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Abstract
Influential theories of the decision making process hold that a choice is made once the cumulative weight of noisily
sampled information reaches a desired level. While these theories were originally motivated as optimal solutions to
statistical problems, the extent to which people optimally spend time deliberating is less well explored. I conduct an
experimental test of optimality in a setting where the speed of information processing reflects the difference in value
between options. In this case, spending a long time without having arrived at a conclusion signals both that the problem is
hard and that the options are similar in value, so the confidence level required to trigger a decision should decline over
time. I find that a recently developed theory of the optimal time-varying threshold improves model fit by accurately
predicting observed truncation of response time tails. Principles of optimality may thus help account for patterns of choice
and response time that characterize the process of deliberation.
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When making a decision, we typically face a tradeoff
between the speed of our choice and its resulting quality.
An increasingly popular class of theories, known as se-
quential sampling models, precisely characterizes the na-
ture of this tradeoff by detailing the process of delibera-
tion in a psychologically and neurally plausible fashion
(for review, see Forstmann et al. 2016; Ratcliff et al.
2016). Such theories describe decision making as the
product of two key elements: the stochastic accumulation
of evidence over time in favor of each option and the
decision criterion that determines when sufficient evi-
dence has been amassed to commit to a choice.
Sequential sampling models were originally derived from
efficient statistical algorithms, in which the decision crite-
rion reflects the optimal balance between speed and accu-
racy (Wald 1947; Stone 1960; Bogacz et al. 2006); how-
ever, the extent to which people optimally spend time

deliberating has remained underexplored. This paper tests
a new theoretical prediction made by Fudenberg et al.
(2018) about the economically optimal criterion in a set-
ting where the accumulation rate reflects the value differ-
ence between options.

Sequential sampling models have recently been ap-
plied to choice among economic goods assuming that
the accumulation rate is proportional to the difference
between the subjective values of items (Krajbich et al.
2010; Krajbich et al. 2015; Krajbich et al. 2012;
Krajbich et al. 2014; Milosavljevic et al. 2010; Krajbich
and Rangel 2011).1 In this value-based setting, not only
is the speed of processing uncertain (because values are
not known in advance), but it is also directly linked to
potential rewards. Hence, two things are signaled when
time passes but the decision maker has not yet selected
an option: the task is difficult (Drugowitsch et al. 2012;
Moran 2015), and the decision maker is close to indiffer-
ence between the goods. Both of these imply that contin-
ued deliberation is less profitable, and consequently, the
standard of confidence required to commit to a choice
should decline over time. Fudenberg et al. (2018) precise-
ly characterize the optimal threshold in this framework

1 This body of work builds on related applications which do not explicitly tie
the accumulation rate to value (e.g., Hawkins et al. 2014; Otter et al. 2008;
Trueblood et al. 2014).

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s42113-019-0025-9) contains supplementary
material, which is available to authorized users.

* Rahul Bhui
rbhui@g.harvard.edu

1 Departments of Psychology and Economics & Center for Brain
Science, Harvard University, 52 Oxford St, Cambridge, MA 02138,
USA

Computational Brain & Behavior
https://doi.org/10.1007/s42113-019-0025-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s42113-019-0025-9&domain=pdf
http://orcid.org/0000-0002-6303-8837
https://doi.org/10.1007/s42113-019-0025-9
mailto:rbhui@g.harvard.edu


and show that it declines at an approximately hyperbolic
rate when values are normally distributed (see also
Tajima et al. 2016 who compute numerical solutions).
In an experiment designed to adhere closely to their the-
oretical assumptions, I test their predictions against com-
parably parametrized versions of the drift diffusion model
(DDM) with constant boundaries.

My experiment is based on a modification of the tradi-
tional random dot motion task in which participants must
ascertain the direction of consistent dot motion among
noise dots that distractingly move in random directions
(Britten et al. 1992; Newsome et al. 1989). I use a bi-
directional variant in which groups of dots move consis-
tently in two directions rather than one (in addition to
noise dots). Crucially, I set the payoff from choosing a
direction to be proportional to the number of dots moving
in that direction. Therefore, the ease of processing, ulti-
mately reflected by the diffusion model drift rate, contains
information about the relative value of options as the the-
ory requires. This broad type of setting—used also in
studies such as Oud et al. (2016) and Pirrone et al.
(2018b)—might be called value-linked decision making
in contrast to value-based, as the accumulation process
is merely correlated with differences in value rather than
being driven by them. Such an approach permits precise
control over the distribution of values, which is important
for the theory to be applied appropriately, but which
would be challenging to enforce with consumer goods
due to subjectivity of preference. This paradigm thus
forms a bridge between perceptual and value-based deci-
sion making that allows the theory to be tested under
suitable circumstances.

I find that collapsing boundaries provide a better fit to
behavior than flat boundaries for most participants.
Although even the basic fixed threshold DDM captures mean
response time and accuracy data well, only collapsing
boundaries accurately predict observed truncation in the tails
of the response time distribution, in line with their adaptive
purpose of curtailing wasteful deliberation. Fudenberg et al.
(2018) derive a simple approximation to the optimal threshold
that parametrizes a hyperbolic function using basic diffusion
model parameters, yielding a two-parameter collapsing
boundary DDM (plus non-decision time). This approximation
is strongly favored over flat and generic hyperbolic thresholds
by an aggregate Bayesian model selection procedure. Overall,
participant behavior appears consistent with predictions of
optimality in the present scenario. It must be noted that the
analysis is confined to models with a relatively small number
of parameters. This restriction is necessary because the iden-
tification of collapsing threshold models is known to be im-
paired by extra parameters used to extend the DDM
(Voskuilen et al. 2016). Nonetheless, this evidence indicates
at least that principled models of collapsing boundaries are

useful in that they improve predictive power while economiz-
ing on parameters.

Uncertain-Difference Drift Diffusion Model

Many situations involve a binary choice where the difference
in value between options is variable and uncertain. For in-
stance, an employer deciding between two potential em-
ployees is unsure not only about which of them is better, but
also by how much. Both candidates might be about equally
effective, in which case lengthy deliberation will not produce
much additional value—or one candidate might substantially
increase profits while the other ruins a project, in which case
lengthy deliberation is essential. In value-based DDMs, the
accumulation rate is based on the difference in values between
options (e.g., Krajbich et al. 2014). If one option is much
better, then confidence tends to rise quickly. Thus, the confi-
dence trajectory carries information about the value gap in
addition to option rank. Spending a long time deliberating
without coming to a conclusion accordingly implies that the
options are similar in value. The agent should then curtail their
deliberation time, contributing to collapse of the decision
threshold.

Fudenberg et al. (2018) develop analytical results charac-
terizing the optimal rate of collapse. In their setup, the agent is
faced with two options, i ∈ {l,r}, which have unknown values,
(vl, vr) ∈ℝ2. The agent holds a prior belief about these values,
μ0 ∈Δ(ℝ2), and observes a two-dimensional signal Zi

t

� �
t∈ℝþ

which, as in the DDM, evolves according to a Wiener process
with drift:

dZi
t ¼ vidt þ αdBi

t ð1Þ

where α is the noisiness of the signal and dBi
t

� �
are indepen-

dent Brownian motions. They continuously update their belief

about the values, holding a posterior mean for vi denoted X i
t

¼ E vij Zi
s

� �
0≤ s< t

h i
that is conditioned on the signal trajecto-

ry up to each point in time.2

The agent must determine both which option to select and
when to stop deliberating. A flow cost c > 0 is assumed to be
incurred for each moment of time spent before a selection is
made, which is interpreted as the opportunity cost of time—
that is, the value of the best alternative activity (outside of the
task) that the agent could be engaging in. They must choose a
stopping time τ from the set of all stopping times T, which
yields a cost of cτ. Observe that when the agent stops at time τ,
they optimally choose the option i with the highest posterior

2 For more on Bayesian formulations of diffusion models, see Bitzer et al.
(2014) and Fard et al. (2017).
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expected value X i
t, and so the reward from stopping is

max
i¼l;r

X i
τ . Thus, they confront the Wald optimality problem,3

maxτ∈TE maxi¼l;rX i
τ−cτ

� �
: ð2Þ

The first term represents the expected reward from the se-
lected option, and the second term represents the cost of the
chosen deliberation time. A sufficient statistic for this decision
turns out to be the difference in signal values,

Zt≡Zl
t−Z

r
t ¼ vl−vr

� �
t þ α

ffiffiffi
2

p
Bt; ð3Þ

where Bt ¼ 1ffiffi
2

p Bl
t−B

r
t

� �
is a Brownian motion.4

The optimal policy depends critically on the prior distribu-
tion of values. The flat threshold of the classic DDM can be
subsumed within the above framework; it is optimal when
there is a fixed certain difference between the values of the
two options—that is, when the prior is confined to two possi-
bilities, in both of which one option is better than the other by
a fixed positive amount. Formally, this means the prior μ0
distributes the probability mass among two states, (vH,vL)
and (vL,vH) where vH > vL, and the decision maker earns the
high payoff vHwhenmaking the correct choice (l in the former
state, r in the latter state). Hence, they know the magnitude of
the value difference but not its sign. Under this assumption,
they know they are not indifferent even before coming to a
conclusion. If the decision maker has spent a long time and Zt
is still close to 0, they essentially face the same problem they
started with, and are thus as willing to continue with deliber-
ation as they were at the outset. The current value of the
process Zt is a sufficient statistic for stopping, meaning that
the past trajectory carries no additional useful information,
and so the stopping threshold does not change over time.

The uncertain-difference model instead assumes a
Gaussian prior on option value, vi∼N X 0;σ2

0

� �
. In this case,

spending a long time without coming to a conclusion carries
information about the value difference. It implies that the
agent is probably nearly indifferent between options and

should therefore cut short their deliberation and decide
quickly. Thus, the stopping threshold decreases over time,
and Fudenberg et al. (2018) characterize the optimal rule
under this Gaussian assumption. The implications of their
results are most clearly depicted by a function that asymp-
totically approximates the optimal threshold:

boundary b tð Þ ¼ 1

2c σo
−2 þ α−2tð Þ ð4Þ

This boundary function has a number of meaningful
properties. First, it is hyperbolic in time (i.e., declines at
rate 1/t) and declines asymptotically to zero, meaning that
eventually the agent chooses almost at random. Second, it
is pointwise decreasing in the cost of time c which captures
the underlying reluctance to deliberate. Third, it is
pointwise increasing in the prior variance σ0 which reflects
the possible benefit of making a good choice. For example,
an agent should require more evidence and spend more
time deliberating when comparing houses as opposed to
lunch items, because the variance in values is higher for
houses. Finally, the rate of collapse is increasing in signal
noise α. When noise is low, spending more time is an
especially strong sign that the true value difference is small
and hence that continued deliberation has little benefit and
should be curtailed. Note that this model does not nest
constant thresholds (except in degenerate cases), in con-
trast to more flexible collapsing boundary models that are
sometimes applied (e.g., Hawkins et al. 2015). This prop-
erty is not an assumption but a theoretical result that can be
tested empirically, as will be done in this paper.

Value-Linked Random Dot Motion Task

Participants

Twenty-four participants were recruited through the Caltech
Social Science Experimental Laboratory, all of whom were
college or graduate students at Caltech. They were paid a
$10 show-up fee in addition to payment for performance as
described below. One participant is excluded from the follow-
ing analyses due to a computer error which prevented data
collection.

Procedure

Participants engaged in two blocks of a motion discrimination
task, each containing 100 trials. To adhere closely to the struc-
tural assumptions made by Fudenberg et al. (2018), a modi-
fied version of the random dot motion task (e.g., Newsome
et al. 1989; Britten et al. 1992) was used. As usual, partici-
pants had to discern the motion direction of consistently

3 While this is the most widely used optimality criterion across fields of study,
it is not the only one that has been proposed (for discussion, see Bogacz et al.
2006; Pirrone et al. 2014; and Bhui 2019). Tajima et al. (2016) calculate
numerical solutions for collapsing boundaries under alternative criteria such
as reward rate maximization, though Pirrone et al. (2018b) fail to find empir-
ical support for the resulting predictions.
4 Although this setup bears some resemblance to the standard race model due
to the specification of two independent accumulators, the two models should
not be confused. The race model assumes that a response is triggered when
either accumulator crosses a given threshold. The uncertain-difference DDM
instead treats the accumulators as two sources of information which are used to
inform the optimal balance between reward and time expenditure. Hence, the
decision criterion can be defined based on any combination of accumulator
values. The setup entails that the difference in accumulators is a sufficient
statistic for solving the optimization problem in Expression (2), and thus the
uncertain-difference model boils down to a version of the DDM. See also
Bogacz et al. (2006) for further explication of the technical connections be-
tween various sequential sampling models.
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moving dots against overlapping randomly moving noise
dots. However, there were two points of departure from the
most common paradigm.

First, rather than the classical stimulus consisting of one
group of signal dots moving consistently either left or right
and one group of noise dots moving randomly, the modified
stimulus comprised two groups of signal dots (one moving
consistently left and onemoving consistently right) in addition
to noise dots. Lam and Kalaska (2014) investigated this task
and found that the difference between left and right coher-
ences is indeed what drives the accumulation process.5 Niwa
and Ditterich (2008) used a related stimulus to study
multialternative decision making. Their task involved three
groups of possible signal dots which moved consistently at
120° to each other. Single- and multi-unit recordings in area
LIP of monkeys performing this task revealed that neuronal
activity reflects the net evidence in favor of choices
(Bollimunta and Ditterich 2012; Bollimunta et al. 2012).

The second difference is that the reward earned in a trial
was proportional to the number of dots moving in the chosen
direction (the coherence). In this way, the drift rate was tied to
the difference in values as encoded in value-based DDMs.
Formally, this setup which I refer to as value-linked expands
upon Expression (3) so that Zt = (xl − xr)t + α√2Bt for some
stimulus strength xi, and vi ∝ xi. This is similar to the incentive
structure in study 2 of Oud et al. (2016) and Pirrone et al.
(2018b). For reasons unrelated to this project, the payment
rate for each 10 dots was $0.02 in the first block and $0.04
in the second block. That is, if 30 dots were moving left and 20
dots were moving right, picking left would earn $0.06 (first
block) or $0.12 (second block), while picking right would
earn $0.04 (first block) or $0.08 (second block).6

In line with the theoretical assumptions used to derive
collapsing thresholds, the numbers of signal dots moving
in each direction were drawn independently from a
discretized normal distribution. Participants were explicitly
informed of this distribution which had mean 25 and stan-
dard deviation 7.7 Each trial contained 100 dots in total, the
remainder of which were noise dots. Two practice trials
with thorough explanation were shown at the beginning
of the experiment to convey the task in detail. Following
all regular trials, participants received feedback displayed
for two seconds about the number of dots that were moving
in each direction. The average accuracy (defined as the
proportion of responses picking the higher value option)
was 63.6% in block 1 and 68.2% in block 2. The average

response time was 4.27 seconds in block 1 and 3.69 sec-
onds in block 2.8

The task was programmed and displayed using the
Psychophysics Toolbox in MATLAB, with 5-pixel-width cir-
cular dots moving in a 960 × 960-pixel square aperture. Dots
moved at a speed of 1 pixel per frame and had a lifetime of 20
frames (at approximately 60 fps). Each trial was preceded by a
fixation cross displayed for 1.5 seconds.

Model Fitting

I set the (conditional) drift rate as the value differential, that is,
the absolute value of the difference between the numbers of dots
moving left and moving right.9 Three models based on the
DDM were fitted separately to each individual in each block:

1. Fixed boundary, b(t) = b (3 parameters: boundary b, accu-
mulation noise α, and non-decision time Tnd)

2. Approximately optimal boundary, b tð Þ ¼ 1
2c σ−20 þα−2tð Þ (3

parameters:10 cost of time c, accumulation noise α, and
non-decision time Tnd)

3. Generic hyperbolic boundary, b tð Þ ¼ 1
gþht (4 parameters:

inverse initial boundary g, boundary collapse h, accumu-
lation noise α, and non-decision time Tnd)

The generic hyperbolic model can be considered a version
of the approximately optimal model with certain assumptions
relaxed. The approximately optimal model implies that the
strength of boundary collapse is tied to the accumulation
noise, and in order for all of its parameters to be identifiable,
we must suppose that the subjective assessment of prior var-
iance is equal to the true variance. Written in terms of the

hyperbolic model, g ¼ 2cσ−2
0 and h ¼ 2cα−2 ¼ g σ0

α

� �2
for a

known σ0. Observe that in the approximately optimal model,
the c parameter is completely free while the α parameter is
informed partly by the accumulation noise, which reduces the
total number of parameters by one. If σ0 were allowed to vary
on top of this, an extra degree of freedom would be added
which severs the link between h and α. This relaxation effec-
tively renders g, h, and α (or equivalent functions thereof) the
only distinct identifiable parameters, and is thus equivalent to
estimation of a generic hyperbolic threshold. Loosening the
restrictions imposed by the approximately optimal model in
this way may or may not yield a better fit to the data, and this
can be tested via model comparison.

5 In the present data, an analysis in the Appendix reveals no effect of absolute
value on response time, contrary to observations in Teodorescu et al. (2016)
and Pirrone et al. (2018a).
6 Distinctions between blocks will not be explored in the present analysis since
the effects of experience, fatigue, and incentives are confounded.
7 It must be noted that due to Caltech’s particular nature, all students have
strong quantitative backgrounds and are familiar with the normal distribution.

8 Relatively long response times were also observed in Lam and Kalaska
(2014).
9 Since the properties of the DDM depend only on the ratios between the drift
rate, decision threshold, and accumulation noise, one parameter is routinely fixed
at some arbitrary level. Typically, this is the noise parameter, but for consistency
with the notation of Fudenberg et al. (2018), instead I fix the (conditional) drift
rate and allow the accumulation noise to be a free parameter.
10 In accordance with the experimental design, σ0 was fixed at 7.
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All models were fitted using quantile maximum probability
estimation, with response time bins defined by the 10th, 30th,
50th, 70th, and 90th percentiles of the individual’s distribution
(Brown and Heathcote 2003; Heathcote et al. 2004; Heathcote
et al. 2002).Model predictions were simulated using a random
walk approximation with time step 50 ms and roughly
400,000 replicates11 (Tuerlinckx et al. 2001), and optimization
was carried out via differential evolution (Mullen et al. 2011).
This was computationally intensive, taking on the order of
many thousands of core hours to fit the models for all subjects.

I restrict analysis to models with few parameters because
identification in collapsing bounds models is impeded by de-
grees of freedom in the DDM (Voskuilen et al. 2016), and
becomes increasingly computationally intensive. Thus, I follow
past studies on collapsing bounds which tend to be similarly
sparing in their parameter allowance (e.g., Palmer et al. 2005;
Ditterich 2006a, b; Bowman et al. 2012), recognizing that this
limits the strength of the conclusions that can be drawn. In any
event, the parameter-limited regime remains of interest for sev-
eral reasons. First, simpler models are easier to handle and
estimate when computational power is constrained or analysts
are non-experts. Second, when data is limited as may be the
case in practical applications, more complex models will suffer
from overfitting. Third, even when data is relatively abundant,
the relevant identification problems do not seem to be eliminat-
ed fully (Voskuilen et al. 2016). In all of these cases, the ques-
tion is raised of which parameters to keep and how to use them
most efficiently.

Results

To formally compare models in a way that is congruent with
previous studies (e.g., Hawkins et al. 2015), I calculate the
Bayesian information criterion (BIC) according to each model
for every participant: BIC =mlogn−2logL, where L is the
maximum log likelihood, m is the number of free parameters
in the model, and n is the number of data points. Here, I pool
across the two blocks, so m = 6 (for the fixed and approxi-
mately optimal threshold models) or 8 (for the generic hyper-
bolic threshold model) and n = 200. The results split by block
are similar, and shown in the Appendix. I use the BIC values
to compute posterior model probabilities accounting for un-
certainty in model selection (Wasserman 2000). Supposing a
uniform prior over the three competing models, the posterior
probability of model Mj is

P M jjD
� �

≈
exp −

1

2
BIC j

	 


∑kexp −
1

2
BICk

	 
 ð5Þ

The results of this model comparison analysis are displayed
in Fig. 1, and the median thresholds are portrayed in Fig. 2
split based on which model fits each participant the best.
Overall, collapsing bounds are favored for 21 of the 23 par-
ticipants, 16 of which are best fit by the approximately optimal
threshold.

For an aggregate comparison metric, I also enter the model
evidence based on BIC into a random effects model selection
procedure which estimates the frequency of each model in the
population (Rigoux et al. 2014; Stephan et al. 2009). Each
participant’s behavior is allowed to be generated by a different
model out of those considered, according to some unknown
probability distribution. This calculation yields a protected
exceedance probability (PXP) for each model, which is the
posterior probability that it has the highest frequency in the
population, accounting for the possibility that the differences
betweenmodels are due to chance. This aggregate comparison
strongly favors the approximately optimal model (PXP =
0.9965).

The descriptive implications of the uncertain-difference
DDM can be illustrated from multiple angles. A basic predic-
tion of the uncertain-difference model is a negative relation-
ship between response time and accuracy; the simplest flat
threshold DDM, by contrast, implies independence between
the two (Ratcliff and McKoon 2008).12 A logistic regression
predicting accuracy from response time (controlling for value
difference and trial number) reveals such a negative relation-
ship (p = .003), reported in Table 1. The magnitude of the
estimated coefficient here implies that a 1-second increase in
response time is associated with a roughly −0.038/4 ≈ 1 per-
centage point decrease in accuracy. In the current task, ob-
served response times ranged up to 28 seconds with a 95th
percentile of over 10 seconds; a 1 percentage point drop in
accuracy per second is thus sizable over this range.

To clearly explain why collapsing boundaries provide a
better fit to the data, the distinctive predictions of each model
are visualized in Fig. 3. This depicts response time and accu-
racy conditional on the value difference for a subject who is
best fit by the approximately optimal model. Each vertical
slice can be thought to represent a condition defined by value
difference, and the figure shows how the properties of the
empirical and theoretical distributions vary with respect to this
element. This figure reveals that all three models capture the
mean response time and accuracy well (shown as solid lines)
and are scarcely distinguishable in these regards. The signa-
tures of collapsing boundaries rest instead in the tails of the
response time distribution (shown as dashed lines). The opti-
mal boundary collapse truncates the long tail of response
times, especially when the signal strength is low—exactly as
its adaptive function dictates.

11 There were 10,000 replicates per level of value difference, of which there
were approximately 40.

12 A negative association can also be driven by between-trial parameter vari-
ability (e.g., Laming 1968; Ratcliff 1978).
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Figure 4 accentuates the contrast, showing a heatmap of the
difference in predicted response time frequencies between the
approximately optimal model and the fixed threshold model.
The abbreviated response time tail is again visible in the
heatmap. In addition, the large initial magnitudes of some
collapsing thresholds can produce a reluctance to conclude
deliberation extremely quickly, lengthening the shortest re-
sponse times. This leads to a banded heatmap pattern as with
the example participant. The corresponding plots for all sub-
jects are provided in the Appendix, and generally recapitulate
these observations. The exact response times which are more
indicative of the approximately optimal model depend on the
specific configuration of parameters, but a striped heatmap
pattern consistently appears. Collapsing boundaries are thus
typically distinguishable by the truncated tails they predict in
the response time distribution, visible in the heatmap and in
the data.

Discussion

I study whether people optimally adjust their decision making
criteria over the course of problems in which the speed of
information processing is tied to the value of alternatives.
Recent theoretical results imply that the optimal confidence
threshold that triggers choice declines at a particular rate in-
versely proportional to time already spent. To adhere as close-
ly as possible to the central theoretical assumptions, I use a
hybrid value-linked perceptual paradigm—a bi-directional

random dot motion task in which the payoff from a choice is
proportional to the number of dots moving in the correspond-
ing direction. The optimal rule fits behavior better than a fixed
threshold model, indicating that principled theories of collaps-
ing bounds may be empirically useful. While all models were
able to adequately describe mean response time and accuracy,
only collapsing bounds captured the truncated tails of the
response time distributions, in accordance with their primary
purpose. These results are broadly consistent with the
hypothesis that people calibrate their standards of confidence
during the course of a decision problem to optimally balance
the costs and benefits of spending time. Fudenberg et al.
(2018) also show that their theory helps predict behavior in
the value-based experiment of Krajbich et al. (2010) with
choice among snack foods.

Other studies have come to different conclusions. The closest
experiment is study 2 of Oud et al. (2016), in which participants
had to choose the larger of two sets of twinkling dots, and the
payoff earnedwas based on the number of dots in the chosen set
(according to two possible difficulty levels). Their clearest evi-
dence of suboptimality was based on a time limit intervention
which imposed a personally tailored deadline on each subject.
Even though these deadlines provided no new information to
subjects, Oud et al. (2016) found that they improved earnings.
However, in absolute terms, the intervention only increased
total subject earnings by an average of 15 cents (= 76.28
points × $1/1000 points × 2 blocks). This is a miniscule fraction
of the $18.29 average subject payment. Thus, the degree of
suboptimality revealed by the intervention, while statistically
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significant, is substantively tiny. This leaves plenty of room for
theories based on optimality to improve predictive power, even
if they are not perfect.

More broadly, althoughmany have satisfactorily used fixed
threshold models to assess perceptual decision making (e.g.,
Bode et al. 2012; Brown et al. 2008; Ding and Gold 2010,
2012; Forstmann et al. 2010; Forstmann et al. 2008;
O’Connell et al. 2012; Ramakrishnan and Murthy 2013;
Ramakrishnan et al. 2012; Ratcliff et al. 2009; Salinas and
Stanford 2013; Schall 2003; Schurger et al. 2012; Smith and
McKenzie 2011; Usher and McClelland 2001; Wang 2002;
Wong andWang 2006), many others have argued that collaps-
ing thresholds (or other modifications with similar effect) fit
the data more closely (e.g., Sanders and Linden 1967; Viviani
1979b, a; Viviani and Terzuolo 1972; Ditterich 2006a, b;
Churchland et al. 2008; Cisek et al. 2009; Rao 2010;
Bowman et al. 2012; Hanks et al. 2011; Thura et al. 2012;
Thura and Cisek 2014; Zhang et al. 2014). The most compre-
hensive meta-analysis carried out to date found evidence pri-
marily in favor of the fixed threshold DDM as compared to a
generic collapsing threshold DDM or the urgency gating mod-
el (Hawkins et al. 2015), and following research has

concurred (Voskuilen et al. 2016). However, there was sub-
stantial heterogeneity in the best-fitting model across the in-
cluded studies, and the generic collapsing threshold did yield
an improvement in a number of cases. This raises questions as
to the possible sources of heterogeneity.

While the present experiment does not make direct contact
with the above due to its unique setup, it brings an
underexplored factor into the foreground. Time-varying thresh-
olds are often defended on the basis of optimality, driven by
elements such as between-trial variation in difficulty
(Drugowitsch et al. 2012; Moran 2015). When incentives are
tied to difficulty level, the rationale for collapse is amplified.
This is clearly illustrated by the results of Bather (1962) in a
similar theoretical setup to Fudenberg et al. (2018) but with a
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Fig. 3 Trial-level response time and accuracy data along with model
predictions for a subject who is best fit by the approximately optimal
model. Color represents the three models. (left) Response times. For all
models, predicted mean response times conditional on value difference
are shown as colored solid lines, and the 1st and 99th percentiles are

shown as dashed lines. The ordinary least squares regression line is
shown in gray. (right) Accuracy. For all models, the predicted
accuracies conditional on value difference are shown as colored solid
lines. The logistic regression curve with intercept fixed at 0.5 is shown
in gray
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Fig. 4 Heatmap depicting the difference in predicted response time
distributions (conditional on value difference) between the
approximately optimal and fixed threshold models for the same subject
as in Fig. 3. Heatmap color reflects sign of difference (orange when
approximately optimal model has higher predicted probability, blue in
the opposite case), and heatmap transparency reflects magnitude of
difference (darker means larger difference). Predicted mean response
times conditional on value difference are shown as colored solid lines,
and the 1st and 99th response time percentiles are shown as dashed lines

Table 1 Accuracy logistic regression results

Dependent variable:
Accuracy

Response time − 0.038∗∗

(0.013)

Value difference 0.073∗∗∗

(0.006)

Trial (× 100) 0.014
(0.114)

Individual × block-specific intercepts Yes

Standard errors in parentheses. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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fixed value difference. In this case, the optimal stopping thresh-
old declines asymptotically at rate 1/√t, which is compounded
by the inclusion of incentives (tied to signal strength) to yield
the 1/t rate of decline studied in this paper. The extent to which
incentives aid collapse empirically is an important topic for
future research. By combining the control enabled by percep-
tual tasks with the ability to construct flexible reward schemes,
the value-linked approach taken in this paper and elsewhere
(e.g., Oud et al. 2016; Pirrone et al. 2018b) provides a useful
platform for testing the role of reward in the deliberative
process.

The sharpness of the uncertain-difference DDM’s predic-
tions appears to be a meaningful advantage that enhances
model fit at minimal expense in terms of degrees of freedom.
The development of powerful new theoretical models based
on optimality demands a great deal of further empirical study
testing their implications. Recent work has demonstrated that
the skeletal structure of sequential sampling models alone is
insufficient for making crisp and distinctive predictions.
Zhang et al. (2014) and Khodadadi and Townsend (2015)
have shown how any basic diffusion model with symmetric
time-varying boundaries can be perfectly mimicked by a
counterpart with independent accumulators. Such equivalen-
cies strongly underscore the need for further theoretically mo-
tivated constraints to discipline these models, such as those
implied by the uncertain-difference DDM. Sequential sam-
pling models were originally inspired by optimal statistical
algorithms for hypothesis testing. Particularly when more so-
phisticated economic incentive schemes are involved, this
principle may yet offer us more insights.
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