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Appendix A: A Combined Model of Non-Bayesian Updating

In this appendix, we briefly outline models of other biases besides NBLLN that also appear to

matter for inference, focusing on the same single-clump context of Section 2. These models help

organize our review of the evidence in Appendix B. Although these models are far more cursory and

preliminary than our model of NBLLN, we hope that formalizing these alternatives can both crisply

differentiate them from NBLLN—clarifying in particular that none of them are the “opposite” of

or inconsistent with NBLLN—and also be suggestive of how to develop these other biases along

lines we have done with NBLLN.

At first glance, NBLLN appears to be directly at odds with another bias in beliefs, the Law of

Small Numbers (LSN): Tversky and Kahneman (1971) formulated the term “Law of Small Num-

bers” to refer to the idea that people exaggerate the likelihood that small samples will reflect

the underlying population. While NBLLN generally leads to under-inference, LSN generates over-

inference. However, these two biases are neither logically not psychologically inconsistent. Indeed,

we believe it is the combination of the two which has led judgment researchers to posit a bias of

“sample-size neglect” in which people overestimate the resemblance of small samples and underes-

timate the resemblance of large samples as if they simply do not see the relevance of sample size.

We re-interpret what appears to be sample-size neglect as a combination of these two biases, and

we show how the basic under-inference implications of NBLLN goes through after LSN is accounted

for.

According to LSN, people exaggerate how much small samples resemble the population. In

Rabin’s (2002) model, an agent forms beliefs about N i.i.d. draws that have known rate θ as if

signals were drawn without replacement from an “urn” of size M that contains exactly θM a-signals
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and (1− θ)M b-signals.1 To make sure that the agent continues to view the draws as random even

after many signals have been realized, it can be assumed that M > 2, and the urn is “renewed”

every odd number of draws. In other words, every odd-numbered draw, the signal is drawn from a

refilled urn of size M , and every even-numbered draw, the signal is drawn from the urn of size M−1

that is depleted by the previous signal’s draw. An agent who believes in LSN is called Freddy. The

parameter M governs the strength of LSN, with Freddy becoming Tommy in the parameter limit

M →∞. In Rabin’s model, for a given θ, the parameter M , in addition to being an integer larger

than 2, must satisfy the constraint that θM is an integer. This constraint becomes problematic

when combining the model of LSN with our model of NBLLN. In our model of NBLLN, the agent

thinks the outcome of a random sample is determined by the subjective rate β, which is drawn from

a distribution with full support on either (0, 1) or [0, 1] (depending on whether A1 or A1′ holds).

Hence for any M , βM will be non-integer-valued with probability 1. For this reason, we propose

a variant of Rabin’s model that, while still requiring that M is an integer larger than 2, remains

well-defined even when θM is not an integer.

Our variant of Rabin’s model of LSN is identical to Rabin’s model except that instead of

believing that the “urn” contains θM a-signals and (1− θ)M b-signals, Freddy believes that it

contains Ã a-signals and
(
M − Ã

)
b-signals, where Ã is an integer-valued random variable that

equals j ∈ {0, 1, ...,M} with probability
(
M
j

)
θj (1− θ)M−j . In words, Freddy thinks that signals

are drawn without replacement from an urn of size M , but he believes the composition of the urn

is random, with the “average” urn containing θM a-signals and (1− θ)M b-signals. When the rate

is known to be θ, Freddy believes that the number of a-signals in the urn is a binomial random

variable with parameters (θ,M).

NBLLN is the belief that the mean of a random sample converges to a non-trivial distribution,

rather than a precise estimate of the mean of the population, in the limit as the sample size gets

large. We refer to an agent who believes in both LSN and NBLLN as Barney-Freddy, with beliefs

denoted by fψM . Like Barney, he predicts that the sample is drawn according to a subjective rate

that may not equal the true rate. We assume that the subjective rate β ∈ [0, 1] is drawn from a

density fψß|Θ (β|θ) determined by θ and Barneyness parameter ψ that satisfies Assumptions A1-A4

from Section 2. In accordance with LSN, Barney-Freddy thinks that signals are drawn without

replacement from an “urn” of size M that contains Ã a-signals and
(
M − Ã

)
b-signals, where

Ã is a binomial random variable with parameters (β,M). Hence Barney-Freddy thinks that the

“average” urn contains βM a-signals and (1− β)M b-signals. The integer M > 2 parameterizes

1Rabin and Vayanos (2010) improves on Rabin’s (2002) model that we discuss here, generalizing LSN
beyond the binomial case and without assuming the signal-generating process is i.i.d. We explore this more
contrived simple model of LSN here for ease of combining it with NBLLN.
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the degree of belief in LSN, and we assume that the urn is “renewed” and Ã is re-drawn every odd

number of signals. As usual for the model of NBLLN, the same subjective rate β applies to the

entire clump.

Barney-Freddy both believes in the gambler’s fallacy—that is, he expects recent a-signals to

be followed by b’s and vice-versa—and believes that the sample mean of a large population will

converge toward a full-support limit distribution. He does not observe the subjective rate β, but

conditional on any given β, Barney-Freddy expects that if the even-numbered draw t is more likely

to be an a signal if the (t− 1)st draw was b than if it was a. Hence even without knowing β,

Barney-Freddy excessively expects that a and b signals will alternate between an odd draw and

an even draw. Consequently, for reasonable calibrations of ψ and M , Barney-Freddy’s subjective

sampling distribution in a finite sample will be too peaked, putting too little weight in the tails.

On the other hand, Lemma A1 states that Barney-Freddy’s beliefs about a large sample converge

to a full-support limit distribution. Like for Barney, Barney-Freddy’s limit density will be equal to

fψß|Θ (β|θ), regardless of the degree of belief in LSN. Intuitively, every odd-even pair of draws will

have, on average, proportion β of a-signals. Hence by the Law of Large Numbers, the sample as a

whole will tend toward having proportion β of a-signals almost surely.

Lemma A1. Barney-Freddy does not believe in LLN: For any θ ∈ Θ and interval [α1, α2] ⊆ [0, 1],

lim
N→∞

da2Ne∑
x=ba1Nc

fψMSN |Θ (As = x|θ) = Fψß|Θ (β = α2|θ)− Fψß|Θ (β = α1|θ) > 0.

Not only are LSN and NBLLN mutually consistent, but LSN actually magnifies NBLLN. For

smaller M , Barney-Freddy believes that odd-even signal pairs more frequently alternate, and hence

his subjective sampling distribution converges to the limit distribution more quickly.

While it is true that Freddiness generates over-inference while Barneyness tends to generate

under-inference, there is a clear pattern to when Barney-Freddy over-infers and when he under-

infers. For reasonable calibrated values of ψ and M , Barney-Freddy will over-infer from small

samples. For any values of ψ and M , it follows immediately from Lemma A1 that Barney-Freddy

will under-infer when the sample size N is sufficiently large.

A well-known bias is base-rate neglect (Kahneman and Tversky, 1973), an underweighting of

prior probabilities in drawing inferences. Instead of assuming that an agent updates according to

Bayes’s Rule applied to his subjective sampling distributions, we can capture base-rate neglect by
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assuming that the agent draws inferences according to:

fψMb
SN |Θ (θA|s) =

fψMSN |Θ (s|θA) fΘ (θA)b

fψφγSN |Θ (s|θA) fΘ (θA)b + fψφγSN |Θ (s|θB) fΘ (θB)b

and

fψMb
SN |Θ (θB|s) =

fψMSN |Θ (s|θB) fΘ (θB)b

fψMSN |Θ (s|θA) fΘ (θA)b + fψMSN |Θ (s|θB) fΘ (θB)b
,

where fψMSN |Θ (s|θA) and fψMSN |Θ (s|θB) are the subjective sampling distributions of an agent with

Barneyness parameter 0 < ψ <∞ and Freddiness parameter M > 2, and 0 ≤ b ≤ 1 parameterizes

the degree of base-rate neglect. If b = 1, these formulae specialize to Bayes’ Rule, where there

is no base-rate neglect. If b = 0, the agent ignores base rates altogether, treating any prior

probabilities as if they were 50-50. This formulation of base-rate neglect has been previously

adopted in empirical work by (e.g., Grether, 1980) and concurrently in theoretical work by Bodoh-

Creed (2010). Applying it theoretically in dynamic settings raises many of the same conceptual

issues as NBLLN; the way in which the agent processes groups of signals will matter a great deal

in how his beliefs evolve. For that reason, we believe the framework we have begun to develop in

this paper for analyzing dynamic NBLLN may be of use for analyzing dynamic base-rate neglect

as well.

A simple explanation for some of the evidence on people’s beliefs is “extreme-belief aversion,”

an aversion to holding beliefs that are close to certainty. Consider a discrete probability density

function, fX (·), that puts positive probability on a set of possible outcomes x1, x2, ..., xJ . We

capture the idea of extreme-belief aversion by defining a mapping from the true probability density,

fX (·), to a subjective probability density that is less extreme,

f ξX (xi) =
.5 + ξ · (fX (xi)− .5)∑J

j=1 (.5 + ξ · (fX (xj)− .5))
.

The parameter 0 < ξ < 1 describes the degree of extreme-belief aversion, with smaller values corre-

sponding to greater bias. If ξ = 1, the subjective probabilities coincide with the true probabilities,

while if ξ = 0, all outcomes x1, x2, ..., xJ are treated as equally likely.

One interpretation of the transformed probability, f ξX (x), is that it represents the agent’s truly-

held beliefs. Another interpretation is that the agent actually holds beliefs fX (x) but reports beliefs

that are transformed by the ξ function. While the latter is certainly plausible when Tommy’s beliefs

are very extreme—we can easily imagine a person saying she is 99% sure when her true belief is

.9999—it does not address the evidence that beliefs inferred from betting behavior also exhibit
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under-inference.

Qualitatively, extreme-belief aversion can explain both the excessively-dispersed subjective sam-

pling distributions and the under-inference evidence that we discuss in Appendix B. An agent with

extreme-belief aversion will have a more dispersed subjective sampling distribution than Tommy

in large samples by virtue of compressing beliefs away from 0 and 1. An agent with extreme-belief

aversion will also under-infer in situations where Tommy’s inference would be extreme, as would al-

most always occur when the sample is large. Extreme-belief aversion taken alone, however, implies

that in any two inference problems where Tommy’s posterior is the same, people would hold (or

at least report) the same belief. There is evidence contradicting this implication, indicating that

extreme-belief aversion is not the only deviation from Bayesian belief formation that is going on.

For example, consider the experiment in Griffin and Tversky (1992), where θA = .6. Tommy’s

inference depends only on the difference between the number of a-signals and the number of b-

signals. However, when the sample is 4 a’s and 1 b, subjects’ median belief in favor of θA is .80,

while when the sample is 10 a’s and 7 b’s, subjects’ median belief in favor of θA is .60. Tommy’s

belief would be .77 in both cases, so people are under-inferring from the sample of size 17 and

actually slightly over-inferring from the sample of size 5. Consistent with Proposition 5—but

inconsistent with extreme-belief aversion being the only bias in beliefs—people infer less from the

same difference in a and b signals when the sample is larger. Kahneman and Tversky (1972) and

Kraemer and Weber (2004) also report evidence that beliefs are sensitive to sample size, holding

constant the difference in the number of a and b signals.

While extreme-belief aversion may help to describe the evidence on people’s beliefs, and it may

be a confound for other interpretations of biased beliefs, we do not review evidence for extreme-

belief aversion, and we know of no evidence that our crude formulation is a close match for people’s

thinking. Extreme-belief aversion may also lead to internal-inconsistency modeling challenges that

we do not address. For example, it seems reasonable to assume that the transformation above could

be applied to an agent’s sampling distribution or to the agent’s inferences, depending on which

beliefs are being elicited. In that case, however, subjective sampling distributions and inferences

will not in general be linked by Bayes’ Rule.

Combining the three biases above with NBLLN gives a complicated model that captures many

features that could be applied to predict beliefs and behavior in economic settings. One insight that

comes immediately out of the combination is that base-rate neglect—i.e., underweighting priors—is

not the opposite of, or contradictory to, the way NBLLN leads people to underweight likelihood

information. Indeed, as we have noted in some discussions above about vividness and other biases,

NBLLN is, especially in understanding “multi-clump” information processing, likely a contributor
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to the relevance of other biases. In many information-rich environments where full Bayesians would

correctly become very confident independent of their priors, NBLLN is necessary for the question

of whether people neglect base rates to be relevant. At the same time, we show above why NBLLN

means that unless people completely neglect base rates, people’s initial beliefs matter even in the

long run. In combination, in fact, NBLLN suggests that it is possible that the real and often

important fact that people under-use base rates may be consistent with the possibility that base

rates matter more for social and economic phenomena than fully rational models have supposed

that they do.

One last bias sits less comfortably with the others, and is harder to integrate. Many experiments

make clear that peoples’ subjective sampling distributions have flatter tails than our model of

NBLLN by itself can explain. We attribute the flatness to “sampling-distribution-tails diminishing

sensitivity (SDTDS),” a bias in which people perceive very unlikely outcomes as similar to each

other and hence similar in probability. Consider 10 flips of a coin that is biased .8 in favor of

heads. We know of no direct evidence but conjecture that most people would judge the likelihood

of observing 1 head as very close to the likelihood of observing 0 heads, even though observing 1

head is actually 40 times more likely.

SDTDS can be formalized by assuming that an agent forms beliefs as if the likelihood of sample

realizations far from the average are more similar to each other (and to the average) than they

truly are. For a sample of size N from a θ-biased coin, let σ denote the standard deviation of

the sample proportion AN
N (which equals

√
θ(1−θ)
N for Tommy but not for Barney-Freddy). Let the

perceived distance between the realized AN
N and θ be σγ

(
AN
N
−θ
σ

)
, where the twice-differentiable

“sample-perception function” γ : (−1, 1)→ (−1, 1) has the properties (1) γ (0) = 0, (2) 0 < γ′ < 1,

(3) γ′′ (x) < 0 for all x > 0, and γ′′ (x) > 0 for all x < 0, and (4) γ (x) = −γ (−x) for all x.

Property (1) says that the agent perceives a sample proportion of θ accurately. Property (2)

ensures that the agent perceives any other sample proportion as more similar to θ than it actually

is. The key concavity and convexity assumption (3) means that neighboring samples are perceived

as more similar to each other the further they are from θ. For this reason, the agent makes

little distinction between outcomes that fall far in the tails of his subjective sampling distribution.

Property (4) specifies that γ is symmetric around 0 so that the misperception is symmetric around

θ.

Roughly speaking, a person who exhibits SDTDS with sample-perception function γ judges

the probability of a sample s ∈ SN with proportion AN
N of a-signals as if it were the sample

Λ (s), which has proportion θ+σγ

(
AN
N
−θ
σ

)
a-signals. Formally, fψφγSN |Θ (s|θ) =

fψφ
SN |Θ

(Λ(s)|θ)∑
s′∈SN

fψφ
SN |Θ

(Λ(s′)|θ)
,

where fψφSN |Θ is the subjective sampling distribution for ψφ-Barney-Freddy, and the denominator is a

6



normalization that ensures that the subjective sampling distribution adds up to 1.2 While NBLLN

by itself leads to subjective sampling distributions that have flat tails, SDTDS is an additional force

for flat tails. When the rate θ is not .5, the mean of the agent’s subjective sampling distribution

no longer equals the mean of the objective sampling distribution because the “long tail” of the

distribution is overweighted. Both of these features—flatter tails than can be accommodated with

a reasonably-calibrated model of NBLLN and a mean shifted toward the long tail—are present in

the subjective sampling distributions measured by Kahneman and Tversky (1972).

Unlike both our model of NBLLN and the Rabin (2002) model of LSN (and consequently also

unlike the model of Barney-Freddy presented in this Appendix), SDTDS predicts under-inference

from samples of size 1. In fact, the evidence we review in Appendix B suggests that people do

under-infer in a sample of size 1. We note, however, that no experiment has disentangled the

SDTDS explanation of under-inference from an alternative explanation of extreme-belief aversion.

Nonetheless, in inference problems with normally-distributed signals, we suspect that SDTDS does

help explain why subjects under-infer in a sample of size 1 when the realized signal is extreme.

In contrast, when signals are binomial as in our analysis in the main text, we believe that the

psychology of SDTDS — extreme events in the same tail of a distribution being judged as similar

in probability — is unlikely to apply because there are no two extreme events in the same tail.

Moreover, if SDTDS predicts under-inference from a sample of size 1, then it necessarily also implies

incorrect predictions about the likelihood of a single signal realization, an implication that we view

as implausible when signals are binomial.

Unfortunately, our formulation of SDTDS cannot be so easily integrated with NBLLN—or with

a model combining NBLLN with LSN and base-rate neglect—because it does not arm somebody

with a theory of the sequence of signals, only the frequency of signals within a sample. While

surely a form of it could be specified that embeds a concrete theory of permutations within the

sample (allowing for instance a person to believe all different sequences are equally likely), we do

not know that the existing evidence provides a guide, nor do we believe the psychology underlying

it translates easily into situations where an agent is cognizant of the ordering of signals. Moreover,

an improved model or a better formulation than we have found to interpret existing evidence may

be more compatible with the models of other biases than we have supposed.

2In general, Λ (s) could be a sample outside the support of the objective sampling distribution. For
example, it may be a sample with 3.2 a’s. The expression above is nonetheless well-defined as long as the

density fψφSN |Θ (·|θ) can be evaluated at that sample, as it can for a binomial objective sampling distribution.
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Appendix B: Experimental Evidence

In this appendix, we report on all papers we could identify with experimental results related to

prediction and inference for binomial signals. Table B1 lists the papers, whether their evidence

relates to prediction or inference, their experimental subject population, and their incentive struc-

ture. Most of the studies we review did not incentivize subjects’ responses; we will also discuss how

the evidence from the few incentivized experiments relates to the unincentivized studies.

Table B1. Experimental evidence on NBLLN for binomial signals.

Author(s) Year Prediction or Inference? Subjects Incentives?

Beach, Wise, and Barclay 1970 inference 169 male undergrads no

Camerer 1987 inference 74 undergrads financial market

Chinnis and Peterson 1968 inference 40 male undergrads no

Dave and Wolfe 2003 inference 40 undergrads BDM for probability

DeSwart 1972 inference 21 male undergrads no

DeSwart 1972 inference 18 male undergrads no

Donnell and DuCharme 1975 inference 24 male undergrads no

Gettys and Manley: Study 1 1968 inference 20 undergrads no

Gettys and Manley: Study 2 1968 inference 28 undergrads no

Green, Halbert, and Robinson 1965 inference 32 grad students paid for guess about state

Grether 1980 inference 341 undergrads paid for guess about state

Grether: Studies 1 and 2 1992 inference 97 undergrads paid for guess about state

Grether: Study 3 1992 inference 55 summer students BDM for probability

Griffin and Tversky: Study 1 1992 inference 35 undergrads paid for accurate posterior

Griffin and Tversky: Study 2 1992 inference 40 undergrads paid for accurate posterior

Griffin and Tversky: Study 3 1992 inference 50 undergrads no

Kahneman and Tversky: prediction 1972 prediction unclear no

Kahneman and Tversky: inference 1972 inference 560 high school students no

Kraemer and Weber 2004 inference 51 students (most grad) paid for accurate posterior

Marks and Clarkson 1972 inference 68 undergrads no

Nelson, Bloomfield, Hales, and Libby: Study 1 2001 inference 27 MBA students financial market

Peterson and Miller 1965 inference 42 undergrads no

Peterson and Swensson: Study 1 1968 inference 15 male undergrads no

Peterson and Swensson: Study 2 1968 inference 18 male undergrads no

Peterson, DuCharme, and Edwards: Study 1 1968 prediction 41 male undergrads no

Peterson, DuCharme, and Edwards: Study 2 1968 both 24 male undergrads no

Peterson, Schneider, and Miller 1965 inference 44 undergrads no
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Author(s) Year Prediction or Inference? Subjects Incentives?

Phillips and Edwards: Study 1 1966 inference 5 male undergrads no

Phillips and Edwards: Study 2 1966 inference 48 male undergrads paid for accurate posterior

Phillips and Edwards: Study 3 1966 inference 48 male undergrads no

Pitz 1967 inference 28 undergrads no

Sanders 1968 inference 32 undergrads bets on the state

Sasaki and Kawagoe 2007 inference 1033 employees no

Strub 1969 inference 12 male undergrads paid for guess about state

Teigen: Study 1 1974 prediction 22 undergrads no

Teigen: Study 2 1974 prediction 73 undergrads no

Wheeler and Beach 1968 both 17 male undergrads paid for beliefs (prediction),

and bets (inference)

0.1 Evidence on Subjective Sampling Distributions

We begin by assessing subjective sampling distributions. We have found only 6 experiments from 4

papers in which researchers explicitly elicited experimental participants’ beliefs about the likelihood

of each possible sample.3 None of these elicitations were incentivized. For 5 of these studies—

Kahneman and Tversky (1972), Peterson, DuCharme and Edwards’s (1968) Study 1, Wheeler and

Beach (1968), and both of Teigen’s (1974) studies—the data are displayed in the paper, and we

have reproduced the graphs in Figures 1, B4, B5, and B1, respectively (we display both of Teigen’s

studies together), shown below in the order we discuss them.

Among the papers, Kahneman and Tversky (1972) elicited sample-proportion beliefs for the

largest sample sizes. As discussed in the Introduction, they find that subjective sampling distribu-

tions are “constant in proportions” for N = 10, 100, and 1000. There is no noticeable tightening of

the distribution even for N = 1000; while in fact there is less than a .01 chance of the proportion

of heads falling outside the range 45% to 55%, subjects’ distributions assign probability .79 to a

proportion outside that range.4

A straightforward implication of our model of NBLLN is that subjective sampling distributions

will be flatter than the objective sampling distributions. In all 7 experiments, with the exception of

the N = 3 conditions of one experiment, the researchers indeed concluded that subjective sampling

distributions are excessively close to uniform.5

3Cohen and Hansel (1955) also elicited subjective sampling distributions, but we cannot compare their
data with our model because they did not tell their subjects the rate that was generating the signals.

4At the time of this draft, two of the authors (Benjamin and Rabin, in joint work with Don Moore)
have also collected data on people’s subjective sampling distributions for N = 10 and 1000. We designed
the experiment to measure subjective sampling distributions in several different ways to deal with potential
confounds such as extreme-belief aversion. When we elicit distributions in the same manner as Kahneman
and Tversky, we replicate their results almost exactly. While our preliminary findings support NBLLN for
N = 1000, we also find that the evidence for NBLLN for N = 10—and hence presumably also the evidence
about smaller sample sizes reviewed below—is confounded by other explanations.

5Unlike the other 6 studies, Teigen (1974) asked subjects about the probability of each possible outcome
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Figure B1: Median probability estimates, N=5 and N=10 (Teigen, 1974)

A feature of our model of NBLLN is that people have correct beliefs about samples of size 1.

We know of no evidence on this point, but our own introspection suggests it is virtually a tautology

that if a person knows the rate of a-signals is θ, the person thinks the probability is θ that a single

draw will be a.6 However, our model of NBLLN implies that for any sample size larger than 1,

no matter how small, the subjective sampling distribution will be too close to uniform. Peterson,

DuCharme and Edwards’s (1968) Study 1 N = 3 conditions are the only cases where researchers

found subjective sampling distributions that are not too flat. For all three rates they studied (θ =

.6, .7, .8), the N = 3 subjective sampling distribution nearly coincides with the objective sampling

distribution. We interpret this evidence as consistent with the combined effects of NBLLN and LSN,

rather than either of the biases considered alone. The combined model we discuss in Appendix A

predicts that subjective sampling distributions will be correct for N = 1 and too flat for N large.

For plausible parameter values, there will be a non-monotonicity for intermediate N : due to LSN,

the subjective sampling distribution may be too peaked when N is larger than 1 but small. The

relative strength of NBLLN grows with N , so the subjective sampling distribution may be nearly

separately, without requiring that the probabilities sum to 1. He found that the probabilities summed to
greater than 1, and subjects often assigned probabilities that were too high to every outcome. When the
subjective sampling distributions were normalized to sum to 1, they were too flat.

6Of course there is a good reason no one has done this experiment: the correct answer about the probability
of an a-signal is obvious if the experimenter has just said that it is θ. Nonetheless, we discuss below evidence
from experiments on inference from a single signal. The correct answer to an inference problem is not obvious,
and indeed subjects often do not get the correct answer, tending somewhat to under-infer on average.
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correct for some intermediate N .

Assumption A4 of our model is that the subjective sampling distribution has the same mean as

the objective sampling distribution, regardless of sample size. In contrast, the evidence indicates

that when θ 6= .5, the mean of the subjective sampling distribution is generally between the objective

mean, θN , and .5. Kahneman and Tversky (1972) explicitly comment that “the mean is displaced

towards the long tail” (p.440), and this pattern is visually evident in all of the figures except the N

= 3 cases discussed above. From a modeling perspective, we believe it is appropriate for our model

to have the counterfactual feature of an accurate mean for the subjective sampling distribution

because it allows us to draw out the implications of believing that the limit distribution has full

support, without mixing in the implications of an inaccurate mean. Moreover, we speculate that

the “displaced mean” is the result of a psychologically distinct bias, “sampling-distribution-tails

diminishing sensitivity (SDTSD),” sketched in Appendix A, and our calibrated model of NBLLN

generates subjective sampling distributions that come closer to matching the data in Figure 1 when

we additionally incorporate SDTSD into the model (calculations not shown).

There is mixed evidence about whether training and feedback affect subjective sampling distri-

butions. Wheeler and Beach (1968) elicited subjective sampling distributions for a sample of size N

= 8 for rates θ = .6 and .8; these are shown in Figure B5. Next, their subjects were faced with 100

asymmetric binomial inference problems (θA = .8 and θB = .4). After each problem, the subject

was told the true rate for that problem. Subjective sampling distributions were elicited again, the

subjects responded to 100 more symmetric binomial inference problems with feedback, and the sub-

jective sampling distributions were elicited a final time.7 Comparing the initial subjective sampling

distributions with the final ones, the final subjective sampling distributions are less flat. For θ = .8,

the final subjective sampling distribution is quite close to the objective sampling distribution. For θ

= .6, the final subjective sampling distribution is actually more peaked than the objective sampling

distribution. On the other hand, Peterson, DuCharme, and Edwards (1968, Study 2) conducted an

experiment with four stages: (1) subjects were faced with symmetric binomial inference problems

(with no feedback); (2) subjective sampling distributions were elicited for each combination of N

= 3, 5, 8, and θ = .6, .7, .8; (3) subjects were shown the objective sampling distributions; and

(4) subjects were faced with another series of symmetric binomial inference problems. Subjects’

responses in the inference problems were similar in stage 4 as in stage 1, suggesting that showing

subjects the objective sampling distributions had little effect on beliefs.

7These subsequent elicitations are not shown in Figure B5.
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0.2 Evidence on Inference

We have found 33 studies from 26 papers measuring inferences from samples about which of two

equally-likely rates, θA and θB, generated the samples. Most of these binomial inference problems

are symmetric in the sense that θA = 1 − θB. Unless otherwise noted, all the studies we mention

are symmetric. We focus first on the studies where the prior probabilities, fΘ (θA) and fΘ (θB), are

equal. Equal priors neutralizes the role of base-rate neglect. We study below how inferences are

affected by unequal priors.

To compare the degree of under- or over-inference across studies, note that Bayes’ Rule can be

written as
fΘ|SN (θA|s)
fΘ|SN (θB |s) =

fSN |Θ(s|θA)fΘ(θA)

fSN |Θ(s|θB)fΘ(θB) . Since the signals are binomial, the rates are symmetric,

and the priors are equal, Bayes’ Rule can be expressed as
fΘ|SN (θA|s)
fΘ|SN (θB |s) =

(
θA

1−θA

) 2As−N
N

×N
. Taking

the natural log twice and rearranging,

ln ln
fΘ|SN (θA|s)
fΘ|SN (θB|s)

− ln

(
2As −N

N

)
− ln ln

(
θA

1− θA

)
= lnN. (1)

It is possible in 9 of the papers to identify the value of θA for the inference problem, the actual sample

observed by subjects, and subjects’ mean or median reported posterior. Using the experimental

data, Figure B2 plots the left-hand side of equation (1) against lnN .8 If the subjects’ beliefs were

Bayesian, the points should cluster along the identity line (the dashed line in Figure B2). Instead,

most points fall below the identity line, indicating that subjects generally infer less in favor of rateθA

than a Bayesian would. Moreover, the best-fitting regression line (the solid line in the figure) has

a slope smaller than 1, suggesting that in the metric defined by the left-hand side of equation (1),

the under-inference is greater for larger N .

8The left-hand side is well-defined only for inference problems such that θA
1−θA > 1 (that is, θA > .5)

and As

N > 1
2 (that is, over half the realized signals are a’s). Hence, as written, equation (1) only applies

to such cases. Although this holds for only 63 of the 99 regression observations in Figure B2 and Table
B2, we can include additional regression observations by relabeling the rates and sample proportions that
we plug into formula (1). In inference problems such that θA

1−θA > 1 and As

N < 1
2 , we express Bayes’

Rule as
fΘ|SN

(θB |s)
fΘ|SN

(θA|s) =
(

θB
1−θB

) 2As−N
N ×N

=
(

θA
1−θA

)N−2As
N ×N

, so equation (1) becomes ln ln
fΘ|SN

(θA|s)
fΘ|SN

(θB |s) −

ln
(
N−2As

N

)
− ln ln

(
θA

1−θA

)
= lnN . This allows us to use an additional 32 regression observations. Finally,

we can use a further 4 regression observations for which θA < .5 and As

N < 1
2 by expressing Bayes’ Rule as

fΘ|SN
(θA|s)

fΘ|SN
(θB |s) =

(
θA

1−θA

) 2As−N
N ×N

=
(

1−θA
θA

)N−2As
N ×N

, and we can take the log-log of this equation. In the case

of 3 inference problems, As

N = 1
2 , so the Bayesian posterior ratio is equal to 1, and it is impossible to define

what constitutes “over-inference” or “under-inference.” Those 3 datapoints are dropped from the Figure B2
and Table B2.
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Figure B2: Inference with symmetric rates and equal priors

Notes: The x-axis is depicted on the natural log scale. For all datapoints in the figure, subjects knew

that prior probabilities of the two rates were equal. The dotted line represents the null hypothesis

of Bayesian updating, and the solid line is the best-fitting regression line from column 2 of Table

B2. The includes studies are: BWB = Beach, Wise, and Barclay (1970); GHR = Green, Halbert,

and Robinson (1965); G3 = Grether’s (1992) Study 3; GT = Griffin and Tversky’s (1992) Study

1; KT = Kahneman and Tversky (1972); KW = Kraemer and Weber (2004); NBHL = Nelson,

Bloomfield, Hales, and Libby’s (2001) Study 1; PM = Peterson and Miller (1965); SK = Sasaki

and Kawagoe (2007).

To estimate the degree of under-inference and to probe its robustness, we rewrite (1) as a

regression equation:

ln ln
fΘ|SN (θA|s)
fΘ|SN (θB|s)

= γ0 + γ1 lnN + γ2 ln

(
2As −N

N

)
+ γ3 ln ln

(
θA

1− θA

)
+ ε. (2)

The null hypothesis of Bayesian updating is γ0 = 0, γ1 = γ2 = γ3 = 1. In Table B2, we estimate

versions of equation (2) with several different restrictions on the coefficients and data.
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Table B2. Inference with symmetric rates and equal priors.

(1) (2) (3) (4) (5)

Restriction: Restriction: Restriction: Coeffs Coeffs unrestricted

γ1 = γ2 = γ3 = 1 γ2 = γ3 = 1 γ3 = 1 unrestricted Incentivized only

lnN 0.587 0.470 0.485 0.675

(0.083) (0.109) (0.085) (0.086)

ln
(

2As−N
N

)
0.776 0.914 0.957

(0.116) (0.109) (0.121)

ln ln
(

θA
1−θA

)
0.333 0.421

(0.101) (0.104)

Constant -0.753 -0.031 -0.002 -0.145 -0.168

(0.076) (0.143) (0.142) (0.108) (0.130)

R2 0.000 0.426 0.360 0.603 0.763

#obs 99 99 99 99 47

#papers 9 9 9 9 3

Notes: Results are from OLS regressions, with standard errors in parentheses. The dependent

variable is as described in the text. Coefficients for blank entries are restricted to equal 1. The

fifth column restricts the data to incentivized experiments.

Column 1 estimates just γ0, under the restriction that γ1 = γ2 = γ3 = 1. The estimate, γ̂0 =

−.753, is significantly smaller than zero, indicating that the average pattern is under-inference.

Column 2 estimates both γ0 and γ1, while restricting γ2 = γ3 = 1. The predicted regression

line is plotted as the solid line in Figure B2. The regression confirms that the degree of under-

inference is related to sample size; γ̂1 = .587 is significantly smaller than 1 (but greater than

0). Moreover, once the degree of under-inference is allowed to depend on sample size, there is no

residual under-inference to be picked up by the constant term: γ̂0 = −.031, which is not statistically

distinguishable from zero. Breaking down the data by study (not shown in the table), every study

that manipulates sample size, while holding constant other features of the experiment—Peterson,

Schneider, and Miller (1965); Pitz (1967); Peterson, DuCharme, and Edwards’s (1968) Study 2;

Kahneman and Tversky (1972); Griffin and Tversky’s (1992) Study 1; Nelson, Bloomfield, Hales,

and Libby’s (2001) Study 1; Kraemer and Weber (2004)—concludes that there is greater under-
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inference in larger samples.9

Column 3 of Table B2 relaxes the regression model still further, estimating γ0, γ1, and γ2, with

the only remaining restriction being γ3 = 1. The coefficient on the proportion of a signals, γ̂2 = .776,

is just statistically distinguishable from 1, and the estimates γ̂0 and γ̂1 are not substantially different

in column 3 compared with column 2.

Column 4 estimates all four coefficients. Qualitatively, the main effect of relaxing the γ3 = 1

restriction on the conclusions from column 3 is that the coefficient on the proportion of a-signals,

γ̂2 = .914, is no longer statistically distinguishable from 1. Hence we cannot reject the hypotheses

that γ0 = 0 and γ2 = 1, but γ̂1 is significantly smaller than 1. However, column 4 makes clear

that the extremeness of the rates—the extent to which θA = 1− θB departs from .5—also matters

for the degree of biased inference. The coefficient γ̂3 = .333 is much smaller than 1. This means

that subjects under-infer by more the further is θA from .5. Breaking down the data by study (not

shown in the table), every study that manipulates θA, while holding constant other features of the

experiment either concludes that there is greater under-inference for θA further from .5 (Green,

Halbert, and Robinson, 1965; Phillips and Edwards’s, 1966 Study 1 and 3; Peterson and Miller,

1965; Peterson and Swensson’s, 1968 Studies 1 and 2; Peterson, DuCharme, and Edwards’s, 1968

Study 2; Sanders, 1968; Donnell and DuCharme, 1975; Kahneman and Tversky, 1972) or finds it

without explicitly stating it (Chinnis and Peterson, 1968; Beach, Wise, and Barclay, 1970; Shu and

Wu, 2003).10

Griffin and Tversky (1992) use the term “discriminability” to describe the phenomenon of under-

inference becoming more severe when θA and θB are further apart. In Griffin and Tversky’s (1992;

Study 3) particularly clear evidence from asymmetric inference problems, subjects were asked to

infer the likelihood of rate θA where the rates have equal priors, the sample has size N = 12, and

number of a-signals is As = 7, 8, 9, or 10. When the rates are close together, (θA, θB) = (.6, .5),

the subjects exhibit slight over-inference: a Bayesian’s posteriors for these four inference problems

would be .54, .64, .72, and .80, respectively, while subjects’ median posteriors were .55, .66, .75,

and .85. When the rates are further apart, (θA, θB) = (.6, .25), subjects exhibited massive under-

inference: whereas a Bayesian’s posteriors in these problems would be .95, .98, .998, and .999,

respectively, subjects’ posteriors were .60, .70, .80, and .90.

9For Green, Halbert, and Robinson (1965), we can also reach this conclusion by estimating the regression
equation (2) on the data reported just in that paper. There are a number of other studies that manipulate
sample size but do not analyze or display the data in a way that makes it clear how sample size affects
the degree of bias in inference: Sanders (1968); Peterson and Swensson’s (1968) Study 2; Beach, Wise, and
Barclay (1970); Marks and Clarkson (1972); and DeSwart (1972a, 1972b).

10DeSwart (1972a, 1972b) manipulates how far θA is from .5 but does not analyze or display the data in
a way that makes it clear how it affects the degree of under-inference.
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Griffin and Tversky’s evidence cannot be fully explained by extreme-belief aversion (that simply

maps an objective posterior into a less extreme subjective one) because, for example, subjects’

posterior of .80 is identical whether θB = .5 and 10 a-signals were observed or θB = .25 and 9

a-signals were observed, but the objective posteriors are quite different in those two cases.

Our one-parameter model of NBLLN does predict γ3 < 1, i.e., “more severe” under-inference

(to be precise, Barneys likelihood ratio being closer to 1 than Tommys likelihood ratio, conditional

on any realized sample) when the symmetric rates are further apart. Nonetheless, we suspect that

SDTSD also contributes to explaining the flat tails of subjective sampling distributions and the

discriminability phenomenon in inference.

Column 5 estimates the same regression as column 4, but with the data restricted to incentivized

experiments. There are only three such studies—Green, Halbert, and Robinson (1965), Nelson,

Bloomfield, Hales, and Libby (2001), and Kraemer and Weber (2004)—but the results in column

5 are largely similar to column 4, except that both γ̂1 = .675 and γ̂3 = .421 are larger, suggesting

greater sensitivity to sample size and to rates when accurate inferences are rewarded. Nonetheless,

both coefficients remain far less than 1, indicating substantial biases relative to Bayesian inference.

Training in inference appears to reduce but not eliminate under-inference. When subjects were

told after each inference which state actually occurred, they became less biased over time but still

under-inferred by the end of the experiment (Phillips and Edwards’s, 1966, Study 2; Camerer,

1987). Strub (1969) found under-inference among subjects who had received 114 hours of lecture

sessions, demonstrations, problem-solving sessions, and other training in dealing with probabilities,

including prior participation in inference experiments. When subjects were told after each inference

what the normatively correct inference is, they very quickly learned to report more extreme beliefs,

but they do not seem to have learned to draw better inferences. While reporting more extreme

beliefs led to more accurate beliefs in problems where their pre-training beliefs were not extreme

enough, it led to less accurate beliefs in problems where their pre-training beliefs were accurate

(Donnell and DuCharme, 1975).

A few studies have found over-inference. In all cases, N is relatively small, and θA is relatively

close to .5.11 Griffin and Tversky’s Study 1 (1992; θA = .6) , which compared inference from

samples of size 3, 5, 9, 17, and 33, found over-inference for N = 3 and 5 and under-inference for the

others. Nelson, Bloomfield, Hales, and Libby’s Study 1 (2001; θA = .6) conducted an experimental

asset market where payoffs depended on correct inferences from samples of size 3 and 17. Subjects

under-inferred for N = 17 and over-inferred for N = 3. There is some evidence, though it is weak,

11Peterson and Swennson’s (1968) Study 1 finds over-inference for N = 1 and θA = .6, .67, .75, .9 in the
first half of their data. In the same inference problems in the second half of their data from Study 1, and in
both halves from Study 2, however, they find under-inference.
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that over-inference in favor of a particular state occurs when the realized sample exactly matches

the expected sample in that state, a phenomenon that has been called “exact representativeness.”

In an experimental asset market, Camerer (1987; N = 3, θA = .67) found that the price of a state-

contingent asset that pays off if state A is true was too high—indicating over-inference in favor of

state A—when the observed sample contained exactly 2 a-signals and 1 b-signal, and symmetrically

over-inference in favor of state B when the sample proportions were reversed. In an experimental

asset market with asymmetric rates of θA = .67 and θB = .5, Grether (1980; N = 6) similarly

found evidence indicating over-inference in favor of state A when the realized sample was 4 a’s

and 2 b’s and over-inference in favor of state B when the realized sample was 3 a’s and 3 b’s. In

a similar experiment, Grether (1992) found less support for “exact representativeness.” Neither

NBLLN alone, nor NBLLN combined with SDTSD, can explain over-inference.

Such over-inference can, however, be explained by the Law of Small Numbers (LSN). As shown

in Appendix A, when NBLLN and LSN are combined in a single model, small N is a necessary

condition for over-inference. Moreover, we have argued that SDTSD will tend to generate under-

inference when θA and θB are far apart.

A distinctive feature of our theory—a feature that differentiates it from alternative theories of

under-inference from large samples discussed in Section 6 and Appendix A—is the prediction that

inferences from a sample of size 1 will be correct. Sample-size neglect predicts over-inference for

samples of size 1, while extreme-belief aversion predicts under-inference for samples of any size,

including 1. There are 11 experiments that measure inference when N = 1. Peterson, Schneider,

and Miller (1965; θA = .6), Dave and Wolfe (2003; θA = .7), Peterson and Swennson’s Study 2

(1968; θA = .6, .67, .75, .9), and Gettys and Manley’s (1968) Studies 1 and 2 (which used a variety

of asymmetric inference problems) found substantial under-inference. Chinnis and Peterson (1968;

θA = .67, .8), Kraemer and Weber (2004; θA = .6), and Sasaki and Kawagoe (2007; θA = .67)

found slight under-inference, very close to Bayesian, and Peterson and Swennson’s (1968; θA = .6,

.67, .75, .9) Study 1 found over-inference in the first half of their data and under-inference in the

second half. In a mix of symmetric and asymmetric problems, Peterson and Miller (1965) found

under-inference for (θA, θB) = (.83, .17), (θA, θB) = (.71, .2), and (θA, θB) = (.67, .33), and over-

inference for (θA, θB) = (.6, .43). Green, Halbert, and Robinson (1965; θA = .6, .8) found inferences

very close to Bayesian when N = 1. The evidence is mixed but with more of the studies leaning

toward under-inference.12

12Presumably, the many papers on base-rate neglect also contain evidence on inferences from samples of
size 1. Virtually none of them have 50-50 priors, however, so it is difficult to disentangle biased inference
from base-rate neglect. We do not review this literature systematically, but to give a flavor of what it
may indicate, we examined Bar-Hillel’s (1980) seminal paper. Our impression is that the evidence in Bar-
Hillel’s paper roughly mirrors the evidence from experiments on single-signal inference reviewed above. The
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As an aside, we can use the same balls-and-urns experiments to study how priors affect inference

and thereby measure the prevalence and extent of base-rate neglect in these studies. Taking the

log of Bayes’ Rule and rearranging:

ln
fΘ|SN (θA|s)
fΘ|SN (θB|s)

− ln
fSN |Θ (s|θA)

fSN |Θ (s|θB)
= ln

fΘ (θA)

fΘ (θB)
. (3)

As above, from the published experiments, we obtain for each inference problem the values θA, θB,

fΘ (θA), the actual sample observed by subjects, and subjects’ mean or median reported posterior.

The right-hand side of equation (3) can be readily calculated from fΘ (θA), as can the first term

on the left-hand side, ln
fΘ|SN (θA|s)
fΘ|SN (θB |s) , from subjects’ posterior. In order not to confound base-rate

neglect with other biases (that affect inference even when priors are equal), we calculate the second

term on the left-hand side, ln
fSN |Θ(s|θA)

fSN |Θ(s|θB) , as the predicted value,
̂

ln
fSN |Θ(s|θA)

fSN |Θ(s|θB) , from the previously-

estimated regression equation (2). We use only the symmetric-rate data. Figure B3 plots the

left-hand side of equation (3) against ln fΘ(θA)
fΘ(θB) . Regardless of whatever other biases may affect

inference, if the subjects correctly incorporate base rates into their inferences, the data should lie

along the identity line (the dashed line in Figure B3). However, the best-fitting line (the solid line

in the figure) has a slope less than 1, indicating that subjects’ inferences are too insensitive to the

prior probabilities.

full distribution of subjects’ reported posteriors can be eyeballed from histograms reported for Bar-Hillel’s
Studies 1, 2, 3, 7 and 8, each of which presents an inference problem where a single signal is indicative of
the less likely of two states that subjects are given base rates for. We divide the 222 subjects’ responses
into four categories. Because the signal strength always was in the opposite direction of the base rate, the
33% of subjects whose posteriors equaled the base rate or weaker must have been either under-inferring
from the signal or (as is presumably unlikely) “over-using” the base rate. By contrast, 9% of subjects
reported posteriors stronger than the signal, almost surely indicating over-use of the signal (since otherwise
they must be reversing the base rate). 31% of subjects reported posteriors of exactly the signal strength.
Although not logically necessary, we share the presumption of Bar-Hillel and most researchers in this area
that these subjects were almost surely simply using the signal strength and ignoring the base rate altogether.
The remaining 27% of subjects reported posteriors strictly between the correct Bayesian posteriors and the
posteriors that would completely ignore the base rate. It is unclear how many of these subjects were over-
using or under-using the signal because anyone under-using the base rate could have been either over-inferring
or under-inferring from the signal. From these data taken together, it seems likely that between 9% and
36% of the subjects were over-inferring from the signal, and at least 33% of the subjects were under-using
the signal.
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Figure B3: Base-rate neglect in symmetric-rate inference problems.

Notes: The dotted line represents the null hypothesis of Bayesian updating, and the solid line is the

best-fitting regression line from column 1 of Table B5. The includes studies are: BWB = Beach,

Wise, and Barclay (1970); C = Camerer (1987); GHR = Green, Halbert, and Robinson (1965);

G3 = Grether’s (1992) Study 3; GT = Griffin and Tversky’s (1992) Study 1; KT = Kahneman

and Tversky (1972); KW = Kraemer and Weber (2004); NBHL = Nelson, Bloomfield, Hales, and

Libby’s (2001) Study 1; PM = Peterson and Miller (1965); SK = Sasaki and Kawagoe (2007).

To formally investigate the degree of base-rate neglect, we rewrite (3) as a regression equation:

ln
fΘ|SN (θA|s)
fΘ|SN (θB|s)

− ln
fSN |Θ (s|θA)

fSN |Θ (s|θB)
= ϕ0 + ϕ1 ln

fΘ (θA)

fΘ (θB)
+ ε. (4)

The null hypothesis of Bayesian updating corresponds to ϕ0 = 0 and ϕ1 = 1.

The first column of Table B3 estimates equation (4) on the full sample. While we can reject

the null hypothesis that ϕ0 = 0, it is clear from Figure B5 that the deviation is small. On the

other hand, the fitted value ϕ̂1 = .601 is significantly less than 1 (and larger than 0). The second

column estimates the equation using only the data with unequal prior probabilities, but the results
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are similar. Finally, the third column restricts the data to incentivized experiments. While ϕ̂0 is

now essentially zero, ϕ̂1 = .405 indicates even stronger base-rate neglect in these data.

Table B3. Base-rate neglect.

(1) (2) (5)

All data Only unequal priors Only incentivized

ln fΘ(θA)
fΘ(θB) 0.524 0.510 0.360

(0.078) (0.081) (0.115)

Constant 0.216 0.299 -0.130

(0.053) (0.087) (0.084)

R2 0.242 0.303 0.176

#obs 209 110 48

#papers 10 5 3

Notes: Results are from OLS regressions, with standard errors in parentheses. The dependent

variable is as described in the text.

0.3 Consistency Between Subjective Sampling Distributions and Inference

A core feature of the fully rational model that our model retains is that people draw inferences that

are consistent with Bayes’s Rule applied to their subjective sampling distributions. Although surely

not a perfect fit, we believe (like other researchers before us) that this feature is approximately

right except insofar as people neglect base rates. There is indirect supportive evidence from the

qualitative correspondence between the evidence on subjective sampling distributions (reviewed in

section B.1) and the evidence on inferences (reviewed in section B.2). There is direct evidence from

two studies that measured subjective sampling distributions and inferences for the same subject.

Peterson, DuCharme, and Edwards (1968, Study 2) conducted symmetric inference experiments

with every combination of N = 3, 5, 8, and θA = 1 – θB = .6, .7, .8. Then subjects drew sub-

jective sampling distributions for the nine binomial distributions (shown in Figure B4). Peterson,

DuCharme, and Edwards plotted subjects’ inferences against what their inferences would be if they

applied Bayes’s Rule to their subjective sampling distributions. Peterson, DuCharme, and Edwards

found that “most points cluster extremely close to the identity line.”
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Figure B4: Median probability estimates, N=3, N=5, and N=8 (Peterson DuCharme and

Edwards 1968)

Wheeler and Beach (1968) elicited subjects’ subjective sampling distributions for a sample of size

N = 8 for rates θ = .6 and .8 (see Figure B5) and then asked subjects to make bets in an inference

task. Wheeler and Beach inferred subjective posteriors from the bets, under the assumption that

subjects sought to maximize expected winnings. The correlation between the median subjective log-

posterior (calculated from the first 20 inference problems) and the median subjective log-likelihood

(calculated from applying Bayes’s Rule to the subjective sampling distribution elicited at the very

beginning of the experiment) was .90. For individual subjects’ data, the median correlation was

.85.
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Figure B5: Median probability estimates, N=8 (Wheeler and Beach 1968)

0.4 Inference For Sequential Clumps

In Section 4, we lay out various possible dynamic extensions of our model of NBLLN. Unfortunately,

there are no experiments that elicit people’s beliefs about what they will infer conditional on

observing samples in the future. Here we review the few experiments that compare inferences from

a sample presented simultaneously with a sample drawn sequentially.

In symmetric inference with θ = .6 and N = 48, Peterson, Schneider, and Miller (1965) pre-

sented the sample clumped as a single sample of size 48, four samples of size 12, twelve samples

of size 4, or forty-eight samples of size 1. Subjects reported their updated beliefs after each clump

was shown. The results are somewhat difficult to interpret because the data are averaged across

clumps and realizations. Nonetheless, Peterson et al.s finding that under-inference is more severe

when clumps contain more signals is consistent with either retrospective-acceptive or retrospective-

pooling.

Grether (1992, Study 3) confronted subjects with (incentivized) symmetric, binomial inference

problems, with rates θA = 1 – θB = .2, .3, .4, .6, .7, .8, and priors fΘ (θA) = .3, .4, .5, .6, .7. The

sample size always began as N = 4. In some cases, however, after subjects made their inference,

they were asked to make an updated inference after an additional 4 signals were drawn, up to a

maximum of 12 signals in total. Although only aggregate statistics are reported in the paper, David

Grether sent us the subject-level data. In a few cases, we can learn about how subjects process the

signals by comparing their inferences before and after they receive a clump. For example, in one

situation, the rates were θA = 1 – θB = .2, the prior probabilities of the rates were equal, and the

first four signals were all b’s. The next four signals were 2 a’s and 2 b’s. The objective posterior
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probability of rate θB is the same after all eight as after the first four: .9961. However, the subjects’

subjective posterior (that is, the median across subjects) is .95 after the first four signals and .70

after all eight. This pattern of additional uninformative signals causing the subjective posterior to

move toward .5 is consistent with retrospective-pooling Barney, not retrospective-acceptive Barney.

The same pattern holds in all three other test cases in Grether’s data.13

In contrast, Kraemer and Weber (2004) present evidence that supports retrospective-acceptive

Barney. For an incentivized, symmetric binomial inference problem with θA = 1 – θB = .6 and

N = 5, subjects presented with a sample of 3 a’s and 2 b’s gave mean posterior probability for

rate θA of .585. Other subjects who were instead shown the same signals as two separate samples,

one with 3 a’s and 0 b’s and one with 0 a’s and 2 b’s, gave mean posterior probability for state A

of .56, which is marginally statistically different. Similarly, with θA = 1 – θB = .6 and N = 25,

subjects’ mean posterior probability for rate θA was .56 when the sample was 13 a’s and 12 b’s,

but .53 (strongly statistically distinguishable from .56) when two samples of 13 a’s and 0 b’s, and

then 0 a’s and 12 b’s were presented sequentially. The fact that subjects make different inferences

in these two cases is inconsistent with being retrospective-pooling, but not inconsistent with being

retrospective-acceptive.14

Shu and Wu’s (2003) Study 3 appears to be inconsistent with any of the dynamic extensions of

our model that we consider. They conduct a symmetric binomial inference problem with samples

of size N = 10 and three different levels of the rates, θA = 1 – θB = .6, .75, or .9. In one condition,

subjects observed the 10 signals one at a time before stating a posterior belief. In the other

conditions, subjects observed the 10 signals in clumps of 2 signals each or 5 signals each. While

for some realizations of the 10-signal sets subjects draw less extreme inferences when the signals

arrive in larger clumps—as predicted for retrospective-acceptive Barney—the results on average

13In the 2nd test case, fΘ (θA) = .4, θA = 1 – θB = .3, and the first eight signals were 1 a and 7 b’s. The
next four signals were 2 a’s and 2 b’s. While the objective posterior probability of rate θB is identically .9908,
subjects’ median subjective posterior fell from .9 to .5. In the 3rd test case, fΘ (θA) = .7, θA = 1 – θB = .4,
and the first four signals were 2 a’s and 2 b’s, and the next four signals were 2 a’s and 2 b’s. The objective
posterior probability of rate θA remains .7, but subjects’ median subjective posterior fell from .775 to .7. In
the 4th test case, fΘ (θA) = .3, θA = 1 – θB = .7, and the first four and next four signals were 2 a’s and
2 b’s. The objective posterior probability of rate θA remains .3, but subjects’ median subjective posterior
increased from .42 to .51. If we examine subjects’ mean posterior probabilities, the pattern is robust in the
first three test cases (.87 to .66, .72 to .59, and .73 to .68) and hard to interpret in the fourth (.54 to .58).

14Unlike the experimental subjects, however, retrospective-acceptive Barney will under-infer weakly more
from two clumps than from one. This is because an additional clump provides information about an additional
draw of β from the distribution, which is weakly more informative about the true rate than an additional
signal about a fixed β. That being said, a combination of retrospective-acceptive Barneyness with SDTSD
could explain why the two extreme clumps lead to a weaker overall inference than the single clump.

Kraemer and Weber (2004) also have a third experimental treatment that generates ambiguous evidence.
In the N = 5 case, when subjects are presented with a sample of 1 a and 1 b, followed by a sample of 2 a’s and
1 b, their mean posterior is .575, in between the other two treatments and not statistically distinguishable
from either. Similarly, in the N = 25 case, the mean posterior is .555 when subjects are presented with a
sample of 6 a’s and 6 b’s, followed by a sample of 7 a’s and 6 b’s.
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go in the opposite direction.15 While it may be possible to reconcile Shu and Wu’s results with

a combination of NBLLN and the dynamics of base-rate neglect, that combined model should be

worked out to see if it systematically reverses some of the conclusions we reach in Section 5.

0.5 Evidence For Non-Binomial Distributions

While the vast majority of simple inference experiments have been conducted with binomial signals,

there are a few studies with other distributions. The results overall are consistent with NBLLN

and SDTSD applying beyond binomial subjective sampling distributions.

There are a handful of studies where signals are multinomial. For example, in Beach’s (1968)

experiment, there were two decks of cards, a Red Deck and a Green Deck. Each card had a letter

from A to F written on it. The Red and Green Decks had equal priors, but each deck had different

proportions of the lettered cards. The subjects were shown N = 3 cards, one card at a time,

and reported their subjective probability that the cards were being drawn from the Red Deck,

as opposed to the Green Deck, after each draw. The likelihood ratios for the cards ranged from

1:2.5 to 3:1. For example, the likelihood ratio for card F was 1:2. A second group of subjects

faced the same inference task with the same likelihood ratios for each card, but with the absolute

probabilities scaled down for some cards and scaled up for others. For example, for the first group

of subjects, the probability of an F card was .03 for the Red Deck and .06 for the Green Deck; for

the second group of subjects, the probability of an F card was .16 for the Red Deck and .32 for the

Green Deck. The first main finding is that subjects under-inferred on average. The other finding

was that, for a given objective likelihood ratio, Group 1 under-inferred more for cards where Group

1’s probabilities for that card were scaled down relative to Group 2’s. Our interpretation is that

when Group 1’s probabilities are scaled down, the observed sample lies further in the tails on the

subjective sampling distribution for both decks. SDTSD predicts more extreme under-inference in

such cases.

Under-inference is also the general finding in the other multinomial experiments we could find

that compared subjects’ posteriors with Bayesian posteriors (Phillips, Hays, and Edwards’s Study

1, 1966; Dale, 1968; Martin, 1969; Martin and Gettys, 1969; Chapman, 1973). However, there are

two exceptions: (1) Phillips, Hays, and Edwards (1966) varied the sample size of signals observed by

subjects and, while finding under-inference for N = 3, 5, and 9, found essentially Bayesian inference

for N = 1, and (2) Dale (1968) reported that in one particular trial where the data happened to

15Sanders (1968) and Beach, Wise, and Barclay (1970) also compare inferences from simultaneously-
presented samples with inferences from sequentially-presented samples, but it is difficult to interpret their
findings because the results for the simultaneously-presented samples are averaged across different sample
sizes.
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exactly match one of the multinomial rates, about 1/8 of the subject over-inferred—the most over-

inference he observed on any trial. Martin (1969), Martin and Gettys (1969), and Chapman (1973)

also reported that subjects’ under-inferred by more when an observed sample warranted a more

extreme conclusion. That finding could be due to NBLLN, SDTSD, or both.

DuCharme (1970) conducted a normal-signal inference experiment where subjects observed

samples of size 1. He found under-inference when the sample was relatively far in the tails of both

distributions, consistent with SDTSD, although he interpreted his results as meaning that people

are reluctant to report extreme probabilities. Gustafson, Shukla, Delbecq, and Walster (1973) told

subjects the average heights and weights of Midwestern college-age men and women. Subjects

were then asked to draw inferences from samples of size 1; specifically, they were asked a series of

questions such as, “The observed height of a person is 68 inches. Is the person more likely to be a

male or female? How much more likely?” Gustafson et al. found that subjects over-inferred when

the objective likelihood ratio was relatively small and under-inferred when the objective likelihood

ratio was relatively large. Assuming that subjects believed that the sampling distributions for

height and weight were normal distributions, this result means that subjects over-inferred when

the sample was relatively close to the men’s or women’s mean height or weight and under-inferred

when the sample was relatively far in the tails of both distributions. In two studies, DuCharme

and Peterson (1968) familiarized subjects with normal distributions for male and female heights

and then elicited subjects’ beliefs that a sample was being drawn from the population of men or

of women. Subjects’ posteriors were nearly Bayesian when N = 1, but subjects under-inferred for

samples of size N = 4.

Peterson and Phillips (1966) conducted an an experiment where the rate generating binary

signals was drawn from a uniform distribution on [0, 1]. Subjects observed 48 binary signals and

after each signal had to specify a 33% confidence interval for the rate. Subjects’ confidence intervals

were almost always too wide, indicating that subjects under-inferred from the data about the rate.
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Appendix C: Proofs

0.6 Preliminary and Appendix A Results

According to Whitt’s (1979) Theorem 4, A3 implies that for any N and any θA, θB ∈ Θ, Barney’s

likelihood ratio
fψ
SN |Θ

(s|θA)

fψ
SN |Θ

(s|θB)
is strictly increasing in the number of a-signals in the sample. We will

repeatedly use this fact in the proofs.

The preliminary results all apply to the beta-distribution functional form, given by equation

(3) in the main text. Let p0 ≡ fΘ(θA)
fΘ(θB) denote the agent’s prior ratio, let Πψ

SN |Θ×Θ (s|θA, θB) ≡
fψ
SN |Θ

(s|θA)

fψ
SN |Θ

(s|θB)
denote Barney’s likelihood ratio after observing a clump of N signals s ∈ SN , and let

Πψ
Θ×Θ|SN (θA, θB|s) ≡

fψ
Θ|SN

(θA|s)

fψ
Θ|SN

(θB |s)
= p0Πψ

SN |Θ×Θ (s|θA, θB) denote his posterior ratio.

Lemma β1. Assume Barney has the beta-distribution functional form given by equation (3).

Suppose Barney is prospective-acceptive, knows the rate is θ ∈ Θ, and will observe a random clump

of N signals s ∈ SN . Then he believes the probability of observing As a-signals in the sequence s

is:

fψSN |Θ (s|θA) =
Γ (ψ)

Γ (ψ +N)

Γ (θψ +As)

Γ (θψ)

Γ ((1− θ)ψ +N −As)
Γ ((1− θ)ψ)

Γ (N + 1)

Γ (As + 1) Γ (N −As + 1)
.

Proof:

fψSN |Θ (s|θA)

=

∫ 1

0
fSN |ß (s|β) fψß|Θ (β|θA) dβ

=

∫ 1

0

Γ (N + 1)

Γ (As + 1) Γ (As −N + 1)
βAs (1− β)N−As

Γ (ψ)

Γ (θψ) Γ ((1− θ)ψ)
βθψ−1 (1− β)(1−θ)ψ−1 dβ

=
Γ (ψ)

Γ (ψ +N)

Γ (θψ +As)

Γ (θψ)

Γ ((1− θ)ψ +N −As)
Γ ((1− θ)ψ)

Γ (N + 1)

Γ (As + 1) Γ (N −As + 1)
×∫ 1

0

Γ (ψ +N)

Γ (θψ +As) Γ ((1− θ)ψ +N −As)
βθψ+As−1 (1− β)(1−θ)ψ+N−As−1 dβ

=
Γ (ψ)

Γ (ψ +N)

Γ (θψ +As)

Γ (θψ)

Γ ((1− θ)ψ +N −As)
Γ ((1− θ)ψ)

Γ (N + 1)

Γ (As + 1) Γ (N −As + 1)
,

where the fourth equality follows because the term being integrated is the pdf of a beta distribution,

and the integral of a pdf is equal to 1.

�
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Lemma β2. Assume Barney has the beta-distribution functional form given by equation (3) and

is retrospective pooling. Consider two states of the world, A and B, associated with known rates

θA, θB ∈ Θ and a prior ratio p0 = f(θA)
f(θB) ∈ (0,∞). Barney’s likelihood ratio after observing a clump

of N signals s ∈ SN which has As a-signals is:

Πψ
SN |Θ×Θ (s|θA, θB) =

Γ (θAψ +As)

Γ (θBψ +As)

Γ ((1− θA)ψ +N −As)
Γ ((1− θB)ψ +N −As)

Γ (θBψ)

Γ (θAψ)

Γ ((1− θB)ψ)

Γ ((1− θA)ψ)
.

Moreover, in the “symmetric inference” case where θA = 1− θB,

Πψ
SN |Θ×Θ (s|θA, θB) =

Γ (θAψ +As)

Γ (θBψ +As)

Γ ((1− θA)ψ +N −As)
Γ ((1− θB)ψ +N −As)

Proof: This is an immediate implication of the previous lemma.

�

Lemma β3. Assume Barney has the beta-distribution functional form given by equation (3).

Consider two states of the world, A and B, associated with known rates θA, θB ∈ Θ such that

θA ≥ θB. Suppose Barney has observed N signals, s ∈ SN , and he observes his N + 1st signal.

Then Barney’s likelihood ratio is closer to Πψ
SN |Θ×Θ (s|θA, θB) if he pools the N+1st signal together

with the others than if he groups it separately: that is, if the N + 1st signal is an a-signal, then

Πψ
S1|Θ×Θ (a|θA, θB) Πψ

SN |Θ×Θ (s|θA, θB) ≥ Πψ
SN+1|Θ×Θ (s ∪ a|θA, θB) ,

and if N + 1st signal is a b-signal, then

Πψ
S1|Θ×Θ (b|θA, θB) Πψ

SN |Θ×Θ (s|θA, θB) ≤ Πψ
SN+1|Θ×Θ (s ∪ a|θA, θB) .

Proof: We will prove the claim in the lemma that pertains if the final signal is an a-signal; the

proof for the other case is analogous. Denote by AN the number of a-signals in sN . If Barney pools
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the a-signal with the others, then his likelihood ratio is

Πψ
SN+1|Θ×Θ (s ∪ a|θA, θB)

=
Γ (θAψ +AN + 1)

Γ (θBψ +AN + 1)

Γ ((1− θA)ψ +N + 1−AN − 1)

Γ ((1− θB)ψ +N + 1−AN − 1)

Γ (θBψ)

Γ (θAψ)

Γ ((1− θB)ψ)

Γ ((1− θA)ψ)

=
(θAψ +AN ) Γ (θAψ +AN )

(θBψ +AN ) Γ (θBψ +AN )

Γ ((1− θA)ψ +N −AN )

Γ ((1− θB)ψ +N −AN )

Γ (θBψ)

Γ (θAψ)

Γ ((1− θB)ψ)

Γ ((1− θA)ψ)

=
θAψ +AN
θBψ +AN

Πψ
SN |Θ×Θ (s|θA, θB) ,

where the second equality uses Lemma β2, and the third equality uses the fact that Γ(n+1) = nΓ(n).

If Barney instead separately groups the final signal, then his likelihood ratio is

Πψ
S1|Θ×Θ (a|θA, θB) Πψ

SN |Θ×Θ (s|θA, θB) =
θAψ

θBψ
Πψ
SN |Θ×Θ (s|θA, θB)

=
θA
θB

Πψ
SN |Θ×Θ (s|θA, θB) .

By assumption, θA
θB
≥ 1. Therefore, for all k > 0,

θA
θB
≥ θAψ + k

θBψ + k
≥ 1.

The result follows.

�

Lemma β4. Assume Barney has the beta-distribution functional form given by equation (3) and

is retrospective pooling. Consider two states of the world, A and B, associated with known rates

θA, θB ∈ Θ such that θA > θB and a prior ratio p0 = f(θA)
f(θB) ∈ (0,∞).

• Barney draws the same inferences as Tommy when the observed sequence is ab or ba.

• If the sample is all a’s or all b’s, Barney under-infers relative to Tommy.

• For any true state θ ∈ (0, 1), Barney believes that: as N →∞, his posterior ratio
fψ
Θ|SN

(θA|s)

fψ
Θ|SN

(θB |s)

will converge in distribution to a random variable that has full support on (0,∞).

Proof:
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• Barney’s posterior after one a and one b signal is

p0
Γ (θAψ + 1)

Γ (θBψ + 1)

Γ ((1− θA)ψ + 1)

Γ ((1− θB)ψ + 1)

Γ (θBψ)

Γ (θAψ)

Γ ((1− θB)ψ)

Γ ((1− θA)ψ)

= p0
Γ (θAψ) θAψ

Γ (θBψ) θBψ

Γ ((1− θA)ψ) (1− θA)ψ

Γ ((1− θB)ψ) (1− θB)ψ

Γ (θBψ)

Γ (θAψ)

Γ ((1− θB)ψ)

Γ ((1− θA)ψ)

= p0
θA
θB

(1− θA)

(1− θB)
,

which equals Tommy’s posterior.

• Barney’s posterior after N a-signals and 0 b-signals is:

p0
Γ (θAψ +N)

Γ (θBψ +N)

Γ ((1− θA)ψ)

Γ ((1− θB)ψ)

Γ (θBψ)

Γ (θAψ)

Γ ((1− θB)ψ)

Γ ((1− θA)ψ)

= p0
Γ (θAψ +N)

Γ (θBψ +N)

Γ (θBψ)

Γ (θAψ)

= p0
(θAψ +N − 1)(θAψ +N − 2)...(θAψ)Γ(θAψ)

(θBψ +N − 1)(θBψ +N − 2)...(θBψ)Γ(θBψ)

Γ (θBψ)

Γ (θAψ)

= p0
(θAψ +N − 1)(θAψ +N − 2)...(θAψ)

(θBψ +N − 1)(θBψ +N − 2)...(θBψ)
.

Note that the numerator and denominator each has N terms in it. Tommy’s posterior ratio

is

p0
(θA)N

(θB)N
,

so also for Tommy, the numerator and denominator each has N terms. Furthermore, since

θA
θB

> 1, for all k > 0, θA+k
θB+k <

θA
θB

. Therefore,

p0
(θAψ +N − 1)(θAψ +N − 2)...(θAψ)

(θBψ +N − 1)(θBψ +N − 2)...(θBψ)
< p0

(θA)N

(θB)N
.

Moreover, the likelihood ratio clearly favors state A for both Tommy and Barney. Hence,

Barney under-infers relative to Tommy. The case of N b-signals and 0 a-signals proceeds

analogously.

• Fψß|Θ (β|θ) for our parameterized model is absolutely continuous (since it is simply the cdf of the

beta distribution). Therefore, the results of Lemma 1 hold. Lemma 1 implies that Barney’s
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subjective sampling distribution for an infinite sample has pdf limN→∞ f
ψ
SN |Θ

(
As
N = α|θ

)
=

fψß|Θ (β = α|θ) a.s. Therefore, after observing proportion α of a-signals in a large sample,

Barney anticipates having likelihood ratio
fψ
ß|Θ(β=α|θA)

fψ
ß|Θ(β=α|θB)

a.s. Since the beta distribution sat-

isfies the monotone likelihood ratio ordering (for a fixed ψ) as θ changes, by Whitt (1979),
fψ
ß|Θ(β=α|θA)

fψ
ß|Θ(β=α|θB)

is strictly increasing in α.

Furthermore,

fψß|Θ (β = 0|θA)

fψß|Θ (β = 0|θB)
=

Γ(ψ)
Γ(θAψ)Γ((1−θA)ψ)0θAψ−1 (1− 0)(1−θA)ψ−1

Γ(ψ)
Γ(θBψ)Γ((1−θB)ψ)0θBψ−1 (1− 0)(1−θB)ψ−1

=
Γ(θBψ)Γ((1− θB)ψ)

Γ(θAψ)Γ((1− θA)ψ)

0(θA−θB)ψ

1(θA−θB)ψ
= 0

and

fψß|Θ (β = 1|θA)

fψß|Θ (β = 1|θB)
=

Γ(ψ)
Γ(θAψ)Γ((1−θA)ψ)1θAψ−10(1−θA)ψ−1

Γ(ψ)
Γ(θBψ)Γ((1−θB)ψ)1θBψ−10(1−θB)ψ−1

=
Γ(θBψ)Γ((1− θB)ψ)

Γ(θAψ)Γ((1− θA)ψ)

1(θA−θB)ψ

0(θA−θB)ψ
=∞.

Because we are using the beta density for the subjective rate distribution, Barney’s beliefs put

full support on α ∈ (0, 1). Hence Barney thinks his large-sample likelihood ratio will converge

in distribution to a random variable whose support is

(
fψ
ß|Θ(β=0|θA)

fψ
ß|Θ(β=0|θB)

,
fψ
ß|Θ(β=1|θA)

fψ
ß|Θ(β=1|θB)

)
= (0,∞).

Since Barney’s posterior ratio is his likelihood ratio times his prior ratio, the result follows.

�

Lemma β5. If Barney has the beta-distribution functional form given by equation (3), then his

subjective-rate distribution satisfies A1-A4.

Proof: We will prove each property in turn.

• Clearly the full-support property holds since fψß|Θ (β|θ) = Γ(ψ)
Γ(θψ)Γ((1−θ)ψ)β

θψ−1 (1− β)(1−θ)ψ−1 >

0 for all β ∈ (0, 1) and θ ∈ (0, 1). This function is also clearly point-wise continuous in θ since

all the components are point-wise continuous. Note that fψß|Θ (β|θ) is defined for all β ∈ [0, 1],

is Lebesgue-integrable with respect to β and Fψß|Θ (β|θ) = 0+
∫ β

0 fψß|Θ (x|θ) dx for all β in [0, 1].

Therefore, Fψß|Θ (β|θ) is absolutely continuous with respect to β.
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• Note that

fψß|Θ (β|θ) =
Γ (ψ)

Γ (θψ) Γ ((1− θ)ψ)
βθψ−1 (1− β)(1−θ)ψ−1 = fψß|Θ (1− β|1− θ) .

Therefore, ∫ 1−x

0
fψß|Θ (β|θ) dβ =

∫ 1−x

0
fψß|Θ (1− β|1− θ) d(1− β).

The left-hand side is Fψß|Θ (1− x|θ). Using the change-of-variables β̃ = 1− β, the right-hand

side becomes

−
∫ x

1
fψß|Θ

(
β̃|1− θ

)
dβ̃ =

∫ 1

x
fψß|Θ

(
β̃|1− θ

)
dβ̃

= 1−
∫ x

0
fψß|Θ

(
β̃|1− θ

)
dβ̃.

Hence

Fψß|Θ (1− x|θ) = 1− Fψß|Θ (x|1− θ) .

• Note that

fψß|Θ (β|θ′)

fψß|Θ (β|θ)
=

Γ(ψ)
Γ(θ′ψ)Γ((1−θ′)ψ)β

θ′ψ−1 (1− β)(1−θ′)ψ−1

Γ(ψ)
Γ(θψ)Γ((1−θ)ψ)β

θψ−1 (1− β)(1−θ)ψ−1

=
Γ (θψ) Γ ((1− θ)ψ)

Γ (θ′ψ) Γ ((1− θ′)ψ)

(
β

1− β

)(θ′−θ)ψ
.

If θ′ > θ, then this expression is increasing in β.

• The mean of the beta distribution with parameters θψ and (1− θ)ψ is θψ
θψ+(1−θ)ψ = θ.

�

Lemma A. Assume Barney has the beta-distribution functional form given by equation (3). Fix

rates θA, θB ∈ Θ such that θA ≥ θB, prior p0 = f(θA)
f(θB) ∈ (0,∞) and some 0 < λ < λ̄ < ∞. If

Barney’s posterior ratio after one signal is in (λ, λ̄),

[p0Πψ
S1|Θ×Θ (b|θA, θB) , p0Πψ

S1|Θ×Θ (a|θA, θB)] ⊆ (λ, λ̄),

31



then for any natural number N , we can construct a sequence of N signals, s ∈ SN , such that for

every truncation of s—i.e., for every sequence comprising only the first n ≤ N signals of s—the

posterior ratio after that truncation, Πψ
Θ×Θ|Sn (θA, θB|sn), is in (λ, λ̄).

Proof: We prove this by induction. By hypothesis, the result is true for the truncation n = 1.

Assume that the likelihood ratio after N signals is in (λ, λ̄), and we will show that we can add a

signal, and it will still be in (λ, λ̄). Suppose that there are AN a-signals and N − AN b-signals.

Since

[p0Πψ
S1|Θ×Θ (b|θA, θB) , p0Πψ

S1|Θ×Θ (a|θA, θB)] ⊆ (λ, λ̄)

and Πψ
S1|Θ×Θ (b|θA, θB) ≤ 1 ≤ Πψ

S1|Θ×Θ (a|θA, θB), it follows that p0 ∈ (λ, λ̄).

There are two cases. The first is that Barney’s posterior ratio after the sequence of N signals

is (weakly) less than p0, and so Πψ
SN |Θ×Θ (sN |θA, θB) ≤ 1. In this case add an a-signal. The new

posterior ratio is p0Πψ
SN+1|Θ×Θ (sN ∪ a|θA, θB). Now,

λ̄ ≥ p0Πψ
S1|Θ×Θ (a|θA, θB) ≥ p0Πψ

S1|Θ×Θ (a|θA, θB) Πψ
SN |Θ×Θ (sN |θA, θB)

≥ p0Πψ
SN+1|Θ×Θ (sN ∪ a|θA, θB)

≥ p0Πψ
SN |Θ×Θ (sN |θA, θB) ≥ λ

The first inequality is by hypothesis, the second is due to the fact that Πψ
SN |Θ×Θ (sN |θA, θB) ≤ 1, the

third inequality is due to Lemma β3, the fourth inequality holds since the posterior ratio increases

when an additional signal is an a-signal, and the last inequality is again by hypothesis.

The second case is that the likelihood ratio after N signals is greater than p0, in which case add

a b-signal, and the argument is analogous.

�

Lemma B. Assume Barney has the beta-distribution functional form given by equation (3). Fix

rates θA, θB ∈ Θ such that θA ≥ θB and prior p0 = f(θA)
f(θB) ∈ (0,∞). If p0 ∈ [ 1

Πψ
S1|Θ×Θ

(a|θA,θB)
, 1

Πψ
S1|Θ×Θ

(b|θA,θB)
],

then for any N , there exists a sequence of signals s ∈ SN such that for all truncations of s to its first

i signals, denoted si for i = 0, 1, ..., N , p0Πψ
Si|Θ×Θ (si|θA, θB) ∈ [ 1

Πψ
S1|Θ×Θ

(a|θA,θB)
, 1

Πψ
S1|Θ×Θ

(b|θA,θB)
].

Proof: The lemma is a direct implication of the following claim: If

p0 ∈

 1

Πψ
S1|Θ×Θ (a|θA, θB)

,
1

Πψ
S1|Θ×Θ (b|θA, θB)

 ,
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then for any n, there exists a sequence {si}ni=0, where for all i = 0....n: (i) si ∈ Si, (ii) si is a

subsequence of si+1, and (iii)

p0Πψ
Si+1|Θ×Θ (si ∪ a|θA, θB) ≥ 1

and

p0Πψ
Si+1|Θ×Θ (si ∪ b|θA, θB) ≤ 1.

In words, we can construct a sequence of signals such that Barney’s posterior ratio flips around 1

with each signal. We will prove this claim by induction and then show that it implies the lemma.

Clearly for i = 0 the claim is true, since the prior ratio is in

[
1

Πψ
S1|Θ×Θ

(a|θA,θB)
, 1

Πψ
S1|Θ×Θ

(b|θA,θB)

]
.

Now we will assume the statement is true up to i and prove it is true for i+ 1.

There are two cases. In the first case, assume that after i signals, it is the a-signal that

flips the posterior ratio around 1: p0Πψ
Si|Θ×Θ (si|θA, θB) ≤ 1 and p0Πψ

Si+1|Θ×Θ (si ∪ a|θA, θB) ≥ 1

(since adding an a-signal must increase the posterior ratio). Assume that the claim is not true

for i + 1: that is, there is no set of i + 1 signals for which p0Πψ
Si+2|Θ×Θ (si+1 ∪ a|θA, θB) ≥ 1 and

p0Πψ
Si+2|Θ×Θ (si+1 ∪ b|θA, θB) ≤ 1. In particular, taking the set of n signals plus an a-signal,

p0Πψ
Si+2|Θ×Θ (si ∪ a ∪ a|θA, θB) ≥ 1

and

p0Πψ
Si+2|Θ×Θ (si ∪ a ∪ b|θA, θB) ≥ 1.

Because the claim is true up to n signals, however, we know that an additional b-signal must flip

the posterior ratio below 1,

p0Πψ
Si+1|Θ×Θ (si ∪ b|θA, θB) ≤ 1.

But then we have identified a set of i+ 1 signals for which the statement is true, namely si ∪ b: we

know that si∪b∪b must also generate a posterior ratio below 1 (since adding another b-signal must

decrease the likelihood ratio); and si ∪ b ∪ a generates the same posterior ratio as si ∪ a ∪ b, which

we know is above 1. So we have a contradiction. Therefore, either si ∪ a or si ∪ b must satisfy the

statement. The proof for a b-signal proceeds analogously.

To see that the statement implies the lemma, assume WLOG that p0Πψ
Si|Θ×Θ (si|θA, θB) ≤ 1,

and that p0Πψ
Si+1|Θ×Θ (si ∪ a|θA, θB) ≥ 1. Since

p0Πψ
Si+1|Θ×Θ (si ∪ a|θA, θB) ≤ p0Πψ

Si|Θ×Θ (si|θA, θB) Πψ
S1|Θ×Θ (a|θA, θB)
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(due to Lemma β3), it follows that

1 ≤ p0Πψ
Si|Θ×Θ (si|θA, θB) Πψ

S1|Θ×Θ (a|θA, θB) .

Hence
1

Πψ
S1|Θ×Θ (a|θA, θB)

≤ p0Πψ
Si|Θ×Θ (si|θA, θB) ≤ 1 ≤ 1

Πψ
S1|Θ×Θ (b|θA, θB)

.

The proof for the case that a b-signal flips the posterior ratio below 1 proceeds analogously.

�

Lemma C. Assume Barney has the beta-distribution functional form given by equation (3). Fix

rates θA, θB ∈ Θ such that θA ≥ θB, prior ratio p0 = fΘ(θA)
fΘ(θB) , and the true state i ∈ {A,B} (with

corresponding true rate θi). Denote Barney’s limit likelihood ratio conditional on the true state as

Πψ
S∞|Θ×Θ (s∞|θA, θB,Ω = i). Suppose Barney is retrospective-pooling. For any 0 < λ < λ̄ < ∞

satisfying the following two statements:

1. p0Πψ
S∞|Θ×Θ (s∞|θA, θB,Ω = i) ∈ (λ, λ̄), and

2. [p0Πψ
S1|Θ×Θ (b|θA, θB) , p0Πψ

S1|Θ×Θ (a|θA, θB)] ⊆ (λ, λ̄) or p0 ∈
[

1

Πψ
S1|Θ×Θ

(a|θA,θB)
, 1

Πψ
S1|Θ×Θ

(b|θA,θB)

]
⊆

(λ, λ̄),

then there exists a set of infinite sequences Ŝ∞ that are realized with strictly positive probability,

such that for any truncation si, i ∈ {1, 2, ...}, of any s∞ ∈ Ŝ∞,

Πψ
Θ×Θ|Si (θA, θB|si) ∈ (λ, λ̄).

Proof: The proof proceeds in three steps:

1. Show that the prior ratio is in (λ, λ̄). This is true under either of the assumptions in condition

2 of the lemma.

• Since Πψ
S1|Θ×Θ (b|θA, θB) ≤ 1 and Πψ

S1|Θ×Θ (a|θA, θB) ≥ 1, the assumption

[p0Πψ
S1|Θ×Θ (b|θA, θB) , p0Πψ

S1|Θ×Θ (a|θA, θB)] ⊆ (λ, λ̄)

implies p0 ∈ (λ, λ̄).

• Alternatively, we directly assume that p0 ∈
[

1

Πψ
S1|Θ×Θ

(a|θA,θB)
, 1

Πψ
S1|Θ×Θ

(b|θA,θB)

]
⊆ (λ, λ̄).
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• Note: If θA = θB, then Barney’s posterior equals his prior for any sequence of signals.

Since p0 ∈ (λ, λ̄), the conclusion of the lemma follows trivially. Hence, for the remainder

of the proof, assume θA > θB.

2. Show that for any finite N , we can construct a sequence of signals such that the posterior

ratio is always in (λ, λ̄). There are two ways we can guarantee this:

• If [p0Πψ
S1|Θ×Θ (b|θA, θB) , p0Πψ

S1|Θ×Θ (a|θA, θB)] ⊆ (λ, λ̄), then it is true by Lemma A.

• Alternatively, if we assume p0 ∈
[

1

Πψ
S1|Θ×Θ

(a|θA,θB)
, 1

Πψ
S1|Θ×Θ

(b|θA,θB)

]
⊆ (λ, λ̄), then it is

true by Lemma B.

3. Show that there exists a large enough number of signals N̂ such that if the posterior ratio

after N̂ signals is in (λ, λ̄), then with positive probability the posterior ratio will always be

inside (λ, λ̄). The rest of the proof demonstrates this. The conclusion of the lemma then

follows from combining steps 1-3, taking the sequence in step 2 to have N̂ signals, which

(because it is a finite sequence) has positive probability.

Let g(r) ≡ Πψ
S∞|Θ×Θ (s∞|θA, θB, r) denote Barney’s likelihood ratio in an infinite sample where

the proportion of a-signals is r. This function will allow us to map from an observed proportion

r to the posterior ratio that it would imply for an infinite sample, p0g(r). Even in dealing with

finite samples, it will be useful to work with the g (·) function in describing the mapping from the

proportion of a-signals to Barney’s posterior ratio. In a finite sample, however, p0g(r) will only

approximate Barney’s posterior ratio, but we can bound the approximation error in a large enough

sample; formally, using the Law of Large Numbers, for any r, ε > 0, and ν > 0, there exists an

Nr,ε,ν such that if N ≥ Nr,ε,ν , then with probability at least 1−ν, the posterior ratio after observing

a proportion r a-signals out of N is within ε of p0g(r). Since all we will need for step 3 is that the

posterior ratio remains within (λ, λ̄) with positive probability, the ν we pick does not matter. So

fix ν.

Since p0g(r) is only an approximation of Barney’s posterior ratio for a finite sample, we need to

impose tighter bounds than (λ, λ̄) on where p0g(r) can wander in a finite sample in order to ensure

that Barney’s posterior ratio always remains within (λ, λ̄). To that end, fixing ε, we will now pick

two other numbers, τ < τ̄ , such that:

• τ > λ+ ε, and τ̄ < λ̄− ε;

• the limit posterior ratio conditional on the true state, p0Πψ
S∞|Θ×Θ (s∞|θA, θB,Ω = i), is in

(τ , τ̄); and
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• g−1(τ) and g−1(τ̄) are both rational.

Note that τ and τ̄ satisfying the above properties exist because g is continuous and monotonic in

r.

We now map these bounds on the posterior ratio onto the implied bounds on the proportion of

a-signals. Let r denote the proportion of a-signals such that p0g(r) = τ ; and r, the proportion of

a-signals such that p0g(r) = τ̄ . By assumption both r and r are rational. Denote the proportion

of realized a-signals after N signals by rN .

We claim that for any particular r and r such that the true rate θi ∈ (r, r), there is a large

enough number of signals Ñ such that if there have already been Ñ observed with a proportion

a-signals r
Ñ
∈ (r, r), then with positive probability, rn ∈ (r, r) for all numbers of signals n ≥ Ñ .

This is because by Chebyshev’s inequality, for any N and any δ > 0, P (|rN −θi| < δ) ≥ 1− θi(1−θi)
N2δ2 .

Thus, the probability that the proportion of a-signals always stays within the bounds r, r is

P
(
|rn − θi| < δ ∀n ≥ Ñ s.t.

∣∣r
Ñ
− θi

∣∣ < δ
)
≥ Π∞

n=Ñ

(
1− θi(1− θi)

n2δ2

)
.

Note that for any x > 0 and y < 1, it is true that y(1 − x) > y − x, and so we can bound the

right-hand side of the previous equation by iteratively applying this inequality:

Π∞
n=Ñ

(
1− θi(1− θi)

n2δ2

)
> 1−

∞∑
n=Ñ

θi(1− θi)
n2δ2

.

Hence there is positive probability that the proportion of a-signals always stays within (r, r). While

not relevant for this proof, we point out for reference in proofs below that this infinite series is a

known convergent sum; so as Ñ →∞, the right-hand side converges to 1.

Therefore, for any ε, we can choose a large enough number of signals, N̂ = max{Ñ ,Nr,ε,ν , Nr,ε,ν},

so that if the proportion of a-signals after N̂ signals is within (r, r), then with positive probability

the proportion always remains within (r, r). Therefore, with positive probability p0g(r) always

remains within (τ , τ̄). Since N̂ ≥ Nr,ε,ν and N̂ ≥ Nr,ε,ν , whenever p0g(r) is within (τ , τ̄), Barney’s

posterior ratio is within (λ, λ̄).

�

Lemma A1. Barney-Freddy does not believe in LLN: For any θ ∈ Θ and interval [α1, α2] ⊆ [0, 1],

lim
N→∞

da2Ne∑
x=ba1Nc

fψMSN |Θ (As = x|θ) = Fψß|Θ (β = α2|θ)− Fψß|Θ (β = α1|θ) > 0.
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Proof: First, we claim that conditional on a particular subjective-rate β, the agent believes that

the distribution of percentage of a-signals converges to a point mass on β. To see this, fix β, and

suppose Barney-Freddy has observed N signals. We begin with the case where N is an even number

(i.e., the agent has observed N
2 pairs of signals, where recall that the “urn” is renewed after each

pair of signals). Considering each pair of signals as a single signal that has 4 possible values and a

mean value of 2β, LLN implies that Barney-Freddy believes that the distribution of percentage of

a-signals converges to a point mass on β. This proves the claim for the case where N is an even

number. Now, notice that for any [α1, α2] ⊆ [0, 1] and ε > 0, we can find a large enough N̂ such

that for all N ≥ N̂ , if
AsN
N ∈ (α1, α2), then

AsN
N+1 ∈ (α1 − ε, α2 + ε) and

AsN+1

N+1 ∈ (α1 − ε, α2 + ε).

This observation, combined with the claim for even number N , proves the claim for odd number

N .

The remainder of the proof is identical to the proof of Lemma 1 below.

�

0.7 Main Text Results

Lemma 1. Assume A1-A4. Barney does not believe in LLN: for any θ ∈ Θ and interval

[α1, α2] ⊆ [0, 1],

lim
N→∞

dα2Ne∑
x=bα1Nc

fψSN |Θ (As = x|θ) = Fψß|Θ (β = α2|θ)− Fψß|Θ (β = α1|θ) > 0.

Proof: We begin by proving a key fact. Consider some rational α ∈ [0, 1] (which will represent

the percentage of a-signals) and an increasing sequence of integers m1,m2, ... (which will represent

sample sizes) such that αmj (which will represent numbers of a-signals) is an integer for all j =

1, 2, .... Using the definition of Barneyness,

lim
j→∞

FψSmj |Θ
(αmj |θ) = lim

j→∞

∫ 1

0
FSmj |ß (αmj |β) fψß|Θ (β|θ) dβ

=

∫ 1

0
lim
j→∞

FSmj |ß (αmj |β) fψß|Θ (β|θ) dβ

=

∫ α

0
lim
j→∞

FSmj |ß (αmj |β) fψß|Θ (β|θ) dβ +

∫ 1

α
lim
j→∞

FSmj |ß (αmj |β) fψß|Θ (β|θ) dβ

=

∫ α

0
(1) fψß|Θ (β|θ) dβ +

∫ 1

α
(0) fψß|Θ (β|θ) dβ

= Fψß|Θ (β = α|θ) ,
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where the second equality follows from the absolute continuity of Fψß|Θ (β|θ), and the fourth follows

from the Law of Large Numbers.

Now, by the above fact and the definition of the cdf, for any [a1, a2] ⊆ [0, 1] with a1, a2 rational,

lim
N→∞

da2Ne∑
x=ba1Nc

fψSN |Θ (As = x|θ) = lim
N→∞

(FψSN |Θ (da2Ne|θ)− FψSN |Θ (ba1Nc|θ))

= Fψß|Θ (β = a2|θ)− Fψß|Θ (β = a1|θ) .

Consider a sequence of pairs of rational numbers,
(
a

(1)
1 , a

(1)
2

)
,
(
a

(2)
1 , a

(2)
2

)
, ... that converges to the

pair of real numbers (α1, α2). Taking the limit of the above equality along this sequence gives

lim
N→∞

dα2Ne∑
x=bα1Nc

fψSN |Θ (As = x|θ) = Fψß|Θ (β = α2|θ)− Fψß|Θ (β = α1|θ) .

This is greater than 0 by the full-support assumption in A1.

�

Proposition 1. Assume A1-A4. For any θ ∈ Θ and N ∈ {1, 2, ...}:

1. EψSN |Θ
(
As
N |θ

)
= ESN |Θ

(
As
N |θ

)
= θ.

2. FSN |Θ (As|θ) second-order stochastically dominates (SOSD) FψSN |Θ (As|θ), and V arψSN |Θ
(
As
N |θ

)
≥

V arSN |Θ
(
As
N |θ

)
with strict inequality for N > 1.

3. V arψSN |Θ
(
As
N |θ

)
is strictly decreasing in N .

4. FψSN |Θ (As|θ′) first-order stochastically dominates (FOSD) FψSN |Θ (As|θ) whenever θ′ > θ.

Proof:

1. Since As is a binomial random variable with rate θ, ESN |Θ
(
As
N |θ

)
= θ. Using the Law of

Iterated Expectations, EψSN |Θ
(
As
N |θ

)
= Eψß|Θ

[
ESN |ß

(
As
N |β

)
|θ
]

= Eψß|Θ [β|θ] = θ, where the

last equality follows from A4.

2. To keep notation compact, let T denote a random variable whose distribution is binomial

distribution with rate θ. Let Y denote the random variable whose distribution is FψSN |Θ (As|θ),

i.e., the random variable induced by taking a binomial draw using rate β and then integrating
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over all possible β’s using fψß|Θ (β|θ). We will show that Y is a mean preserving spread of the

binomial distribution with rate θ, which implies second-order stochastic dominance.

For Y to be a mean preserving spread of T , it must be the case the Y = T +Z, where Z is a

random variable with conditional mean E [Z|T ] = 0. We will construct Z.

Recall that for any random variable V , its moment generating function MV (t) ≡ E
[
etV
]

(when it exists) completely characterizes the distribution of V and has the following useful

properties: E [V ] = d
dtMV (t)

∣∣
t=0

; for random variables V, V ′ and V ′′, V = V ′+V ′′ if and only

if MV (t) = MV ′(t)MV ′′(t); and for random variables V and V ′, MV (t) = E
[
MV |V ′(t)|V ′

]
.

Since the random variable Y |β has a binomial distribution with parameter β, its moment

generating function is MY |β(t) = 1− β + βet. Therefore,

MY (t) = E
[
MY |β(t)|β

]
=

∫ 1

0
(1− β + βet)fψß|Θ (β|θ) dβ,

which clearly exists since MY |β(t) exists for each β ∈ [0, 1]. If there is some Z, then we know

it must have moment generating function

MZ(t) =
MY (t)

MT (t)
=

∫ 1
0 (1− β + βet)fψß|Θ (β|θ) dβ

1− θ + θet
.

(With this moment generating function, the random variable T + Z will have the same

distribution as Y .) Hence, we will have proved that FψSN |Θ (As|θ) SOSD FSN |Θ (As|θ) once

we verify that E [Z|T ] = 0. By construction, the random variable Z is independent of T

(since Z’s moment generating function, and hence its distribution, does not depend on the

realization of T ). Therefore, E [Z|T ] = E [Z]. Finally,

E [Z] =
d

dt
MZ(t)

∣∣∣∣
t=0

=
(1− θ + θet)

∫ 1
0 (βet)fψß|Θ (β|θ) dβ − θet

∫ 1
0 (1− β + βet)fψß|Θ (β|θ) dβ

(1− θ + θet)2

∣∣∣∣∣∣
t=0

=

∫ 1
0 βf

ψ
ß|Θ (β|θ) dβ − θ

∫ 1
0 f

ψ
ß|Θ (β|θ) dβ

(1− θ + θ)2
= θ − θ = 0.

This proves the first claim.
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Using the Law of Total Variance,

V arψSN |Θ

(
As
N
|θ
)

= Eψß|Θ

[
V arSN |ß

(
As
N
|β
)
|θ
]

+ V arψß|Θ

[
ESN |ß

(
As
N
|β
)
|θ
]

= Eψß|Θ

[
β (1− β)

N
|θ
]

+ V arψß|Θ [β|θ]

=
θ

N
−
V arψß|Θ [β|θ] + θ2

N
+ V arψß|Θ [β|θ]

=
θ (1− θ)

N
+
N − 1

N
V arψß|Θ [β|θ] ,

where the third equality uses Eψß|Θ
(
β2|θ

)
= V arψß|Θ [β|θ]+

[
Eψß|Θ (β|θ)

]2
. Since V arSN |Θ

(
As
N |θ

)
=

θ(1−θ)
N , the result immediately follows.

3. From part 2,

V arψSN |Θ

(
As
N
|θ
)

=
θ (1− θ)

N
+
N − 1

N
V arψß|Θ [β|θ] .

Note that the highest variance of any distribution that has support on [0, 1] and a mean of θ

can have is θ(1− θ); this is the variance of a distribution with mass (1− θ) on 0 and mass θ

on 1. Any shifting of weight that preserves the mean must move positive mass closer to the

mean. Since fψß|Θ has full support (by A1) and mean θ (by A4), V arψß|Θ [β|θ] < θ (1− θ). The

result immediately follows.

4.

FψSN |Θ (As|θ) =

As∑
i=0

∫ 1

0

N !

(N − i)!i!
βi(1− β)N−ifψß|Θ (β|θ) dβ

=

∫ 1

0

[
As∑
i=0

N !

(N − i)!i!
βi(1− β)N−i

]
fψß|Θ (β|θ) dβ

=

∫ 1

0
FSN |ß (As|β) fψß|Θ (β|θ) dβ,

where FSN |ß (As|β) is the cdf of the binomial distribution conditional on a rate β. By

A3, Fψß|Θ (β|θ′) FOSD Fψß|Θ (β|θ) whenever θ′ > θ, and therefore
∫ 1

0 g (β) fψß|Θ (β|θ′) dβ >∫ 1
0 g (β) fψß|Θ (β|θ) dβ for any function g (β) that is decreasing in β. Since FSN |ß (AS |β) is

decreasing in β, the result follows.

�

Proposition 2. Assume A1-A4 . Let θ ∈ Θ be the true rate. Then for any θA, θB ∈ Θ and prior

fΘ (θA) , fΘ (θB) ∈ (0, 1) Barney draws limited inference even from an infinite sample: as N →∞,
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Barney’s posterior ratio converges almost surely (with respect to the true probability distribution

over events) to a positive, finite number:

fψΘ|SN (θA|s)

fψΘ|SN (θB|s)
→a.s.

fψß|Θ (β = θ|θA)

fψß|Θ (β = θ|θB)

f (θA)

f (θB)
. (5)

Proof: Using the Law of Large Numbers, and the true probability distribution over realizations

of infinite samples (i.e., events):

lim
N→∞

fψΘ|SN (θA|s)

fψΘ|SN (θB|s)
=

 lim
N→∞

fψSN |Θ (s|θA)

fψSN |Θ (s|θB)

 f (θA)

f (θB)
=
fψß|Θ (β = θ|θA)

fψß|Θ (β = θ|θB)

f (θA)

f (θB)
a.s.

�

Proposition 3. Assume A1-A4. Fix rates θA, θB ∈ Θ such that θA > θB and any prior fΘ (θA) =

1− fΘ (θB) ∈ (0, 1). Before having observed any data, Tommy believes: if the rate is θA, then his

limit posterior probability that the rate is θA is 1. In contrast, before having observed any data,

Barney believes: if the rate is θA, then his limit posterior probability that the rate is θA is a random

variable that has positive density on a nondegenerate interval in [0, 1]. If we strengthen assumption

A1 to A1 ′, then, in addition, the interval is closed and is a strict subset of [0, 1].

Proof: The proof for Tommy is entirely standard and follows directly from the Law of Large

Numbers. For Barney, recall that Lemma 1 implies that Barney’s subjective sampling distribution

for an infinite sample is limN→∞ f
ψ
SN |Θ

(
As
N = α|θ

)
= fψß|Θ (β = α|θ) a.s. Therefore, after observing

proportion α of a-signals in a large sample, Barney anticipates having posterior ratio arbitrarily

close to limN→∞
fψ
Θ|SN

(θA|AsN =α)

fψ
Θ|SN

(θB |AsN =α)
=

fψ
ß|Θ(β=α|θA)f(θA)

fψ
ß|Θ(β=α|θB)f(θB)

. Barney believes that this large-sample pos-

terior ratio is a random variable because, according to A1, Barney’s beliefs put full support on

α ∈ (0, 1).

By A3 and Whitt (1979),
fψ
ß|Θ(β=α|θA)f(θA)

fψ
ß|Θ(β=α|θB)f(θB)

is strictly increasing in α. It follows that

inf
α∈(0,1)

fψß|Θ (β = α|θA) f (θA)

fψß|Θ (β = α|θB) f (θB)
= lim

α→0

fψß|Θ (β = α|θA) f (θA)

fψß|Θ (β = α|θB) f (θB)
< 1

and

sup
α∈(0,1)

fψß|Θ (β = α|θA) f (θA)

fψß|Θ (β = α|θB) f (θB)
= lim

α→1

fψß|Θ (β = α|θA) f (θA)

fψß|Θ (β = α|θB) f (θB)
> 1.
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Furthermore, by the Intermediate Value Theorem, the posterior ratio must take on each value in inf
α∈(0,1)

fψß|Θ (β = α|θA) f (θA)

fψß|Θ (β = α|θB) f (θB)
, sup
α∈(0,1)

fψß|Θ (β = α|θA) f (θA)

fψß|Θ (β = α|θB) f (θB)


for some α ∈ (0, 1). It follows that, as α ranges from 0 from 1, the limit posterior probability that

the rate is θA takes values in a nondegenerate interval in [0, 1]. By A1, Barney assigns positive

density to each possible realization of α ∈ (0, 1), and so all possible posteriors in that interval have

a positive density of being realized. Under A1′,

lim
N→∞

fψΘ|SN

(
θA|AsN = 0

)
fψΘ|SN

(
θB|AsN = 0

) =
fψß|Θ (β = 0|θA) f (θA)

fψß|Θ (β = 0|θB) f (θB)

and

lim
N→∞

fψΘ|SN

(
θA|AsN = 1

)
fψΘ|SN

(
θB|AsN = 1

) =
fψß|Θ (β = 1|θA) f (θA)

fψß|Θ (β = 1|θB) f (θB)

are simply real numbers strictly greater than 0 and less than 1. The result follows.

�

Proposition 4. Assume A1-A4. Fix rates θA, θB ∈ Θ such that θA > θB and prior fΘ (θA) =

1 − fΘ (θB) ∈ (0, 1). For N = 1, Barney and Tommy infer the same. If θA = 1 − θB, then for

any set of N ∈ {1, 2, ...} signal realizations s ∈ SN , neither Tommy’s beliefs nor Barney’s beliefs

change from the priors when As
N = 1

2 .

Proof: The first claim can be seen from the fact that for a single sample, the subjective sampling

distribution of Tommy matches that of Barney.

To see that the second claim is true, suppose that Barney observes exactly half a and b signals,

k of each signal (so that N − k = k). Barney’s likelihood ratio is

∫ 1
0

N !
k!k!β

k(1− β)kfψß|Θ(β|θA)dβ∫ 1
0

N !
k!k!β

k(1− β)kfψß|Θ(β|θB)dβ
=

∫ 1
0

N !
k!k!β

k(1− β)kfψß|Θ(β|θA)dβ∫ 1
0

N !
k!k!β

k(1− β)kfψß|Θ(β|1− θA)dβ

=

∫ 1
0

N !
k!k!β

k(1− β)kfψß|Θ(β|θA)dβ∫ 1
0

N !
k!k!β

k(1− β)kfψß|Θ(1− β|θA)dβ

=

∫ 1
0

N !
k!k!β

k(1− β)kfψß|Θ(β|θA)dβ∫ 1
0

N !
k!k!(1− β)kβkfψß|Θ(β|θA)dβ

= 1,
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where the first equality comes from substituting θB = 1− θA, and the second equality follows from

A2. This directly implies that Barney’s likehood ratio is equal to 1 if and only if Tommy’s is, since

the likelihood ratio is strictly increasing in the number of a-signals for both Barney and Tommy if

θA >
1
2 , and equal to 1 for any sample for both Barney and Tommy if θA = 1

2 .

�

Proposition 5. Assume Barney has the beta-distribution functional form given by equation (3).

Fix rates θA, θB ∈ Θ such that θA > θB, prior fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1) and a set of

N ∈ {1, 2, ...} signal realizations s ∈ SN . Regardless of whether the true rate is θA or θB, for

ψ sufficiently small, the expected change in Barney’s beliefs is smaller than the expected change

in Tommy’s beliefs. Furthermore, suppose θA = 1 − θB. Then for any sample of N > 1 signals

such that As
N 6=

1
2 and any ψ, Barney under-infers relative to Tommy. In addition, while Tommy’s

inference depends solely on the difference in the number of a and b signals, Barney’s change in

beliefs is smaller from larger samples with the same difference.

Proof: We will prove the first claim in two steps. First, we shall show that a sufficient condition

is that Tommy’s subjective sampling distribution is Blackwell-sufficient for Barney’s. Second, we

will show that this sufficient condition in fact holds for ψ sufficiently small.

First, suppose FSN |Θ (As|θi) is Blackwell-sufficient for FψSN |Θ (As|θi) for i ∈ {A,B}. Using

Blackwell (1951, 1953), note that FSN |Θ (As|θi) is Blackwell-sufficient for FψSN |Θ (As|θi) if and only

if for any continuous, convex function g,

N∑
k=0

fSN |Θ (As = k|θi) g
(
fSN |Θ (As = k|θi)
fSN |Θ (As = k|θ−i)

)

≥
N∑
k=0

fψSN |Θ (As = k|θi) g

 fψSN |Θ (As = k|θi)

fψSN |Θ (As = k|θ−i)


for i ∈ {A,B} and −i being the other state. Taking g (x) = |p0 − p0x|, this implies

N∑
k=0

fSN |Θ (As = k|θi)
∣∣∣∣p0 − p0

fSN |Θ (As = k|θi)
fSN |Θ (As = k|θ−i)

∣∣∣∣
≥

N∑
k=0

fψSN |Θ (As = k|θi)

∣∣∣∣∣∣p0 − p0

fψSN |Θ (As = k|θi)

fψSN |Θ (As = k|θ−i)

∣∣∣∣∣∣
for i ∈ {A,B}.
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From Proposition 1, we know that fψSN |Θ (As|θi) is a mean-preserving spread of fSN |Θ (As|θi).

Since g (x) = |p0 − p0x| is a continuous convex function, it follows that

N∑
k=0

fψSN |Θ (As = k|θi)

∣∣∣∣∣∣p0 − p0

fψSN |Θ (As = k|θi)

fψSN |Θ (As = k|θ−i)

∣∣∣∣∣∣
≥

N∑
k=0

fSN |Θ (As = k|θi)

∣∣∣∣∣∣p0 − p0

fψSN |Θ (As = k|θi)

fψSN |Θ (As = k|θ−i)

∣∣∣∣∣∣
for i ∈ {A,B}. Chaining the two inequalities,

N∑
k=0

fSN |Θ (As = k|θi)
∣∣∣∣p0 − p0

fSN |Θ (As = k|θi)
fSN |Θ (As = k|θ−i)

∣∣∣∣
≥

N∑
k=0

fSN |Θ (As = k|θi)

∣∣∣∣∣∣p0 − p0

fψSN |Θ (As = k|θi)

fψSN |Θ (As = k|θ−i)

∣∣∣∣∣∣ .

Aggregating over states weighted by the priors,

f (θA)

(
N∑
k=0

fSN |Θ (As = k|θA)

∣∣∣∣p0 − p0

fSN |Θ (As = k|θA)

fSN |Θ (As = k|θB)

∣∣∣∣
)

+f (θB)

(
N∑
k=0

fSN |Θ (As = k|θB)

∣∣∣∣p0 − p0

fSN |Θ (As = k|θB)

fSN |Θ (As = k|θA)

∣∣∣∣
)

≥ f (θA)

 N∑
k=0

fSN |Θ (As = k|θA)

∣∣∣∣∣∣p0 − p0

fψSN |Θ (As = k|θA)

fψSN |Θ (As = k|θB)

∣∣∣∣∣∣


+f (θB)

 N∑
k=0

fSN |Θ (As = k|θB)

∣∣∣∣∣∣p0 − p0

fψSN |Θ (As = k|θB)

fψSN |Θ (As = k|θA)

∣∣∣∣∣∣
 .

This is what we were seeking to prove.

Now we will show that for i ∈ {A,B} and N > 1, FSN |Θ (As|θi) is Blackwell-sufficient for

FψSN |Θ (As|θi) if ψ is sufficiently small. Since Barney’s subjective sampling distribution is the same

as Tommy’s for N = 1, FS1|Θ (As|θi) is Blackwell-equivalent to FψS1|Θ (As|θi) (regardless of the value

of ψ). Note that as ψ → 0, Barney’s subjective sampling distribution converges to point masses

at 0 and 1. Hence in the limit ψ → 0, for any N , Barney expects to observe all a’s or all b’s;

therefore, in the limit ψ → 0, FψSN |Θ (As|θi) is Blackwell-equivalent to FψS1|Θ (As|θi). In contrast,

for Tommy, FSN |Θ (As|θi) for N > 1 is strictly Blackwell-sufficient for FS1|Θ (As|θi) (e.g., Shaked

and Tong, 1990). Therefore, for any N > 1, in the limit ψ → 0, FSN |Θ (As|θi) is Blackwell-sufficient

44



for FψSN |Θ (As|θi). Using the necessary and sufficient inequality for Blackwell-sufficiency: for any

N > 1 and any continuous, convex function g, in the limit ψ → 0,

N∑
k=0

fSN |Θ (As = k|θi) g
(
fSN |Θ (As = k|θi)
fSN |Θ (As = k|θ−i)

)

>

N∑
k=0

fψSN |Θ (As = k|θi) g

 fψSN |Θ (As = k|θi)

fψSN |Θ (As = k|θ−i)

 .

Note that the right-hand side of this inequality is continuous in ψ. Therefore, the strict inequality

holds for any sufficiently small ψ > 0, and so FSN |Θ (As|θi) is Blackwell-sufficient for FψSN |Θ (As|θi)

for any sufficiently small ψ > 0.

To see that the second claim in the proposition is true, consider some sample of size N , with As

realizations of heads, and assume that θA >
1
2 and As > N −As. (The other cases have analogous

proofs.) Tommy’s likelihood ratio is

N !
θA!(N−θA)!θ

As
A (1− θA)N−As

N !
θA!(N−θA)!θ

N−As
A (1− θA)As

=

(
θA

1− θA

)2As−N
,

which has 2As −N terms multiplied together. Barney’s likelihood ratio is

Γ (θAψ +As)

Γ ((1− θA)ψ +As)

Γ ((1− θA)ψ +N −As)
Γ (θAψ +N −As)

=
(θAψ +As − 1)...(θAψ +N −As)

((1− θA)ψ +As − 1)...((1− θA)ψ +N −As)
.

This also has 2As −N terms. Since by assumption θAψ
(1−θA)ψ = θA

1−θA > 1, then for any k > 0,

θA
1− θA

=
θAψ

(1− θA)ψ
>

θAψ + k

(1− θA)ψ + k
> 1,

which implies that

(
θA

1− θA

)2As−N
>

(θAψ +As − 1)...(θAψ +N −As)
((1− θA)ψ +As − 1)...((1− θA)ψ +N −As)

> 1.

Hence Barney under-infers relative to Tommy.

Finally, consider two samples, one of size N with As a-signals, and the other of size N ′ > N

with A′s a-signals. Suppose both samples have the same difference, d, between the number of a

and b signals: d = As − (N − As) = 2As −N and d = 2A′s −N ′. Since Tommy’s likelihood ratio

is
(

θA
1−θA

)d
, it is the same for both samples. To consider Barney’s inference, assume that θA > 1

2

and d > 0. (The other cases have analogous proofs.) Barney’s likelihood ratio, stated above, has d

45



terms for both samples. Since by assumption θAψ
(1−θA)ψ = θA

1−θA > 1, then for any k′ > k > 0,

θAψ + k

(1− θA)ψ + k
>

θAψ + k′

(1− θA)ψ + k′
> 1.

Note that A′s > As. It follows that each term in Barney’s likelihood ratio for the sample of size N

is larger than the corresponding term in Barney’s likelihood ratio for the sample of size N ′ (e.g.,

for the first term, θAψ+As−1
(1−θA)ψ+As−1 >

θAψ+A′s−1
(1−θA)ψ+A′s−1). Hence while Barney infers in favor of state A in

both cases (like Tommy does), Barney’s change in beliefs is smaller from the larger sample.

�

Proposition 6. Assume A1-A4. Fix payoffs u(µ, ω), rates θA, θB ∈ Θ such that θA > θB, prior

fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1), and the cost of asking a friend cf > 0. Suppose that knowing the

state is valuable: u(µA, A) > u(µB, A) and u(µA, B) < u(µB, B). Furthermore, suppose that cf

is small enough that if Consumer Reports were not available, Tommy would ask the friend. If the

number of signals N in Consumer Reports is sufficiently large, then there exist thresholds c′r and

c′′r with cf < c′r < c′′r such that: if cr < c′r, then both Tommy and Barney buy Consumer Reports;

if cr > c′′r , then both Tommy and Barney ask the friend; and if cr ∈ (c′r, c
′′
r), then Tommy buys

Consumer Reports while Barney asks the friend.

Proof: First, the fact that in the absence of Consumer Reports, Tommy will ask a friend imme-

diately implies the same about Barney, since they infer the same from a single signal.

We will prove the proposition in two steps. First we will show that both Tommy and Barney

follow a threshold rule, purchasing Consumer Reports if and only if cr is less than some threshold.

Then we will show that Barney’s threshold c′r is less than Tommy’s threshold c′′r .

Let q denote an arbitrary posterior ratio. Denote the set of possible q’s that could occur after

asking a friend as Q1 (the same for Tommy and Barney), Tommy’s set of possible q’s after reading

Consumer Reports as QN , and Barney’s set of possible q’s after reading Consumer Reports as

QψN . Denote the expected value of taking the decision after asking a friend—which is the same

for Tommy and Barney—as V (1) = Es[maxµEq[u(µ, ω)|q ∈ Q1]|s ∈ S1]. (Note that this does not

include the cost of asking a friend.) Denote the subjective expected value of taking the decision,

after reading Consumer Reports, as V (N) = Es[maxµEq[u(µ, ω)|q ∈ QN ]|s ∈ SN ] for Tommy and

as V ψ(N) = Eψs [maxµEq[u(µ, ω)|q ∈ QψN ]|s ∈ SN ] for Barney. Denote the value of knowing the

state for sure, i.e., having full information, as V (fi). Since the agents would like to condition their

actions, V (1) < V (fi).

For all N ′ > N ≥ 1, a sample size of N ′ is strictly Blackwell-more-informative than a sample

size of N . Therefore, for each of Tommy and Barney, the subjectively-anticipated distribution
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of posteriors after N ′ signals is a strict mean-preserving spread of the subjectively-anticipated

distribution of posteriors after N signals. Because each of the two actions is better in one of the

two states, V (N ′) > V (N) and V ψ(N ′) > V ψ(N); that is, V (N) and V ψ(N) are both strictly

increasing in N .

Since for any N > 1, V (N) > V (1) and V ψ(N) > V (1), both Tommy and Barney follow a

threshold rule.

Denote the agents’ value of an infinite number of signals as V (∞) = limN→∞ V (N) and

V ψ(∞) = limN→∞ V
ψ(N). Since Tommy expects to learn the state almost surely after an in-

finite number of signals, V (∞) = V (fi). Since Barney believes his posterior will place positive

weight on both states even in an infinite sample, and since Barney would like to condition his ac-

tion on the state, V ψ(∞) < V (fi). Therefore, there exists N ′ sufficiently large that for all N > N ′,

V (N) > V ψ(N). In that case, Barney’s threshold c′r is less than Tommy’s threshold c′′r .

�

Proposition 7. Assume A1 ′ and A2-A4. Suppose that the agent is deciding whether to buy

Consumer Reports at cost cr or not obtain any signals. Furthermore, fix payoffs u(µ, ω) so that

knowing the state is valuable: u(µA, A) > u(µB, A) and u(µA, B) < u(µB, B). For Tommy: for

all rates θA, θB ∈ Θ such that θA > θB and priors fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1), there exists

a threshold c∗r > 0 such that if cr < c∗r, then as long as the number of signals N in Consumer

Reports is sufficiently large, he buys Consumer Reports. In contrast, for Barney: (i) for all rates

θA, θB ∈ Θ such that θA > θB, there exist priors fΘ (θA) such that for any cr > 0 and any N ,

he does not buy Consumer Reports; and (ii) for all priors fΘ (θA) at which he is not indifferent

between µA and µB, there exist rates θA, θB ∈ Θ, where θA > θB, such that for any cr > 0 and

any N , he does not buy Consumer Reports.

Proof: As in the previous proof, denote the subjective expected value of taking the decision, after

observing N signals as V (N) for Tommy and as V ψ(N) for Barney. Denote the subjective expected

value of taking the decision without observing any signals as V (∅). Denote the value of knowing

the state for sure, i.e., having full information, as V (fi).

By construction V (fi) > V (∅). Denote V (fi)−V (∅) = c∗r . Tommy believes that as the number

of signals goes to ∞, his posterior converges almost surely to placing a weight of 1 on the true

state. Hence V (N) converges to V (fi). Therefore, the proposition holds for Tommy.

Now, note that for both Barney and Tommy, there exists a threshold posterior ratio,

τ =

u(µA,B)−u(µB ,B)
u(µB ,A)+u(µA,B)−u(µB ,B)−u(µA,A)

1− u(µA,B)−u(µB ,B)
u(µB ,A)+u(µA,B)−u(µB ,B)−u(µA,A)

,
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such that if the posterior ratio is less than τ , the agent takes action µB; if the posterior ratio is

greater than τ the agent takes action µA; and if the posterior ratio is equal to τ , the agent is

indifferent between either action. Let p0 = fΘ(θA)
1−fΘ(θA) be the prior ratio. Also note that (due to

A1′) Barney believes that there exist 0 < L < L < ∞ such that as N goes to ∞, his likelihood

ratio will converge to a random variable L∞ that has support over a bounded interval that is a

subset of [L,L]. This means that his subjective posterior will converge to p0L∞ that has support

on [p0L, p0L].

To prove (i), notice that we can always find a value f∗ large enough such that for all fΘ (θA) >

f∗, p0L > τ . This means that regardless of how many signals Barney observes, the value of the

information contained in those signals is 0 (because Barney will take action µA no matter what).

In this case, Barney will not purchase Consumer Reports for any positive price, regardless of the

number of signals.

Next we prove (ii). Without loss of generality assume p0 > τ . Because the subjective-rate

distribution is point-wise continuous in θ, for any 0 < ε < 1, we can find θA(ε) and θB(ε) close

enough together such that ε <
fψ
ß|Θ(β=0|θA)

fψ
ß|Θ(β=0|θB)

< 1. Recall that
fψ
ß|Θ(β=0|θA)

fψ
ß|Θ(β=0|θB)

= L, the minimum possible

limit likelihood ratio for Barney. Therefore, ε < L < 1. Furthermore, there exists an ε∗ close

enough to 1 such that for all ε∗ < ε < 1, p0ε > τ . Therefore, for all ε∗ < ε < 1, for rates θA(ε) and

θB(ε), p0L > τ . As above, this implies that Barney will not purchase Consumer Reports for any

positive price, regardless of the number of signals.

�

Proposition 8. Assume A1-A4. Fix a risky gamble (θ,N). If u (w (AS)) is a concave (resp.,

convex) function of AS, then Barney’s willingness-to-pay for the risky investment is less than

(resp., greater than) Tommy’s.

Proof. By Proposition 1, Barney’s beliefs about the distribution of AS is a mean-preserving

spread of Tommy’s. We next define the continuous function û : R+ → R:

û (x) =

 u (w (x)) if x ∈ {0, 1, 2, ...}

u (w (bxc)) + (x− bxc) [u (w (dxe))− u (w (bxc))] otherwise.

(This function is simply u (w (x)) when x is an integer and the linear interpolation of u (w (x))

when x is not an integer.) If u (w (AS)) is a concave (resp., convex) function of AS—that is, if

u (w(AS − 1)) + u (w(AS + 1)) − 2u (w(AS)) ≥ 0 (resp., ≤) for all AS—then û (x) is a concave

(resp., convex) function of x. The result immediately follows from standard results from the theory

of choice under risk. �
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Proposition 9. Assume A1-A4. Suppose Barney and Tommy have simple, piecewise-linear loss-

averse preferences as specified in (4). Fix any gamble (θ, h, t), paying off h > 0 with probability θ

and −t with probability 1− θ, that is better than fair: θh > (1− θ) t. For any λ ≥ 1, there is some

N ′ ≥ 1 such that if N > N ′, then Tommy will accept N repetitions of the gamble. In contrast, for

Barney there is some threshold level of loss aversion λ̂ > 1 such that: if λ < λ̂, then there is some

N ′ sufficiently large such that Barney will accept N repetitions of the gamble for all N > N ′; and

if λ ≥ λ̂, then there is some N ′′ sufficiently large such that Barney will reject N repetitions of the

gamble for all N > N ′′.

Proof: WLOG let the reference point be w0, and fix λ ≥ 1. Denoting G (z) as the distribution of

monetary outcomes z, the expected utility of any lottery is:∫ ∞
0

(w0 + z) dG (z) +

∫ 0

−∞
(w0 + λz) dG (z)

= w0 +

∫ ∞
0

zdG (z) + λ

∫ 0

−∞
zdG (z) .

Clearly, this is better than the option of refusing the lottery if and only if

∫ ∞
0

zdG (z) > −λ
∫ 0

−∞
zdG (z)⇔

∫∞
0 zdG (z)

−
∫ 0
−∞ zdG (z)

< λ.

The monetary outcome of an N -times repeated gamble is z = Ash− (N −As)t = −Nt+As(h+

t) = N(−t + As
N (h+ t)). Hence the agent earns a positive payoff from the gamble if and only if

As ≥
⌈

t
h+tN

⌉
. Substituting in, we find that for Tommy,

∫∞
0 zdG (z)

−
∫ 0
−∞ zdG (z)

=

N∑
As=d t

h+t
Ne

(−t+ As
N (h+ t))fSN |Θ (As|θ)

−
d t
h+t

Ne−1∑
As=0

(−t+ As
N (h+ t))fSN |Θ (As|θ)

,

where θ is the known rate of the good outcome (and the N ’s in the numerator and denominator

cancel out).

Since the bet is better-than-fair, the probability of losing money goes to 0 as N →∞. Therefore,

as N → ∞, the denominator goes to 0. As N → ∞, As
N converges almost surely to θ, so the

numerator goes to −t+ θ (h+ t) ≥ 0. Hence the ratio of the numerator to the denominator goes to

infinity. This implies that Tommy always accepts the N -times repeated gamble for N sufficiently

large.
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Alternatively, for Barney,

∫∞
0 zdG (z)

−
∫ 0
−∞ zdG (z)

=

N∑
As=d t

h+t
Ne

(−t+ As
N (h+ t))fψSN |Θ (As|θ)

−
d t
h+t

Ne−1∑
As=0

(−t+ As
N (h+ t))fψSN |Θ (As|θ)

→

∫ 1
t

h+t
(−t+ β (h+ t))fψß|Θ (β|θ) dβ

−
∫ t
h+t

0 (−t+ β (h+ t))fψß|Θ (β|θ) dβ

almost surely as N →∞. This is a finite, positive number.

�

Proposition 10. Assume A1-A4. Suppose an agent with initial wealth w0 can choose whether or

not to take a risky gamble (θ,N) whose monetary payoff, w (AS), is increasing in AS . The agent

does not know whether θ = θB or θ = θA > θB, and has priors fΘ (θA) = 1− fΘ (θB) ∈ (0, 1).

Suppose u (w (AS)) is a concave function of AS. In that case, if given the prior Barney invests,

then so does Tommy. Moreover:

1. If given the prior neither Tommy nor Barney invests, then Tommy’s willingness-to-pay for a

signal σ is higher than Barney’s.

2. If given the prior both Tommy and Barney invest, then Barney’s willingness-to-pay for a

signal σ is higher than Tommy’s.

3. If given the prior Tommy invests while Barney does not, then Barney’s willingness-to-pay for

a signal σ is higher than Tommy’s if and only if

∑
σ∈ΣψI

fΣ (σ)
{
EΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
− u(w0)

}
≥

∑
σ∈ΣS

fΣ (σ)
{
u(w0)− EΘ|Σ

[
ESN |Θ [u(w(AS))|θ] |σ

]}
,

where Σψ
I ⊆ {L,H} is the set of signals such that given his posterior Barney would invest;

and ΣS ⊆ {L,H} is the set of signals such that given his posterior Tommy would not invest.

Alternatively, if u (w (AS)) is a convex function of AS, then all of the conclusions in the

previous paragraph hold with “Barney” and “Tommy” switched.

Proof. We prove each part in turn assuming u is concave: that is, u (w(AS − 1))+u (w(AS + 1))−

2u (w(AS)) ≥ 0 for all AS . (The proof for convex u is analogous.) Proposition 8 implies that
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conditional on either the good state (θA) or the bad state (θB), if Barney invests, then so does

Tommy. To see this, observe that Tommy invests if and only if

ESN |Θ [u(w(AS))|θ = θA] fΘ (θA) + ESN |Θ [u(w(AS))|θ = θB] (1− fΘ (θA)) ≥ u(w0).

Similarly, Barney invests if and only if

EψSN |Θ [u(w(AS))|θ = θA] fΘ (θA) + EψSN |Θ [u(w(AS))|θ = θB] (1− fΘ (θA)) ≥ u(w0).

From Proposition 8, we know that both left-hand-side terms are smaller for Barney than the

analogous terms are for Tommy. Thus, if given the prior Barney invests, then so does Tommy.

Before proving Parts 1-3 of the proposition, we characterize behavior given the posterior (after

observing the signal σ). Observe that, given the realization of the signal, Tommy invests if and

only if

EΘ|Σ
[
ESN |Θ [u(w(AS))|θ] |σ

]
≥ u(w0).

Define ΣI, the set of signal realizations such that Tommy invests, as the realizations of σ such that

this inequality holds. The set of signal realizations such that Tommy invests in the safe asset is the

complement, ΣS ≡ Σ\ΣI. Thus, Tommy’s expected utility if he observes the signal σ is

∑
σ∈ΣI

fΣ (σ)EΘ|Σ
[
ESN |Θ [u(w(AS))|θ] |σ

]
+
∑
σ∈ΣS

fΣ (σ)u(w0),

which can be expressed as

u(w0) +
∑
σ∈ΣI

fΣ (σ)
{
EΘ|Σ

[
ESN |Θ [u(w(AS))|θ] |σ

]
− u(w0)

}
. (6)

Analogously, given the realization of the signal, Barney invests if and only if

EψΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
≥ u(w0).

Σψ
I is defined as the values of σ such that this inequality holds, and Σψ

S ≡ Σ\Σψ
I . Thus, Barney’s

expected utility if he observes the signal σ is

∑
σ∈ΣψI

fΣ (σ)EψΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
+
∑
σ∈ΣψS

fΣ (σ)u(w0),
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where note that we write Barney’s probability distribution over signal realizations, fΣ (σ), as the

same as Tommy’s because the signal σ has a sample size of 1 and because Barney and Tommy

have the same prior. This expression for Barney’s expected utility after observing the signal can

be expressed as

u(w0) +
∑
σ∈ΣψI

fΣ (σ)
{
EψΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
− u(w0)

}
. (7)

We now prove Part 1 of the proposition. Suppose Tommy does not invest given the prior. Using

the observation above, we know that Barney also does not invest given the prior. Thus, given their

prior, Barney and Tommy expect to get the same expected utility from not observing the signal:

u(w0). Tommy’s gain from observing the signal is the gain from changing his action times the

probability that he receives a signal that would cause him to change his action:

∑
σ∈ΣI

fΣ (σ)
{
EΘ|Σ

[
ESN |Θ [u(w(AS))|θ] |σ

]
− u(w0)

}
. (8)

Analogously, Barney’s gain from observing the signal is

∑
σ∈ΣψI

fΣ (σ)
{
EψΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
− u(w0)

}
. (9)

By definition of ΣI and Σψ
I , each term in both sums is positive. Since Barney’s value of investing

in either state is lower than Tommy’s: for any σ ∈ Σ,

EΘ|Σ
[
ESN |Θ [u(w(AS))|θ] |σ

]
> EψΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
.

This fact has two important implications. First, for any σ ∈ ΣI ∩ Σψ
I (i.e., any signal realization

such that both Tommy and Barney invest), each term for σ in the sum in (8) is larger than the

corresponding term in the sum in (9). Second, since it takes a higher posterior (on the good state)

for Barney to switch to investing, relative to Tommy, the set of posteriors that cause Barney to

switch is a subset of those that cause Tommy to switch: Σψ
I ⊆ ΣI. Therefore, Tommy’s expected

utility from observing the signal exceeds Barney’s.

Turning to Part 2, suppose both Tommy and Barney invest given the prior. Now, Tommy’s

gain from observing the signal is the gain from switching his action to not investing times the
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probability he observes a signal that would cause him to switch:

∑
σ∈ΣS

fΣ (σ)
{
u(w0)− EΘ|Σ

[
ESN |Θ [u(w(AS))|θ] |σ

]}
.

Analogously, Barney’s gain from observing the signal is

∑
σ∈ΣψS

fΣ (σ)
{
u(w0)− EψΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]}
.

By definition of ΣS and Σψ
S , each term in both sums is positive. Since Barney’s value of investing

in either state is lower than Tommy’s, an argument analogous to the argument in the previous

paragraph shows that Barney’s gain from observing the signal exceeds Tommy’s.

Finally, we prove Part 3 of the proposition. Suppose that, given the prior, Tommy invests but

Barney does not. As in the proof of Part 1, Barney’s gain from observing the signal is

∑
σ∈ΣψI

fΣ (σ)
{
EψΘ|Σ

[
EψSN |Θ [u(w(AS))|θ] |σ

]
− u(w0)

}
.

As in the proof of Part 2, Tommy’s gain from observing the signal is

∑
σ∈ΣS

fΣ (σ)
{
u(w0)− EΘ|Σ

[
ESN |Θ [u(w(AS))|θ] |σ

]}
.

The result immediately follows. �

Proposition 11. Assume Barney has the beta-distribution functional form given by equation (3).

Fix payoffs u(µ, ω), rates θA, θB ∈ Θ such that θA > θB and prior fΘ (θA) = 1− fΘ (θB) ∈ (0, 1).

Suppose Barney is prospective-acceptive and retrospective-pooling.

1. For all p < 1, there exists c̄ > 0 such that for all c ≤ c̄, Barney buys an infinite number of

signals with probability p > p. Furthermore, suppose that Barney, before buying any signals,

has a positive probability of buying an infinite number of signals. Then for any ε > 0, there

exists Nε > 2 such that if Barney buys an additional signal after having already bought Nε

signals, the probability of Barney buying a finite number of signals from then on is less than

ε.

2. Suppose θA = 1−θB. Suppose Barney is willing to buy an additional signal when his posterior

probability (of state A) is equal to q, and suppose Barney’s posterior is q after observing N

signals. If Barney’s posterior probability of state A is q after observing N ′ > N signals, then
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the probability that Barney will buy an infinite number of signals is weakly higher after he has

observed the N ′ signals than it was after the N signals.

3. Again, suppose θA = 1 − θB and the prior fΘ (θA) ≥ .5. For any ε > 0, there exists N > 2

such that if Barney chooses an action after buying at least N signals, then the likelihood ratio

of Barney having taken the action that does not match the state to the action that matches

the state is less than ε.

Proof: Since Barney is prospective-acceptive and gets one signal at a time, he conceives of his

problem as in the classic sequential information acquisition setting of Wald (1947). Therefore, we

can characterize his optimal policy using two thresholds in the posterior ratio. Denote the lower

and upper thresholds by λ and λ̄, respectively. These thresholds are functions of the cost of signals

and the payoffs for each action in each state (but not of the current posterior ratio). So long as

Barney’s current posterior ratio is in (λ, λ̄), he will continue to acquire information. If the posterior

ratio ever is in the region (0, λ] ∪ [λ̄, 1), Barney will stop and take an action.

To prove the first part, assume WLOG that state A is the true state. Since Barney is

retrospective-pooling, for any two values m and n such that 0 < m < n < ∞, we can find a

c′ small enough so that if c ≤ c′, then λ < m < n < λ̄. This is because, as in Wald (1947), the

upper (lower) threshold is strictly increasing (decreasing) in c without bound.

Since 0 < p0 < ∞ and Barney’s limit likelihood ratio Πψ
S∞|Θ×Θ (s∞|θA, θB,Ω = i) is finite, his

limit posterior ratio is bounded away from 0 and ∞:

0 < p0Πψ
S∞|Θ×Θ (s∞|θA, θB,Ω = i) <∞.

Moreover, since the posterior ratios after just a single a-signal or a single b-signal are bounded away

from 0 and ∞, we can find a small enough ĉ > 0 so that both the following statements are true for

all c < ĉ:

1. [p0Πψ
S1|Θ×Θ (b|θA, θB) , p0Πψ

S1|Θ×Θ (a|θA, θB)] ⊆ (λ, λ̄)

2. p0Πψ
S∞|Θ×Θ (s∞|θA, θB,Ω = i) ∈ (λ, λ̄).

Therefore, by the proof of Lemma C, if c < c′′ ≡ min{c′, ĉ}, then the probability that Barney

purchases an infinite number of signals, conditional on still purchasing signals after N signals have

already been purchased, is increasing in N and converges to 1 as N goes to infinity.

Fix p < 1. By the above argument, for any c < c′′, we find an N such that the probability

that Barney purchases an infinite number of signals, conditional on Barney still purchasing signals
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after N signals have already been purchased, is larger than p. Now, there exist 0 < m < n < ∞

sufficiently far apart such that the probability equals 1 that Barney’s posterior ratio lies the region

(m,n) after he observes N signals. We can find c′′′ sufficiently small that for all c ≤ c′′′, λ < m <

n < λ̄. It follows that if c < c̄ ≡ min {c′′, c′′′}, then Barney purchases an infinite number of signals

with probability larger than p.

Turning to the “Furthermore” claim, for Barney to stop purchasing signals, his posterior ratio

must leave[
Πψ
S1|Θ×Θ (b|θA, θB) ,Πψ

S1|Θ×Θ (a|θA, θB)
]
. Since Barney has a positive probability of purchasing

an infinite number of signals, from the proof of Lemma C, we know that if he still wants to

purchase an additional signal after having already purchased N̂ signals, the probability of the

posterior ratio leaving
[
Πψ
S1|Θ×Θ (b|θA, θB) ,Πψ

S1|Θ×Θ (a|θA, θB)
]

is less than 1−
∑∞

i=N̂
p(1−p)
i2δ2 , where

p = Πψ
S1|Θ×Θ (b|θA, θB) and δ is the distance between the limit proportion of a-signals and the closest

proportion that induces Barney to stop purchasing signals. This expression is an upper bound on

the probability of Barney purchasing a finite number of signals, if he still wants to purchase an

additional signal after seeing N̂ signals. As noted in the proof of Lemma C, this upper bound

converges to 0 as N̂ → ∞; hence, for any ε > 0, we can find a Nε such that if Barney still wants

to purchase an additional signal after seeing Nε signals, then the probability of him purchasing a

finite number of signals is less than ε.

Turning to the second part of the proposition, denote the situations where there is a current

posterior ratio of q, which is a belief where the agent still strictly wants to experiment, after N

and N ′ > N signals as qN and qN ′ , respectively. Assume that given qN ′ , a sequence of m signals,

denoted sm, causes the agent to stop purchasing signals and (WLOG) take action a, and that

no truncation of sm causes the agent to stop purchasing signals. We will show that given initial

situation qN , the sequence sm also causes the agent to stop purchasing signals. This proves that

the probability of the agent stopping is weakly higher given qN than qN ′ .

If any truncation of sm causes the agent to stop given qN , then we are done, so assume not.

Now we shall show that a sufficient condition for part (a) is that the posterior induced by k

a-signals in a row is less in favor of state A when starting with qN ′ than when starting with qN .

To see this, reorder sm so that it begins with a and b signals paired off in alternating orders. Note

that this reordering does not change the posterior after sm, only the path of posterior ratios. Since

by assumption the agent ends up favoring action a, there must be more a-signals than b-signals,

so the reordered sm must end with some set of a-signals in a row. Denote this number as k. Note

that after every pair of signals, a, b, the likelihood ratio must still be q, since the signal structure

is symmetric. So therefore, starting with either qN or qN ′ , after m − k signals (the pairs of a and
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b signals) of the reordered sm, the likelihood ratio is still q. Hence we are now simply comparing

the effect of k a-signals in a row, given N +m− k preceding signals versus N ′ +m− k preceding

signals.

Note that given qN ′ , there must have been more preceding a-signals than given qN . Assume

there were r′ and r a-signals, respectively. Hence in the sequence qN ′∪sm, there is a total of N ′+m

signals, and the number of a-signals is r′ (the number of a-signals in the first N ′) plus m−k
2 (the

number of a-signals in the alternating set) plus k (the number of a-signals in a row at the end).

Therefore, using Lemma β2, the agent’s posterior ratio after qN ′ ∪ sm is

Πψ
Θ×Θ|SN′+m

(θA, θB|qN ′ ∪ sm)

= p0
Γ
(
θAψ + r′ + m−k

2 + k
)

Γ
(
θBψ + r′ + m−k

2 + k
) Γ
(
(1− θA)ψ +N ′ − r′ + m−k

2

)
Γ
(
(1− θB)ψ +N ′ − r′ + m−k

2

)
= p0

Γ
(
θAψ + r′ + m−k

2

)
Γ
(
θBψ + r′ + m−k

2

) Γ
(
(1− θA)ψ +N ′ − r′ + m−k

2

)
Γ
(
(1− θB)ψ +N ′ − r′ + m−k

2

)Πk
i=1

θAψ + r′ + m−k
2 + i

(1− θA)ψ + r′ + m−k
2 + i

= qΠk
i=1

θAψ + r′ + m−k
2 + i

(1− θA)ψ + r′ + m−k
2 + i

.

In the sequence qN ∪ sm, there is a total of N + m signals, and the number of a-signals is r (the

number of a-signals in the first N) plus m−k
2 (the number of a-signals in the alternating set) plus

k (the number of a-signals in a row at the end). Therefore, analogously, the agent’s posterior ratio

after qN ∪ sm is

Πψ
Θ×Θ|SN′+m

(θA, θB|qN ∪ sm) = qΠk
i=1

θAψ + r + m−k
2 + i

(1− θA)ψ + r + m−k
2 + i

.

Notice that for all i,

1 <
θAψ + r′ + m−k

2 + i

(1− θA)ψ + r′ + m−k
2 + i

<
θAψ + r + m−k

2 + i

(1− θA)ψ + r + m−k
2 + i

since r′ > r and both fractions are larger than 1. Therefore, since the agent stops purchasing

signals given his posterior in situation qN ′ , he must stop given his posterior in situation qN , which

favors state A even more strongly.

Now we turn to the third part of the proposition. Denote the prior ratio on state A by p = fΘ(θA)
fΘ(θB) .

Denote the probability of Barney taking the correct action—WLOG, action µA—after purchasing

N signals (given parameters θA, θB, ψ, p) as V (A, θA, θB, ψ,N, p). Denote the probability of Barney

taking the incorrect action µB as V (B, θA, θB, ψ,N, p). For brevity, we will refer to these as
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V (A,N, p) and V (B,N, p), respectively. We will show that, for any ν > 0, there exists an Nν > 2

such that if Barney still wants to purchase a signal after having already observed Nν signals, then

for all N ≥ Nν , V (B,N,p)
V (A,N,p) < ν. We will do this in several steps:

1. First, we will construct V (i,N, p) in a way that will make it manageable to work with.

2. Second, we will fix equal priors p = 1, and we will show that, for any ν > 0, there exists

Nν > 2 such that for all N ≥ Nν , V (B,N,1)
V (A,N,1) < ν.

3. Third, we will show that for any priors p > 1 that strictly favor the true state and for all

N ≥ Nν , V (B,N,p)
V (A,N,p) < V (B,N,1)

V (A,N,1) . This is because relative to the equal priors case, there is

a uniform shift of probability from likelihoods that favor Barney stopping and taking an

incorrect action to a stopping and taking the correct action.

Now we shall do each step in order:

For the first step of the argument, because the signals are symmetric, we can define

λ ≡ 1

Πψ
S1|Θ×Θ (a|θA, θB)

= Πψ
S1|Θ×Θ (b|θA, θB) .

The set of posterior ratios such that Barney still wants to purchase an additional signal, after

having seen N signals, is denoted Q(N) ⊂ [λ, 1
λ ], a set with a finite number of elements. Denote a

typical element by q.

We will construct V from a more elementary function: φ(A, q,N,M), the probability of Barney

stopping purchasing signals and taking the µA action in the next M signals, when the current

posterior ratio is q, and N signals have already been observed. Given p and N , there is a one-

to-one mapping between the posterior ratio q and the “number of a signals” previously observed,

which may not be a natural number for a particular q. Therefore we will consider the number of a

and b signals as fixed at the levels implied by q.

After N signals have been observed, Barney stops purchasing signals and takes action µA only

if the number of a-signals exceeds the number of b-signals by at least some number. Abusing

notation slightly, denote by sjM an exact sequence of a and b signals from a set of M signals, with

ordering j indexed from 0 to 2M − 1 (so sjM could contain any number of signals from 0 up to

M signals). Denote the number of a-signals in sjM as A(sjM ). Define a(sjM , N, q) ∈ {0, 1} as an

indicator of whether Barney would have stopped purchasing signals and taken action µA with the

exact ordering of signals in sjM , given that the posterior ratio was q after the first N signals. Now

we can construct the probability of Barney stopping purchasing signals and taking action µA within
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the next M signals, given that the posterior ratio was q after the first N signals:

φ(A, q,N,M) =
2M−1∑
j=1

a(sjM , N, q)θ
A(sjM )

A (1− θA)M−A(sjM ),

a polynomial in θA and 1− θA.

To gain some intuition for φ, consider q = 1. Because the rates are symmetric, if we consider

a set of j signals that causes Barney to stop purchasing signals and take the µA action, and we

replace all the θA’s with (1− θA)’s, and vice-versa, then that set of signals will cause Barney to stop

purchasing signals and take the µB action. Similarly, if we have a set of j signals that has not caused

Barney to stop purchasing signals, then the same set of signals, but replacing θA’s with (1− θA)’s

and vice-versa, will also not cause Barney to stop purchasing signals. Therefore, φ(B, 1, N,M) is

the same function as φ(A, 1, N,M) but with all the θA’s replaced with (1− θA)’s and vice-versa.

Now suppose either q > 1 or q < 1. Now φ(B, q,N,M) is not simply φ(A, q,N,M) with the rates

switched. Because rates are symmetric, however, if we define q′ = 1
q , then φ(B, q′, N,M) is the

same function as φ(A, q,N,M) but with θA and 1− θA switched.

Define ρ(N) as the minimum number of a-signals in a row that would need to occur after an initial

set of N signals to put the posterior ratio above 1
λ (the upper bound of the interval Q(N), as

defined above), given that the posterior ratio was λ (the lower bound of the interval Q(N)) after

the first N signals. ρ(N) will be a useful quantity because, regardless of the posterior ratio after N

observations, it is the number of additional signals after which Barney stopping purchasing signals

and taking either action could always possibly occur. Note that ρ(N) is increasing in N .

Define x(q,N, p) < N as the number of a-signals out of N such that x(q,N, p) a-signals and

N − x(q,N, p) b-signals induces posterior ratio of q when the prior is p.

For each x(q,N, p), we can construct the set of possible sequences that generates x a-signals and

N − x b-signals without causing Barney to stop purchasing signals at any point in the sequence.

Denote the set of these sequences as X(q,N, p). Each one of these sequences must have the same

final number of a and b signals, but it must be the case that the difference between the number

of a-signals and b-signals cannot have been too large at any point in the sequence, or else Barney

would have stopped purchasing signals. Let g(q,N, p) = γ(q,N, p)θ
x(q,N,p)
A (1−θA)N−x(q,N,p) denote

the probability of the set of sequences that leads to x a-signals and N −x b-signals without Barney

ever having stopped purchasing signals, where γ is the number of sequences in the set.

Define rN (i) for i = 0, 1, ... recursively: rN (0) = N and rN (i) = rN (i− 1) + ρ(rN (i− 1)) for i > 0.
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We now construct V (A,N, p) as follows:

V (A,N, p) =
∞∑
i=1

∑
q∈Q(rN (i−1))

φ(A, q, rN (i− 1), ρ(rN (i− 1)))g(q, rN (i− 1), p).

We define V (B,N, p) analogously.

To understand this definition of V , each term is the probability of a Barney stopping purchasing

signals and taking the correct action within the next rN (i) signals, conditional on having observed

rN (i− 1) signals without stopping purchasing signals, starting with a prior ratio of p.

For the second step of the argument, now we will fix the prior ratio at 1 and show that for any

ν > 0, there exists Nν > 2 such that for all N ≥ Nν , V (B,N,1)
V (A,N,1) < ν.

We will begin by proving some key claims:

Claim 10.A Let ai, bi > 0 for i = 1, 2..., such that ai
bi
≤ ai+1

bi+1
. Then a1

b1
≤

∑N
i=1 ai∑N
i=1 ai

≤ aN
bN

.

To see this is true, note that for positive a, b, c, d, if 0 < a
b <

c
d , then a

b <
a+c
b+d <

c
d . Induction then

shows that
∑N
i=1 ai∑N
i=1 bi

is bounded by the maximum and minimum ai
bi

.

Claim 10.B For any ν > 0, there exists Nν > 2 such that for all N ≥ Nν ,∑
q∈Q(N) φ(B, q,N, ρ(N))g(q,N, p)∑
q∈Q(N) φ(A, q,N, ρ(N))g(q,N, p)

< ν.

Together, Claims 10.A and 10.B imply the result we are seeking. Claim 10.A, combined with the

fact that the probability of Barney stopping and taking an action is shrinking as the number of

signals gets large, implies that

V (B,N, p)

V (A,N, p)
=

∑∞
i=1

∑
q∈Q(N) φ(B, q, rN (i− 1), rN (i))g(q, rN (i− 1), p)∑∞

i=1

∑
q∈Q(N) φ(A, q, rN (i− 1), rN (i))g(q, rN (i− 1), p)

≤
∑

q∈Q(N) φ(B, q,N, ρ(N))g(q,N, p)∑
q∈Q(N) φ(A, q,N, ρ(N))g(q,N, p)

.

Claim 10.B then says that given any ν > 0, for large enough N , this ratio is < ν.

A sufficient condition for Claim 10.B is:

Claim 10.C For any ν > 0, there exists Nν > 2 such that for all N ≥ Nν and q ∈ Q (N) ,

φ(B, q,N, ρ(N))g(q,N, 1) + φ(B, q′, N, ρ(N))g(q′, N, 1)

φ(A, q,N, ρ(N))g(q,N, 1) + φ(A, q′, N, ρ(N))g(q′, N, 1)
< ν.
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To see that Claim 10.C implies Claim 10.B, notice that
∑
q∈Q(N) φ(B,q,N,ρ(N))g(q,N,p)∑
q∈Q(N) φ(A,q,N,ρ(N))g(q,N,p) is

≤ max
q,q′∈Q(N) s.t. q′= 1

q

φ(B, q,N, ρ(N))g(q,N, 1) + φ(B, q′, N, ρ(N))g(q′, N, 1)

φ(A, q,N, ρ(N))g(q,N, 1) + φ(A, q′, N, ρ(N))g(q′, N, 1)

< ν

where the first inequality follows from Claim 10.A and the second by Claim 10.C.

Therefore, we will have completed the second step of the argument once we prove Claim 10.C. We

substitute:

φ(A, q,N, ρ(N))g(q,N, 1)

= g(q,N, 1)

2ρ(N)−1∑
j=1

a(sjρ(N), N, q)θ
A(sj

ρ(N)
)

A (1− θA)
ρ(N)−A(sj

ρ(N)
)

= γ(q,N, 1)θ
x(q,N,1)
A (1− θA)N−x(q,N,1)

2ρ(N)−1∑
j=1

a(sjρ(N), N, q)θ
A(sj

ρ(N)
)

A (1− θA)
ρ(N)−A(sj

ρ(N)
)
.

Note that some of the sequences of signals starting with a posterior of q will cause Barney to stop

purchasing signals before ρ(N) signals. Imagine two sequences begin with the same initial z signals

but differ in the signals that occur afterward. If the zth signal causes Barney to stop purchasing

signals, then these subsequent signals are irrelevant, and we can aggregate the two sequences

together. Let ζ(q, ρ(N), N, z, i) denote the number of a-signals needed out of an additional ρ(N)

signals, starting with a posterior of q after N signals, for Barney to stop purchasing signals and

take action i after exactly z signals, and Barney did not stop purchasing signals earlier. Let the

lowercase letter ς count the number of permutations of such sequences. Continuing to substitute:

φ(A, q,N, ρ(N))g(q,N, 1)

= γ(q,N, 1)θ
x(q,N,1)
A (1− θA)N−x(q,N,1)

ρ(N)∑
z=1

ς(q, ρ(N), N, z,A)θ
ζ(q,z,N,A)
A (1− θA)z−ζ(q,z,N,A).

Now, define

bz(q
′, N) ≡ γ(q′, N, 1)θ

x(q′,N,1)
A (1− θA)N−x(q′,N,1)ς(q′, ρ(N), N, z,B)(1− θA)z−ζ(q

′,z,N,B)θ
ζ(q′,z,N,B)
A

az(q
′, N) ≡ γ(q,N, 1)θ

x(q,N,1)
A (1− θA)N−x(q,N,1)ς(q, ρ(N), N, z,A)(1− θA)z−ζ(q,z,N,A)θ

ζ(q,z,N,A)
A .
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We can write

φ(B, q,N, ρ(N))g(q,N, 1) + φ(B, q′, N, ρ(N))g(q′, N, 1)

φ(A, q,N, ρ(N))g(q,N, 1) + φ(A, q′, N, ρ(N))g(q′, N, 1)
=

∑ρ(N)
z=1 bz(q,N) +

∑ρ(N)
z=1 bz(q

′, N)∑ρ(N)
z=1 az(q,N) +

∑ρ(N)
z=1 az(q′, N)

Starting from a prior ratio of 1, because the signals are symmetric, if x a-signals and N−x b-signals

leaves an agent with a posterior of q, then x b-signals and N − x a-signals leaves an agent with

a posterior of q′. Therefore x(q′, N, 1) = N − x(q,N, 1). Similarly, γ(q′, N, 1) = γ(q,N, 1). Also,

starting with a posterior of q, if x additional a-signals and N −x additional b-signals leaves Barney

wanting to take stop purchasing signals and take action µA, then starting with a posterior of q′,

x additional b-signals and N − x additional a-signals leaves Barney wanting to stop purchasing

signals and take action µB. Therefore ζ(q′, z,N,B) = z − ζ(q, z,N,A) and ς(q′, ρ(N), N, z,B) =

ς(q, ρ(N), N, z,A).

Using these relationships,

bz(q
′, N)

az(q′, N)
=

γ(q′, N, 1)θ
x(q′,N,1)
A (1− θA)N−x(q′,N,1)ς(q′, ρ(N), N, z,B)(1− θA)z−ζ(q

′,z,N,B)θ
ζ(q′,z,N,B)
A

γ(q,N, 1)θ
x(q,N,1)
A (1− θA)N−x(q,N,1)ς(q, ρ(N), N, z,A)(1− θA)z−ζ(q,z,N,A)θ

ζ(q,z,N,A)
A

=
γ(q,N, 1)θ

N−x(q,N,1)
A (1− θA)x(q,N,1)ς(q, ρ(N), N, z,A)(1− θA)ζ(q,z,N,A)θ

z−ζ(q,z,N,A)
A

γ(q,N, 1)θ
x(q,N,1)
A (1− θA)N−x(q,N,1)ς(q, ρ(N), N, z,A)(1− θA)z−ζ(q,z,N,A)θ

ζ(q,z,N,A)
A

,

which is well-defined as long as γ(q,N, 1)ς(q, ρ(N), N, z,A) 6= 0. (If γ(q,N, 1)ς(q, ρ(N), N, z,A) =

0, then bz drops out from V (B,N, p), and az drops out from V (A,N, p). Hence these terms can be

ignored.) Canceling and collecting terms:

bz(q
′, N)

az(q′, N)
=

(1− θA)x(q,N,1)+ζ(q,z,N,A) (θA)N+z−x(q,N,1)−ζ(q,z,N,A)

(θA)x(q,N,1)+ζ(q,z,N,A) (1− θA)N+z−x(q,N,1)−ζ(q,z,N,A)

Using Claim 10.A ,

∑
z bz(q

′, N)∑
z az(q

′, N)
< max

z s.t. γ(q,N,1)ς(q′,ρ(N),N,z,B)6=0

(1− θA)x(q,N,1)+ζ(q,z,N,A) (θA)N+z−x(q,N,1)−ζ(q,z,N,A)

(θA)x(q,N,1)+ζ(q,z,N,A) (1− θA)N+z−x(q,N,1)−ζ(q,z,N,A)
.

The numerator is the probability that, starting with a prior ratio of 1, there will be a sequence of

a and b signals, N + z in total, that lands the agent just inside the zone where the agent stops

purchasing signals and takes action µB. The denominator is the probability that, starting with a

prior ratio of 1, there will be a sequence of a and b signals, N + z in total, that lands the agent just

inside the zone where the agent stops purchasing signals and takes action µA. This expression can
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be rearranged to yield (
1− θA
θA

)2x(q,N,1)+2ζ(q,z,N,A)−N−z
,

where the exponent, 2x(q,N, 1) + 2ζ(q, z,N,A) − N − z ≡ δ(N + z), is the minimum difference

between the number of a and b signals out of N + z signals in total at which Barney will stop

purchasing signals; if there are δ(N + z) more a than b signals, then Barney will take action µA;

and if there are δ(N+z) more b than a signals, then Barney will take action µB. Notice that δ(N+z)

is not a function of q. Because Barney’s likelihood ratio asymptotically depends on the proportion

of a signals, not the difference between the number of a and b signals, limN+z→∞ δ(N + z) = ∞.

Furthermore, since ρ(N) is growing in N , then it follows that for any ε > 0 we can find an N ′ large

enough such that for all q ∈
(

Πψ
S1|Θ×Θ (b|θA, θB) ,Πψ

S1|Θ×Θ (a|θA, θB)
)

(and so for any q ∈ Q for

any N) and all N > N ′,

(
1− θA
θA

)2x(q,N,1)+2ζ(q,z,N,A)−N−z
,

is less than ε. It then follows directly from the previous claims that the upper bound on V (B,N,p)
V (A,N,p) ,(

1−θA
θA

)δ(N+z)
, goes to 0 as N →∞.

Therefore, although Q varies with N , it must be the case that for any q in Q, the limit result

holds. That is, the convergence is uniform over q ∈ Q.

For the third step of the argument, now assume that the prior rate favors A: p > 1. Note that

nothing in the construction of the φ function changes. However, because p is now closer to q > 1

than it is to q′ < 1, g(q,N,p)
g(q′,N,p) <

g(q,N,1)
g(q′,N,1) . Using this fact, and the result proven above for the p = 1

case: for any ν > 0, there exists Nν > 2 such that for all N ≥ Nν , for any q ∈ Q(N),

φ(B, q,N, ρ(N))g(q,N, p)

φ(A, q′, N, ρ(N))g(q′, N, p)
<

φ(B, q,N, ρ(N))g(q,N, 1)

φ(A, q′, N, ρ(N))g(q′, N, 1)
< ν,

and
φ(B, q′, N, ρ(N))g(q′, N, p)

φ(A, q,N, ρ(N))g(q,N, p)
<
φ(B, q′, N, ρ(N))g(q′, N, 1)

φ(A, q,N, ρ(N))g(q,N, 1)
< ν.

We argued above that Claim 10.A implies

V (B,N, p)

V (A,N, p)
≤
∑

q∈Q(N) φ(B, q,N, ρ(N))g(q,N, p)∑
q∈Q(N) φ(A, q,N, ρ(N))g(q,N, p)

.
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Using Claim 10.A again, along with the above inequalities, gives the result:

V (B,N, p)

V (A,N, p)
< ν.

�

Proposition 12. Assume Barney has the beta-distribution functional form given by equation (3).

Fix payoff functions uH(µt) and uL(µt), rates θA, θB ∈ Θ such that θA > θB and discount factor

δ. Suppose Barney is prospective-acceptive and retrospective-pooling.

1. Suppose uH(A) > uL(A) and uH(B) > uL(B). Without loss of generality, suppose the state

is ω = B. For all priors fΘ (θA) = 1 − fΘ (θB) ∈ (0, 1), Tommy’s belief that the state is B

converges to 1 almost surely, and Tommy’s action converges to B almost surely. Barney’s

belief that the state is B converges almost surely to a number in the interval (0, 1), and this

limit posterior is increasing in fΘ (θB). Moreover, if fΘ (θB) is sufficiently small, then there

is positive probability that Barney takes action A in every period.

2. Suppose uH(A) > uL(A) and uH(B) = uL(B). For all priors fΘ (θA) = 1− fΘ (θB) ∈ (0, 1),

if the state is B, then almost surely at some finite T , Tommy will take action B for all

periods t ≥ T . For Barney, regardless of the state, there exists 0 < p < 1 such that for any

prior fΘ (θA) ≥ p, there is positive probability that Barney takes action A in every period.

This probability is increasing in fΘ (θA) but is always strictly less than 1.

Proof: We begin with the first part of the proposition. Since the high and low payoffs differ for

both actions, both actions are informative. If the agent gets the high payoff, consider it an a signal;

the low payoff, a b signal. In this case, standard results imply that as the number of signals goes

to infinity Tommy almost surely learns the true state. Furthermore, when Tommy is sufficiently

confident about the state, he takes the action with the high payoff.

We know that as the number of signals Barney receives goes to infinity, his posterior ratio

converges to the finite number

fψß|Θ (β = θ|θA)

fψß|Θ (β = θ|θB)

f (θA)

f (θB)

almost surely (where θ is the rate in the true state). This is increasing in the prior probability of

state A.

Furthermore, because Barney is prospective-acceptive, we know that for the same current belief

as Tommy, his current action will be the same. Hence Barney will only take action B if his current

63



posterior ratio of state A to state B is below some threshold λ̄. Let p̄ denote the largest prior ratio
f(θA)
f(θB) such that

1 >
fψß|Θ (β = θ|θA)

fψß|Θ (β = θ|θB)

f (θA)

f (θB)
≥ λ̄

and

1 >
f (θA)

f (θB)
≥ λ̄.

For all prior ratios p such that 1 > p > p̄,

1 >
fψß|Θ (β = θ|θA)

fψß|Θ (β = θ|θB)
p > λ̄

and

1 > p > λ̄.

By Lemma C, given prior p, with positive probability Barney’s posterior ratio always stays within

(λ̄, 1), and so he always takes action A.

Now we prove the second part of the proposition. Once again, because Barney is prospective-

acceptive, given the same current belief as Tommy, he will choose the same action. Standard

results imply that either agent takes action B if his current posterior ratio is below some threshold

λ̄; otherwise he takes action A (and is indifferent at λ̄). In the present setting, whenever an agent

takes action A, he receives a signal, but whenever he takes action B, he receives no signal. In this

environment, the result concerning Tommy is entirely standard. For Barney, define p̄ as above, and

by the same argument as above, for all prior ratios p such that 1 > p > p̄, with positive probability

Barney’s posterior ratio always stays within (λ̄, 1), and so he always takes action A.

The probability of always taking action A is increasing in the prior. To see this, consider priors

p′, p′′ such that p′′ ≥ p′ > p. Let Ŝ∞(p′) denote the set of sequences that lead to Barney taking the

A action every period given prior p′. Consider any particular sequence s ∈ Ŝ∞(p′). Let sN be the

truncation of s after N signals. Note that p′
fψ
Θ|SN

(θA|sN )

fψ
Θ|SN

(θB |sN )
∈ [λ̄, 1) for all N = 1, 2, ... by construction.

Since p′′ ≥ p′,

p′′
fψΘ|SN (θA|sN )

fψΘ|SN (θB|sN )
≥ p′

fψΘ|SN (θA|sN )

fψΘ|SN (θB|sN )

for all N , and so p′′
fψ
Θ|SN

(θA|sN )

fψ
Θ|SN

(θB |sN )
∈ [λ̄, 1) for all N . Therefore given prior p′′, Barney will also always

take action A for all sequences in Ŝ∞(p′). Therefore the probability of always taking action A given

prior p′′ must be weakly higher than given prior p′.
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The probability of always taking action A is always less than 1 because the limit likelihood ratio

for Barney of state A to state B if he observes 0 a-signals is 0. Therefore, regardless of the prior,

if Barney receives enough b signals in a row initially, his posterior ratio will fall below λ̄.

�
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Appendix D: Formal Description of the Multiple-Sample Model

To formalize the information-processing assumptions from Section 4, consider a decision problem

in which up to 1 ≤ T ≤ ∞ binary signals will be realized in total. To greatly simplify notation and

clarify presentation, we assume that how the environment or his own thinking leads him to group

signals is independent of the realizations of those signals and of earlier decisions.16 We define T + 3

partitions, each represented by a set of time periods, of the set of signals that fully characterize our

predictions. We conceive of the first three of these partitions as embodying physical, informational,

and perceptual assumptions rather than assumptions about Barney’s statistical reasoning. The

first partition we define by the set of dates at which the agent knows he must make decisions,

D ⊆ {0, 1, ..., T}. If τ ∈ D, the agent knows that he made or will make a decision after observing

τ signals but before observing τ + 1 signals. The agent’s payoff may depend on any or all of the

decisions he makes, the signals that are realized, and the underlying state with which the signals

are correlated. This opportunity-for-decisions partition, D, is of course specified in every economic

model of decisionmaking.

The second partition is characterized by a set C ⊆ {0, 1, ..., T − 1} of dates where a new clump

begins, such that if and only if τ ∈ C, then signal τ is in a different clump than signal τ − 1.

We assume 0 ∈ C. For example, if 11,000 signals arrives as a clump of 10,000 signals followed

by a clump of 1,000 signals, then T = 11, 000 and C = {0, 10, 001}. There is one obvious basic

restriction on clumping that we must make:

Clumping Assumption 0. D ⊆ C.

This assumption states that at any history where the agent makes a decision, subsequent signals

arrive as a separate clump than previous signals. This restriction is inherent in the notion of clumps

because the signals cannot have “arrived” together (at least in the relevant sense of the agent’s

knowledge of their realizations) if the agent knows the realizations of only some of the signals. We

treat this as a coherence assumption and always impose it.

Another coherence assumption on C is that Barney will not treat signals differently when he

does not see the signals distinctly at all. If it is the case, unbeknownst to Barney, that 38 of the

people in Consumer Reports statistics of 10,000 car owners have the last name Smith, we assume

16This is a substantive restriction, and we know of examples where it seems unrealistic, but we do not
know how relaxing it will improve insights. Importantly, we are not assuming that whether Barney gathers
more information is independent of what he has learned; our examples in Section 5 revolve around exactly
such a decision by Barney. In those examples, Barney faces a decision after each signal whether to pay to
observe another signal. To accommodate those examples in the framework of this section, it can be assumed
that whenever Barney chooses not to observe further signals, decisions that “occur” at those future signals
do not affect his payoff.
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that Barney cannot (even if thusly motivated) treat Smiths as one sample and non-Smiths as

another.17 Let I ⊆ {0, 1, ..., T − 1} be a set of dates that defines the third partition, a partition of

signals into equivalence classes of indistinguishable signals (so that if τ ∈ I, then the signal at time

τ is distinguishable from the signal at time τ − 1). Clearly it must be the case that D ⊆ I, but we

also impose a second restriction on clumping:

Clumping Assumption 1. C ⊆ I.

Although economic models of decisionmaking do not traditionally specify a clumping partition,

our aspiration is have the clumping partition be an exogenous assumption that is not per se related

to NBLLN, and ideally is pinned down by observable characteristics of a situation. In the interest

of minimizing the number of assumptions that have to be specified anew for each new economic

model (and hence limit degrees of freedom that might reduce the usefulness of the model), it would

be especially attractive to pin down some rule for “clumping” that ties it to D or I. The two

obvious candidates are:

Clumping Assumption 2(a). C = D.

Clumping Assumption 2(b). C = I.

While the three partitions characterized by D, C, and I reflect the physical and perceptual

environment facing Barney, the remaining T partitions embed Barney’s NBLLN psychology of how

he separates out data. To capture the important possibility that Barney’s grouping might differ

from different time perspectives, we assume that the agent may process the signals differently at

different dates. At each t = 0, 1, ..., T , there is a set Pt ⊆ {0, 1, ..., T − 1} of dates where a new

group begins. By letting each Pt contain elements both less than t and greater than t, each partition

specifies both retrospective and prospective grouping of signals at that point in time. For all τ ≤ t,

if τ ∈ Pt, then after having observed t signals, the agent processes signal τ as being in a different

group than signal τ − 1; while if τ /∈ Pt, then after having observed t signals, the agent processes

signal τ as being in the same group as signal τ − 1. And for all τ > t, τ ∈ Pt means Barney

anticipates separating out signal τ from signal τ − 1. Whether he actually does so after observing

signal τ is determined by {Pτ , Pτ+1, ...}. We assume that 0 ∈ Pt for all t.

Our main modeling constraint, which rules out prospective-pooling whenever Barney will face

a subsequent decision node, is formalized as:

17Conceivably, Barney could decide to label an indistinguishable group any way he wants, such as ordering
them from 1 to 10,000, and then either perceptually or psychologically distinguish the signals based on this
labeling. It seems a safe assumption that he will not do so.
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Processing Assumption 0. For any t = 0, 1, ..., T , if τ ∈ D and τ + 1 ≥ t, then τ + 1 ∈ Pt.

This assumption states that at any date where the agent makes a decision, he processes signals

before and after that date as being in separate groups—and that before that date, he knows he will

do so. We consider this to be a modeling coherence assumption because it ensures that Barney’s

NBLLN from the single-clump model in Section 2 generalizes to every decision node in the multiple-

clump model.

We additionally impose the coherence assumption that Barney cannot process in separate groups

signals that he cannot distinguish from each other.

Processing Assumption 1. For any t = 0, 1, ..., T , I ⊆ Pt.

In words, at every date, Barneys processing partition must be a coarsening of his indistinguishability

partition.

We now formalize some ways that Barney might form beliefs retrospectively and prospectively.

Because D is the set of nodes where Barney’s beliefs are payoff-relevant, these definitions focus the

assumptions on the Pt’s where t ∈ D:

• Retrospective-Pooling: If t ∈ D and 0 < τ ≤ t, then τ /∈ Pt.

• Retrospective-Acceptive: If t ∈ D and 0 < τ ≤ t, then τ ∈ Pt ⇔ τ ∈ C.

• Prospective-Acceptive: If t ∈ D and τ > t, then τ ∈ Pt ⇔ τ ∈ C.

We omit defining “prospective-pooling” Barney because it is ruled out by Processing Assumption

0 in any decision problem with more than one decision node; at an earlier decision node, Barney

cannot expect to pool together future signals that come before and after a future decision node.

An agent is processing-consistent if he always processes information the way that he expects to

process information: Pt = Pt′ for all t, t′ ∈ D.
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