘ (θA) at which he is not indifferent

between µA and µB, there exist rates θA, θB ∈ Θ, where θA > θB, such that for any cr > 0 and

any N , he does not buy Consumer Reports.

Unlike Proposition 6, Proposition 7 relies on A1′ (not just A1): Barney thinks that he will draw

a limited inference no matter how extreme the sample proportions turn out to be. If his priors

are extreme enough or the rates are close enough together, then he thinks that the information

provided by an infinite number of signals will not affect whether he buys the Volvo or the Lada.

Consequently, his willingness to pay for an infinite number of signals is zero.

On the flipside, even though Barney often under-infers when presented with information, he may

nonetheless purchase information even when it will not have any objective value for him. This is

because Barney believes that his posterior after observing a large sample is a random variable, and

his willingness to pay is positive whenever he thinks he might make an extreme enough inference

to switch his action from what he would do given only his prior. Yet for a large sample, Barney’s

posterior is in fact deterministic. Hence if Barney’s priors are extreme enough, and the cost of

information small enough, he may incur the cost of purchasing Consumer Reports even though the

information will almost surely not affect his action.16 In section 5.3 below, we illustrate how such a

“learning trap” phenomenon can also occur in a dynamic setting through a different mechanism—

namely, Barney’s incorrect beliefs about how he will process future signals.

16As such, even the limited number of cases where decisionmakers seem to hunger for large datasets is not
proof of instances where NBLLN is not having an impact.
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3.2 Perceived Aggregate Risk

We now consider the implications of NBLLN for risky investments and gambles, in which the agent’s

payoff depends on the outcome of a series of random draws. The comparison between Barney and

Tommy is especially simple in settings where an agent experiences a binary win or loss depending on

whether a particular outcome occurs. In such cases, Barney values the gamble more than Tommy

does if and only if he thinks that that outcome is more likely than Tommy does.

A leading special case is where the particular outcome is an extreme sample proportion, which

in general Barney thinks is more likely to occur than Tommy does. For example, suppose the agent

is deciding whether to play a lottery game where he picks N numbers, he wins a prize if all his picks

match the numbers chosen randomly by the lottery, and the probability that any given number

he picks is chosen by the lottery is θ. If N > 1, then Barney believes his chance of matching all

the numbers is higher than it is, and hence his willingness to pay to play this game is higher than

Tommy’s. The logic of NBLLN implies that the difference from Tommy is larger for larger N . In

contrast, in situations where Barney gets a payoff as long as an extreme outcome does not occur,

Barney’s behavior can appear to be especially risk averse. For example, suppose Barney attends

a job fair at which he applies to N > 1 equally-valuable jobs, his chance of getting any particular

job is θ, and he cannot accept more than one job. Since Barney believes his chance of getting at

least one job offer is lower than it is, Barney’s willingness to pay to attend the job fair is lower than

Tommy’s.

For the remainder of this subsection and the next, we turn to settings in which the agent’s

outcome is not binary but instead varies with the number of a-signals. Here we consider classical

risk preferences as represented by a utility function u (w) that is smooth and increasing in final

wealth w (in the next subsection, we consider instead loss-averse preferences). Final wealth, w (AS),

is an increasing function of the realized number of a-signals (good outcomes) out of N draws, where

as usual the rate of a-signals is θ.

Proposition 8 states the key implication of NBLLN for valuation of such a gamble, which

depends on whether the agent’s utility over the number of good draws, u (w (AS)), is concave or

convex in AS .17 Note that, because we will consider cases where w (AS) is not linear, the shape of

the agent’s utility depends on both the agent’s risk preferences u (w) and the manner in which the

random outcomes translate into monetary outcomes w (AS).

Proposition 8. Assume A1-A4. Fix a risky gamble (θ,N). If u (w (AS)) is a concave (resp.,

17Because the outcome space is discrete, in this subsection, as well as the following one, we use the standard
definition that u(w(AS)) is a convex (resp., concave, linear) function of AS if u(w(AS − 1)) + u(w(AS + 1)) −
2u(w(AS)) ≥ (resp., ≤,=) 0.
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convex) function of AS, then Barney’s willingness to pay for the risky investment is less than

(resp., greater than) Tommy’s.

Given the fact that, as per Proposition 2, Barney’s subjective sampling distribution is a mean-

preserving spread of Tommy’s, Proposition 8 follows directly from standard results in the theory of

choice under risk. Its implications in different risky-choice contexts are determined jointly by u (w)

and w (AS).

Consider a repeated gamble over coin flips, in which the agent earns a fixed dollar amount h for

each a-signal and a different dollar amount t < h for each b-signal. In that case, w (AS) is linear, so

u (w (AS)) is concave in AS if and only if u (w) is concave in w. Thus, NBLLN reduces a risk-averse

agent’s willingness to pay for a repeated gamble.

Now suppose an agent is considering whether or not to invest in a diversified portfolio of N

identical stocks for a single year. Any given stock does well with probability θ, in which case it

pays off h, or badly with probability 1 − θ, in which case it pays off t < h. Since this example is

mathematically equivalent to a repeated gamble, NBLLN can help explain why people fail to fully

recognize the benefits of diversification: if investors face a fixed cost of diversification, Barney will

often find diversification not worth the cost, even when Tommy does.

As a final example, suppose an agent is considering whether or not to invest in a stock for N

years. Any given year the stock does well with probability θ in which case it earns a gross rate of

return 1 + rh, or badly with probability 1 − θ in which case it earns a gross rate of return 1 + rt

with rt < rh. (Equivalently, we could assume that the stock pays off a fixed dollar amount, but

all earnings are re-invested.) Because of compounding, w (AS) is now a convex function. Whether

Barney or Tommy has a greater willingness to pay for this investment opportunity depends on

the shape of u (w). If the agent is risk-neutral, or more generally not sufficiently risk-averse, then

Barney will find the long-term investment more attractive than Tommy does. In reality, however,

we believe that people generally perceive long-term investments as less attractive than they should

because of the combined effects of NBLLN and loss aversion, as we discuss next.

3.3 Samuelson’s colleague

Proposition 8 from the previous subsection highlights the effect on risk attitudes of the fact that

Barney’s beliefs are a mean-preserving spread of Tommy’s. NBLLN’s most direct prediction, that

Barney will put positive probability on extreme outcomes even in very large samples, also has

important implications for risky choice.

Consider first a famous example: Paul Samuelson (1963) reports the story of an economics

professor colleague at MIT telling Samuelson that, whereas he would reject a bet for even odds to
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gain $200 or lose $100, he would accept 100 repetitions of that bet. Even though such behavior

sounds reasonable to most of us, Samuelson proves that it violates classical expected-utility theory.

That is, a Tommy with expected-utility preferences defined over final wealth who does not exhibit

unrealistically large wealth effects should be willing to take a single bet if and only if he is willing

to take N ≥ 1 independent plays of that bet. To see this, not that preferring K + 1 bets to K

bets is the same thing as preferring 1 bet on top of any realization of the K bets. By induction,

preferring to take any positive number of the bets is the same as preferring to take one bet.

Yet, it is not just the “switching” that violates classical expected-utility preferences, but the

aversion to the single bet to begin with. Rabin (2000a, 2000b) and Rabin and Thaler (2001) have

followed others in noting that the degree of concavity required for expected-utility preferences de-

fined over wealth to explain risk-averse behavior over small stakes is calibrationally implausible.

Loss aversion—the tendency to feel a loss more intensely than an equal-sized gain—probably ex-

plains why the majority of people who turn down the one-shot gamble do so.18 Somebody with a

simple, piecewise-linear loss-averse utility function

u(w0, z) =

 w0 + z if z ≥ 0

w0 + λz if z < 0
, (4)

where w0 is initial wealth and z is a monetary gain or loss, will refuse the one-shot bet as long as

the coefficient of loss aversion, λ—often set equal to 2.25 (e.g., Tversky and Kahneman, 1991)—is

greater than 2.19 However, a Tommy with typical loss-averse preferences would be extremely happy

to accept 100 repetitions of the same gamble: while the expected gain is $5,000, the chance of a

net loss is only 1/700, and the chance of losing more than $1,000 is only 1/26,000.

Despite being loss averse enough to turn down the one bet, nobody with fully rational beliefs

would turn down 100 repetitions of this bet. Yet, unlike Samuelson’s colleague, many people would

do so! In hypothetical questions from one study in Benartzi and Thaler (1999), for instance, 36%

of participants said they would turn down a single scaled-down Samuelson type bet (win $100 or

18Samuelson himself had speculated that it was the willingness to accept repeated plays of the bet that was
the mistake, rather than the refusal to accept a single gamble. Samuelson’s conjecture that his colleague’s
willingness to accept the repeated gamble was the result of a “fallacy of large numbers”—a mistaken belief
that the riskiness of the gamble evaporates with a sufficiently large number of repetitions—is the opposite
of NBLLN, and is contradicted by Benartzi and Thaler’s (1999) evidence, reported below, that people
exaggerate the probability of a loss in the repeated bet.

19Although essentially correct for small gambles, assuming linear consumption utility can become prob-
lematic if bets are repeated so many times as to involve large amounts of wealth. However, if in our limit
results below, we halve the stakes every time we double the number of repetitions, the linearity assumption
is unobjectionable. Similarly, linearity is an appropriate assumption for studying diversification of a fixed
amount of wealth among many assets, with a small amount invested in each asset.
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lose $50), but fully 25% also reject the 100-times repeated gamble.20

NBLLN helps explain why many people turn down these gambles.21 Barney exaggerates the

probability that the repeated bet will turn out badly. Indeed, Benartzi and Thaler report evidence

consistent with this explanation: when asked the probability of losing money after 150 repetitions

of a 90%/10% bet to gain $0.10/lose $0.50, 81% of subjects overestimated the probability—and

by an enormous margin. While the correct answer is .003, the average estimate was .24. To

show that subjects’ mistaken beliefs were driving their choices, Benartzi and Thaler compared

subjects’ willingness to accept the repeated bet with their willingness to accept a single-play bet

that had the histogram of money outcomes implied by the repeated bet. While only 49% of the

college-student subjects accepted 150 repetitions of the bet, 90% accepted the equivalent single-

play bet, suggesting that the repeated bet would have been very attractive if subjects had correctly

understood the distribution of outcomes.22,23

Formally, while a loss-averse Tommy will always accept a better-than-fair bet if it is repeated

enough times, a loss-averse Barney may—depending on how favorable the bet is and how loss-averse

he is—turn down an infinitely-repeated bet.

Proposition 9. Assume A1-A4. Suppose Barney and Tommy have simple, piecewise-linear loss-

averse preferences as specified in (4). Fix any gamble (θ, h, t), paying off h > 0 with probability θ

20In two other subject pools, they find 34% and 23% turn down a simple $20/$10 gamble, and more
people—57% and 50%—turn down the repeated gamble. Keren (1991) finds similar results in incentivized
single bets vs five-times-repeated bets; for related hypothetical evidence, see Keren and Wagenaar (1987)
and Redelmeier and Tversky (1992). Klos, Weber and Weber (2005) replicate and extend Benartzi and
Thaler’s findings. They present subjects with four lotteries, each of which may be played singly, repeated
5 times, or repeated 50 times. Subjects generally prefer the repeated gambles but vastly overestimate the
probability of loss as well as the expected loss conditional on losing money. Klos, Weber and Weber also find
that subjects incorrectly believe the probability of the monetary outcome ending up within a given interval
around the expected value increases with the number of repetitions. This last finding is inconsistent with
our model of NBLLN and may reflect a bias from focusing subjects’ attention on the expected value, or it
may be consistent with “exact representativeness,” a bias we discuss in Appendix B.

21Our emphasis on how NBLLN helps explain why loss-averse people turn down the repeated bet is because
of its calibrational relevance, but it is worth noting that NBLLN also has implications for how expected-
utility-over-wealth agents respond to repetitions of bets. We can extend the “if” part of Samuelson’s theorem:
if Barney rejects a bet at all initial wealth levels w0, then he would also reject any N ≥ 1 independent plays
of that bet. The “only if” direction does not extend, and a Barney who is just indifferent between accepting
and rejecting a simple bet would, because he exaggerates the risk, strictly prefer to reject repeated versions
of the gamble.

22Note also that something more than the type of “narrow bracketing” stressed by authors such as Tversky
and Kahneman (1986), Kahneman and Lovallo (1993), Benartzi and Thaler (1995), Read, Loewenstein and
Rabin (1999), Barberis, Huang and Thaler (2006), and Rabin and Weizsäcker (2009) seems to be playing a
role. Those papers emphasize that people often react to a combination of risky bets as if they were deciding
about each risky bet in isolation from all the others. While such neglect of the effects of aggregating risks
may help explain why people reject the repeated gamble, it seems clear that even people who attend to the
aggregate effects misunderstand these aggregate effects. Benartzi and Thaler (1999) make this especially
clear by demonstrating directly that people asked the probability of aggregate loss of independent bets
exaggerate along the lines predicted by NBLLN.

23Benartzi and Thaler also elicited the effects of showing the histogram in the above hypothetical examples
and showed that it reduces rejections from 25%, 57%, and 50% to, respectively, 14%, 10%, and 17%.
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and −t with probability 1− θ, that is better than fair: θh > (1− θ) t. For any λ ≥ 1, there is some

N ′ ≥ 1 such that if N > N ′, then Tommy will accept N repetitions of the gamble. In contrast, for

Barney there is some threshold level of loss aversion λ̂ > 1 such that: if λ < λ̂, then there is some

N ′ sufficiently large such that Barney will accept N repetitions of the gamble for all N > N ′; and

if λ ≥ λ̂, then there is some N ′′ sufficiently large such that Barney will reject N repetitions of the

gamble for all N > N ′′.

Moreover, it is possible for Barney to exhibit the opposite pattern from Samuelson’s colleague,

accepting the single bet but rejecting the 100-times repeated bet! Consistent with this possibility,

the evidence cited above from Benartzi and Thaler (1999) found behavior in the opposite direction

of Samuelson’s colleague in two out of their three studies.24

Using the one-parameter functional form for Barney, calibrations suggest that NBLLN goes

much of the way, but not all of the way, in explaining why 25-57% of participants turned down the

repeated bets in Benartzi and Thaler’s studies. For Tommy, the coefficient of loss aversion required

to explain this data is absurdly high, in excess of 32,000. For Barney with ψ = 10, the required

loss aversion is approximately 15—many orders of magnitude closer to reality but still much larger

than reasonable estimates of λ.25

Similarly as with Proposition 8, Proposition 9’s results on repeated bets carry over directly to

diversification: it would go through essentially unchanged if, rather than repeating a gamble N

times, the agent were mixing N independent gambles. Tommy would always accept a portfolio of

positive-expected-value gambles if N is sufficiently large. In contrast, if Barney is sufficiently loss

averse, then regardless of how large N is, Barney may prefer not to hold this portfolio.

Also similarly to above arguments, the application to long-term investing is complicated by

compounding, which if strong enough could reverse the comparison between Barney and Tommy.

Benartzi and Thaler (1999) reported evidence consistent with NBLLN in the context of long-term

investing: university employees vastly overestimated the probability that equities would lose money

24Preferences that generate an aversion for multi-stage resolution of risk—such as the preferences proposed
by Koszegi and Rabin (2009) or Dillenberger (2010)—could also predict rejections of repeated gambles. The
psychology underlying this prediction, however, only seems plausible when the outcomes of each individual
gamble are observed separately. In contrast, NBLLN predicts rejection precisely due to mistaken beliefs about
the combined outcomes of the gambles. Furthermore, NBLLN predicts risk-seeking behavior in settings where
these other models would not, e.g., in the lottery example in the previous subsection.

25Incorporating some of the biases missing from our model of NBLLN (such as the sampling-distribution-
tails diminishing sensitivity bias (SDTDS) described in Appendix A) that would generate even fatter tails
in subjects’ subjective sampling distribution helps reduce the required level of loss aversion even more—
although still not to a reasonable level of λ such as 2.25. Indeed, even if an individual exhibited the most
extreme form of NBLLN and SDTDS (and possibly also probability weighting), putting equal weight on every
possible outcome of the repeated gamble, the required level of loss aversion would be around 4 (because only
1/3 of the outcomes are losses). This exercise implies that some other bias is also implicated in turning down
the repeated bet. Whatever it is might also explain why some subjects turn down the aggregate bet even
when it is presented in histogram form.
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over a thirty-year horizon. Moreover, the employees stated a far greater willingness to invest in

equities when they were explicitly shown the thirty-year returns, suggesting that the net effect

of NBLLN is to reduce the attractiveness of long-term investing. While there are many reasons

why individuals may invest less in equities for retirement than recommended by standard finance

models, we suspect that NBLLN is an important contributing factor. As such, just as in other

settings researchers may underestimate risk aversion by ignoring overconfidence when inferring risk

preferences from investment behavior, researchers might therefore exaggerate the risk aversion of

investors by ignoring NBLLN.

3.4 Risky Gambles and the Value of Information

An important implication of Barney’s distorted predictions is that he does not believe that the

rate pins down the distribution of good and bad outcomes in an investment as much as it does.

This in turn means that if there is uncertainty about the rate, then Barney’s willingness to pay to

reduce this uncertainty may differ from Tommy’s. In this subsection, we explore the implications

of NBLLN for the value of information about a risky gamble.

For simplicity, we return to the set-up with classical risk preferences, u (w), in which utility

depends only on final wealth. As before, the agent is deciding whether or not to make a risky

investment (θ,N) whose monetary payoff, w (AS), is increasing in the number of a-signals. Here,

however, the agent is uncertain about whether or not a mutual fund he is considering investing in

has a talented manager. If the manager is talented, the rate of a-signals is θ = θA; if untalented, it is

θB < θA. The agent’s alternative to the risky investment is a safe asset that generates known wealth

w0. The agent has a prior over whether the manager is talented but can reduce his uncertainty by

incurring a cost to consult with an investment adviser. We aim to compare Barney’s willingness to

pay for this information with Tommy’s.

Unlike in Section 3.1, where we compared how Barney and Tommy value different sample sizes,

here we model the information as a single signal. Doing so allows us to hold constant how much

the agent learns from the signal; we focus on how Barney and Tommy value information differently

due to how it might affect their actions differently.

We suppose that consulting the investment adviser reveals a signal σ ∈ {L,H}. A high sig-

nal H is more likely if the manager is talented: fΣ|Θ (σ = H|θ = θA) > fΣ|Θ (σ = H|θ = θB) and

fΣ|Θ (σ = L|θ) = 1− fΣ|Θ (σ = H|θ).

A critical factor for the comparison between Barney’s and Tommy’s demand for information is

the shape of utility as a function of the number of good draws, u (w (AS)). As discussed in Section

3.2, this utility depends both on risk preferences and on how the number of a-signals translates into
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monetary payoffs. If u (w (AS)) is linear, then only the expected number of a-signals matters, which

is the same for Barney and Tommy. In that case, Barney’s willingness to pay for the signal σ is

exactly the same as Tommy’s. Proposition 10 compares Barney’s willingness to pay with Tommy’s,

focusing on the case where u (w (AS)) is concave. (If u (w (AS)) is convex, the logic is analogous,

and all the conclusions are simply reversed.)

Proposition 10. Assume A1-A4. Suppose an agent with initial wealth w0 can choose whether or

not to take a risky gamble (θ,N) whose monetary payoff, w (AS), is increasing in AS . The agent

does not know whether θ = θB or θ = θA > θB, and has priors fΘ (θA) = 1− fΘ (θB) ∈ (0, 1).

Suppose u (w (AS)) is a concave function of AS. In that case, if given the prior Barney invests,

then so does Tommy. Moreover:

1. If given the prior neither Tommy nor Barney invests, then Tommy’s willingness to pay for a

signal σ is higher than Barney’s.

2. If given the prior both Tommy and Barney invest, then Barney’s willingness to pay for a

signal σ is higher than Tommy’s.

3. If given the prior Tommy invests while Barney does not, then Barney’s willingness to pay for

a signal σ is higher than Tommy’s if and only if

∑
σ∈ΣψI

fΣ (σ)
{
EΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
− u(w0)

}
≥

∑
σ∈ΣS

fΣ (σ)
{
u(w0)− EΘ|Σ

[
ESN |Θ [u(w(AS))|θ] |σ

]}
,

where Σψ
I ⊆ {L,H} is the set of signals such that given his posterior Barney would invest;

and ΣS ⊆ {L,H} is the set of signals such that given his posterior Tommy would not invest.

Alternatively, if u (w (AS)) is a convex function of AS, then all of the conclusions in the

previous paragraph hold with “Barney” and “Tommy” switched.

A key piece of the logic underlying the proposition is that observing the signal has value only

to the extent that it would cause an agent to switch actions, relative to what the agent would do in

the absence of observing the signal. The three parts of the proposition address each of the possible

cases of whether Tommy and Barney would undertake the risky investment given the prior. The

formulation of these cases in terms of parameter restrictions is contained in the proof.

The impossibility of the fourth potential configuration—that Barney would invest but Tommy

would not—follows directly from Proposition 8: for both possible θ’s, because Barney’s beliefs are a
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mean-preserving spread of Tommy’s and u (w (AS)) is concave, the gamble is at least as attractive

to Tommy as it is to Barney. Indeed, this same observation also plays a role in the logic underlying

the first and second parts of Proposition 10. The first part of Proposition 10 addresses the case

where, given the prior, neither Tommy nor Barney would invest. In that case, the signal has value

to the extent that it might cause an agent to switch actions and undertake the investment. Since

the investment is more attractive to Tommy (in either state), any signal realization that leads both

agents to invest has greater value to Tommy. Moreover, a weaker signal is required for Tommy to

switch his action, so the set of signal realizations that are valuable is at least as large for Tommy.

Due to both of these reasons, Tommy’s willingness to pay for the signal is higher.

The second part supposes that, given the prior, both Tommy and Barney would invest. Now,

the same logic operates in reverse: the signal has value to the extent that it might cause the agent

to switch to the safe option. Since Barney finds it less attractive than Tommy to undertake the

investment (in either state), any signal realization that leads both agents to switch to the safe

option is more valuable to Barney, and the set of signal realizations that are valuable is at least as

large for Barney. Thus, Barney’s willingness to pay for the signal is higher.

The third case is where given the prior, Tommy would invest, but Barney would not. Barney’s

willingness to pay for the signal is greater than Tommy’s exactly when Barney’s expected gain

from switching his action times the probability that he observes a signal that causes him to change

his action exceeds Tommy’s expected gain from switching his action times the probability that he

observes a signal that causes him to change his action; the inequality is the formal statement of

this condition.

4 NBLLN in Multiple-Sample Settings

For Tommy, it does not matter whether he treats 20 independent signals as one sample of 20,

two samples of 10, or 20 samples of 1. In contrast, and intrinsic to the very meaning of NBLLN,

Barney’s beliefs about the distribution of and inference from signals depend on how he divides

them up into samples. In this section, we provide a framework for thinking about this issue,

and—in order to facilitate studying the range of possible consequences of NBLLN in dynamic

decision-making environments as well as to provide guidance for future experimental work—we

formulate plausible alternative assumptions.26 We review in Appendix B the scant and somewhat

contradictory evidence we can find about which assumptions are appropriate; since there is so little

26Moreover, the implications of other non-Bayesian models of judgment biases—such as base-rate neglect—
similarly exhibit sensitivity to how data are framed. As such, the range of approaches we outline here may
prove useful for studying those other biases.
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evidence, our proposals are tentative. We keep our discussion in this section informal, relegating

formal definitions to Appendix D.

Several distinctions will be useful. Clumping refers to how signals are objectively delivered to

Barney by his environment. For example, when Barney asks a sequence of friends about their

experience driving a Volvo, each friend’s report arrives as a separate clump, but when Barney

reads a summary of 10,000 individuals’ experiences in Consumer Reports, the 10,000 signals arrive

as a single clump. We refer to how Barney subjectively processes these clumps for the purposes of

making forecasts and inferences as how he groups the signals. Barney forms beliefs regarding each

group of signals as if a subjective rate β were drawn that applies only to that group, and hence

the single-clump model from Section 2 can be applied to each group. Although economic models

of decisionmaking do not traditionally specify how signals are clumped, our aspiration is to have

this be an exogenous assumption that is not per se related to NBLLN, and ideally is pinned down

by observable characteristics of a situation. How clumps are grouped, on the other hand, must be

a feature of any complete model of a departure from Bayesian information processing.

We distinguish two facets of how Barney groups data. The first is how he processes clumps

into groups retrospectively—how he processes clumps he has already received. The second is how

he processes clumps into groups prospectively. Prospective grouping determines his forecast about

what data he will observe given his current beliefs and his forecast of what he will infer from that

data after he observes it.

In each of the retrospective and prospective directions, we focus attention on two ways that

Barney might process clumps of signals. If Barney groups the signals the same way he receives

them from the environment, we call him acceptive. Acceptive Barney would process Consumer

Reports as a single sample of 10,000, and then each of his friends’ reports as a separate sample.

If Barney processes all of the clumps of signals he observes as a single, large group, we call him

pooling. For example, pooling Barney would treat Consumer Reports data and his friends’ stories

as a single, larger sample.27

In principle, one could imagine Barney’s beliefs in a dynamic environment as being either

retrospective-acceptive or retrospective-pooling, combined with being either prospective-acceptive

or prospective-pooling. We argue that Barney cannot be prospective-pooling, however, in any

environment where he expects to make a decision at a future date. More generally, we impose the

27While we conjecture that these two grouping processes cover a wide range of typical situations, we
acknowledge that in certain situations, other grouping processes are psychologically plausible. For example,
as we mention in Section 6, in the context of social learning it may be natural to group one’s own signal
separately from everyone else’s, even if all the signals occur simultaneously. As another example, Barney
may group signals according to the perceived similarity of the information source. After observing 10,000
datapoints from Consumer Reports followed by 10 friends’ reports obtained sequentially, for instance, Barney
may retrospectively process the information as a group of 10,000 followed by a group of 10.
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following constraint on any model of NBLLN: at any date where the agent makes a decision, he

processes signals before and after that date as being in separate groups—and before that date, he

knows he will do so. We consider this to be a modeling coherence constraint because it ensures

that Barney’s NBLLN from the single-clump model in Section 2 generalizes to every decision node

in a multiple-clump setting.

To see this, suppose Barney knows that θ = .5, reads a summary of 10,000 individuals’ expe-

riences in Consumer Reports, and then must make a prediction about the next 1,000 signals he

will observe. If, in violation of our modeling constraint, he were to process all 11,000 signals to-

gether as a single group after already observing the first 10,000 signals, then he would believe that

the same subjective rate β applies to all 11,000 signals. Using the first 10,000 signals, he would

update his belief about β from fψß|Θ (β|θ = .5) to a density that puts almost all the probability

mass on the observed proportion of a-signals, say 50%. Since the next clump is grouped with the

earlier clump, his subjective sampling distribution for the next clump will put negligible weight on

a proportion of a-signals outside a neighborhood of 50%. In his predictions about future signals,

Barney would no longer exhibit NBLLN. In contrast, our modeling constraint requires that Barney

forms beliefs as if a new β is drawn from fψß|Θ (β|θ) before the next 1,000 signals, so his subjective

sampling distribution is exactly as in the single-clump model for N = 1, 000. Precisely because

it rules out learning about the subjective rate, this constraint distinguishes our model of NBLLN

from the generalization of the model from Section 2 that one would employ if one interpreted it

as a fully-rational model with uncertainty about the parameter β. (Barney’s predictions regarding

a single clump and a single decision node, as in Sections 2 and 3, are of course covered by the

prospective-acceptive case.)

Which processing assumptions are the most psychologically plausible? We hypothesize that in

many situations, Barney will expect to process data more finely in the future than he actually will

do retrospectively.28 For example, if Barney plans to keep talking to friends one by one until he

feels confident, he might think ahead with attention to each separate signal, focusing on how he

will update from current beliefs after his next conversation. But then in retrospect, after he has

talked to his next friend, he may quite naturally treat that friend’s information symmetrically with

all the previous conversations and take stock of his current information by thinking together about

all the advice he has received. Accordingly, in some of our applications, we explore the implications

28We emphasize, however, that we are hypothesizing about what is typical, and we can imagine alternative
possibilities in certain situations. For example, Barney might be retrospective-acceptive but pool signals he
has not yet observed: before he talks to the 10 friends (say) he plans to talk to, he may not attend to the
time separation of the information and not realize that he will update his beliefs story-by-story as he goes
along. But retrospectively, he may be retrospective-acceptive, distinguishing colorful details of his friends’
stories.
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of Barney being retrospective-pooling and prospective-acceptive.

As an implication of all the other ways he is rational, Tommy always processes information the

way that he expects to process information. We call this property processing-consistency. Despite

his irrationality, Barney shares this property if his retrospective and prospective thought processes

coincide. In particular, if Barney is retrospective-acceptive and prospective-acceptive, then he is

processing-consistent and accurately forecasts what his own future beliefs will be after he observes

a sequence of signals. In contrast, if Barney is retrospective-pooling and prospective-acceptive—as

we have argued is often plausible—then he is not processing-consistent. As a result, he may behave

in a time-inconsistent way, e.g., expecting to learn a lot from purchasing a large number of signals,

but remaining uncertain after observing the signals and therefore preferring to purchase yet more

signals. This time-inconsistency will play a role in some of the applications we study.

Besides lack of evidence, an additional and major reason the hypotheses in this section are

tentative is that we have completely sidestepped the issue of when and how Barney might “think

through” his beliefs more fully. Even if Barney is not processing-consistent, our model of Barney’s

beliefs is internally consistent. Barney’s beliefs themselves, however, may not be internally consis-

tent, and this raises additional conceptual and practical issues in applying a model of NBLLN.29

For example, a teacher could elicit Barney’s belief about the likelihood that a first signal will be

a, the likelihood that a second signal will be a conditional on the first signal being a, and the

likelihood that a sequence of two signals will be aa; then the teacher could point out that the prod-

uct of the first two does not equal the second. In fact, even our coherence constraint above could

fail depending on the questions a teacher asked Barney. For example, suppose Barney expects to

observe 10,000 signals from Consumer Reports, then make some payoff-relevant decision, and then

observe another 1,000 signals. If a teacher asks Barney to forecast all 11,000 signals, then Barney

would presumably do so according to the single-clump model with N = 11, 000—in violation of

our modeling constraint. Even in the absence of a “teacher,” Barney might ask himself such ques-

tions.30 While we flag these issues, and we think they are important subjects for future research,

29The internal inconsistency we highlight here does not arise in “false-model Bayesian” models of biased
beliefs such as Barberis, Shleifer and Vishny (1998), Rabin (2002), and Rabin and Vayanos (2010). In these
models, biases are formulated as agents holding the wrong theory as to the statistical structure of the world,
but as being fully Bayesian in their interpretation of data within that structure. So long as all events that
are possible in the true world are also possible in the agents’ imagined world, no internal inconsistency can
arise. (Though even in these models, it may be very likely that the agent will observe a sequence of signals
that he perceives to be very unlikely.) Processing-consistent variants of Barney likewise reduce to a “false-
model Bayesian” theory. The processing-inconsistent variants of NBLLN, however, assume an intrinsically
non-Bayesian thought process. The modeling challenges associated with internally-inconsistent beliefs are
not specific to NBLLN and will arise in any model of belief formation that is fundamentally non-Bayesian.

30Importantly, a decision Barney faces might itself naturally cause Barney to ask himself such questions.
For example, imagine Barney is making a decision whose payoff depends on whether the state is A or B.
He could purchase one signal, and then decide whether to purchase a second signal, or he could purchase
two signals all at once at a discount. When deciding what to do, it seems natural that Barney would ask
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we proceed in subsequent sections with the assumption that Barney does not think through the

inconsistencies in his own beliefs.

5 Dynamic Applications

This section explores some implications of NBLLN for economic environments where the grouping

of signals matters. We begin by briefly revisiting the lack of demand for large samples, this time

focusing on how NBLLN leads to the relative overweighting of a set of individual datapoints. We

then turn to settings involving dynamic inference, applying variants of our model to information

acquisition, learning, and experimentation. While we highlight how NBLLN has different implica-

tions depending on specific features of these environments, we note that two themes run through all

these analyses: Barney believes that anything can happen, and he under-infers from large samples.

5.1 Enabling “Vividness Bias”

In section 3.1, we used the example of lack of demand for Consumer Reports to illustrate a fun-

damental implication of NBLLN: people underweight the information contained in a large sample.

Our example of Consumer Reports is borrowed from Nisbett and Ross (1980), however, who used

the contrast between pallid statistics and colorful anecdotes to illustrate a different phenomenon,

“vividness bias”: people overweight vivid evidence in reaching their judgments. For example, some-

body’s graphic description of the horrors that ensued when her car broke down while trying to pick

up her child from school may weigh more heavily in our judgment of which brand of car we should

buy than summary statistics based on large samples of data.

Vividness bias is probably better known among researchers than NBLLN. Here we note here

two relevant implications of NBLLN. First, NBLLN is a confound for evidence that has been used

to establish the existence of vividness bias. Indeed, in their 1982 review paper (still considered

authoritative), Taylor and Thompson (1982) find that the empirical support for vividness bias

is surprisingly weak. Of special note, they also observe it rests almost entirely on evidence of

the comparative over-use of vivid information relative to statistical information. Clearly, such

comparative over-use could instead be due to under-use of the statistical data.

Second, even assuming an anecdote is genuinely over-used due to its vividness, NBLLN is

nonetheless also needed in order to explain how the anecdote could outweigh a large sample of

himself what he would conclude after observing each of the three possible outcomes: he observes 1 signal, 1
signal followed by 1 signal, and 2 signals together. Having explicitly asked himself about these possibilities,
it seems odd that Barney would—as assumed if Barney is prospective-acceptive—expect to conclude less
from the 2 signals together than the 2 signals individually.
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statistical information. Absent NBLLN, to outweigh Consumer Reports, the story-teller’s car ex-

perience would have to be overweighted by a factor of many thousands, but we think it is clearly

implausible that vividness bias could be that strong (especially given the murkiness of the evidence

for its existence). In the presence of NBLLN, the anecdote could overwhelm the statistics even if

vividness bias is much weaker.

5.2 Sequential Information Acquisition

To turn to examples of agents acquiring information, consider an agent who is uncertain about

which of two possible states of the world, ω ∈ {A,B}, is true. State A has prior probability

0 < fΘ (θA) < 1, and state B has prior probability fΘ (θB) = 1−fΘ (θA). In state A, the probability

of an a-signal is θA, and the probability of a b-signal is 1 − θA. In state B, the probability of an

a-signal is θB < θA, and the probability of a b-signal is 1 − θB. Depending on the particular

application, the agent can take actions, or observe outcomes and signals that can inform him about

the state of the world.

In this subsection, we explore sequential information acquisition. Imagine that Barney is (still)

trying to decide whether to buy a Volvo or a Lada. He polls one friend at a time, asking which car

is better. Conditional on the responses that he receives, he can decide to ask more friends, or to

stop and choose a car. Formally, each period t = 1, 2, ..., the agent can choose to purchase a single

signal at cost c > 0 or take an action µ ∈ {µA, µB}.31 If the agent takes an action, he gets payoff

u(µ, ω), which equals 1 if the action matches the state ω and 0 otherwise, and the agent faces no

further decisions. If the agent decides to purchase an additional signal, he sees the realization of

the signal, and he proceeds to the next period. The agent lives forever and seeks to maximize the

expected action payoff minus expected signal-purchase costs; if the agent purchases κ signals and

then takes action µ, his utility is u(µ, ω)− κc. We assume no discounting, so that the only reason

an agent would stop acquiring information before being absolutely certain is the cost c of obtaining

an additional signal.

For Tommy, the characterization of optimal behavior is well-known (e.g., Wald, 1947). Each

time Tommy purchases a signal, he updates his posterior beliefs. His optimal behavior is character-

ized by two probabilities, νl and νh, with 0 < νl < νh < 1. If and only if the posterior probability

31Here and later, we restrict the agent to purchasing information a single realization at a time. For Tommy, this
restriction entails no loss of generality. If we allowed Barney to choose how many signals he could purchase each
period, however, Barney would have to think about what he would learn from purchasing two signals sequentially in
order to compare it to purchasing two signals simultaneously. Modeling this thought process raises challenges—the
same as those mentioned in footnote 30—that we sidestep in this paper. Nonetheless, we think the results and
intuitions about Barney we develop below will generalize, as long as Barney’s thought process does not eliminate his
NBLLN.
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of state A exceeds νh, he stops and takes action µA; if and only if it goes below νl, he stops and

takes action µB. Tommy continues to purchase signals as long as his posterior beliefs remains

between νl and νh. But because his posterior ratio is a martingale process, Tommy will eventually

feel strongly enough to take an action almost surely. Importantly, as c → 0, νl → 0 and νh → 1,

and so as information becomes cheaper, the agent requires more extreme beliefs to stop purchasing

information.

Because we assume that the signals arrive one at a time and that Barney is prospective-acceptive,

Barney expects to group the signals as samples of size 1. Since Barney expects to behave exactly

like Tommy, his policy is the same as Tommy’s, with the same thresholds νl and νh determining

when he stops and takes an action. If Barney is retrospective-acceptive, his beliefs and behavior

will be identical to Tommy’s.

If he is retrospective-pooling, however, Barney’s behavior can differ qualitatively from Tommy’s.

In this case, the impact of an additional signal on his posterior beliefs is smaller than for Tommy.

Moreover, the marginal impact will approach zero as his sample of observed signals grows. This is

because Barney’s inference becomes more and more driven by the proportion of a-signals, which is

less affected by an additional signal in a larger sample. However, Barney believes that an additional

signal will matter, regardless of the sample size he has already observed. As a result, Barney can

become stuck in a learning trap, in which he purchases signals forever, but they will never change

his confidence in the state of the world enough for him to stop. The first part of Proposition 11

shows that such a learning trap can occur and becomes more likely the more signals he has already

observed:

Proposition 11. Assume Barney has the beta-distribution functional form given by equation (3).

Fix payoffs u(µ, ω), rates θA, θB ∈ Θ such that θA > θB and prior fΘ (θA) = 1− fΘ (θB) ∈ (0, 1).

Suppose Barney is prospective-acceptive and retrospective-pooling.

1. For all p < 1, there exists c̄ > 0 such that for all c ≤ c̄, Barney buys an infinite number of

signals with probability p > p. Furthermore, suppose that Barney, before buying any signals,

has a positive probability of buying an infinite number of signals. Then for any ε > 0, there

exists Nε > 2 such that if Barney buys an additional signal after having already bought Nε

signals, the probability of Barney buying a finite number of signals from then on is less than

ε.

2. Suppose θA = 1−θB. Suppose Barney is willing to buy an additional signal when his posterior

probability (of state A) is equal to q, and suppose Barney’s posterior is q after observing N

signals. If Barney’s posterior probability of state A is q after observing N ′ > N signals, then
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the probability that Barney will buy an infinite number of signals is weakly higher after he has

observed the N ′ signals than it was after the N signals.

3. Again, suppose θA = 1 − θB and the prior fΘ (θA) ≥ .5. For any ε > 0, there exists N > 2

such that if Barney chooses an action after buying at least N signals, then the likelihood ratio

of Barney having taken the action that does not match the state to the action that matches

the state is less than ε.

If Barney ends up in a learning trap, then his welfare is unboundedly negative. Because a small

c tempts him to wait longer, the probability of a learning trap becomes arbitrarily close to 1 as the

signal cost c becomes arbitrarily small.32

The second part of the proposition states that, for a given c, Barney is more likely to get caught

in a learning trap the more signals he has already observed, holding constant his posterior belief.

For example, if the rates θA and θB are symmetric, then an equal number of a and b signals does

not change Barney’s beliefs; hence Barney is more likely to end up purchasing an infinite number

of signals after having observed ababab than he was before he observed any signals.33,34

This result points to a more general implication of NBLLN that emerges across a range of

dynamic applications: it makes a bigger difference to his eventual beliefs for Barney than for Tommy

whether he happens to observe strong evidence of the true state early or late in his learning process.

The basic logic of NBLLN implies that Barney finds observing strong, early evidence, such as the

group of signals aa, more persuasive that A is the true state than a group such as abababaa, even

32Although we prove the results of Proposition 11, and Proposition 12 below, using our parameterized
model of Barney, we believe the results in both propositions extend to any distribution satisfying A1-A4.
Furthermore, if A1 is replaced with A1′, then there exist situations in which Barney will purchase an infinite
number of signals (in dynamic information acquisition) or take a sub-optimal action in every period (in
experimentation) with probability 1—unlike in the current propositions, where these possibilities can occur
but always with probability strictly less than 1. That is because, under A1′, Barney’s likelihood ratio is
bounded away from zero and infinity. Hence Barney could be in a situation where no infinite sequence of
signal realizations would affect his action (even though he perpertually believes there exist sequences that
would).

33Furthermore, elaborating on this second part: there exists a N̂ such that for all N ′ > N̂ , if Barney’s
posterior probability of state A is q after observing N ′ signals, then the probability that Barney will buy an
infinite number of signals is strictly higher after he has observed the N ′ signals than after the N signals.

34We have found several experiments that set up a dynamic information-purchase setting with a payoff
structure similar to the model in the text and that compare subjects’ behavior with a Bayesian benchmark,
which is calculated assuming expected-value maximization. Tversky and Edwards (1966), Pitz (1968), Wendt
(1969), and Hershman and Levine (1970) found that subjects purchased too much information. In contrast,
Fried and Peterson (1969) and Pitz and Barrett (1969) found that subjects purchased too little information.
Moreover, Pitz and Barrett found that when the already-observed sample size was larger, holding constant
the objective strength of evidence, subjects bought fewer additional signals. Also contrary to our model’s
prediction, Sanders and Ter Linden (1967) Studies 1-3 found that, when the already-observed sample size
was larger, subjects stopped acquiring information at a point where the objective evidence was weaker. In
Sanders and Ter Linden’s experiments, however, the signals arrived at a rate of 2, 5, or 10 signals per second,
which is so fast that the nature of the inference task is likely quite different than in other studies.
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though these two groups are, objectively, similarly strong signals about the state (indeed, exactly

equally strong when 1−θA = θB). As a result, if Barney observes strong evidence early on, he may

stop trying to learn about the state after only a few signals, while if he observes ambiguous data

early on, he may continue trying to learn even after many signals.

This insight also relates to the third part of Proposition 11 (which we prove for the case where

Barney’s prior weakly favors the true state, although we believe it holds more generally). It states

that if Barney does eventually stop purchasing signals, then the probability that he chooses the

correct action converges to 1 as the number of signals increases. This is not true for Tommy.

Tommy stops when the difference between the number of a-signals and b-signals exits some region,

and the probability of observing any given difference is independent of the total number of signals

observed. In contrast, Barney stops purchasing signals when the proportion of a-signals exits some

region, and as the number of signals increases, this proportion becomes arbitrarily more likely to

cross the threshold that favors the true state than to cross the threshold that favors the false state.

Perhaps surprisingly, an outsider observer who observes the agent purchasing a large number of

signals (but does not observe the realizations) should be more confident in betting that the agent

took the correct action if the agent was Barney rather than Tommy. Tommy would only have

purchased a large number of signals if the evidence were ambiguous up until the very end. Barney,

in contrast, having observed a large number of signals, only takes an action when the cumulative

evidence from many signals is overwhelming.

5.3 Experimentation and Learning About Oneself

Rather than purchasing signals about the quality of the car, Barney could instead take them for

test drives, perhaps by renting them. Here, instead of an explicit cost, the cost of information

acquisition is the cost of waiting to purchase the correct car. If the Volvo is the better car, then

Barney is losing out every day he drives the Lada. For the same reasons that retrospective-pooling

Barney could get caught in a learning trap in a dynamic information-acquisition setting, in such

an experimentation setting he could end up remaining forever uncertain about the state. In our

working paper (Benjamin, Rabin, and Raymond, 2012), we show that Barney could forever take

an action that provides a suboptimal flow payoff in the mistaken expectation that the action will

eventually provide useful information.

The failure to learn the truth from a great deal of feedback about the outcomes from one’s own

actions has important ramifications for people’s beliefs about themselves. While there are reasons

unrelated to NBLLN for why people have optimistic priors about their own abilities and preferences,

we believe that NBLLN acts an “enabling bias” that explains how, despite a lifetime of experience
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with themselves, people remain uncertain about their own type, and optimistic priors do not give

way to more realistic self-assessments. For example, NBLLN may explain why people persist in

being overoptimistic about their ability on tasks that they regularly engage in. NBLLN may

also explain why people remain uncertain regarding their own altruistic preferences—an otherwise-

puzzling lack of knowledge that is a crucial ingredient for self-signaling to help explain altruistic

behavior.

We formalize these ideas in a simple, two-action experimentation environment. The agent’s type

is the state of the world, ω ∈ {A,B}, about which the agent is uncertain. In each of an infinite

number of periods t = 1, 2..., the agent takes an action µt ∈ {A,B}. After taking an action, the

agent receives either a high payoff, uH(µt), or a low payoff, uL(µt) ≤ uH(µt). The agent receives

the payoff uH(µt) with probability θω ∈ (.5, 1) and uL(µt) with probability 1− θω, and hence this

outcome serves not only as a payoff but also as a signal about the state. If the agent is of type A,

she earns a higher expected payoff from taking action A, while if she is of type B, she earns a higher

expected payoff from taking action B; formally, θA(uH(A)−uH(B)) ≥ (1−θA)(uL(B)−uL(A)) and

θB(uH(B)−uH(A)) ≥ (1− θB)(uL(A)−uL(B)). The agent discounts the future at rate 0 < δ < 1.

The first part of Proposition 12 examines the case where both actions are informative. As is

well known, Tommy learns the true state and eventually takes his best action in every period. For

Barney, if he is retrospective-pooling, then—following the logic of Proposition 2—his beliefs will

converge to a limit posterior at which he will remain uncertain about the state. Moreover, the

stronger his prior in favor of one of the states, the stronger his limit posterior in favor of that

state. If Barney’s prior is strong enough, then even if it is incorrect, it may drive his actions in

every period. This may describe situations where people begin with strong, but possibly incorrect,

intuitions about their own abilities or preferences, and these intuitions are never fully corrected by

experience.

Proposition 12. Assume Barney has the beta-distribution functional form given by equation (3).

Fix payoff functions uH(µt) and uL(µt), rates θA, θB ∈ Θ such that θA > θB and discount factor

δ. Suppose Barney is prospective-acceptive and retrospective-pooling.

1. Suppose uH(A) > uL(A) and uH(B) > uL(B). Without loss of generality, suppose the state

is ω = B. For all priors fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1), Tommy’s belief that the state is B

converges to 1 almost surely, and Tommy’s action converges to B almost surely. Barney’s

belief that the state is B converges almost surely to a number in the interval (0, 1), and this

limit posterior is increasing in fΘ (θB). Moreover, if fΘ (θB) is sufficiently small, then there

is positive probability that Barney takes action A in every period.
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2. Suppose uH(A) > uL(A) and uH(B) = uL(B). For all priors fΘ (θA) = 1− fΘ (θB) ∈ (0, 1),

if the state is B, then almost surely at some finite T , Tommy will take action B for all

periods t ≥ T . For Barney, regardless of the state, there exists 0 < p < 1 such that for any

prior fΘ (θA) ≥ p, there is positive probability that Barney takes action A in every period.

This probability is increasing in fΘ (θA) but is always strictly less than 1.

The second part of the proposition considers a special case of the experimentation environment,

a one-armed bandit problem that can be used to study learning about one’s own self-control. In

state A, the agent can successfully exert self-control when faced with temptation, while in state

B, the agent cannot resist temptation. In each period, the “risky” action, A, is to expose himself

to temptation (e.g., buying potato chips at the supermarket to eat at home). The “safe” (or

“commitment”) action, B, is to avoid the temptation (e.g., not buying the chips). The risky action

has a higher payoff than the safe action in state A but a lower payoff in state B. A special feature

of this setting is that if the agent chooses the safe action, thereby avoiding the tempting situation,

he does not get any information about his own self-control.

This setting is a simplified version of the Planner-Doer model of learning self-control that Ali

(2011) analyzes for the case of Tommy. Almost surely at some finite T , a Tommy without self-control

will—regardless of his prior—take the safe action for all periods t ≥ T . While it is possible that a

Tommy who has self-control will always take the safe action and therefore never learn that he has

self-control, the only Tommys who will take the risky action in the long run are Tommys with self-

control. Most of us have the intuition that, despite repeatedly exposing themselves to temptation

and succumbing to it, people remain perpetually optimistic about their own self-control—and yet

this result for Tommy is the other way around!

In contrast, Proposition 12 shows that if Barney begins with a sufficiently strong belief in his

own self-control ability, then it is possible that he will continue to take the risky action even in the

long run, in the face of overwhelming evidence that he actually lacks self-control. Moreover, the

likelihood that this occurs is increasing in his ex ante optimism.

6 Concluding Remarks

In a range of important economic settings where we think NBLLN matters, we have drawn out

how its consequences depend on specific features of the economic environment. Yet for some other

applications where NBLLN may matter, different or additional assumptions will be needed to close

the model. Consider, for example, observational learning. Besides learning from his own experience
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or from gathered information, two situations we focused on in Section 5, an agent could also choose

which car to buy by observing which car his neighbors have bought. In the theoretical literature,

it is assumed that an infinite sequence of Tommys with common prior beliefs about the state each

in turn observes a single signal along with the history of previous actions and then chooses his

own action. Each receives a payoff equal to 1 if his action matches the state and 0 otherwise.

Much of this work has emphasized that with probability 1, after some date each agent ignores

his private signal, and a “herd” forms, with all agents thereafter choosing the same action (e.g.,

Banerjee, 1992; Bikhchandani, Hirshleifer and Welch, 1992). Although no agent directly observes

more than one signal, NBLLN will influence observational learning if agents apply their non-belief

to the signals they infer others are getting. In this setting, we think that the most psychologically

plausible retrospective signal-processing assumption is that Barney groups all previous agents’

actions together and treats his own private signal, which is more vivid, as separate. In addition to

such a grouping assumption, formally deriving the implications of NBLLN in this setting requires

an extension of the framework introduced in Section 4 to address what Barney’s theory is as to

how other agents draw inferences.

Our working paper (Benjamin, Rabin, and Raymond, 2012) contains a discussion of some

possible ways of handling this issue, along with a formal analysis of observational learning. The

results parallel those for dynamic information acquisition from Section 5. Intuitively, if Barney

groups together previous agents’ actions, then NBLLN implies that he will infer less from their

actions than he should. Therefore, he will more often rely on his own signal, making it slower for

a herd to begin, especially if early evidence is mixed. Moreover, since Barney needs to see more

agents following their own signal before ignoring signals than does Tommy, when a herd does occur,

it is more likely to be on the correct action. Finally, because Barney’s learning is limited even in an

infinite sample, a qualitatively different kind of behavior is possible. If agents do not herd quickly

enough, they will instead form what we call an “eddy”: following some period, every agent chooses

the action corresponding to his own signal.

Another strategic setting in which NBLLN can matter a great deal is persuasion. Barney is

again uncertain whether to buy a Volvo or a Lada. A Lada saleswoman has observed N signals

about which car is better and can choose how to clump these signals when revealing them to

Barney. If the saleswoman must reveal all the signals, and if Barney is retrospective-acceptive but

unaware of his own NBLLN—and hence does not realize that the clumping of signals will affect his

beliefs—then Barney will not draw any inferences about the state from the saleswoman’s behavior.

In that case, she can maximally move Barney’s beliefs in favor of the Lada by clumping all the

pro-Volvo signals together and separating out each pro-Lada signal. For any two distinct rates and
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any priors, if N is sufficiently large, then the salewoman can make Barney arbitrarily confident

that the Lada is superior.

There are conceptualizations of the tendency to under-infer from large samples that differ from

that embedded in our model. One interpretation proposed for many cognitive biases is “ecological

mismatch”: while a person’s thought process leads to biased beliefs for i.i.d. processes studied in

the laboratory, the same thought process would generate appropriate beliefs for the typical, real-

world random processes people encounter. For example, in the case of under-inference, Winkler and

Murphy (1973) posit that people may treat independent signals as if they were positively correlated

because their real-world experience is with positively correlated signals. Such positive correlation

would generate excessively-dispersed subjective sampling distributions and under-inference but not

NBLLN (because the Law of Large Numbers still “works” for positively correlated signals under

mild regularity conditions; see Hu, Rosalsky, and Volodin, 2008). Moreover, while ecological-

mismatch arguments often have merit, we think the argument is unappealing in this context because

the bias we call NBLLN is evident in examples with which subjects have a great deal of real-world

experience, such as coin-flipping.35

Many have proposed conceptualizing under-inference in large samples as one consequence of the

“representativeness heuristic,” according to which people draw inferences based on the degree of

similarity between features of a sample and features of a population from which the sample might

have been drawn. Indeed, Kahneman and Tversky (1972) present evidence for what we call NBLLN

in precisely this context. Although NBLLN certainly seems consistent with representativeness, it

is not clear how the logic of representativeness predicts the prototypical case of under-inference:

e.g., an agent who observes 600 heads and 400 tails continues to put non-trivial probability on the

coin being fair. Representativeness could explain this kind of observation if it is interpreted as

inferences based on proportions, combined with the additional assumptions of reasonably accurate

inferences in small samples and insensitivity to sample size, but that combination of assumptions

essentially amounts to our model.

A natural alternative modeling approach would be to build a theory of “sample-size neglect,” in

which, loosely speaking, an agent forms beliefs about a sample of any size as if it were a “medium-

sized” sample of, say, size 7. Such a model would imply under-inference for sample sizes larger than

7 and over-inference for sample sizes smaller than 7. This is the formal model one might build to

capture Griffin and Tversky’s (1992) verbal theory that people overweight the “strength” of the

35We also note that in the case of the Law of Small Numbers, the opposite ecological-mismatch hypothesis
is often proposed: that people ordinarily deal with negatively-autocorrelated signals. Typical real-world
processes would have to have a fairly complicated form involving short-run negative autocorrelation and
long-run positive autocorrelation to rationalize both the Law of Small Numbers and NBLLN.
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evidence (extremeness of the proportion of heads) and underweight the “weight” of the evidence

(sample size). It is a common conceptualization and one which we found compelling enough to

consider as our first (and more parsimonious) approach. But we have come to the view that

NBLLN and LSN are distinct phenomena. LSN is inherently linked to the gambler’s fallacy, the

incorrect belief that in i.i.d. coin flips, a head becomes less likely than 50% following a streak of

heads. Moreover, the gambler’s fallacy has as much force in large samples as in small samples. For

example, Benjamin, Moore, and Rabin (2012) found that people think that the probability of a

head following a streak of 9 heads from a fair coin is only 32%. If NBLLN were (like LSN) linked to

beliefs about sequences of random events, then people would have to believe that a long streak of

heads makes a subsequent head more likely.36 Instead, evidence and intuition suggest that NBLLN

is not due to any belief people have about the likelihood of particular sequences of random events.

Indeed, an important drawback of our model is that it is clearly wrong if used to make pre-

dictions regarding Barney’s beliefs about the likelihood of particular sequences. It would predict,

for example, that Barney overestimates the likelihood of aa and bb relative to ab and ba. For this

reason, none of our applications relied on Barney’s beliefs about sequences.

In light of the above, we have come to the view that the most psychologically compelling

alternative approach to modeling NBLLN would attempt to capture people’s failure to realize just

how many combinations of a and b signals generate proportions close to the population mean.

While we know of no attempt to formulate NBLLN along such lines, we believe that such a model

would share the main features and predictions of our model. Relative to our model, it would have

the advantage that the bias would not affect agents’ predictions about the likelihood of specific

sequences. It would have the disadvantages that it would generate “thin tails” (e.g., for θ = .8, the

likelihood of 0 heads out of 10 would be underestimated relative to 5 heads) and would be harder

to work with because the mean of the agent’s subjective sampling distribution would be incorrect.

While the logic of NBLLN unambiguously predicts that people will extract far too little infor-

mation from large samples, there are strands of literature both within psychology and within eco-

nomics on “over-confidence” in beliefs. Rather than viewing over-confidence and under-confidence

as fundamental biases in themselves, we view both as outcomes to be explained as a function of

the information a person is confronted with. Our model of NBLLN highlights a feature of the

36One could argue that the sample-size neglect theory, when linked to beliefs about sequences of random
events, provides a parsimonious account of both the gambler’s fallacy and its apparent opposite, the “hot
hand fallacy.” This is a false parsimony, however, because shoe-horning the gambler’s fallacy and the hot
hand fallacy into the same psychological mechanism generates counterfactual predictions about when they
occur. As noted, the gambler’s fallacy occurs even after a long streak of heads, and as far as we are aware,
the hot hand fallacy has never been observed for coins. Instead, the hot hand fallacy is usually understood
as occurring in situations where an agent believes that the random process alternates between “hot” and
“cold” rates.
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decisionmaking environment—namely, sample size—that affects the degree to which an agent will

draw too weak an inference from evidence. In Appendix A we combine NBLLN with LSN, which

generates a bias toward over-confidence in inferences, and the overall pattern we predict is: correct

inference for samples of size 1, over-inference in small samples larger than 1, and under-inference

in large samples. LSN will exacerbate people’s tendency to rely on smaller samples. In dynamic

settings, LSN will make it more likely for an agent to stop acquiring information after just a few

signals—but, if the initial evidence does not cause the agent to stop, the agent will still draw

inferences based on sample proportions and may get caught in a learning trap.

Our model of NBLLN is defined only when the signals are i.i.d. and binomial. There are

some natural approaches to modeling NBLLN for non-i.i.d. signal sequences. Consider a binomial

random process defined by a mapping from any initial rate, θ0, and any history of t observed

signals, ht, into a rate that the (t+ 1)st signal will be an a-signal, θ (θ0, ht). When Barney knows

the initial rate is θ0, he forms his beliefs as if the initial rate were β, a random variable drawn

from distribution fψß|Θ (β|θ0). For the first signal in a group, he believes that the probability of an

a-signal is β, and for the (t+ 1)th signal within that group, he believes that the probability of an

a-signal is θ (β, ht). This modeling approach can be applied not only when the signals truly are

non-i.i.d., but also when an agent falsely believes they are non-i.i.d. due to another psychological

bias (as in LSN; see Appendix A).

Although we have developed our model for binomial signals, we believe that there are natural

extensions of our modeling approach to non-binomial cases. Suppose, for example, that the signals

are normally distributed i.i.d. with known mean µ and variance σ2. We can imagine a cousin of

Barney believes instead that signals are generated by a two-stage process, where a subjective mean

ν is drawn from some distribution centered at µ, and then the signals are drawn from a normal

distribution with mean ν and variance σ2. While Tommy believes that the mean of a large random

sample of signals will converge to a point mass at µ, Barney’s cousin believes it will converge to

the density of ν. We could assume that the density of ν corresponds to the empirical large-sample

beliefs, or for analytical tractability, we could assume that ν follows the conjugate prior distribution

for the normal distribution, which is itself a normal distribution.
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