
Naive Herding
Erik Eyster

Department of Economics

LSE

Matthew Rabin

Department of Economics

University of California–Berkeley

27 August 2008

Abstract
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that players naively believe that a previous player’s actions reflect solely that
player’s private information. This error leads players to inadvertently over-weight
early players’ private signals by neglecting that interim players’ actions also em-
bed these signals. Consequently, naive players can become extremely and wrongly
confident about the state even where rational players never become confident and
may herd on incorrect actions even where rational players never do. Wrong herd-
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1 Introduction

Beginning with Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992), a theoret-

ical literature has explored the role of inference in herding behaviour. In the simplest model,

a sequence of people each choose in turn one of two options, A or B, each person observing

all of her predecessors’ choices. They have common preferences over the two choices but do

not know which is better. Rather, they receive independent and equally strong private bi-

nary signals that provide information about the right choice. In this setting, rational agents

herd: if the first two choose A, then so too do all who follow, regardless of their private

information. This is because two A choices mean (given a natural tie-breaking rule for the

second mover) that each party must have received a signal indicating that A is better; the

next mover should realize this and, even if she gets a B signal, choose action A. And all

subsequent players follow suit. Although everyone chooses A, each understands that all but

the first two movers ignore their signals and, hence, never becomes highly confident that A

is better. Generalizing this result, the social-learning literature finds that when the action

space and signal space are both finite, and each signal is imperfect, rational people almost

always eventually herd, but with positive probability on an action that is suboptimal.

Despite its many insights, this literature has some important limitations. The logic of

when rational people herd relies crucially on features of the environment that seem neither

realistic nor intuitively central to herding. As is widely recognized, either richer action

spaces or richer signal spaces reduce the scope for herding; in the limiting cases where a

person’s action fully reveals her beliefs or people can receive fully revealing signals of the

state, equilibrium actions almost surely converge to the best one. And although intuition

and evidence suggest that the rationality assumption maintained in these models may be

importantly unrealistic, relatively little is known about the implications of more realistic
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assumptions. In this paper, we investigate herding by players who are more limited in their

rationality. In particular, we investigate the implications of the assumption that players

naively believe that a previous player’s actions reflect solely that player’s private informa-

tion. This error leads players to inadvertently over-weight early players’ signals by failing to

appreciate that interim players’ actions also embed those signals. As a consequence, naive

players can become extremely and wrongly confident about the state of the world even in

environments where rational players never become confident, as well as to herd on incorrect

actions even in environments where fully rational players always herd on correct actions.

In Section 2, we formalize two types of departure from purely rational play that cor-

respond to two distinct general errors in strategic inference that people may make and

also accord with intuition and some experimental evidence on herding. First, players may

be “cursed”–and fail to appreciate the link between previous movers’ actions and those

movers’ private signals.1 A cursed player bases her action upon her own signal alone and

not upon previous play. More plausibly in social-learning environments, players might be

“inferentially naive”–and realize that previous movers’ actions reflect these movers’ own

signals but fail to appreciate that these previous movers themselves also perform inference

from still earlier movers’ actions. Players making this error believe that each predecessor’s

action depends upon that predecessor’s signal alone; inferentially naive players believe that

their predecessors are cursed. For each of these two types of error, we define both weak and

strong solution concepts, and in the remainder of the paper primarily apply only the weaker

versions.

In Section 3, we study this latter error of inferential naivety and show it to have dramatic

implications. We begin with the classic two-state, finite-action, finite-signal model already

introduced. In the example above, inferential naivety leads herders to interpret each prior

1In this paper we define and study a weaker form of “cursedness” that is in the spirit of Eyster and

Rabin’s (2005) “cursed equilibrium” and similar to the “coarse analogy partition” variant of Jehiel’s (2005)

“analogy-based expecations equilibrium” as applied to Bayesian games by Jehiel and Koessler (2008).
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A choice as more evidence favouring A. Unlike rational players, each successive naive player

following a herd on A becomes more convinced that A is better, and eventually herders

come to believe with certainty that A is better. More generally, we show that inferential

naivety almost surely leads players to converge to fully confident beliefs that their actions

are optimal. This is especially striking because, just as in the rational case, the herd may

be “mistaken”–a few unlikely signals early on can move the players to believe in the wrong

theory. We construct an example, in fact, where inferential naivety leads players to converge

with probability arbitrarily close to one to fully confident beliefs–that are wrong.

To illustrate more starkly how inferential naivety may lead to erroneous confident beliefs,

we continue Section 3 by constructing a related model where actions and signals both can

take on any value in the continuum. In such a setting, each player takes an action that fully

reveals her beliefs; we assume that each signal can be anything from virtually fully revealing

of the state to virtually uninformative. In this informationally rich environment, rational

herders almost surely converge to the correct beliefs about the state. But even here, with

positive probability naive herders converge to certain belief in the wrong state. Indeed, we

show by simulation of a simple model where each player receives a signal whose strength is

uniformly distributed that approximately 11% of the time the herd converges to beliefs and

actions that represent certainty in the wrong state.

What is the intuition for this? Not realizing that the second mover’s action reflects beliefs

that combine the first and second movers’ signals, the third mover’s attempt to incorporate

both predecessors’ signals into her own action leads her in fact to count the first mover’s

signal twice. Naive inference by the fourth mover, in turn, causes him to count the first

mover’s signal four-fold: once from the first action, once from the second, and twice from the

third. He counts the second signal twice: once each from the second and third mover. Naive

herders in this model are massively over-influenced by the early signals–mover k counts the

first signal 2k−1 times, the 2nd signal 2k−2 times, etc. If the first signal happens to mislead,

limit herds may so over-use it as to outweigh an infinite sequence of further signals–even if
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this sequence includes an infinity of very strong signals of the truth.

We conclude Section 3 with a curious result: if beliefs for some time weakly favour one

state over the other, then the other state is more likely to be the true one. The intuition

behind the result relates to its limited applicability: it is, in fact, very unlikely that beliefs

remain weak after a long sequence signals, but the most likely way is if herders start out

believing the wrong thing and then receive a long sequence of contradictory evidence–all of

which still adds up to less than the herders implicitly infer from the earlier signals.

In Section 4 we briefly consider the implications of inferential naivety in a couple variants

of this social-learning setting. First, we consider the case of limited observability where,

instead of observing all previous moves, each player observes only her immediate k < ∞

predecessors. Interestingly, if k = 1,meaning that each player observes solely the move before

him, then–despite having the wrong model of others’ decision making–inferential naivety

does not lead players astray. Each player mistakenly believes her predecessor’s action reflects

solely that predecessor’s signal when in fact it depends on his own predecessor’s action and,

hence, signal. But because in this case each person correctly infers her predecessor’s beliefs

(despite having the wrong theory of those beliefs’ provenance) and lacks the observations

to double count earlier movers’ signals, all signals are counted rationally. When k = 2,

however, players once more can and do double count, and again with positive probability

they converge to the wrong limiting belief and action. As k becomes larger, the probability of

a wrong herd increases and converges in the limit to the probability in the full-observability

model.

In Section 4 we illustrate how inferential naivety also can lead players to overestimate

how much information their actions embody. We do this in a binary-state model where the

state follows a Markov process, changing with some fixed probability each period. Each

player chooses whether to pay some cost to receive a fully-revealing signal of the state

before choosing her action, both after observing her predecessors’ actions but not purchasing

decisions. Rational players in this model follow cyclical strategies: Player 1 buys a signal,
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and succeeding players herd until enough periods have elapsed that Player 1’s action provides

a sufficiently weak signal of the current state to warrant another player to purchase a signal,

and so forth. Each naive player, by contrast, erroneously believes that all of her predecessors

have bought signals and therefore refrains from buying one herself. When the state is very

persistent, naive players far enough along in the sequence of players believe that they know

they know the state with probability close to one, whereas the true probably hardly exceeds

one-half.

In Section 5, we explore how inferential naivety may combine with other types of play.

We first explore what happens when all players are inferentially naive and to some degree

“cursed”. Blending cursedness with inferential naivety may be of special interest because

of their potential for making opposite predictions: cursed players are too little influenced

by their predecessors’ actions, while inferentially naive players are seemingly too much so.

While there is truth to this contrast, inferential naivety says not just that herders infer too

much from previous actions, but more specifically that far too much weight accrues to early

relative to late signals. Indeed, cursedness does not undo our core result than inferential

naivety may lead to certain but wrong beliefs. To capture this intuition, we show in a

binary-action variant of our primary model that if everybody is inferentially naive and not

too cursed, then their limiting public beliefs may be closer to the wrong state than the

right one. Next we introduce a mixture of types–naive, cursed, and even rational–into our

primary model and establish an interesting form of robustness. When fully informed about

others’ types, rational players’ ability to eventually learn the true state does not depend upon

their share of the population. Essentially, rational players who observe a lot always uncover

the truth, so long as previous behaviour richly reflects the distribution of signals.2 Cursed

players simply ignore others’ signals, and inferentially naive players may again anchor with

2Indeed, rational herders learn the truth even in the binary signal/binary signal case, meaning that the

presence of not-fully-rational types in fact enhances rational players’ ability to infer information from play

and thereby improves efficiency.
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full confidence on the wrong state if the first few signals mislead.

In part because our main predictions lie in settings with little experimental evidence, and

in part because this paper aims to introduce a model that isolates one form of error from

other realistic ones, we neither attempt to tightly fit existing evidence nor to compare our

predictions systematically to other theories of departure from Bayesian-Nash equilibrium.

But in Section 6 we provide a brief and speculative discussion of how our model may help

to interpret existing experimental evidence and how further evidence could be gathered to

test it. We also briefly compare our model to other theories of non-Bayesian play.

2 Solution Concepts

In this section, we formally define the solution concepts that we apply in Sections 3 to 5 and

intuitively discuss their predictions relative to those of other solution concepts. We begin

with Eyster and Rabin’s (2005) concept of cursed equilibrium, which we weaken in a way

that preserves the form of informational misinference in a cursed equilibrium yet relaxes

the equilibrium assumption that players correctly predict the distribution of one another’s

actions. We use this notion of “cursed best response” to underpin our definition of “best-

response trailing naive inference” (BRTNI) play, the primary focus of this paper.

It is worth noting that all the variants of limited rationality that we explore in this paper

involve players who can be thought of as maximizing their expected payoffs in games given

some beliefs about others’ strategies. Formally, all the solution concepts we develop specify

correct beliefs about the game’s structure and specific beliefs about other players’ strategies.

Our models of non-rational play simply comprise particular theories as to how players form

the incorrect beliefs against which they optimize.
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2.1 Preliminaries

LetG = (A1, . . ., AN ;T0, T1, . . ., TN ; p;u1, . . ., uN) be a finite Bayesian game played by players

k ∈ {1, ..., N}. Ak is the finite set of Player k’s actions; in a sequential game, an action

specifies what Player k does at each of her information sets. Tk is the finite set of Player k’s

“types”, each type representing different information that Player k can have. For conceptual

and notational ease, we include a finite set of types for “nature”, T0. T ≡ T0× T1× ...× TN

is the set of type profiles, and p is the prior probability distribution over T , which we assume

to be commonly known. Player k’s payoff function uk : A× T → R depends on all players’

actions as well as their types. A (mixed) strategy σk for Player k specifies a probability

distribution over actions for each type: σk : Tk → 4Ak. Let σk(ak|tk) be the probability

that strategy σk assigns to type tk playing action ak.

The common prior probability distribution p puts positive weight on each tk ∈ Tk and

fully determines the conditional probability distributions pk(t−k|tk), Player k’s beliefs about

the types T−k ≡ ×
j 6=k

Tj of other players (including nature) given her own type tk ∈ Tk. Let

A−k ≡ ×
j 6=0,k

Aj be the set of action profiles for players j 6= k (excluding nature, who takes

no action), and σ−k : T−k → ×
j 6=0,k

4Aj be a strategy of Player k’s opponents (where they

mix independently), where σ−k(a−k|t−k) is the probability that type t−k ∈ T−k plays action

profile a−k under strategy σ−k(t−k).

The standard solution concept in such games is Bayesian Nash equilibrium:

Definition 1 The strategy profile σ is a Bayesian Nash equilibrium if for each Player k,

each type tk ∈ Tk, and each a∗k, σk(a
∗
k|tk) > 0 only if

a∗k ∈ arg max
ak∈Ak

X
t−k∈T−k

pk(t−k|tk) ·
X

a−k∈A−k

σ−k(a−k|t−k)uk(ak, a−k; tk, t−k).

In a Bayesian Nash equilibrium, each player correctly predicts both the probability distribu-

tion over the other players’ actions and the correlation between those actions and the other

players’ types.

7



2.2 Cursedness

Eyster and Rabin (2005) define the concept of cursed equilibrium to capture the idea that

even players who come to correctly anticipate others’ actions may not fully attend to the

informational content that those actions convey. A bidder in a common-values auction, for

instance, may suffer from the winner’s curse: she may not optimally account for the fact

that when others bid lower than her–a necessary condition for her to win–it indicates that

they possess negative information about the value of the good.

To define cursed equilibrium, we first define for each type of each player the “average

mixed strategy” of other players, averaged over the other players’ types. Formally, for each

strategy for Players −k, σ−k, and type of Player k, tk, define σ−k(·|tk) by

σ−k(a−k|tk) ≡
X

t−k∈T−k

pk(t−k|tk) · σ−k(a−k|t−k).

When Player k is of type tk, σ−k(a−k|tk) is the probability that strategy profile σ−k assigns

to Players −k playing the action profile a−k. A type tk of Player k who anticipates others’

actions but when choosing an optimal response fails to account for the informational content

of play behaves as if she believes that each type profile t−k of the other players mixes over

action profiles according to σ−k(·|tk) rather than according to their true, type-contingent

strategy profile σ−k(·|t−k). Different types of Player k may hold different beliefs about

Players −k’s strategies, as reflected in the fact that σ−k(a−k|tk) depends on tk. Let σ−k(tk) :

T−k → ×
j 6=0,k

4Aj denote tk’s beliefs about the average strategy of players j 6= k, namely

σ−k(tk) is the strategy players j 6= k would play if each type profile t−k played a−k with

probability σ−k(a−k|tk).

Definition 2 The mixed-strategy profile σ is a fully cursed equilibrium if for each Player

k, type tk ∈ Tk, and action a∗k, σk(a
∗
k|tk) > 0 only if

a∗k ∈ arg max
ak∈Ak

X
t−k∈T−k

pk(t−k|tk) ·
X

a−k∈A−k

σ−k(a−k|tk)uk(ak, a−k; tk, t−k).
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The strategy profile σ is a fully cursed equilibrium if each type tk of each Player k plays a

best response to the other players’ playing σ−k(·|tk) rather than their true, type-contingent

fully cursed equilibrium strategy σ−k(·|t−k).

As in Bayesian Nash equilibrium, players in a fully cursed equilibrium correctly predict

the distribution over others players’ actions; unlike in a Bayesian Nash equilibrium, they

ignore the correlation between those other players’ actions and types. We interpret such

“cursedness” not as Player k being certain that the other players behave according to σ−k

rather than σ−k but instead as Player k not properly thinking through the logic of other

players’ strategies. By neglecting how other players’ types or private information influence

their actions, players fail to perform proper inference from conditioning upon other players’

actions. For instance, suppose that the strategy profile σ specifies a pure, separating strategy

for every player: Player k plays the pure strategy ak(tk) : Tk → Ak, and ak(tk) = ak(t
0
k)

implies tk = t0k. A fully rational Player j understands that if ak = ak(tk), then Player k must

have type tk. By contrast, a fully cursed Player j infers nothing about Player k’s type from

observing or conditioning upon ak = ak(tk) and maintains her priors, p(tk|tj).

Eyster and Rabin (2005) also define a solution concept where players partially, but not

fully, appreciate the informational content in others’ behaviour. For χ ∈ [0, 1],

Definition 3 The mixed-strategy profile σ is a χ- cursed equilibrium if for each Player k,

type tk ∈ Tk, and action a∗k, σk(a
∗
k|tk) > 0 only if

a∗k ∈ arg max
ak∈Ak

X
t−k∈T−k

pk(t−k|tk)·
X

a−k∈A−k

[(1− χ)σ−k(a−k, t−k) + χσ−k(a−k|tk)uk(ak, a−k; tk, t−k)] .

The strategy profile σ is a χ-cursed equilibrium if each type tk of each Player k plays a

best response to the other players’ playing (1− χ)σ−k(·|t−k) + χσ−k(·|tk) rather than their

true, type-contingent fully cursed equilibrium strategy σ−k(·|t−k). When χ = 0, this reduces

to Bayesian Nash equilibrium; when χ = 1, it reduces to fully cursed equilibrium. For

intermediate values of χ, players partially, but not fully, appreciate how others’ actions
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depend upon their types. Whatever χ, players hold correct beliefs about the distribution of

others’ actions: their only mistake in a χ-cursed equilibrium takes the form of mis-inferring

others’ types from their actions.

Cursed equilibrium’s combination of assuming that players have correct expectations

about others’ actions while under-appreciating the relationship between others’ information

and actions seems reasonable in many contexts where players may learn the distribution of

one another’s actions without ever observing other players’ types.3 For example, in govern-

ment oil or timber auctions, a single set of bidders who compete for many similar tracts

of land or sea may come to learn the distribution of bids without ever learning their com-

petitors’ estimates of the assets’ values.4 In other contexts, like when encountering a novel

strategic situation, because players may not know the distribution of others’ actions, cursed

equilibrium may not be an appropriate solution concept, even if people do fail to take into

account the informational content of others’ actions.

In many settings, a far weaker notion of “cursedness” suffices for sharp predictions. When

players care about the information content in others’ actions–but not about the distribu-

tion of others’ actions per se–then the strong equilibrium assumptions built into cursed

equilibrium has no bite. Such is the case with the basic social-learning models considered in

this paper, where others’ actions exert no direct externalities: players care about others’ ac-

tions only insofar as those actions signal private information. This prompts us to define the

concept of “cursed best response”–the cursed analog of looking at the “dominant” actions

by rational players in a game. To formally develop our concept, we first define

uχk(a; tk, t−k) = (1− χ)uk(a; tk, t−k) + χ

⎛⎝ X
t0−k∈T−k

p(t0−k|tk)uk(a; tk, t0−k)

⎞⎠ ,

3This learning story is far less convincing as a justification for partially cursed equilibrium.
4In some settings, in addition to the distribution of other players’ actions, players may learn the distri-

bution of their own payoffs as function of their type and action as well as other players’ actions. Esponda

(forthcoming) develops a solution concept that joins cursed inference to this richer information feedback.
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the χ-weighted average of type tk’s payoffs from the action profile a when facing type t−k and

of averaging over all types t0−k ∈ T−k. Eyster and Rabin (2005) show that when type tk of

Player k maximises the “χ-virtual payoffs” uχk(a; tk, t−k) given beliefs that the other players

use strategy σ−k(·|t−k) she also maximises her original payoffs uk(a; tk, t−k) given beliefs that

the other players use strategy (1− χ)σ−k(·|t−k) + χσ−k(·|tk).

Definition 4 A type tk of Player k who plays an action ak in the set

CBRχ
k

³
tk; bA−k´ =

⎧⎨⎩ ak ∈ Ak : ∃σ−k : T−k → 4
³
×j 6=kÂj

´
, ak ∈ argmaxa0k∈AkP

t−k∈T−k
P

a−k∈Â−k p(t−k|tk)σ−k(a−k|t−k)u
χ
k(a

0
k, a−k; tk, t−k)

⎫⎬⎭ ,

plays a χ-cursed best response to beliefs that the other players play some strategies with

support Â−k.

The set CBR1k (tk;A−k) contains those actions in Ak that are “fully-cursed best responses”

by type tk of Player k to beliefs that the other players play some strategies with support

A−k. (Note that different types of Player k may hold different beliefs about other players’

strategies.) The definition of CBR1k (tk;A−k) suggests how a fully cursed player can be of two

minds about her opponents’ behaviour, both discerning when forming beliefs about oppo-

nents’ strategies that they condition their actions upon type and neglecting that correlation

when attempting a best response to those beliefs; this neglect shows up in a Player k who

contemplates her opponents’ playing σ−k best responding to (1− χ)σ−k(·|t−k) + χσ−k(·|tk)

rather than to σ−k. An interpretation is that Player k is fully rational except for erring in

computing best responses: whatever her beliefs about the correlation between her opponents’

types and actions, she computes best responses without attending fully to this correlation.5

5The alternative definition

CBR1k (tk;A−k) =

⎧⎨⎩ ak ∈ Ak : ∃σ−k : Tk → 4 (×j 6=kAj) s.t. ∀a−k ∈ bA−k,∀t−k, t0−k ∈ T−k, σ(a−k|t−k) = σ(a−k|t0−k),
ak ∈ argmaxa0k∈Ak

P
t−k∈T−k

P
a−k∈A−k p(t−k|tk)σ−k(a−k|t−k)uk(a

0
k, a−k; tk, t−k)

⎫
⎭

explicitly restricts Player k to best respond to cursed beliefs–only contemplate strategies by the other players
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2.3 Naive Inference

Players who are cursed fail to appreciate the information content inherent in others’ play.

We now introduce a solution concept where–in contrast to cursed inference–players do

understand that others’ actions depend on their information but misunderstand how that

dependence works. In particular, every player understands that the other players’ types

influence their actions yet disregards that other players understand the same thing. (As

we discuss in the next section, we believe that this type of error may be more likely than

cursedness in the context of the social-learning situations we study in this paper.)

Because fully cursed players neglect the information content in play, we can model naive

inference by having each player misapprehend all other players as being fully cursed. As with

cursedness, we develop different models embedding inferential naivety. Although a weaker

form of inferential naivety building from cursed best response suffices for our results in

Sections 3-5, we begin by introducing a stronger variant that we use to compare inferential

naivety to other solution concepts in Section 6. Let ΣFCE(G) be the set of fully cursed

equilibria of the Bayesian game G.

Definition 5 The mixed-strategy profile σ̂ is inferentially-naive information transmission

(INIT) if for each k, there exists σFCE ∈ ΣFCE such that for each tk ∈ Tk and each a∗k for

which σ̂k(a∗k|tk) > 0,

a∗k ∈ arg max
ak∈Ak

X
t−k∈T−k

pk(t−k|tk) ·
X

a−k∈A−k

σFCE−k (a−k|t−k)uk(ak, a−k; tk, t−k).

In INIT play, each player best responds to the beliefs that all other players play their parts

in some fully-cursed equilibrium. In games with a unique fully-cursed equilibrium, INIT

players have common beliefs about which fully-cursed equilibrium the other players are

with the property that their actions are independent of their types. It lends itself less straightforwardly to

the interpretation that players may appreciate the type-contingent nature of others’ strategies when forming

expectations about others’ behaviour but fail to account for that type contingency when best responding.
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playing. More generally, however, INIT play imposes no restriction on the joint distribution

of players’ beliefs beyond that each believes all the others to be playing in the manner

prescribed by some fully-cursed equilibrium.

Despite being defined with respect to cursed equilibrium rather than cursed best re-

sponses, INIT is not in any sense an equilibrium concept: unlike cursed equilibrium, INIT

players may have incorrect beliefs about even the probability distributions of over other play-

ers’ actions. Indeed, whenever no fully cursed equilibrium is a Bayesian Nash equilibrium,

this must be the case.6

To define a weaker form of inferential naivety, we use cursed best responses instead of

cursed equilibrium. First, define

CBRχ
k

³
tk;CBR

χ0

−k

´
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ak ∈ Ak : ∃σ−k : T−k → 4 (×j 6=kAj) , σ−k(a−k|t−k) > 0

⇒ ∀j 6= k,∀tj ∈ Tj, aj ∈ CBRχ0

j (tj;A−j), ak ∈ argmaxa0k∈AkP
t−k∈T−k

P
a−k∈A−k p(t−k|tk)σ−k(a−k|t−k)u

χ
k(a

0
k, a−k; tk, t−k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

the set of type tk of Player k’s χ-cursed best responses to beliefs that all other players play

χ0-cursed best responses to some beliefs about others’ strategies. From this, we can define

our main solution concept used in the next section.

Definition 6 The strategy profile (σ1, . . . , σN) is (best response trailing naive inference)

BRTNI play if for each type tk of each Player k, σk(ak|tk) > 0 only if ak ∈ CBR0k
¡
tk;CBR

1
−k
¢
.

In BRTNI play, each player plays a true best response to beliefs that all other players play

fully cursed best responses.7 As with cursed equilibrium, we interpret BRTNI not so much
6Cursed equilibrium and Bayesian Nash equilibrium differ only in games that include a “common-value”

component to payoffs, where one player would benefit from learning another’s private information. Eyster

and Rabin (2005) provide a formal statement of this condition as well as another sufficient condition for

cursed and Bayesian Nash equilibrium to coincide.
7“BRTNI” should be pronounced “Britainy,” meaning “that which resembles what you’d see in (Great)

Britain,” except it should be pronounced in a Britainy way, of dropping the middle syllable. Or you could

pronounce it like Britney Spears, but using all the syllables (of the first name).
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as Player k being convinced that Player i 6= k is cursed but rather as Player k not thinking

through how Player i makes informational inferences from Player j 6= i’s actions. Since j

may equal k, in general this means that Player k does not think through how Player i makes

inference from her own or a third player’s actions.

Eyster and Rabin (2005) show that for each χ ∈ [0, 1], χ-cursed equilibrium exists in any

finite Bayesian game. This implies that the larger set of cursed best responses is non-empty,

and hence BRTNI play exists in all finite Bayesian games. BRTNI play is far too weak a

solution concept for most context; for instance, in complete-information games it merely

restricts players to playing best responses to best responses, far less than rationalizability

(Bernheim, 1984, and Pearce, 1984).8 However, in a multi-stage game with observable actions

where players move one at a time and do not care about their successors’ actions, refining

players’ beliefs about their opponents’ actions would not affect their best responses. Thus, in

the social-learning environment studied in this paper, BRTNI is as strong a solution concept

as we need.

Cursed players under-appreciate the information content in others’ actions while inferen-

tial naive players misconstrue it. These two errors may coexist.

Definition 7 The strategy profile (σ1, . . . , σN) is (χ-cursed best response trailing naive

inference) χ-cursed BRTNI play if for each type tk of each Player k, σk(ak|tk) > 0 only if

ak ∈ CBRχ
k

¡
tk;CBR

1
−k
¢
.

In χ-cursed BRTNI play, players play a χ-cursed best response to beliefs that others play

fully cursed best responses. The concept of χ-cursed best response captures the idea that

players under-appreciate the information content in others’ play, while BRTNI means that

to the extent that players appreciate that there is information content in others’ play they

8INIT differs from BRTNI play by embedding much stronger notions of rationality. For instance, in

a complete-information game with a unique Nash equilibrium, only this Nash equilibrium is INIT, while

BRTNI requires only that players play best responses to best responses.
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misconstrue it by failing to perceive that other players make the informational inference that

they do.

3 Social Learning

We now apply the concept of inferential naivety to social learning. While we return to a

discussion of the implications of both rationality and cursedness in the settings we exam-

ine, our main emphasis is on inferential naivety (in particular, BRTNI) for two reasons.

First, we believe that inferential naivety may be relatively more prevalent than cursedness

in sequential social-inference settings. One reason is that seeing somebody take an action

that manifestly reflects her beliefs makes it salient that the action depends upon private

information. Observing someone choose one restaurant over another provokes the theory

that she prefers the chosen restaurant. This notion that seeing-is-inferring seems to accord

with the psychology of contingent thinking; insofar as cursedness as modelled by Eyster and

Rabin (2005) and analogy-based equilibrium as modelled by Jehiel (2005) reflect failures of

contingent thinking, observing actions may mitigate cursedness while very much not over-

coming the form of naivety embodied in BRTNI play. Indeed, while this intuition steps

outside formal models, most of Eyster and Rabin’s (2005) evidence for cursedness comes

in the context of simultaneous-move games, and the intuition is strongest there: players

may more severely neglect the informational content of others’ behaviour when preparing for

all contingencies–e.g., when contemplating the full range of bids by others in a sealed-bid

auction–than when reacting to these others’ behaviour–e.g., when responding to others’

dropping out of a sequential auction.

We also emphasize inferential naivety for its striking and novel results, which seem to

fit some of the patterns we observe in herding behaviour. And as Section 5 suggests, the

patterns of herding it produces in social-learning environment hold in the presence of other

types of players as well. Hence, the behaviour of the inferentially naive may be important
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even when they do not constitute the dominant type.

3.1 Convergence in the Finite Model

We begin by exploring the classical model of social learning introduced by Bikhchandani,

Hirshleifer, and Welch (1992). They show that given finite action and signal spaces, ra-

tional players almost surely eventually form an information cascade–ignore their private

information–and, hence, their public beliefs (a player’s beliefs from her predecessors’ ac-

tions but excluding her private signal) cannot converge to certainty. BRTNI players also

converge to limiting actions and public beliefs. In addition, with a rich enough information

structure, their public and private beliefs both almost surely do converge and to certain

beliefs; in such settings, their actions almost surely converge to extreme ones.

There are two possible states of the world, ω ∈ {0, 1}, each equally likely ex ante. Let

A =
©
a1, . . . , aK

ª
be the finite set of real-valued actions available to each of a countably

infinite sequence of players, where for each l ∈ {1, . . . ,K}, al ∈ [0, 1] and , al < al+1. Let S

be the finite set of available signals, where πω(s) be the probability that any player receives

the signal s ∈ S when the state is ω ∈ {0, 1}; signals are independent conditional on the

state. Assume that for each s ∈ S, π1(s)
π0(s)

/∈ {0,+∞}, i.e. no signal perfectly reveals the state.

Let s = argmins∈S
π1(s)
π0(s)

, the strongest signal in favour of ω = 0, and s = argmaxs∈S
π1(s)
π0(s)

,

the strongest signal in favour of ω = 1. For simplicity, assume that no two distinct signals

have the same likelihood ratio: for each s,s0 6= s, π1(s)
π0(s)

6= π1(s0)
π0(s0)

. With this assumption, we

can without loss of generality normalize s = π1(s)
π0(s)+π1(s)

∈ [0, 1]; a player with even priors who

receives signal s forms posteriors s. It is well known that in this context rational players

almost surely eventually cascade. Because they stop learning about the state after a finite

number of imperfect signals, rational players cannot become certain that they have learned

the true state. Let bk(a1, . . . , ak−1; sk) denote Player k’s belief in the state ω = 1 given her

predecessors’ actions as well as her private signal. Each Player k chooses an action ak ∈ A to
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maximize the payoff function uk(a1, . . . , ak, ak+1, . . . ;ω) = −(ω − ak)
2; she wishes to choose

her action as close as possible to the state of the world and does not care directly about any

other player’s action.

Let P (a) = {p ∈ [0, 1] : a ∈ argmaxA(−p(1− a)2 − (1− p)a2}, the set of beliefs over

which the action a is optimal. In order to avoid situations where BRTNI players observe

actions by their predecessors that contradict their model of the world, we assume that every

action in A is a fully cursed best response to some signal in S.

Proposition 1: Suppose that for each a ∈ A, E[s|s ∈ S ∩ P (a)] 6= 1
2
and that there exists

some s ∈ S such that π1(s)
π0(s)+π1(s)

∈ P (a). Then for BRTNI players, with probability one,

limk→∞ ak ∈ {a1, aK} and limk→∞ bk ∈ {0, 1}.

Proposition 1 uses two assumptions: first, that every action is a cursed best response to some

signal, and second that every action reveals beliefs that one of the two states is more likely

than the other: there is no action that is as likely to be chosen by a player with beliefs above

one-half as one with beliefs below one-half.9 When these hold, BRTNI players converge to

certain beliefs and to choosing one of the two most extreme actions. To gain an intuition,

suppose that actions converge to a unique limit a∗ ∈ A. Because BRTNI players believe that

all their predecessors follow their private signals, those far enough in the sequence believe

that a proportion close to one of their predecessors receive signals s ∈ P (a∗), each indicating

the same one of the two states strictly more likely than the other; hence, they converge to

certain beliefs in that state and best respond to those beliefs by choosing an extreme action.

The proof in the appendix demonstrates that actions converge to a unique limit point with

probability one.

9The second assumption is generic in the following sense: identify each action al with sup{p : p ∈ P (al)},
the highest beliefs that an agent could hold and find al optimal. The action space A then corresponds to

K − 1 points in [0, 1]. For any probability measure on [0, 1] that is absolutely continuous with respect to
Lebesgue measure, the probability of choosing an action space A that satisfies this condition is one.
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Given the assumption that every action is a cursed best response to some signal, rational

players also almost surely converge to playing an extreme action. Unlike BRTNI players,

however, they do not come to hold certain beliefs. Yet rational and BRTNI players differ

more substantially than in their limiting beliefs. To draw out this difference, we modify the

assumptions in Proposition 1 to allow for the presence of an action that is not a cursed best

response to any signal. Because BRTNI players expect that none of their predecessors will

ever play this action, we suppose that the game ends the first time it is played. For instance,

suppose that S = {0.4, 0.6} and A = {0.20, 0.40, 0.61}. In this model, rational players never

play the extreme action a = 0.20. Rational players who receive two successive high signals

(0.6) before the total number of low signals (0.4) exceeds that of high signals herd on 0.61.

But those who receive one more low than high signal before receiving two successive high

signals herd on 0.40. For example, if the first signal is low, then a1 = 0.4. If the second

signal is also low, then the second player forms posterior (0.4)2

(0.4)2+(0.6)2
= 4

13
, which, because

it is closer to 0.4 than to 0.2, leads him to choose a2 = 0.4. If the second signal is high,

then the second player forms posterior 0.5, which, because it is closer to 0.4 than to 0.61,

leads him to choose a2 = 0.4. Hence, the second and all succeeding players herd on a = 0.4,

implying that rational players never play a = 0.2. By contrast, BRTNI players interpret

every a = 0.4 action as emanating from a new low signal and, hence, cannot herd on this

action and, eventually, herd on a = 0.2. In short, the result that BRTNI players almost

surely herd on extreme actions is more widely applicable than for rational players.10

In other settings, BRTNI players do not converge to extreme actions or certain beliefs.

For instance, when A = {0.1, 0.6} and S = {0.4, 0.6}, then all BRTNI players choose a = 0.6,

and public beliefs never depart from the priors. BRTNI players who watch the same action

played again and again do not necessarily conclude that it is the optimal action. Unlike

concepts like “persuasion bias” (DeMarzo, Vayanos and Zwiebel, 2003), where people who

10Were the game not to end with the first play of a = 0.2, then the next player would observe a history

inconsistent with her model of play. We postpone discussion of this issue to the next subsection.
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hear the same information again and again eventually conclude that it must be true, BRTNI

players in some settings can recognize that others’ actions convey no information.

A central finding of the finite herding literature is that players who collectively possess

sufficient information to identify the true state may end up herding on the wrong action.

This holds for BRTNI players too. For instance, if the first two players in the example

get high signals, then all BRTNI players choose 0.6; this happens with positive probability

when ω = 0. Yet because they misread the information content in their predecessors’ actions,

BRTNI players typically are more prone than rational players to herding on the wrong action.

The next subsection illustrates this in a stark way.

3.2 Extreme Example of Mistakes

In certain settings, BRTNI players may wind up with the wrong limiting beliefs with proba-

bility close to one. Once again, there are two states of the world, ω ∈ {0, 1}; private signals

belong to the set S = {sl, sm, sh}. Conditional on the state, the signals are distributed as

follows:
Pr [s|ω] sl sm sh

ω = 1 εaεb 1− εb (1− εa)εb

ω = 0 2εaεb 1− εb (1− 2εa)εb,
where εa > 0 and εb > 0 both are small. The signal sl provides weak evidence in favour of

ω = 0, sh weak evidence in favour of ω = 1, and sm no evidence at all. The signal sm occurs

far more frequently than sh, which in turn occurs far more more frequently than sl.

Players choose actions from the set A = {al, am, ah}, where P (al) =
£
0, 4

9

¤
, P (am) =h

4
9
, 1−εa
2−3εa

i
, and P (ah) =

h
1−εa
2−3εa , 1

i
. These sets of beliefs for which the three actions are,

respectively, optimal have been chosen in such a way that BRTNI players choose am until

some one of them observes a signal other than sm, after which all BRTNI players choose that

action. Characterizing BRTNI play following the first non-sm signal forms the heart of our

result.
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What is the likely course of events? Given that εa > 0 and εb > 0 are both small,

irrespective of the state the expected signal sequence comprises a long series of sm signals

eventually followed by an sh signal, followed in turn by more sm signals, all before the first

sl signal occurs. Rational players best respond with a sequence of am actions followed by

a sequence of ah actions; rational herders infer little from the play of ah. If the first sl

appears before too long, its owner plays al. But if the streak of ah continues for long enough,

then rational herders infer that no sl signal has been observed, and eventually actions may

settle on ah, irrespective of later signals, a classic herd. Rational herders ultimately settle on

one of the two extreme actions without converging to certain beliefs. For small εa, rational

players eventually herd on ah with probability 1
4
, in which case public beliefs converge to

Pr[ω = 1|a1, a2, . . .] = 2
3
; with the remaining 3

4
probability, they herd on al, in which case

public beliefs are Pr[ω = 1|a1, a2, . . .] = 4
9
.11

What will BRTNI do? BRTNI players believe that each in a sequence of ah actions

indicates an sh signal rather than a far-more-likely sl signal. After sufficiently many ah

actions, no BRTNI player deviates from ah, even one who holds an sl signal. Unlike rational

herders, who must observe a very long sequence of ah actions before ignoring their own

signals, BRTNI players far more readily accept that ω = 1 from a sequence of ah’s. In fact,

if BRTNI players observe k(εa) repetitions of ah before observing any play of al, where k(εa)

solves
1

1 + 2
³
1−2εa
1−εa

´k(εa) = 1− εa
2− 3εa

,

then all succeeding players choose ah, irrespective of signal. For any εa > 0 and π < 1,

there exists some εb > 0 small enough such that even when the true state is ω = 0 the

11For εa small, public beliefs when herding on a ∈ {al, ah} have the property that receiving an extreme
signal against the herd leaves the herder indifferent between continuing to herd on a and breaking the herd

onto am. This condition generates the formulas for public beliefs, μl =
4−8εa
9−7εa in an al herd and μh =

2−2εa
3−4εa

in an ah herd. The martingale property of rational beliefs then delivers the likelihoods of the two kinds of

herd.
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probability of receiving a sh followed by k(εa)−1 sm or sh signals before receiving a single sl
signal is at least π. By choosing εa and then εb small enough, we can make the probability of

BRTNI converging to play on ah arbitrarily high. Formally, for any π < 1, if εa <
1−√π
2

and

εb < 1− π
1
2

ln 1−εa
1−2εa

ln 2+ln 1−εa
1−2εa , then the probability that BRTNI actions take the form of a sequence

of am’s followed by an infinite sequence of ah’s exceeds π.

Although the formulas above were developed for equal priors over the two states, the

result extends to general priors: for any non-degenerate priors, BRTNI players come to

believe with near certainty that ω = 1 even when ω = 0.

3.3 Naive Convergence in the Continuous Model

As discussed in the introduction, it is well understood that the basic logic driving the rational-

herding literature centres around the “coarseness” of the model’s action and signal spaces.

While in some settings players’ private information may not be easily extractable from their

actions, in others the scope for observation and inference seem far too rich for fully rational

players to herd inefficiently. To explore some of the more striking differences between naive

social inference and rational social inference in richer settings, we develop a continuous-signal,

continuous-action model of the sort discussed in the introduction.12

12A problem that our continuous model allows us to avoid–dismissed in our finite analysis by the assump-

tion in Proposition 1 that every action is the cursed best response to some signal–is how to characterize

BRTNI players’ beliefs following an action that contradicts their model of play. For instance, consider a

modification of our model that leaves the action space intact but reduces the signal space to a finite set.

Let s < 1 be the strongest signal that ω = 1. While BRTNI players believe no action a > s will ever

be played, whenever actions converge to one this will prove false. This raises the question of what beliefs

BRTNI should adopt after observing their predecessors make choices ruled out by their model of the world.

We could extend our solution concept to assume that a player who observes her predecessor behave in a

way inconsistent with full cursedness believes that this predecessor is χ-cursed for the largest χ consistent

with the history of play. Because this predecessor is in fact uncursed, such a χ must exist. Intuitively, this

extension forces a player who observes her predecessor choose an action too high to be consistent with naive
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Once more there are two possible states of the world, ω ∈ {0, 1}, each equally likely ex

ante. Each player k receives the signal sk ∈ [0, 1]; signals are independent and identically

distributed conditional on the state.13 When ω = 0, signals have the density function f0;

when ω = 1, they have density f1. Each player observes her signal and the actions of

all previous players before choosing an action in [0, 1]. For simplicity, we assume that the

model is symmetric–for each s ∈ [0, 1], f0(s) = f1(1− s)–and assume that the likelihood

ratio L(s) ≡ f1(s)
f0(s)

is continuously differentiable with image R+ and derivative L0(s) > 0. The

assumption that the likelihood ratio is unbounded and takes every positive value implies that

players may receive signals of every possible level of informativeness. These assumptions

allow us to normalize signals such that s = Pr[ω = 1|s]. Let ak(a1, . . . , ak−1; sk) be the

action taken by the kth player as a function of previous players’ actions and her own private

information, and let a ≡ (a1, a2, . . .) ∈ [0, 1]N be the profile of all players’ actions. Every

Player k has payoff function gk(a;ω) = − (ak − ω)2, which is maximized by setting ak =

E[ω|Fk], where Fk is all the information available to Player k.

This social-learning environment provides players with two sources of rich information.

First, an unbounded likelihood ratio of players’ private signals means that some players re-

ceive arbitrarily strong signals about the identity of the true state. Second, by choosing

actions in the continuum, players reveal their posteriors to their successors. Either of these

features suffices to guarantee that rational players form beliefs and choose actions that con-

verge almost surely to the true state; in particular, rational players converge with probability

one to correct beliefs and actions with informative binary signals and a continuum of actions,

or a continuum of signals and binary actions.

inference to believe that her predecessor received the highest possible signal. It is then easy to see how this

allows for positive probability of false herding. Because extending BRTNI in this way would lengthen the

paper more than it would shed any light on irrational herding, we have not done so.

With this extension to our solution concept, we believe that both rational and BRTNI play in very-rich-

but-finite social-learning models converge to the continuous case we explore.
13We use Sk to denote the Player k’s signal as a random variable and sk its realization.
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In BRTNI play, each agent thinks that all previous agents are fully cursed, whereas in

reality no agent is cursed. Clearly a1(s1) = Pr[ω = 1|s1] = s1: the first agent follows

her signal. For the remainder of the analysis, it is easier to work with the log odds ratios

ln
¡

a
1−a
¢
, the log of the ratio the agent’s beliefs that ω = 1 versus ω = 0. For the first agent,

ln
³

a1
1−a1

´
= ln

³
s1
1−s1

´
. Because the first player follows her signal whatever her cursedness,

the second player correctly infers the first player’s signal from her action and chooses

ln

µ
a2

1− a2

¶
= ln

µ
a1

1− a1

¶
+ ln

µ
s2

1− s2

¶
= ln

µ
s1

1− s1

¶
+ ln

µ
s2

1− s2

¶
,

just as she would in a Bayesian Nash Equilibrium. The third player believes the second to

be fully-cursed. Because a fully-cursed Player 2 would choose ln
³

a2
1−a2

´
= ln

³
s2
1−s2

´
, Player

3 mistakenly ignores the effect that a1 has on a2. Hence, he chooses

ln

µ
a3

1− a3

¶
= ln

µ
a1

1− a1

¶
+ ln

µ
a2

1− a2

¶
+ ln

µ
s3

1− s3

¶
= ln

µ
s1

1− s1

¶
+

µ
ln

µ
s1

1− s1

¶
+ ln

µ
s2

1− s2

¶¶
+ ln

µ
s3

1− s3

¶
= 2 ln

µ
s1

1− s1

¶
+ ln

µ
s2

1− s2

¶
+ ln

µ
s3

1− s3

¶
.

The third player’s action differs from the optimal choice by over-weighting the first signal.

Intuitively, because Player 3 ignores how Player 2’s action depends upon Player 1’s action

and, hence, signal, Player 3 unwittingly uses Player 1’s signal twice–once when learning

from Player 1, and again when learning from Player 2. Player 4, in turn, will, by dint of

interpreting actions 1, 2, and 3 as signals 1, 2, and 3, in fact end up weighting the first signal

four-fold:
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ln

µ
a4

1− a4

¶
= ln

µ
a1

1− a1

¶
+ ln

µ
a2

1− a2

¶
+ ln

µ
a3

1− a3

¶
+ ln

µ
s4

1− s4

¶
= ln

µ
s1

1− s1

¶
+

µ
ln

µ
s1

1− s1

¶
+ ln

µ
s2

1− s2

¶¶
+

µ
2 ln

µ
s1

1− s1

¶
+ ln

µ
s2

1− s2

¶
+ ln

µ
s3

1− s3

¶¶
+ ln

µ
s4

1− s4

¶
= 4 ln

µ
s1

1− s1

¶
+ 2 ln

µ
s2

1− s2

¶
+ ln

µ
s3

1− s3

¶
+ ln

µ
s4

1− s4

¶
.

More generally, player t’s actions are described by

ln

µ
at

1− at

¶
=
X
τ<t

2τ−(t−1) ln

µ
sτ

1− sτ

¶
+ ln

µ
st

1− st

¶
.

By contrast, rational players give all signals equal weight. Relative to rational play, BRTNI

players overweight early signals, giving the first signal half the weight of all signals, the

second half of what remains, etc.

Because BRTNI play weights early signals so heavily, it seems possible that even an

arbitrarily large number of players may fail to learn the true state in the event that the first

few players have inaccurate signals. On the other hand, the fact that the likelihood ratio

goes to infinity at s ∈ {0, 1} allows players to receive arbitrarily strong signals of the state.

If arbitrarily strong signals occur frequently enough, then players should learn the true state.

If not, then they may “herd” on wrong beliefs and actions.

Proposition 2 shows that BRTNI players may herd on wrong beliefs, where the key

assumption is the lack of any positive-probability “magic signal” that reveals the true state

with certainty.

Proposition 2: Suppose that var
¡£
ln
¡

S
1−S
¢
|ω = 0

¤¢
<∞. Then in BRTNI play, for each

k < 1 there exists δ > 0 such that Pr[at > k for all t|ω = 0] > δ.

Proposition 2 establishes that even when ω = 0 there is positive probability that every

single BRTNI in an infinite sequence chooses an action that exceeds any given threshold.
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The result is striking because the information structure allows players to receive arbitrarily

strong signals that the state is ω = 0 as well as to transmit their posteriors to succeeding

players. Yet if the first couple of agents receive signals high enough to take actions above k,

then with positive probability no agent ever takes an action below k. This occurs because

of the speed with which BRTNI players come to believe that ω = 0 is the true state.

The assumption in the proposition that the log likelihood ratio of signals can take on any

real value implies that BRTNI players never observe a sequence of actions that they deem

impossible. The assumption of finite variance rules out positive-probability “magic signals”

that reveal the true state with probability one. Proposition 2 does not tell us that BRTNI

beliefs converge. But since public beliefs form a bounded submartingale when above one-half

and a bounded supermartingale when below one-half, they do converge almost surely to a

limiting distribution that assigns positive probability to only zero or one. Consequently,

BRTNI players converge to the wrong actions and beliefs with positive probability.

To illustrate Proposition 2, consider the case where the densities are f0(s) = 2(1 − s)

and f1(s) = 2s. When ω = 0, signals come from a triangular distribution with mode at

s = 0, and when ω = 1 they come from a triangular distribution with mode s = 1. The

two extreme signals s ∈ {0, 1} fully reveal the state but occur with probability zero. Table

1 below reports simulations of BRTNI as well as Bayesian Nash play for these distributions

when ω = 1.
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Player Pr[aBRTNI
t < 0.05] Pr[aBNE

t < 0.05] Pr[aBRTNI
t > 0.95] Pr[aBNE

t > 0.95]

1 0.0025 0.0026 0.0977 0.0976

2 0.0058 0.0060 0.3030 0.3035

3 0.0216 0.0070 0.5965 0.4871

4 0.0483 0.0069 0.7640 0.6247

5 0.0739 0.0060 0.8332 0.7232

6 0.0914 0.0051 0.8623 0.7954

7 0.1016 0.0041 0.8754 0.8477

8 0.1068 0.0033 0.8815 0.8857

9 0.1098 0.0026 0.8845 0.9148

10 0.1115 0.0020 0.8856 0.9356

Table 1: Simulated probabilities of BRTNI and BNE actions given ω = 1.

Table 1 reports the probabilities of the various players choosing actions that are either

very high or very low under the two different solution concepts. Since BRTNI and BNE

coincide for the first two players, these should be the same; the small differences are an

artifact of the simulation techniques. For each, the likelihood that the second player chooses

a very low action is about 0.006. A rational Player 3 more likely than not chooses a higher

action than Player 2 since when ω = 1, most signals move posteriors in that direction.

Indeed, for rational players, the likelihood that Players 2 and 3 choose low actions is similar.

BRTNI Player 3’s, however, are more than three times as likely as their predecessors to

choose a low action. Intuitively, this is because she interprets Player 1 and 2’s low actions

as two very strong pieces of evidence in favour of ω = 0, in which case she needs a very high

signal to choose an action above 0.05. Moving down Column 2 to examine later players’

actions suggests that BRTNI players converge to a = 0 when ω = 1 with probability around

11 percent. Column 4 reflects that this cannot occur with rational players, who, by Player

10, are only 2 percent as likely as BRTNI players to choose low actions.
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Another interesting feature of BRTNI play is the speed of convergence. Summing entries

in the last row from Columns 2 and 4 gives that there is a 99.7% chance of BRTNI Player

10 playing an action below 0.05 or above 0.95; a rational Player 10 will do so with only

93.6% chance. While we have no formal result along these lines, the observation suggests

that BRTNI play converges faster than rational play.

3.4 Long-Held Weak Beliefs Are Probably Wrong

Although BRTNI converges fast, the next proposition establishes an interesting result in the

rare event that beliefs converge slowly. In particular, if players’ beliefs remain stable but do

not converge, then they are probably wrong.

Proposition 3: For each interval [c, d] ⊂ R++ there exists T ∈ N such that if for each

t ∈ {1, . . . , T}, ln
³

at
1−at

´
∈ [c, d] under BRTNI play, then

Pr[ω = 0|a1, . . . , aT ] > Pr[ω = 1|a1, . . . , aT ].

Because ln
¡

a
1−a
¢
> 0 if and only if a > 1

2
, Proposition 3 establishes that if BRTNI for many

periods believes ω = 1 more likely than ω = 0, then in fact it is more likely that ω = 0

than that ω = 1. In BRTNI play, each player believes that all of her predecessors’ actions

coincide with their signals. A player at the end of a long run of high actions believes that her

predecessors must all have high signals. So, the only reason why she would not conclude that

ω = 1 with virtual certainty must be that she receives a very low signal herself. Hence, the

way that players can take actions above one-half for many periods without any one of them

taking an action sufficiently close to one is that if after a while all of those players receive

low signals; this event indicates that zero is more likely than one to be the true state.14

14The intuition is similar to the comparable weak-beliefs-are-probably-wrong result developed in Rabin
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A limitation of Proposition 3 is that it only applies to settings where each of the first T

players chooses an action suggesting that the state is more–but not too–likely to be one

than zero. A stronger result would be that for any d > 0 there exists some integer T such

that if we know nothing other than that Player T chooses an action whose log odds is in

(0, d), then zero is more likely than one to be the true state. While we lack any formal result

along those lines, simulation results for the parametric example introduced above suggest it

to be true. The following table presents the probabilities of BRTNI Players 10 through 20

playing actions in various intervals when ω = 1:

Player aBRTNI
t ∈ (0.05, 0.50) aBRTNI

t ∈ (0.50, 0.95) Pr
£
ω = 1

¯̄
aBRTNI
t ∈ (0.50, 0.95)

¤
10 0.00143435 < 0.00144879 0.5025

11 0.00071807 ≈ 0.00071808 0.5000

12 0.00036055 ≈ 0.00035963 0.4994

13 0.00017987 < 0.00017923 0.4991

14 0.00008881 < 0.00008972 0.5026

15 0.00004537 ≈ 0.00004535 0.4999

16 0.00002306 > 0.00002254 0.4943

17 0.00001168 > 0.00001131 0.4920

Table 2: Simulated probabilities of intermediate BRTNI actions

Players 14 through 17 choose actions that are bounded away from the limit and below one-

half more frequently than they do actions bounded away from the limit and above one half.

Because the model is symmetric, this implies that when, say, Player 17 chooses an action in

(0.05, 0.50) it is more likely that ω = 1 than ω = 0; that is, Player 17’s weak beliefs that

ω = 0 is more likely than ω = 1 are on average wrong. Of course, the fact that BRTNI

and Schrag’s (1999) model of “confirmatory bias”, which assumes that an individual tends to misread later

signals as reinforcing earlier signals.
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players’ beliefs converge so quickly with such high probability limits the empirical relevance

of this result as well as that contained in Proposition 3.

4 Naive Inference in Broader Settings

In this section we study the implications of naive inference outside the canonical herding

setting studied in the previous section, illustrating how the propensity of BRTNI players to

form extreme beliefs and wrong beliefs play out more generally. The two modifications of

the environment we consider both involve limitations to how much information players have

available to them.

4.1 Learning with Limited Observation

In the models of the previous section, BRTNI players overweight the signals of each mover

by counting them again and again through each predecessor’s action as well as directly. For

instance, Player 3 double-counts Player 1’s action by counting it once through Player 2’s

action and then once again directly. Naturally, a Player 3 who cannot observe Player 1’s

action cannot double count Player 1’s information in this way. This suggests that BRTNI

players who do not observe all previous play may behave more rationally. Indeed, if each

BRTNI player can only observe her immediate predecessor, then BRTNI and rational play

coincide:

Proposition 4: Suppose that BRTNI players can only observe their immediate predecessor’s

action. Then BRTNI play coincides with Bayesian-Nash-equilibrium play.

The intuition is that BRTNI players make no mistake because each correctly extracts in-

formation from the one thing she observes, her predecessor’s action. Note, interestingly,

however, that BRTNI players have the wrong theory of where their predecessors’ beliefs
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come from; each believes that the action she observes contains only her predecessor’s signal,

when in fact it contains all the prior signals.

While Proposition 4 establishes the ironic result that severely limiting inferentially naive

players’ observations can lead these players to make correct inferences, milder limits on

observability of past play do not qualitatively overturn our main result. When two or more

actions are observed, there is still a positive probability of herding on the wrong action and

beliefs:

Proposition 5: Suppose that BRTNI players can only observe their two immediate prede-

cessors’ actions and that var
¡£
ln
¡

S
1−S
¢
|ω = 0

¤¢
<∞. Then in BRTNI play, for each k < 1

there exists δ > 0 such that Pr[at > k for all t|ω = 0] > δ.

In the benchmark model, the signal of player t comes to have twice the weight of the signal

of player t+ 1 in actions in period t+ 2 and beyond. When BRTNI players can observe the

previous two players’ actions, as t approaches infinity this ratio converges to ϕ, the golden

ratio. Intuitively, limiting every player to observing only her immediate two predecessors

only takes effect with Player 4. Since Player 3 has already over-weighted Player 1’s signal,

Player 4 will as well. And when Player 4 over-weights Player 2’s action, he also over-

weights Player 1’s signal. The proof for Proposition 2 goes through almost directly when the

weight 2 is replaced by ϕ. Likewise, having players observe their three predecessors’ actions

changes the limiting ratio to ρ, the ratio of terms in the generalized Fibonacci sequence

st = st−1 + st−2 + st−3, or a root of the cubic x3 − x2 − x − 1. In fact, the conclusion of

Proposition 1 goes through when players can observe their immediate k predecessors for any

k > 1.

The result that BRTNI players may come to hold wrong limiting beliefs and take the

wrong limiting actions holds when players cannot observe the order of their predecessors’

play.
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Proposition 6: Suppose that BRTNI players can observe all their predecessors’ actions

(but not necessarily the order) and that var
¡£
ln
¡

S
1−S
¢
|ω = 0

¤¢
<∞. Then in BRTNI play,

for each k < 1 there exists δ > 0 such that Pr[at > k for all t|ω = 0] > δ.

Rational players’ actions depend upon the order of their predecessor’s moves. For in-

stance, Player 3 would like to combine Player 2’s action with her own signal and ignore

Player 1’s action. But a Player 3 who cannot observe the order of her predecessors’ moves

cannot do that in our model where every action corresponds to an optimal action given

some priors and signal realization. BRTNI players, however, do not attend to the order of

their predecessors’ play because they believe that each of their predecessors simply follows

his signal and that all signals have equal validity. Since observing the order of predecessors’

play does not affect BRTNI players, any result that we established the order of moves was

observable and common knowledge holds equally well without. For instance, Proposition 5

would continue to hold if BRTNI players could not observe the order of their two immediate

predecessors’ moves.

We believe that Propositions 5 and 6 demonstrate an important robustness of our re-

sults. It is hard to imagine a setting where people know that they are in a social-learning

environment but can observe no more than the action of their immediate predecessor. But

in many settings it seems unrealistic to know which predecessor moved when, and people

may simply receive summary statistics of their predecessors’ actions.

4.2 Naive Inference When Information is Costly

A central finding of the herding literature is that rational people may fail to efficiently aggre-

gate private information: players who collectively possess sufficient information to identify

the true state fail to do so when individually they have incentive to herd. In settings where

rational players recognize that they have not learned the true state, we have seen above that

BRTNI players may become certain that they have.
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Through a variant of our basic model in which each player chooses whether to pay to

receive a private signal of the state or to remain uninformed, we illustrate here a related

point: BRTNI players may come to hold confident yet mistaken beliefs not only in settings

where they collectively possess enough information to identify the state but also in settings

where they lack such information. We assume that players observe neither whether their

predecessors purchased private information nor the nature of that information when pur-

chased; as usual, they do observe the history of their predecessors’ actions. In this context,

BRTNI players commit a new form of error: each believes that her predecessors–because

they are “cursed”–acquire their own signals rather than rely on the behaviour of their own

predecessors.

To illustrate most simply how BRTNI might be led astray, we modify our previous payoff

and information structure. In each period t, there are two possible states of the world,

ωt ∈ {0, 1}, each equally likely ex ante. From period to period, the state of the world can

drift: each period, with probability θ ∈ (0, 1), the state “changes”, in which case the new

state is drawn with independent 0.5 probability. If θ = 1, then the state is i.i.d.; if θ = 0,

then the state is fixed as before. Formally, for each t and ωt ∈ {0, 1}, Pr [ωt+1 = ωt] =

(1− θ)1 + θ 1
2
= 1− θ

2
; the state changes in a given period with probability θ

2
.

Each Player k (with one player per period of time) can pay cost c > 0 to receive a perfect

signal sk ∈ {0, 1} of the state ωk. She then chooses an action ak ∈ {0, 1}. She observes

all previous players’ actions (although our primary result requires only that she observe her

immediate predecessor’s action).

Player k has the payoff function gk(ak;ωk) = − (ak − ωk)
2 − c if she buys a signal and

gk(ak;ωk) = − (ak − ωk)
2 if not. Since buying a signal allows her to take the right action,

a player’s de facto payoff from buying a signal is −c. Her payoff from not buying a signal

depends upon her likelihood of choosing the right action without buying a signal. If she

chooses the right action with probability π without buying a signal, then her payoff from not

buying a signal is −(1−π). Each player optimally purchases a signal if and only if π < 1−c.
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Rational players use time-dependent strategies. If c > 1
2
, then no player ever purchases

a signal because, starting from a flat prior, the cost of information exceeds the benefit of

becoming fully informed. Suppose instead that c < 1
2
. In this case, the first player purchases

a signal. Succeeding players imitate this initial action until the probability that the state

has departed from its initial position crosses some threshold; at this point, another player

finds it optimal to purchase a signal. In particular, after the maximum integer n for which

(1− θ)n + [1− (1− θ)n]1
2
> 1− c, another player will purchase despite seeing all n previous

players play the same action. (In the event that some player observably deviates from

the equilibrium path, BNE does not impose any restrictions on subsequent behaviour.) In

general, rational players efficiently trade the cost of obtaining additional information off

against the benefit of learning the state.15 When c < 1
2
θ, each player purchases a signal,

while when c > 1
2
θ players only periodically buy new information.

In this highly stylized setting with known and equal costs of information, players herd

cyclically, knowing within each herd that only the first action conveys any information about

the state. This illustrates the classical logic of rational herding: players know that the “herd”

represents no new information at all and is merely imitation.

BRTNI play exhibits an altogether different dynamic. Like rational players, when c < 1
2
θ

each BRTNI player purchases her own signal. But when c > 1
2
θ, no BRTNI player except the

first ever purchases a signal; instead, all simply follow the (infinite) herd begun by Player

1. This happens because each BRTNI player incorrectly believes that all previous players

are cursed and have therefore purchased signals. When θ is small, each player believes that

she knows the state with near certainty, whereas in fact players far enough along in the

sequence have correct beliefs with probability only approximately equal to one-half. Like

our example in Section 3.1 where BRTNI players do not herd, this result clarifies that our

solution concept consists of more than the hypothesis that players take others’ actions at

15Without characterizing the exact likelihood of correct actions or expenditures on information as a func-

tion of θ and c, it can be seen that when either θ or c is small, play will be close to efficient.
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face value: here, BRTNI players incorrectly believe that their predecessors are in fact certain

about the optimal action.

5 Diverse Inference

In this section, we return to the basic setting of Section 3, and explore what happens when

players exhibit cursed or rational behaviour in addition to inferential naivety.

We found above that BRTNI play converges quickly–sometimes to the wrong beliefs and

action–because public beliefs become very extreme very quickly. When all players are in

fact partially cursed, then they under-infer predecessors’ information from their actions–

rightly or wrongly–preventing public beliefs from becoming so extreme. Hence, cursedness

in this kind of social-learning environment counteracts BRTNI “over-inference”. Rational

players who recognize the types of errors that their fellow players commit, by contrast, may

be able to extract a great deal of information from their predecessors’ actions and, indeed,

converge to correct beliefs and actions. In this section we explore the “robustness” of our

predictions for inferentially naive players to the presence of other types of inference. We do

so in two ways: first, we return to our solution concept “χ-cursed BRTNI play” defined in

Section 2, where players are both cursed and inferentially naive, and characterize limiting

beliefs and actions as they depend on the extent of their cursedness; second, we explore the

behaviour of a mix of inferentially naive, cursed, and rational players.

5.1 Cursedly Naive Herding

This section explores the extent to which cursedness overturns our main results. As before,

we allow continuous signals, but here we simplify the previous model by restricting actions to

be binary, namely A = {0, 1}. This combination of assumptions maintains the feature that

rational players almost surely form correct, certain limiting beliefs and play the appropriate
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action.

Recall that in χ-cursed BRTNI play, players play a χ-cursed best response to beliefs

that others play a fully cursed best response to some beliefs. The concept of χ-cursed best

response captures the idea that players under-appreciate the information content in others’

play, while BRTNI means that to the extent that players appreciate that there is information

content in others’ play they misconstrue it by failing to perceive that other players make the

informational inferences that they do.

Unlike BRTNI and rational play, cursed play need not converge, for players overweight

their own private information. For instance, when χ = 1, each player follows her own

signal, and, hence, play cannot converge with positive probability. Public beliefs, which we

define here in the simplest way–what each player would believe about the state without

her private signal–do converge, in this case to one-half as no player infers anything from

her predecessors’ moves. More generally, Proposition 7 characterizes what happens to public

beliefs in the limit. Let m0 be the median signal when ω = 0, i.e. Pr [s ≥ m0|ω = 0] = 1
2
.

Proposition 7: In the binary-action model, when χ < 2m0 public beliefs in χ-cursed BRTNI

play converge to 1− χ
2
with positive probability.

Proposition 7 establishes that limited cursedness does not prevent public beliefs from con-

verging to something close to the wrong state. In the binary-action model, public beliefs

in period t depend only on the number of players before period t playing a = 1 minus the

number playing a = 0. Suppose that many players choose a = 1 such that public beliefs

are close to 1 − χ
2
. If not too cursed, then a χ-cursed BRTNI player chooses a = 1 with

probability greater than one-half with probability greater than one-half. Hence the number

of players choosing a = 1 less those choosing a = 0 is a random walk with positive drift,

which with positive probability never returns to its current position.

Because m0 <
1
2
, Proposition 7 does rule out cases where players are very cursed. Never-

theless, the degree of cursedness that is compatible with wrong limiting beliefs can be sub-
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stantial. In our example above where f0(s) = 2(1− s) and f1(s) = 2s–signals are (uncondi-

tional on the state) uniformly distributed–χ need only be smaller than 2m0 = 2−
√
2 ' 0.59

for there to be positive probability that public beliefs are wrong.

5.2 Heterogeneous Types

Sections 3 and 4 treated the case where all players are BRTNI, and the previous subsection

showed that a limited form of our main result holds when all players are both inferentially

naive and (boundedly) cursed. We now turn to an exploration of play when some play-

ers differ in their strategic sophistication by assuming that some fraction 1
n
of players are

BRTNI–with the remainder cursed or rational. For simplicity, we make the strong assump-

tion that the rational players know which of their predecessors are rational, which are cursed,

and which are BRTNI. No assumption about what cursed or BRTNI players believe has con-

tent or implication, for cursed players ignore others’ actions and BRTNI players believe that

all predecessors’ actions directly reflect their signals.

Let B denote the set of players who are BRTNI.

Proposition 8: Suppose that var
£
ln
¡

S
1−S
¢
|ω = 0

¤
<∞ and that for some n ∈ N, Players

n, 2n, . . . are BRTNI and the remainder cursed or rational. Then there exists some δ > 0 for

which Pr [limt∈B,t→∞ at = 1|ω = 0] > δ.

Proposition 8 asserts that our main qualitative result–that with positive probability, BRTNI

players wind up with wrong limiting beliefs and actions–remains valid no matter their share

of the population. It does not, however, imply that rational players among BRTNI players

come to hold misleading beliefs and choose wrong actions. Indeed, they do not. Although

more generally the presence of unidentifiable BRTNI or cursed players would surely slow

down rational learning, with the extreme and implausible assumption that rational players

know which of their predecessors are rational, cursed, and BRTNI, they in fact will at all
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stages play actions that exactly reflect all prior signals and, hence, converge to the truth.

Cursed players follow their own signals throughout. This combination of non-converging

cursed players and differently-converging rational and BRTNI players seems an interesting

implication of the underlying logic of the model, although probably unrealistic. If rather

than know the type of each of her predecessors, rational players only knew the proportions

of the different types, it would hinder their inference their predecessors’ signals from actions.

While we suspect that the same limit result would obtain, the speed of convergence would

likely fall dramatically, limiting the relevance of limit results.

6 Discussion and Conclusion

The purpose of this paper is to explore the implications of a new theory of error in inference

to social-learning environments. We have not concentrated on drawing out its implications

in detail for existing experiments, in part because to the best of our knowledge the con-

tinuous model in which we develop our most striking predictions has never been tested in

the laboratory, and in part because our simple model omits other kinds of error in strategic

reasoning for which there is ample intuition and evidence. Yet we conclude the paper with

a brief discussion that relates our concepts to existing evidence, speculating on how they

might combine and compare with other theories of boundedly rational play in herding and

other settings.

Recent laboratory tests of social-learning models have found support for some predictions

of the rational model while also uncovering several systematic discrepancies. Anderson and

Holt (1997), Goeree, Palfrey, Rogers and McKelvey (2007), Hung and Plott (2001), and

Nöth and Weber (2003) all find that when rational inference requires players to ignore their

own signals subjects do so more often than not–but far less than all the time. Researchers

have attributed this pattern to “overconfidence”, whereby subjects overuse their own private

signals. While the psychological interpretation or foundation for such overconfidence is not
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always clear (nor the primary emphasis of research), we find it useful to clarify that in many

circumstances what has been framed or formalized as “overconfidence” is more likely to be

something akin to cursedness.

Despite their different predictions about beliefs, cursedness and overconfidence make sim-

ilar predictions about actions in the finite-action models tested in the laboratory: cursedness

says that subjects under-use the others’ signals, whereas overconfidence says that subjects

over-use their own signals; both lead to relative over-weighting of one’s own signal. But

“overconfidence” in the sense of players mistakenly perceiving their private information as

more accurate than it is (or more accessible than another player’s information) seems in

these contexts to have little a priori psychological plausibility, and we are unfamiliar with

any direct evidence for it. In a typical social-learning experiment, subjects observe signals

in the form of single draws from an urn or the like. While the large psychology literature on

inference identifies settings in which people over-interpret their private information, thinking

it is more valuable than it is, we know of no direct evidence that people have any general

propensity to regard their own random draws as superior other people’s identically generated

random draws. Nor are we familiar with evidence that people per se over-infer from a single

draw from an urn in the type of symmetric-priors situations studied in the lab.16 In future

social-learning experiments with rich enough action and signal spaces to identify the first

mover’s beliefs, overconfidence in one’s own signal should show up just strongly and more

cleanly in first movers’ actions than in later players’ actions (where cursedness and other

strategic errors act as confounds); cursedness predicts no systematic error by first movers.

Much of the experimental evidence on social learning fits neither overconfidence nor

cursedness but rather seems more in line with inferential naivety. Kübler and Weizsäcker

16Indeed, while overconfidence seems quite plausible in many real-world social-learning environments, the

fact that subjects behave in ways consistent with both overconfidence and cursedness in laboratory settings

where independent evidence suggests that subjects are not overconfident should lead researchers to conclude

that overconfidence is less likely to drive real-world departures from the rational model.
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(2004) show in a variant of the model that subjects’ beliefs become too extreme to be

well explained by rational play. Kübler and Weizsäcker (2005) report the related finding

that longer cascades are more stable, intuitively because over the course of a long string

of A choices people come to believe A more and more likely, reducing the likelihood that

anyone will break the herd by choosing B. Çelen and Kariv (2005), in another social-

learning environment, find evidence that some players suboptimally ignore their own private

information perhaps because they read too much into their predecessors’ actions, exactly the

prediction of BRTNI play in their setting.

The model designed to explain departures from rational play that most closely resembles

ours in herding settings is Goeree, Palfrey, Rogers and McKelvey (2007), which combines

Quantal-Response Equilibrium (QRE), whereby players play a noisy best response to their

predecessors’ actual play—with more costly actions played less frequently, with an “ad hoc

belief-updating rule” that functions like the overconfidence described above. In the tradi-

tional finite-signal, finite-action model, Goeree, Palfrey, Rogers and McKelvey (2007) show

that in a QRE players’ beliefs converge to certainty. To gain an intuition, consider again

the binary model first described in the introduction, and imagine that the first two players

choose A; a rational third player herds on A, and rational public beliefs never budge from

knowing that the first two signals are A. Because breaking the herd to choose B costs more

in expected payoff terms for someone with an A signal than someone with a B signal, QRE

predicts that a Player 3 with a B signal does so more frequently. Thus, a Player 3 who

plays A provides successors with information that she more likely holds an A signal than a

B signal. Since this same logic applies to all players, beliefs converge to certainty on the

right action. The result that QRE leads players to correct limiting beliefs stands in marked

contrast to the main results of our paper, where with positive probability BRTNI play leads

to certainty on the wrong state.

Another natural comparison for our model is “persuasion bias” as modelled in DeMarzo,

Vayanos, and Zwiebel (2003), who study how a form of naive or automatic inference from
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mere repetition of messages. Translated into the social-learning setting here, the logic of

their model naturally predicts the same growing confidence in a herd as does inferential

naivety. One might conjecture that a simple heuristic of being more and more persuaded

that an action is good by seeing more and more people do it explains many anomalies. While

we suspect that this simple intuition indeed plays out independent of inferential naivety, our

model offers sharply different predictions across different settings about people’s propensity

to infer too much. For instance, a BRTNI player who shares a public signal supporting one

action and observes all her predecessors take that action would not come to believe more

and more strongly in the correctness of that action, for she understands that others’ actions

depend upon the public information and correctly infers that the others lack any additional

information. Only when actions depend upon private information does she makes any infer-

ence. Consequently, naive inference can be viewed as almost a refinement or elaboration of

generalized persuasion bias or the propensity to be convinced by repetition.

This last comparison points to a more general feature of our approach in this paper that

we hope enhances its usefulness: we define a general model of errors applicable to a broad

range of different games–with “zero degrees of freedom”. Although the model surely omits

much that could be usefully incorporated on an ad hoc basis, in principle the various solution

concepts in Section 2 can be applied to any strategic setting without ancillary assumptions.

Indeed, our stronger-than-needed solution concepts in Section 2 provide a guide as to how

to embed inferential naivety in broader settings where the very weak assumptions about

rationality built into BRTNI play do not suffice for sharp predictions.

The “portability” and generality of our models in Section 2 prove especially useful for

comparisons of our models to others in the literature. A leading non-rational model of

behaviour in other environments that is directly relevant to our model is the “Level-k Model”

introduced in complete-information games by Nagel (1995) and Stahl and Wilson (1994) and

extended to Bayesian games by Crawford and Iriberri (2007). In it, all players are in fact

Level k, who best respond to beliefs that all other players are of Level k − 1; Level-0 types
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randomize uniformly over all available actions, regardless of their private information. In

Bayesian games, this implies that there is no relationship between Level-0 actions and types,

so Level-1 types, who best respond to beliefs that all other players are Level 0, infer nothing

about type from action. Thus, Level 1’s play cursed best responses to the particular theory

that their opponents’ actions are uniformly distributed; cursed best response is a weaker

solution concept than Level-1. Level-2 types best respond to beliefs that all other players

are Level 1’s, meaning that they best respond to particular cursed best responses; BRTNI

play is a weaker solution concept that Level-2. Yet in all the settings we explore in this paper

BRTNI makes unique predictions, so they coincide with both Level-2 and INIT predictions.17

While our results provide a new set of implications for Level-k models, it is worth com-

paring predictions of the two theories in wider contexts. Cursed equilibrium differs from

Level-1 in that it predicts that players only make errors in inference and not in predicting

the distribution of their opponents’ play. (Cursed best response makes no prediction about

players’ beliefs about the distribution of their opponents’ actions.) Inferential naivety also

predicts that “Level-2 inferential errors” occur more frequently than “Level-2 non-inferential

errors”.Yet the two models also can differ in their predictions about inference.

Consider, for instance, a slight variant on the classical herding model and its cover story:

people observe others sequentially entering one of two restaurants in London’s West End,

and infer quality from choice. But they don’t observe the behaviour of patrons inside the

restaurants. Once inside a restaurant, each patron can behave rationally in a civil manner

or irrationally in some uncivil manner, with common knowledge that no one wishes to be

17Camerer, Ho and Chong’s (2004) “Cognitive-Hierarchy Model of Games” extends the Level-k Model to

allow Level-k players to best respond to beliefs that their opponents’ levels are drawn from some distribution

on {1, . . . , k − 1}, with Level k and k − 1 sharing beliefs about the relative frequencies of levels k − 2 and
below. For instance, a Level-2 might best respond to beliefs that half of her opponents are Level-1 and the

remainder Level-0. While making somewhat different predictions than BRTNI or Level-2, this model also

delivers our main result that players in the continuous model come to hold wrong yet fully confident limiting

beliefs with positive probability.

41



uncivil. The catch is that the uncivil behaviour–be it boisterous drink and loud talk, or

stripping off one’s clothes–exerts an externality on the following patron but not (to keep

the story simple) subsequent patrons. So now if person t+ 1 sees person t enter restaurant

A she must form not only beliefs about the quality of the two restaurants but also about t’s

behaviour inside. To take the simplest case, suppose that uncivil behaviour generates a very

large positive externality–perhaps people enjoy watching others land themselves in trouble

through irresponsible partying or undressing–that outweighs the quality of the food. Then

Level-1 restaurant goers will herd fully on whatever the first patron does, each predicting

a 50% chance of enticingly irrational behaviour by her immediate predecessor, and ignoring

her own signal. Not so a cursed-equilibrium restaurant-goer: since nobody actually acts

irrationally, each only follows suit if her private information indicates good food. Because

cursed best responders do not necessarily attribute rationality to their predecessors, they

might or might not herd. Certainly, cursed best response does not make the unique Level-1

prediction of herding.

These different predictions generate different Level-2, INIT, and BRTNI predictions.

Level-2 players do not assume any informational content in observed herds, and therefore

follow their own signals. Adding appropriate assumptions about heterogeneity in tastes or

off-equilibrium-path responses to make further predictions, we are likely to observe very little

herding. INIT play, by contrast, predicts herding for exactly the same reason that underlies

it in the models of this paper. BRTNI play is indeterminate but does not exclude herding.

Of course, such contrived examples do not form the core of the social-learning literature,

and many predictions of inferential naivety hold equally well for Level-k models. But in

more complicated and realistic models–such as, for instance, cases where crowding or other

externalities matter–the models’ predictions do differ, and so it seems important to explore

the frequency and implications of informational versus non-informational mistakes.

We conclude by noting a problematic and interesting feature that our model shares with

many models of bounded rationality, namely that sufficiently reflective players might suspect
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from their predecessors’ behaviour that something is amiss with their world view. BRTNI

players believe that each predecessor takes an action based on her private information alone;

if so, then actions follow the same distribution as players’ signals. But BRTNI players’

actions very much do not conform to the distribution of signals in either state of the world;

instead, they converge either to zero or one. Hence, a BRTNI player with some meta-

awareness that she might hold the wrong model of the world might recognize the unlikeliness

of observed play and consequently update to become “less BRTNI.” Intuitively, BRTNI

players far enough along in the sequence might ask themselves, say, why their one hundred

immediate predecessors all chose actions very close to one. Could each truly have followed

her signal? Since the likelihood of this event is small, BRTNI players may conclude that

they likely hold the wrong model of the world. This suggests a potential non-robustness of

our results–to the extend that such reflection occurs.

The more cursed players are, however, they more they behave as their successors expect

them to behave. In the binary-action model treated above, cursed BRTNI players do not

herd: because the likelihood ratio has full support, starting from any point in the game,

both actions are played in the next period with positive probability. Hence, BRTNI players’

observations of their predecessors’ play may not differ significantly enough from their theory

as to how those predecessors should play to cause them to abandon that theory. This

suggests some robustness to our result in the case where BRTNI players are cursed, namely

that cursed BRTNI players’ public beliefs converge with positive probability to the “wrong”

limit.

7 Appendix

Proof of Proposition 1: Let L∗ be the set of limit points of BRTNI play; for each l ∈ L∗,

let s(l) = E[s|s ∈ S ∩P (l)], which by assumption cannot equal one-half, and let S∗ = {s(l) :

l ∈ L∗}. First note that if S∗ ⊂
¡
0, 1

2

¢
or S∗ ⊂

¡
1
2
, 1
¢
, then L∗ = {a1} or L∗ = {aK}. To

43



see this, note that if S∗ ⊂
¡
0, 1

2

¢
, then each play of an action in L∗ provides future BRTNI

players with further evidence that ω = 0, and for any C > 1 there exists some N ∈ N such

that any player n > N believes ω = 0 at least C times as likely as ω = 1. For C sufficiently

high, she best responds by choosing a1, and hence L∗ = {a1}.

Now suppose that S∗ contains points on either side of one-half; let a = max
©
l ∈ L∗ : s(l) ≤ 1

2

ª
and b = min

©
l ∈ L∗ : s(l) > 1

2

ª
. Define

Kb = min

½
n ∈ N :

µ
s(b)

s(b)

¶n

s ≥ 1
¾

and

Ka = min

½
n ∈ N :

µ
s(a)

s(a)

¶n

s ≤ 1
¾
,

When players play b and receive Kb s signals in a row, then they can never again play a.

Likewise, when players play a and receive Ka s signals in a row, then they can never again

play b. But the probability that players never receive Kb s signals in a row when playing b

nor Ka s signals in a row when playing a is zero, which implies that with probability one

BRTNI play converges to a unique limit point that is either a1 or aK . Q.E.D.

Proof of Proposition 2: Choose k ∈
¡
1
2
, 1
¢
and let K = ln

¡
k
1−k
¢
. Let Pt be the log

likelihood of public beliefs in period t, and note that with BRTNI play Pt+1 = 2Pt+ln
³

st
1−st

´
.

When ω = 0, with positive probability P2 ≥ 3K. If ln
³

st
1−st

´
> −tK for each t, then

P3 = 2P2+ln
³

s2
1−s2

´
> 2·3K−2K = 4K, and then P4 = 2P3+ln

³
s3
1−s3

´
> 2·4K−3K = 5K,

etc. In general, Pt > (t + 1)K, and ln
³

at
1−at

´
= Pt + ln

³
st
1−st

´
> (t + 1)K − tK = K as

desired. From Chebyshev’s Inequality, Pr
h
ln
³

st
1−st

´
> −tK

¯̄̄
ω = 0

i
> t2K2−σ2

t2K2 , and hence

Pr

∙µ
st

1− st

¶
> e−tK ,∀t

¯̄̄̄
ω = 0

¸
>

Y
t

t2K2 − σ2

t2K2
= exp

(X
t

ln

µ
t2K2 − σ2

t2K2

¶)

= exp

(X
t

−σ
2

zt

)
,
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for zt ∈ (t2K2 − σ2, t2K2), by the Mean-Value Theorem. Hence

Pr

∙µ
st

1− st

¶
> e−tK ,∀t

¯̄̄̄
ω = 0

¸
> exp

(X
t

− σ2

t2K2

)
= exp

½
− σ2π

6K2

¾
> 0.

Finally, note that the result holds for k ≤ 1
2
because it holds for any k > 1

2
. Q.E.D.

Proof of Proposition 3: Let [c, d] ⊂ R++ be given. Define T1 =
¥
d
c
+ 1
¦
, so that (T1−1)c ≤

d < T1c. Choose δ ∈ (0, T1c− d). For Player T1 + 1,

ln

µ
aT1+1

1− aT1+1

¶
=

X
τ<T1+1

ln

µ
aτ

1− aτ

¶
+ ln

µ
sT1+1

1− sT1+1

¶
> T1c+ ln

µ
sT1+1

1− sT1+1

¶
.

If ln
³

aT1+1
1−aT1+1

´
≤ d, then ln

³
sT1+1
1−sT1+1

´
< −δ. The same is true for Player T1 + 2 and so

forth. Now pick T2 such that T1d− δT2 < 0 and set T = T1+ T2. We claim that if ln
³

at
1−at

´
for each t ∈ {1, . . . , T}, then Pr[ω = 0| (a1, . . . , aT )] > Pr[ω = 1| (a1, . . . , aT )]. To see that,

note that the first T1 players have signals with log likelihoods no larger than d (otherwise

one would choose an action with log odds above d), and the next T2 have signals with log

likelihoods no larger than δ. Since T1d − δT2 < 0, Bayesian beliefs after T periods ascribe

higher probability to the state being zero than one. Q.E.D.

Proof of Proposition 4: The argument is stated in the text.

Proof of Proposition 5: Similar to Proof of Proposition 2 and hence omitted.

Proof of Proposition 6: Since BRTNI players pay no heed to the order of their predeces-

sors’ moves, it follows from Proposition 2.

Proof of Proposition 7: Assume that χ < 2m0 and choose ε > 0 such that χ+2ε < 2m0,

or χ
2
+ ε < m0. By definition of m0, 1

2
= Pr[s ≥ m0|ω = 0] < Pr

£
s ≥ χ

2
+ ε
¯̄
ω = 0

¤
.
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Suppose that the first K players get signals above 1
2
, with K large enough that public beliefs

are 1− χ
2
− ε; this occurs with positive probability. Player K + 1 chooses a = 1 with

Pr

"
s :

s
¡
1− χ

2
− ε
¢

s
¡
1− χ

2
− ε
¢
+ (1− s)

¡
χ
2
+ ε
¢ ≥ 1

2

¯̄̄̄
¯ω = 0

#
= Pr

h
s ≥ χ

2
+ ε
¯̄̄
ω = 0

i
≡ p >

1

2
.

Public beliefs at time t depend only on the Markov process

n(t) = #{τ < t : aτ = 1}−#{τ < t : aτ = 0},

and since

Pr[at = 1|n(t) > K,ω = 0] > Pr[at = 1|n(t) = K,ω = 0] = p >
1

2
,

Pr
£
∃bt > K : n

¡bt¢ = K
¤
is less than that under random walk with Pr[at = 1] = p ∀t. Since

this is less than one, there is positive probability that n(t) > K ∀t > K. In this case, public

beliefs cannot converge to χ
2
and must converge with probability one to 1− χ

2
. To conclude,

when ω = 0 public beliefs converge to 1− χ
2
with positive probability. Q.E.D.

Proof of Proposition 8: As in the proof of Proposition 2, we write the log likelihood of

public beliefs of the kth BRTNI Player, Player kn, as a function of previous signals:

Pkn =
k−1X
κ=0

n−1X
τ=1

ακn+τ ln

µ
sκn+τ

1− sκn+τ

¶
.

We claim that for each κ ∈ {2, . . . , k − 1} and τ ∈ {1, . . . , n − 1},α(κ−1)n+τ
α(κ−2)n+τ

≤ n
n− 1

2

. To see

this, notice that the fewest times s(κ−2)n+τ can appear in P(κ−1)n is once, which happens

when τ = n − 1 or all of the players between Player (κ − 2)n + τ and Player (κ − 1)n are

fully cursed. The signal s(κ−1)n+τ appears in Pκn is once plus the number of rational players

among Players {(κ− 1)n+ τ +1, . . . , κn− 1}–call the cardinality of this set R–for a total

of R+ 1 times. The signal s(κ−2)n+τ appears in Pκn at least R+ 2 times. If κ = k − 1, then

α(κ−1)n+τ
α(κ−2)n+τ

=
R+ 1

R+ 2
≤ n

n+ 1
≤

n− 1
2

n
,
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as desired, where the first inequality follows from R ≤ n− 1. As k →∞,

α(κ−1)n+τ
α(κ−2)n+τ

≤ lim
m→∞

(2m − 1)(n− 1) + 2m−1
(2m − 1)(n− 1) + 2m

α(κ−1)n+τ
α(κ−2)n+τ

≤ lim
m→∞

2m ln 2(n− 1) + 2m−1 ln 2
2m ln 2(n− 1) + 2m ln 2

α(κ−1)n+τ
α(κ−2)n+τ

≤ lim
m→∞

n

n− 1
2

=
n− 1

2

n
,

where the second line comes from L’Hôpital’s Rule. Since the limit is approached from below,

this gives the desired result for any k. From here, we can adapt the argument from the proof

of Proposition 2, using the fixed factor n− 1
2

n
in place of 2, and treating the signals in blocks

of n. Q.E.D.
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