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It is said that the only constant in life is change. We are routinely faced with different
situations, no two exactly alike. We visit new places, try new foods, meet new people,
find new jobs, and invent new products. You have probably never read this very sentence
before. The pervasiveness of novelty can be paralyzing if one is not prepared for it. By
their nature, unfamiliar situations challenge our ability to draw on past experience.
And by our nature, humans make do.

In general, how do we appraise courses of action in various contexts? We could form
projections of what’s likely to happen as a result of each action in a context and combine
that with an evaluation of how desirable those outcomes are. Or we could lean on the
automatic attitudes drilled into us by extensive experience. These are the two prevailing
theories in neuroeconomics, expressed mathematically in terms of expected utility and
reinforcement learning. The biggest success story of decision neuroscience to date has
been in uncovering neural instantiations of these decision-making rules.

How might these two systems go awry when there is little direct experience to work
from? The former relies heavily on a cognitive map or mental structure but does not have
much to hang its structure on. The latter depends vitally on preexisting experience, but
this direct experience is unavailable. The capacity to cope in new circumstances is an
important but tricky skill.

A plausible alternative is to recall how well or poorly similar actions turned out in
similar contexts in the past. Such an approach to decision-making enables us to draw
on the variety of disparate experiences we acquire over time and respond gracefully to
the novelty and complexity that pervades real life. It imposes fewer assumptions about
the structure of the world compared with sophisticated probabilistic judgments, while
squeezing more information out of background knowledge than simple value caching.

I lay out a “case-based” system combining theory and empirical evidence from eco-
nomics, psychology, neuroscience, statistics, and computer science. Value judgment by
similarity corresponds to an economic model called case-based decision theory (CBDT),
inspired in part by a computational problem-solving process known as case-based reasoning
(CBR). This theory has links to nonparametric statistics, suggesting why and when the
system works well. Recent evidence from neuroscience indicates that we use this kind of
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system and implicates the hippocampus and related medial temporal lobe (MTL) regions as
neural loci. This can be thought of as a complementary narrative to what has been described
as episodic control (Dayan, 2008; Lengyel & Dayan, 2008).

JUDGMENT AND DECISION-MAKING FROM SIMILARITY

Judgments based on similarity are ubiquitous. Consciously and unconsciously, we map
athletes onto predecessors to forecast performance (“LeBron James is the next Michael
Jordan”—ESPN), we react to people based on group stereotypes, we talk about new
businesses in terms of existing analogues (describing various start-ups as the Ubers of
food delivery, flowers, laundry, lawn care, marijuana, and mortgage lending), we eval-
uate products based on brand lines, we search historic economic events for relations to
modern ones (“The Great Recession is just like the Great Depression”—Forbes), we
hold to legal precedent as a guide for future cases, and we pitch new TV shows or movies
as mixtures of old concepts (“The pitch [for Hollywood movie Man’s Best Friend] was
Jaws with Paws’ ... Investors were told that if the movie Jaws was a huge success, a similar
plot but on land with a dog could also be a huge success.”—Reid Hoftman).

People are psychologically attuned to similarity. This is for good reason. In a sense, all
learning is premised on finding similarity. Heraclitus said that “you cannot step twice into
the same river,” which is not only a deep philosophical truth but also an evolutionary prob-
lem. If every instant is unique, how can we learn and make decisions from experience? We
are thus tasked with recognizing useful parallels that allow us to generalize from the past.

At its best, similarity-based judgment constitutes an ecologically valid heuristic for
summarizing a vast landscape of information in service of decision-making. A neural
network trained to classify handwritten digits holds the potential to perform well on
digits it has never seen before, provided it has access to data on similarity between digits
(as implicitly evaluated by the classification probabilities from another neural network;
Hinton, Vinyals, & Dean, 2015). It has never encountered a “3,” but knowing that
certain “2’s” are visually similar while “1’s” are quite different implicitly contains a fair
amount of information about what exactly a “3” looks like. This is precisely the kind
of quality required for good transfer learning. This aspect of similarity is intimately tied
to our propensity to associate and connect and categorize. We may not be wired to easily
navigate probabilistic state spaces, but we are able to effortlessly form comparisons and
associations between concepts in our memory.

This is not to say that similarities are always well founded. The movie Man’s Best
Friend turned out to be terrible, for instance. Classic examples of irrationality can be
explained by indiscriminate similarity judgment. When asked how likely it is that the
outspoken socially involved philosophy major Linda is a bank teller or a feminist bank
teller, people respond that she is more likely to be the latter than the former (Tversky
& Kahneman, 1983). Although this belief violates the laws of probability, Linda better
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resembles our idea of a feminist bank teller and so we judge that possibility to be more
likely (Bar-Hillel, 1974; Kahneman & Tversky, 1972). We can be unconsciously misled
by superficial connections, even when we are experts. Prominent venture capitalist Paul
Graham was quoted as saying “I can be tricked by anyone who looks like Mark
Zuckerberg. There was a guy once who we funded who was terrible. I said: ‘How could
he be bad? He looks like Zuckerberg!”” While this was said in jest, such biases are plau-
sible. Gilovich (1981) asked professional sportswriters and varsity football coaches to
predict the success of fictitious young players based on written profiles. In one manipu-
lation, a player won an award named after a famous pro who either played in the same
position or a different position. Success ratings turned out to be higher when the pro
played in the same position.

For better or worse, we often form evaluations based on examples considered similar
to our present situation. A body of research in economics explores the theme of valuation
based on similarity. This work centers on a theoretical framework that reflects the mental
contagion of value.

Case-based decision theory

CBDT is a model of decision-making, which takes past experiences as its primitives and
weights those experiences based on their similarity to the current choice situation. It was
developed and originally axiomatized by Gilboa and Schmeidler (1995a) as a psycholog-
ically plausible complement to expected utility theory. In order to apply classical ex-
pected utility theory, the agent must hold subjective probabilities over all pertinent
states of the world. In many situations, this state space and its associated probabilities
can be extremely complicated, intricate, or unnatural to construct. When deciding on
a new restaurant to visit for dinner, one might not naturally estimate probability distri-
butions over the quality of food and service for each place. Instead, one might simply
call to mind their experiences at places thought to be roughly similar. From the start,
Bayesian decision theory was primarily considered appropriate inside what Savage
(1954) called a small world, where knowledge is plentiful. CBDT was meant to tackle
decision-making in large worlds.

The primitive concepts of CBDT are a set of past cases and subjective similarity
assessments between each case and the current situation. The agent’s memory M is a
set of cases formally described as triples (q, a, 1), where ¢ represents the problem situation,
a is the action taken, and r is the result. The agent evaluates an action by combining the
utilities of outcomes that occurred when that action was taken in the past. These utilities
are weighted by the similarity between the current situation (with description p) and each
past case (with description ), s(p, q):

Ul@) = D s(p.qhu(r).

(g,a,r)e M
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Table 4.1 Case-based decision theory calculation example

City s(city, Paris) s(city, Sydney) Utility
Montreal 0.8 0.1 5

Los Angeles 0 0.5 6
Vancouver 0.5 0.5 10

Gilboa and Schmeidler (1997a) generalized this to allow similarity between cases to
depend on acts as well as descriptions, so U(a) = Z(%b’r)eMs((p, a), (g, b))u(r), and
Gilboa, Schmeidler, and Wakker (2002) provided two additional axiomatic derivations
clarifying its empirical content. A variant also formulated in Gilboa and Schmeidler
(1995a) uses averaged similarity:

V(a) = Z (p:q) u(r).

(g,a,r)€ Mz(qﬁa,r)e vs(p,d)

To illustrate, suppose you are deciding which city to visit for a vacation and have
narrowed the options down to Paris and Sydney. Though you have been to neither,
you recall your past trips to Montreal, Los Angeles, and Vancouver, as laid out in
Table 4.1. Though French-speaking urban Montreal was chilly, you had a decent
time there (utility 5). You feel the city is quite similar to Paris (similarity 0.8) but hardly
at all like Sydney (similarity 0.1). LA was hot, which you like, and occasionally smoggy,
which you do not, but it was pleasant overall (utility 6). You consider LA to moder-
ately resemble Sydney (similarity 0.5) but not Paris (similarity 0). The metropolis of
Vancouver was special with its beautiful mountains, oceans, and fresh air—your favor-
ite trip by far (utility 10). The city seems to you halfway between Paris and Sydney
(similarity 0.5 each). As a standard case-based decision-maker, the projected utility of
visiting Paris is 0.8 X 5 4+ 0 X 6 + 0.5 X 10 = 9, while the projected utility of visiting
Sydney is 0.1 X 5+ 0.5 x 6 + 0.5 x 10 = 8.5, a calculation about which you remi-
nisce on your flight to Paris. (If you were using the averaged variant, this decision would
be reversed.)

Similarity functions

What might the similarity function look like? Goldstone and Son (2005) organize
psychological models of similarity into four types: geometric, feature-based,
alignment-based, and transformational. (Research in machine learning has developed
more computationally sophisticated takes on these styles; see for example, Chen, Garcia,
Gupta, Rahimi, & Cazzanti, 2009.)

Geometric models represent objects as multidimensional points in a metric space. The
similarity between objects is calculated as inversely related to the distance between them
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in this space. A basic form may be found in models of generalization gradients originating
from experiments on behavioral responses to stimuli varying in simple physical dimen-
sions like wavelength of light (Ghirlanda & Enquist, 2003; Spence, 1937). Similarity of
behavioral response is usually described as decreasing in the distance of stimulus qualities
with exponential decay, s(x, y) = a exp(—|x — y|/B), or Gaussian decay, s(x, y) = «
exp(—(x — y)*/8%), where & and § are scaling parameters. While having the appeal of
parsimony, these models are typically applied to low-level stimuli and imply properties
such as symmetry that are at odds with experimental results in other circumstances.

Feature-based models represent objects as collections of features. Similarity is based on
a linear combination of the common and distinctive features of each object and is not in
general symmetric. In Tversky’s (1977) contrast model, s(x, y)=60f(X N Y) —
af X —Y) — Bf(Y— X), where X and Y are the feature sets of stimuli x and y, fis a
monotonically increasing function, and 6, «, and 8 are nonnegative weights. With
additional restrictions, stimulus similarity based on the contrast model forms a natural
category structure that can be compactly represented in a hierarchical tree. In the ratio
model, s(x, y)) = (XN Y)/(f(XNY) 4+ af (X —Y) + Bf (Y — X)), normalizing simi-
larity between O and 1.

Alignment-based models involve more complex mappings of features based on
higher-order structure mapping. Similarity depends on the degree to which object fea-
tures can be structurally aligned. For example, Goldstone’s (1994) model of “similarity,
interactive activation, and mapping” comprises a neural network that learns about the
correspondences between stimulus features. Each node reflects the hypothesis that given
features map onto each other across stimuli, with excitatory and inhibitory activation
encouraging an exclusive one-to-one correspondence. Similarity is based on the
weighted mean of feature proximity weighted by activation of the node representing
the feature pair.

Transformational models are based on topological warping operations such as rota-
tion, scaling, and translation. Similarity is computed from transformational distance,
the degree of warping required to transform one stimulus into another. This may be
defined in simple ways such as the minimum number of transformations needed (Imai,
1977), or in more complicated ways like Kolmogorov complexity, the length of the
shortest computer program that describes the necessary transformations (Hahn, Chater,
& Richardson, 2003). This style of model is typically applied to perceptual stimuli.

Empirical studies of case-based decision theory

CBDT has been applied to study consumer behavior (Gilboa & Schmeidler, 1993,
1997b, 2003; Gilboa, Postlewaite, & Schmeidler, 2015), brand choice (Gilboa & Pazgal,
1995), individual learning (Gilboa & Schmeidler, 1996), social learning (Blonski, 1999;
Heinrich, 2013; Krause, 2009), sequential planning (Gilboa & Schmeidler, 1995b), asset
pricing (Guerdjikova, 2000), real estate (Gayer, Gilboa, & Lieberman, 2007), portfolio
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choice (Golosnoy & Okhrin, 2008), technology adoption (Eichberger & Guerdjikova,
2012), manufacturing capacity (Jahnke, Chwolka, & Simons, 2005), macroeconomic ex-
pectations (Pape & Xiao, 2014), and Japanese TV drama watching (Kinjo & Sugawara,
2016). The idea of similarity between strategic games on both structural and perceptual
levels has been used to analyze learning, transfer, and spillover across different games and
institutional setups (Bednar, Chen, Liu, & Page, 2012; Cason, Savikhin, & Sheremeta,
2012; Cooper & Kagel, 2003; Cownden, Eriksson, & Strimling, 2015; Di Guida &
Devetag, 2013; Guilfoos & Pape, 2016; LiCalzi, 1995; Mengel & Sciubba, 2014; Rankin,
Van Huyck, & Battalio, 2000; Samuelson, 2001; Sarin & Vahid, 2004; Spiliopoulos,
2013; Steiner & Stewart, 2008).

Experimental tests specifically conducted on CBDT have yielded encouraging results.
Ossadnik, Wilmsmann, and Niemann (2013) ran a ball and urn experiment with a twist.
Every ball had three separate payofts on it, identified by colors (which were the same
across balls). On each trial, participants had to choose a color. A ball was drawn from
the urn (which contained a known number of balls) and only the payoft associated
with the chosen color was revealed. After a number of trials, a second round began in
which a few balls were removed from the urn without being revealed. Later on, a third
round began in which several balls were similarly added to the urn. Given the limited
information available and the high number of possible ball-color-value combinations,
full Bayesian updating would be difficult. The experimenters found that, as compared
with maximin-type criteria and simple model-free reinforcement learning, the data con-
formed best to CBDT supposing that similarity across trials was proportional to the num-
ber of balls in common.

Participants in the study of Grosskopf, Sarin, and Watson (2015) were in the role of a
company having to choose production levels for an economic good. The amount of
profit for a given production level depended on “market conditions,” which were rep-
resented by a list of five symbols. In each round, participants had access to only a few past
cases, which were combinations of market conditions (case descriptions), production
choices (actions), and profit levels (outcomes). Similarity between the vectors of past
and present market conditions was taken to be the number of symbols in common, a spe-
cial case of Tversky’s (1977) contrast model. CBDT described participant behavior better
than a heuristic, which ignored market conditions and chose the production level
yielding the highest past value.

Bleichrodt, Filko, Kothiyal, and Wakker (2017) used a special design to test the core
of CBDT without making any structural assumptions about similarity. Participants made
choices on the basis of hypothetical case banks, one of which consisted of true values and
would be used for payment. Cases dealt with the monthly value appreciation of real estate
investments in various parts of the Netherlands. Participants had to choose between gam-
bles with payoffs based on the appreciation percentage of a new piece of real estate. This
experimental design allows certain functions of similarity weights to be estimated, which
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can be used to test the implications of CBDT from binary choices alone. CBDT predicts
that people choose by combining, in a specific way, the hypothetical memory with their
personal assessment of similarity across types and locations of real estate. The theory’s ax-
ioms impose behavioral restrictions reflecting the consistency of similarity weights across
decisions. These restrictions were generally satisfied by the data.

Pape and Kurtz (2013) combined CBDT with the ALCOVE neural network model
to analyze classification learning. In this model, the relative importance of each feature
dimension is updated from feedback, with overall learning rate, aspiration level, and de-
gree of imperfect recall estimated as model parameters. A simulated case-based agent
predicted the speed of learning well across categorization schemes of various difficulty
levels (Nosofsky & Palmeri, 1996; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,
1994). Moreover, additive similarity was found to fit the data better than averaged
similarity.

CBDT is attractive because it forces us to link choice to the set of cases in our memory
in a way that offers a platform for the impact of memory and associations in economic
modeling. Particularly in the most complex of situations, all cases may not be immedi-
ately recalled. Rather, we have to engage in mental search. Evaluation may derive
from finite samples drawn from memory, as some theories posit. At the extreme, people
often retrieve only a single case to work from. If the probability of retrieval is propor-
tional to the similarity between cases, then the averaged case-based assessment constitutes
the expectation of retrieved value. When we take into account that people draw small
samples from similar cases in memory (Qian & Brown, 2005), regularly observed biases
affecting judgment and decision-making can be parsimoniously explained (Gayer, 2010;
Hertwig, Barron, Weber, & Erev, 2004; Marchiori, Di Guida, & Erev, 2015; Stewart,
Chater, & Brown, 2006).

Computational models of association can be integrated with CBDT to produce a uni-
fied model for studying the effects of framing on economic decisions. After all, such phe-
nomena are about altered patterns of mental association stemming from the way a
problem is presented. In novel conditions, the case-based estimate represents a kind of
half~educated guess. It is stitched together, Frankenstein-like, from whatever comes to
mind. It is not an exceptionally consistent estimate and is prone to being jostled by
the vagaries of memory. Preferences are therefore unstable, cobbled-together assessments
of value that shift as different memories are emphasized. In this vein, Gonzalez and col-
leagues have developed case-based (aka instance-based) models that incorporate similarity
and selective retrieval in the ACT-R architecture to predict and explain a variety of eco-
nomic choices (Dutt & Gonzalez, 2012; Dutt, Arl6-Costa, Helzner, & Gonzalez, 2014;
Gonzalez, 2013; Gonzalez & Dutt, 2011; Gonzalez, Lerch, & Lebiere, 2003; Harman &
Gonzalez, 2015; Lebiere, Gonzalez, & Martin, 2007; Lejarraga et al., 2012, 2014). Some
of this work focuses explicitly on framing, accounting for variation in preferences based
on differences in the retrieval process (Gonzalez & Mehlhorn, 2016).
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COMPUTATIONAL CHARACTERIZATIONS
Case-based reasoning

The idea of computational connections should not be entirely surprising as CBDT was
conceived of with a certain computational backdrop in mind—a problem-solving process
known as CBR that stores training data and waits to make judgments until a new prob-
lem is posed (Stanfill & Waltz, 1986; Riesbeck & Schank, 1989; Aha, Kibler, & Albert,
1991; Kolodner, 1992, 1993). The heart of CBR lies in solving new problems by reusing
and adapting solutions to similar old problems. It is captured by the “CBR cycle” con-
sisting of the 4 R’s: Retrieve, Reuse, Revise, and Retain (Richter & Weber, 2013).
When a new problem is encountered, similar past cases are refrieved from the case base,
their information is reused to construct solutions, their solutions are revised to fit current
needs, and the new experience is retained for future use.

CBR has been fruitfully applied to commercial tasks as diverse as customer service,
vehicle fault diagnosis and repair, and aircraft part construction (Watson & Marir,
1994; Leake, 1994, 1996; Montani & Jain, 2010, 2014). For example, a critical task in
the aerospace industry is to precisely bond together composite materials using extreme
heat and pressure in an autoclave. However, the right way to arrange these materials
in the autoclave is complicated because its heating properties are not perfectly under-
stood, and identical examples are unavailable because product designs are always chang-
ing. The company Lockheed successtully tackled this problem with a software system
called Clavier, which recommended new layouts by adapting previous similar layouts.
Clavier proved useful even with a small case base, and with more experience its “perfor-
mance ‘grew’ to approach that of the most experienced autoclave operator in the shop”
(Hennessy & Hinkle, 1992).

Why has CBR proven so successful? It can be flexibly applied to a wide range of prob-
lems, even difficult ones encountered for the first time. CBR is a type of lazy learning,
meaning that the answer is only generated when a new query arises. This just-in-time
approach is helpful when faced with an infinite number of unencountered and unforeseen
possibilities. We are commonly forced to perform in novel circumstances where causal re-
lationships are not well understood but background knowledge can still prove useful, and
CBR can support transfer learning here (Aha, Molineaux, & Sukthankar, 2009; Klenk,
Aha, & Molineaux, 2011). We can further understand case-based decision-making by
comparing control systems from a statistical standpoint.

Bias—variance trade-off

CBDT shares properties with nonparametric estimation. The case-based estimate is a
similarity-weighted sum of case values. It takes the same kind of form as a nonparametric
kernel estimate, which is a kernel-weighted sum of data points. The similarity function
plays the role of the kernel, assessing how close the new input value is to each of the old
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input values in psychological space, and then blending the old output values accordingly.
The case-based estimate with averaged similarity especially mimics the Nadaraya—
Watson kernel regression estimator, a locally weighted average of data points. If only a
single case is retrieved due to cognitive limitations, the model coincides with nearest-
neighbor interpolation. Case-based estimation may not be as agnostic as statistical tech-
nique about the domain of application since background information is contained in the
shape of the similarity function. It may also exhibit properties such as asymmetry
(Tversky, 1977) that are atypical in statistical applications. Nonetheless, formal links
have been established between case-based and kernel-based methods (Gilboa, Lieber-
man, & Schmeidler, 2011; see also Hullermeier, 2007). We may thus view CBDT
from one angle as a nonparametric estimate of value. This link helps us see why and
when the case-based estimate is useful.

A case-based controller exhibits a different statistical trade-oft than model-free and
model-based controllers. This entails a distinct pattern of advantages and disadvantages.
A case-based system stakes out an intermediate position between model-free and
model-based systems on the bias—variance spectrum.

Case-based control employs knowledge derived from unsupervised or other subtler
forms of learning to a greater degree than a model-free system. It better leverages expe-
rience by casting a wider net in the sea of memory. In other words, it engages in greater
generalization from other circumstances to its present condition. Simplistic reinforce-
ment learning models relinquish this power and neglect background relationships be-
tween acts or contexts. Continuous state or action spaces provide extreme examples of
the need to generalize. Continuity has been a classic issue in reinforcement learning partly
because it implies that an agent never encounters the exact same action or state more than
once. Incorporating the values of similar actions in similar contexts sharpens predictions.
A kernel approach turns out to be robust to convergence problems that other solutions
suffer from in continuous state spaces (Gershman & Daw, 2017; Ormoneit & Sen, 2002).
Generalizing does come with the cost of statistical bias as the extra data reflect circum-
stances that may only be marginally relevant and can significantly degrade performance
when poorly selected. In line with this, nonparametric estimators carry an intrinsic
smoothing bias, which results from using data far from the focal point to reduce the esti-
mator variance. But when one has almost no direct experience, using imperfectly rele-
vant knowledge is worthwhile. For this reason, statisticians regulate smoothing bias via
choice of bandwidth and find that the optimal window is larger when the sample is small.
The benefit of even limited or noisy additional information is high when facing new
stimuli.

However, a case-based controller is not as bold as a model-based controller. Model-
based estimates impose strong assumptions in order to hone their predictions and reduce
the portion of generalization error stemming from variance. This is the benefit of a cogni-
tive map. But it comes at the cost of bias from two sources. First is the coarsening inherent
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in the construction of any mental model. All practical models must be simplifications,
otherwise they would be far too complicated to represent. Second is the more egregious
misspecification resulting from a mistaken understanding of the world. This issue is made
worse by conditions of limited experience, when little data are available to constrain the
map. Like nonparametric objects, case-based estimates avoid structure in order to miti-
gate bias but yield to the error from variance. A model-based system goes out on a
limb in an attempt to make sharp predictions across new circumstances. In this sense,
the model-based controller is the staunch one that sticks to its guns, while the case-
based controller exhibits a more flexible and graceful judgment. A drawback is that
the latter will learn more slowly—it hesitates to draw inferences even when those infer-
ences may be justifiable—but as the maxim goes, it is better to be approximately right
than definitely wrong. When traveling through new and complex surroundings, where
the risk of a misstep can be high, clinging stubbornly to potentially outmoded conclu-
sions is especially maladaptive.

Gilboa, Samuelson, and Schmeidler (2013) construct a unified model containing
multiple classes of reasoning. They show that an agent may exhibit cycles where Bayesian
reasoning is used until an unexpected event occurs, at which point case-based and rule-
based reasoning take the lead until more data are collected and a new probabilistic model
is formed. CBR can thus be inductively rational in the face of the unexpected. Lengyel
and Dayan (2008) show that a kind of episodic memory-based control can outperform
model-based control when the world is novel and complex. Erroneous or misspecified
aspects of the model-based belief structure, represented as inferential noise, produce
costly mistakes particularly when problems are multistage and experience is limited.
Researchers at Google DeepMind recently demonstrated that in the low-data regime,
such episodic control prevails over other state-of-the-art algorithms in complicated
sequential decision-making tasks like video games (Blundell et al., 2016), especially
when the feature mapping can also be trained (Pritzel et al., 2017).

Despite these useful characterizations of case-based control, our understanding of
how similarity is realistically learned and processed in the brain has more to say. This
understanding could inspire further hybrid models that draw out the economic implica-
tions of lifelike neural architectures. The idea of a case-based system dovetails with recent
interest in the role of the MTL, and specifically the hippocampus, in decision-making.
This region might be considered a primary neural locus for the processes of learning
and memory that instantiate a case-based system.

NEURAL PATHWAYS
Generalization and the hippocampus

Hippocampal function is traditionally conceived in terms of spatial knowledge and
episodic memory. However, growing attention is being paid to how its associational
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processing flexibly subserves the learning and construction of value, especially in novel
and complex situations (Seger & Peterson, 2013; Shohamy & Turk-Browne, 2013;
Wimmer & Shohamy, 2011). Though the canonical view of feedback learning focuses
on the basal ganglia, recent work suggests expanding the previously overlooked role
of the MTL. Dopamine-driven striatal learning turns out to be limited, for example,
when feedback is delayed or withheld. The hippocampal region, which appears to
play a central role in generalization, is then required to bind information about cues
and outcomes across time and space. While the striatum is responsible for encoding
stimulus—response links, the hippocampus is responsible for encoding stimulus—stimulus
links. The MTL supports generalization by this process of bundling stimulus representa-
tions into associative networks, within which items are considered similar neurally and
psychologically based on shared connections.

We tend to view memory as dealing with the past, but it actually exists to help us
predict the future. The process of association carried out by the hippocampus has two
purposes from a decision-making perspective: First is to retrieve relevant memories,
particularly those elements corresponding to value, in service of present decisions; second
is to construct, modify, and consolidate memory in service of future decisions.

The hippocampus tugs the mental strings connected to an encountered configuration
of stimuli in an attempt to anticipate forthcoming stimuli and rewards. The ingredients
needed for decision-making and value learning appear to be represented in the hippo-
campus. Human neuroimaging has revealed concurrent value and choice signals in
area CA1 of the hippocampus shortly before choices are made, as well as outcome signals
following choice (Lee, Ghim, Kim, Lee, & Jung, 2012). Striking evidence for a control
system distinct from standard dopaminergic and striatal mechanisms comes from feedback
learning experiments, which involve comparisons and dissociations with Parkinson's dis-
ease (PD) patients and MTL amnesics (Reber, Knowlton, & Squire, 1996; Moody,
Bookheimer, Vanek, & Knowlton, 2004; Shohamy, Myers, Onlaor, & Gluck, 2004,
2009). Foerde, Race, Verfaellie, and Shohamy (2013) documented a double dissociation
on a standard probabilistic learning task with either immediate or delayed feedback.
When faced with immediate feedback, PD patients were impaired while amnesics per-
formed as well as controls, whereas with delayed feedback, PD patients performed as
well as controls while amnesics were impaired. Remarkably, the delay difference produc-
ing the effect was not long (1 s vs. 7 s).

Consistent with the idea that a case-based system is most advantageous under novelty,
Poldrack et al. (2001) showed that control appears to be transferred from MTL to the
striatum as classification learning proceeds. Moreover, several studies demonstrate
involvement of the hippocampus in spillover of value to stimuli and actions that are
new but similar to those observed or taken in the past (Kahnt, Park, Burke, & Tobler,
2012; Wimmer, Daw, & Shohamy, 2012). Barron, Dolan, and Behrens (2013) created
especially novel stimuli, which were new combinations of familiar foods, such as an
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avocado and raspberry smoothie. This forced participants to construct assessments of the
novel goods via combination of past experiences. Activity in the hippocampus was found
to be related to this construction process.

Though the exact mechanisms by which the MTL comes to generalize value are as
yet unknown, any theories must respect the fundamental associative nature of hippocam-
pal function (Horner & Burgess, 2013). As a multimodal convergence zone, it takes in
signals from many regions. By the manner in which the hippocampus recognizes stimulus
bundles, it links lower level stimuli to higher level associations and concepts, illustrated by
sparse coding cells, extreme versions of which are popularly known as “grandmother
cells” or “Jennifer Aniston neurons” (Kreiman, Koch, & Fried, 2000; Quiroga, Reddy,
Kreiman, Koch, & Fried, 2005, 2008, 2014). It thus exerts some control over one’s de-
gree of conceptual granularity, thereby impacting degrees of generalization. One pro-
posed mechanism of generalization that fits this picture is integrative encoding,
wherein episodes with overlapping elements are integrated into a linked network of
mnemonic associations (Shohamy & Wagner, 2008). Retrieval under novel circum-
stances then activates this network and can indirectly draw upon associations between
concepts or stimuli that were never directly experienced together (Walther, 2002), me-
chanically similar to the creation of false memories (Roediger & McDermott, 1995).
Even bumblebees may similarly merge memories after feedback learning (Hunt &
Chittka, 2015). Indeed, when a new memory is formed, older memories with overlap-
ping events are reactivated (Schlichting, Zeithamova, & Preston, 2014), alongside the re-
wards tied to those older memories (Kuhl, Shah, DuBrow, & Wagner, 2010; Wimmer &
Biichel, 2016).

Stimulus associations and the hippocampus

A large body of human and animal studies reveals that whenever stimuli are separated in
time and space, the hippocampus is central to connecting them to each other as well as
their spatial and temporal context (Staresina & Davachi, 2009). This is especially the case
when the configurations are stable and consistent (Mattfeld & Stark, 2015). The hippo-
campus is engaged during sequence learning (Schendan, Searl, Melrose, & Stern, 2003),
and lesions impair the ability to learn and remember temporal regularities (Curran, 1997,
Farovik, Dupont, & Eichenbaum, 2010; Schapiro, Gregory, Landau, McCloskey, &
Turk-Browne, 2014). It is usually crucial for “trace conditioning” in which there is a sig-
nificant interval between the end of the conditioned stimulus and beginning of the un-
conditioned stimulus presentation (Bangasser, Waxler, Santollo, & Shors, 2006; Cheng,
Disterhoft, Power, Ellis, & Desmond, 2008) and also seems involved in “delay condition-
ing” when there is a long delay between conditioned and unconditioned stimulus onset
even if they overlap (Berger, Alger, & Thompson, 1976; Christian & Thompson, 2003;
Green & Arenos, 2007; Tam & Bonardi, 2012). Computational models are able to
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predict hippocampal learning in such paradigms by focusing on how its stimulus repre-
sentations change over the course of a trial (Ludvig, Sutton, Verbeek, & Kehoe, 2009,
2008; Moustafa et al., 2013).

When new stimulus configurations are encountered, the hippocampus binds the
components together and associates them with past bundles of stimuli, whether learning
is explicit or implicit (Degonda et al., 2005; Rose, Haider, Weiller, & Buchel, 2002). The
ultimate goal is to make better predictions through generalization. Accordingly, when
there is reason to believe that different stimuli will foreshadow similar prospects, these
stimuli actually become represented more similarly by neural activity patterns, so that
they will be treated similarly in further processing. The stimuli come to activate similar
networks and also become embedded and integrated more strongly within these net-
works, leading them to be better remembered (Kuhl et al., 2010; LaRocque et al.,
2013; Staresina, Gray, & Davachi, 2009). Intriguingly, the degree of this representational
overlap for a given memory is negatively related to the strength of its unique episodic
reinstatement, suggesting a trade-off between integration of the memory into the
network and retrieval of its specific details (Tompary & Davachi, 2017).

This enhanced pattern similarity can be triggered in multiple ways. Most directly, cues
that are associated with the same outcome are mentally bundled together, and informa-
tion learned about one is generalized to the others. This phenomenon of acquired equiv-
alence relies on the hippocampal formation (Bédi, Csibri, Myers, Gluck, & Kéri, 2009;
Coutureau et al., 2002; Myers et al., 2003; Preston, Shrager, Dudukovic, & Gabrieli,
2004). The stimuli come to be coded more similarly in the hippocampus (McKenzie
et al., 2014) and become easier to confuse with each other (Meeter, Shohamy, & Myers,
2009). Stimuli that merely appear close together in time and context, absent outcomes,
are like-wise informationally linked. This sensory preconditioning also depends on the
hippocampal formation (Port & Patterson, 1984; Wimmer & Shohamy, 2012), and so
might higher-order conditioning, when the original cue is conditioned before cues are
paired (Gilboa, Sekeres, Moscovitch, & Winocur, 2014). Such stimuli become repre-
sented more similarly by MTL activity patterns (Hsieh, Gruber, Jenkins, & Ranganath,
2014; Schapiro, Kustner, & Turk-Browne, 2012), and pattern similarity at the time of
retrieval is related to one’s subjective sense of temporal and contextual proximity be-
tween the objects (Ezzyat & Davachi, 2014), as well as successtul memory for their order
(DuBrow & Davachi, 2014).

Neural pattern similarity in the temporal lobe appears representative of psychological
similarity (Charest, Kievit, Schmitz, Deca, & Kriegeskorte, 2014; Davis & Poldrack,
2014; Davis, Xue, Love, Preston, & Poldrack, 2014), perhaps because psychological
category structure may be represented in such a dimension-reduced and hierarchical
manner that it can be smoothly mapped onto a two-dimensional neural substrate
(Huth, Nishimoto, Vu, & Gallant, 2012; Kriegeskorte et al., 2008). There is some
evidence that hippocampal coding for nonsemantic item-context bundles also follows
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a hierarchical structure. McKenzie et al. (2014) recorded activity from neuronal ensem-
bles of rats in a learning task and found context to be of primary importance to coding
similarity, followed by position of items within the environment, followed by the item
valence (reward status), and lastly the item identity itself. These results can help us under-
stand how similarity is constructed on deep levels.

Neural computations of the hippocampus

Some of the mechanisms contributing to such high-level patterns are reasonably well un-
derstood. Computational theories describe the associative retrieval and encoding func-
tions of the hippocampal region in terms of information processing by each of its
anatomical substructures in turn (Gluck & Myers, 2001; Hasselmo & Eichenbaum,
2005; Marr, 1971; McNaughton & Nadel, 1990; Treves & Rolls, 1994). Input from
the neocortex is first processed through hippocampal afferents in a specialized manner,
with the perirhinal and lateral entorhinal cortices supporting item memory and the
parahippocampal and medial entorhinal cortices supporting context memory (Diana,
Yonelinas, & Ranganath, 2013, 2007; Kragel, Morton, & Polyn, 2015; Libby, Hannula,
& Ranganath, 2014; Reagh & Yassa, 2014). The entorhinal cortex (EC) acts as a primary
gateway between the hippocampus and the rest of the brain. Information travels through
a loop with recurrence and multiple paths (Andersen, Bliss, & Skrede, 1971): The EC
projects to the dentate gyrus (DG), area CA3 (through the perforant pathway), and
area CA1; DG projects sparsely to CA3 via mossy fibers; CA3 exhibits a relatively large
amount of recurrent collaterals feeding back onto itself, and projects to CA1 via Schaffer
collaterals; and CA1 projects out of hippocampus via subiculum and EC back out to
neocortex, and via fornix to other regions in cortex.

A computational linchpin is area CA3, thought to form a recurrent autoassociative
network that reconstructs complete memories from partial inputs (Gluck & Myers,
1997). In this process of pattern completion, the presentation of cues reinstates networks
of activity based on the nexus of associated places, times, histories, concepts, and out-
comes, particularly those that are most pivotally and centrally connected. Pattern
completion by CA3 is integral to both memory retrieval and encoding, though they
invoke different neural paths. Mice and rats with lesions to CA3 are impaired on spatial
learning tasks especially when given a smaller number of cues with which to retrieve the
full memory (Gold & Kesner, 2005; Nakazawa et al., 2002) and single-unit recording
shows CA3 output as being closer to stored representations than to degraded input pat-
terns (Neunuebel & Knierim, 2014). This sort of retrieval is predominantly initiated by
direct input from the EC and is accordingly disrupted by lesions of the perforant pathway
(Lee & Kesner, 2004), though some evidence suggests that dentate granule cells also help
with pattern completion (Gu et al., 2012; Nakashiba et al., 2012). However, the projec-
tion from the EC is too weak to handle the encoding of new memories.
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Autoassociative encoding can be powerful enough to yield one-shot learning, in
which a single trial alone is enough to firmly store a memory (Day, Langston, & Morris,
2003; Nakazawa et al., 2003; Rutishauser, Mamelak, & Schuman, 2006). Incoming pat-
terns must be separated if they are to be stored distinctively, which is considered a func-
tion of the DG (Bakker, Kirwan, Miller, & Stark, 2008; Leutgeb, Leutgeb, Moser, &
Moser, 2007; McHugh et al., 2007; Schmidt, Marrone, & Markus, 2012). Encoding is
indeed driven by the mossy fibers from the DG, and new learning is disturbed if these
are inactivated, although retrieval is usually spared (Lassalle, Bataille, & Halley, 2000;
Lee & Kesner, 2004). The mossy fiber synapses come close to the bodies of CA3 pyra-
midal neurons and are sometimes called “detonator synapses” because they hold the abil-
ity to forcefully induce associative plasticity among CA3 neurons and their afferents
(Brandalise & Gerber, 2014; Chierzi, Stachniak, Trudel, Bourque, & Murai, 2012; Lee
etal., 2013; Lysetskiy, Foldy, & Soltesz, 2005; Rebola, Carta, Lanore, Blanchet, & Mulle,
2011).

Reencoding must normally happen when the stimuli anticipated by cued associations
fail to match the stimuli actually encountered—that is, when there is a prediction error.
Signals of expectancy violation have been detected in the hippocampus with a range of
methods (Fyhn, Molden, Hollup, Moser, & Moser, 2002; Hannula & Ranganath,
2008; Honey, Watt, & Good, 1998; Knight, 1996; Kumaran & Maguire, 2006, 2007)
and appear to be associative in that they are based on unexpected combinations of stimuli
rather than merely novelty of stimuli alone (Kafkas & Montaldi, 2015; Shohamy &
Wagner, 2008). These signals have been localized to area CA1, which is ideally placed
to act as a comparator or match—mismatch detector, as it receives sensory information
about the environment from the EC along with the associative predictions formed by
CA3 (Chen, Olsen, Preston, Glover, & Wagner, 2011; Duncan, Ketz, Inati, & Davachi,
2012). Such signals are likely needed to switch between the retrieval and encoding modes
of CA3 autoassociation. When expectations are not met, encoding is triggered and mem-
ories are updated, by either strengthening or weakening connections and representations
as needed. The mnemonic representations of items that fail to materialize when expected
become weaker, making them easier to forget (Kim, Lewis-Peacock, Norman, & Turk-
Browne, 2014). These associative prediction errors guide learning in many circumstances,
of which novelty is an important class (Kumaran & Maguire, 2007, 2009). In this way,
the prediction error induces plasticity to adaptively enhance learning under novelty,
complementing the adaptive properties of choice under novelty discussed earlier.

INTERACTIONS BETWEEN SYSTEMS

Many doors are open for interaction between control systems. The hippocampus is
anatomically embedded in multiple dopaminergic pathways. The neurophysiological re-
cord shows direct connections between the hippocampal formation and the ventral
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striatum (Floresco, Todd, & Grace, 2001; Legault, Rompré, & Wise, 2000; Lisman &
Grace, 2005) and possibly dorsal striatum (Finch, 1996; Finch, Gigg, Tan, & Kosoyan,
1995; Jung, Hong, & Haber, 2003; La Grutta & Sabatino, 1988; Sabatino, Ferraro,
Liberti, Vella, & La Grutta, 1985; Serensen & Witter, 1983) and Scimeca and Badre
(2012) discuss several ways the striatum could support retrieval. Direct dopaminergic pro-
jections from the ventral tegmental area (VTA) have been shown to enhance long-term
potentiation in the hippocampus to support plasticity and encoding (Duncan, Tompary,
& Davachi, 2014; Lisman & Grace, 2005; Shohamy & Adcock, 2010; Wittmann et al.,
2005). Recent evidence indicates that dopamine release from the locus coeruleus also
plays a pivotal role in hippocampal signaling (Kempadoo, Mosharov, Choi, Sulzer, &
Kandel, 2016; Takeuchi et al., 2016), especially for one-shot learning in highly novel
contexts (Wagatsuma et al., 2018). Dopamine modulates hippocampal plasticity on time-
scales from minutes to hours (Bethus, Tse, & Morris, 2010; Frey et al., 1990; Lisman,
Grace, & Duzel, 2011; O’Carroll, Martin, Sandin, Frenguelli, & Morris, 2006),
improving memory encoding and consolidation (Apitz & Bunzeck, 2013; Axmacher
et al., 2010; Imai, Kim, Sasaki, & Watanabe, 2014; Kafkas & Montaldi, 2015; McNa-
mara, Tejero-Cantero, Trouche, Campo-Urriza, & Dupret, 2014; Murayama & Kita-
gami, 2014; Rosen, Cheung, & Siegelbaum, 2015; Rossato, Bevilaqua, Izquierdo,
Medina, & Cammarota, 2009). Memory strength can thus be easily enhanced by reward,
and information acquisition itself can provide pseudorewards or bonuses (Kakade &
Dayan, 2002), strengthening memory via similar neural pathways (Bunzeck, Doeller,
Dolan, & Duzel, 2012; Gruber, Gelman, & Ranganath, 2014; Kang et al., 2009; Witt-
mann, Daw, Seymour, & Dolan, 2008, 2007).

In the other direction, the hippocampus can activate dopaminergic neurons in the
VTA by sending CA1 novelty signals through the subiculum, nucleus accumbens, and
ventral pallidum (Bunzeck & Duzel, 2006; Lisman & Grace, 2005). Contextual
information straight from CA3 also travels through lateral septum to the VTA (Luo,
Tahsili-Fahadan, Wise, Lupica, & Aston-Jones, 2011). Hippocampal pattern completion,
replay of experience, and autobiographical recollection evoke or reinstate representations
of value in the striatum to help accurately consolidate memories and associations relating
to stimuli (Han, Huettel, Raposo, Adcock, & Dobbins, 2010; Schwarze, Bingel, Badre,
& Sommer, 2013) or rewards (Kuhl et al,, 2010; Lansink, Goltstein, Lankelma,
McNaughton, & Pennartz, 2009; Speer, Bhanji, & Delgado, 2014).

Growing evidence reveals that episodic memory can guide value-based decision-
making and is starting to shed light on how the hippocampus and striatum interact in
the process (Pennartz, Ito, Verschure, Battaglia, & Robbins, 2011). In a simple value
learning paradigm, Duncan and Shohamy (2016) documented behaviorally that contex-
tual familiarity encouraged the retrieval and use of past episodes in decision-making.
Murty, FeldmanHall, Hunter, Phelps, and Davachi (2016) showed that cues were used
to adaptively guide lottery choice when learned cue—outcome associations were strong.
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Wimmer and Buchel (2016) cued the retrieval of single past episodes in which stimuli
were associated with rewards and found that risk preferences were biased by reactivation
of the reward values, which were represented in the striatum. Gluth, Sommer,
Rieskamp, and Buchel (2015) found that evaluation of snack food was biased toward
items that were better remembered, and they observed corresponding value signals in
the striatum, hippocampus, and ventromedial prefrontal cortex (vmPFC). They further
found that this bias was mediated by hippocampal—vmPFC functional connectivity.
Several other studies have observed that the strength of hippocampal—striatal connectiv-
ity during reward learning and at rest is related to value generalization (Gerraty, Davidow,
Wimmer, Kahn, & Shohamy, 2014; Kumaran, Summertfield, Hassabis, & Maguire, 2009;
Wimmer & Shohamy, 2012; Wimmer et al., 2012). Thus, the distributed neural repre-
sentation of stimuli, values, and their associations depends crucially on what type of in-
formation must be retrieved and applied.

Interactions between case-based and model-free systems

Both competitive and cooperative links have been observed between case-based and
model-free behaviors, as well as their presumed neural substrates.

Several experiments indicate competitive links between MTL-dependent declarative
learning and striatum-dependent procedural learning (Moody et al., 2004; Poldrack &
Packard, 2003; Poldrack, Prabhakaran, Seger, & Gabrieli, 1999), which may be mediated
by PFC (Poldrack & Rodriguez, 2004). Rats with hippocampal lesions actually perform
better on procedural learning tasks (Eckart, Huelse-Matia, & Schwarting, 2012). It may
be that hippocampal context—outcome associations interfere with striatal action—
outcome contingencies that could be more important in such circumstances over the
long run (Cheung & Cardinal, 2005). Collins, Ciullo, Frank, and Badre (2017) imposed
working memory load by increasing the number of stimuli to be learned and found that
this strengthened model-free reward prediction errors. Wimmer, Braun, Daw, and
Shohamy (2014) used a drifting probabilistic reward learning task in which a unique inci-
dental picture accompanied each trial. Better episodic memory for the pictures on a sur-
prise memory test the following day was negatively correlated with reward and
reinforcement learning rate during the task. For individual trials on which the picture
was successfully remembered, reward had a weaker influence on the subsequent choice,
and reward prediction error signals in the putamen were negligible.

At the same time, cooperative links have been demonstrated in similar paradigms
(Ferbinteanu, 2016). Bornstein, Khaw, Shohamy, and Daw (2017) showed that
decision-making in a multiarmed bandit task was biased by incidental reminders of
past trials, consistent with a version of model-free reinforcement learning that incorpo-
rates episodic sampling. Aberg, Muller, and Schwartz (2017) found that delivered and
anticipated rewards were positively related to associative memory encoding, and

83



84

Goal-Directed Decision Making

valence-dependent asymmetries in these effects were modulated by individual differences
in sensitivity to reward versus punishment. Dickerson, Li, and Delgado (2011) observed
that prediction errors in feedback learning correlated positively with activity in both the
putamen and the hippocampus. In some experiments centered on either episodic mem-
ory encoding or probabilistic reward learning, activity in the hippocampus appears to
positively correlate with activity in the putamen on feedback trials when stimuli are suc-
cessfully remembered later (Sadeh, Shohamy, Levy, Reggev, & Maril, 2011; Wimmer
et al., 2014). In a probabilistic learning task with feedback accompanied by incidental
trial-unique images, Davidow, Foerde, Galvan, and Shohamy (2016) found that stronger
episodic memory encoding was correlated with enhanced reinforcement learning among
adolescents but not adults. Moreover, functional hippocampal—striatal connectivity was
positive only for adolescents. Thus the process of development may play an important
role in how these systems interact. Kahnt et al. (2012) looked at value updating in a
perceptual association paradigm, augmenting a standard reinforcement learning model
with a similarity-based generalization gradient. They found that hippocampal—striatal
connectivity was negatively correlated with the width of the generalization window,
suggesting a discriminative mechanism.

The exact nature of such interactions thus remains an open question. Computational
theory may help suggest possible mechanisms, especially cooperative ones. Various
strands of the artificial intelligence literature synergistically combine CBR with model-
free reinforcement learning to enhance transfer learning. This is particularly valuable
when state and action spaces are large or continuous (Santamaria, Sutton, & Ram,
1997). Similar past cases can accelerate learning by contributing to initial guesses of the
value function, which can then be revised according to temporal difference learning,
retaining its promises of long-run convergence (Drummond, 2002; Gabel & Riedmiller,
2005; Sharma et al., 2007; Bianchi, Ribeiro, & Costa, 2008, 2009; Celiberto, Matsuurade
Ma‘ntaras, & Bianchi, 2010, 2011). Once learning has converged in a task, the optimal
policy can be abstracted for transfer to future tasks (Von Hessling & Goel, 2005). In re-
turn, reinforcement learning is able to influence the retrieval of cases by helping with on-
line assessment of the best similarity metrics for CBR (Juell & Paulson, 2003). Cases may
be stored preferentially when the agent is attaining high rewards (Auslander, Lee-Urban,
Hogg, & Munoz-Avila, 2008) and selectively pruned when they hinder prediction or
exceed storage (Gabel & Riedmiller, 2005; Wilson & Martinez, 2000).

Such computational models suggest further possibilities for neural interplay between
case-based and model-free systems. Along related lines, an influential body of work has
been inspired by the well-known Dyna architecture (Sutton, 1990), which is used to
explain hippocampal replay of recent memories during rest (Johnson & Redish, 2007;
Kurth-Nelson, Economides, Dolan, & Dayan, 2016). Modified temporal difference al-
gorithms with offline replay of previously experienced sequences allow extra practice,
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substantially speeding up early learning (Johnson & Redish, 2005; Johnson & Venditto,
2015).

Another important form of generalization relies on eligibility traces, which are
computational accessories to temporal difference learning attached to states or actions
that facilitate their value updates across temporal gaps (Barto, Sutton, & Brouwer,
1981; Sutton & Barto, 1998). Given its responsibilities in connecting stimuli across delays,
the hippocampus may be involved in instantiating eligibility traces (Ludvig et al., 2009).
Implementation could happen by means of synaptic tagging, in which recently active
synapses are tagged for increased susceptibility to long-term potentiation or depression
over longer periods of time (Frey & Morris, 1997; Izhikevich, 2007). Dopamine firing
patterns do appear to reflect eligibility traces (Pan, Schmidt, Wickens, & Hyland,
2005), and we have seen how strongly entangled the hippocampus is with various dopa-
mine circuits. However, such hypotheses remain to be empirically verified. Notably,
eligibility traces are most beneficial in non-Markovian environments. Among other rea-
sons, this could occur when agents are unsure of what to attend to in an unfamiliar
setting, rendering the state space only partially observable.

Interactions between case-based and model-based systems

Model-based decision-making relies on sophisticated forecasting, typically involving the
estimation of state transition probabilities. One source of these subjective probabilities
may be a case-based system (Blok, Medin, & Osherson, 2003; Taylor, Jong, & Stone,
2008).

Some evidence supports the existence of a hippocampal process for learning transition
probabilities that operates in parallel with the striatum and is linked to model-based
decision-making (Bornstein & Daw, 2012, 2013). Hippocampal similarity-based learning
is also thought to be one mechanism for learning word transition probabilities of artificial
grammars (Opitz & Friederici, 2004). Such belief updating may be premised on sequen-
tial association learning (Amso, Davidson, Johnson, Glover, & Casey, 2005) and the
binding of regularities across time and space as discussed earlier. Consistent with a key
role for association, Doll, Shohamy, and Daw (2015) found that generalization in an ac-
quired equivalence task was correlated with use of a model-based strategy in a separate
sequential learning task. Theoretically, probabilities constructed from stimulus associa-
tions might reflect the successor representation (Dayan, 1993), which assesses the ex-
pected future visitations of states based on their sequential cooccurrence. This can be
done latently prior to the introduction of reward and sheds light on how cognitive
maps may be neurally instantiated in the hippocampus (Stachenfeld, Botvinick, &
Gershman, 2014, 2017). The successor representation could explain why sensitivity to
contingency degradation is impaired in rats with lesions of the hippocampal region but
sensitivity to outcome devaluation is spared (Corbit & Balleine, 2000; Corbit, Ostlund,
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& Balleine, 2002). A mild disparity in these sensitivities occurs even under normal
circumstances in humans, which may be explained by a hybrid successor representa-
tion/model-based mechanism (Momennejad et al., 2017). Moreover, the temporal
context model of episodic memory can be viewed as estimating the successor represen-
tation (Gershman, Moore, Todd, Norman, & Sederberg, 2012), revealing a deep
connection between episodic memory and reinforcement learning.

Outcome projection based on similar cases is common in the world at large and has
proven successful when facing complex problems. As John Locke said, “in things which
sense cannot discover, analogy is the great rule of probability.” Similarity-based
approaches can help accurately predict college admissions (Klahr, 1969), movie revenue
(Lovallo, Clarke, & Camerer, 2012), and legal case outcomes (Teitelbaum, 2014). His-
torically, weather forecasting was done by seeing how conditions evolved on similar
recorded days (Kruizinga & Murphy, 1983). In general, this method of “reference class
forecasting” suggested by Kahneman and Tversky (1982) has been found helpful in proj-
ect management to the point where it is officially endorsed by the American Planning
Association, particularly for “nonroutine projects ... and other local one-oft projects”—
in other words, novel problems with limited past data. One branch of decision theoretic
models formalizes the idea by constructing probabilities from similarity-weighted fre-
quencies of past outcomes—a kernel estimate of event occurrence. Billot, Gilboa, Samet,
and Schmeidler (2005) provide an axiomatized representation of probabilities as
similarity-weighted frequencies. Others have relaxed their assumptions in various
ways, such as by allowing beliefs to depend on the database size, having multiple beliefs
to reflect ambiguity (Eichberger & Guerdjikova, 2010), and combining similarity-
weighted frequencies with a prior in a nested Bayesian framework (Bordley, 2011).
Theoretical predictions from these models await empirical testing.

Another line of research focuses on a more flexible form of forecasting based on imag-
ination. Imagining potential outcomes in detail can help agents evaluate options, and the
hippocampus plays a significant role in this mental simulation (Buckner & Carroll, 2007;
Gilbert & Wilson, 2007; Suddendort & Corballis, 2007). Just as the hippocampus enables
us to reconstruct vivid scenes from past episodes, it also helps us to conjure up potential
future scenarios from reconstituted episodes (Schacter, Addis, & Buckner, 2007, 2008,
2012). In the process, it may interact with vimnPFC to integrate related events in a flexible
and prospectively useful form (Benoit, Szpunar, & Schacter, 2014; Weilbacher & Gluth,
2017; Zeithamova & Preston, 2010; Zeithamova, Dominick, & Preston, 2012). Future
events are imagined in more detail when they would occur in familiar or recently expe-
rienced settings, revealing their origins in past episodes (Szpunar & McDermott, 2008).
Envisioning future events recruits similar temporal and prefrontal regions as envisioning
the past (Addis, Wong, & Schacter, 2007; Okuda et al., 2003; Schacter & Addis, 2007;
Szpunar, Watson, & McDermott, 2007), and hippocampal amnesics typically exhibit
impaired episodic prospection (Klein, Loftus, & Kihlstrom, 2002; Hassabis, Kumaran,
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& Maguire, 2007; Addis, Sacchetti, Ally, Budson, & Schacter, 2009; Andelman, Hoofien,
Goldberg, Aizenstein, & Neufeld, 2010; Kwan, Carson, Addis, & Rosenbaum, 2010;
Race, Keane, & Vertfaellie, 2011, 2013). Such imaginative prospection may be goal-
relevant and enhanced by reward (Bulganin & Wittmann, 2015), though not always
adaptively (Gershman, Zhou, & Kommers, 2017). Animals in choice experiments exhibit
a phenomenon known as vicarious trial and error, in which they pause at choice points
and orient themselves toward potential options, as if they were envisioning the future
implications of taking a given path (Johnson, van der Meer, & Redish, 2007;
Muenzinger, 1938; Tolman, 1938). This behavior appears to rely on the hippocampus
(Hu & Amsel, 1995; Hu, Xu, & Gonzalez-Lima, 2006), and hippocampal activity repre-
sents positions traveling down each path ahead of the animal (Johnson & Redish, 2007).

This type of goal-relevant simulation sometimes plays a role in intertemporal choice,
as the constructed representation of future reward may feed into previously identified
frontoparietal control regions associated with a preference for longer-term options
(McClure, Laibson, Loewenstein, & Cohen, 2004). Rats with hippocampal lesions
tend to pick smaller, immediate rewards (Abela & Chudasama, 2013; Cheung &
Cardinal, 2005; Mariano et al., 2009; McHugh, Campbell, Taylor, Rawlins, & Banner-
man, 2008; Rawlins, Feldon, & Butt, 1985). People who are prompted to consciously
imagine spending a delayed reward in the future tend to choose the delayed option
more often, and the strength of this bias is correlated with simulation richness (Benoit,
Gilbert, & Burgess, 2011; Daniel, Stanton, & Epstein, 2013; Lebreton et al., 2013; Lin
& Epstein, 2014; Liu, Feng, Chen, & Li, 2013; Peters & Buchel, 2010). Hippocampal
amnesics do not display this effect, although their intertemporal choices appear to be
comparable to controls who are not prompted to use imagination (Palombo, Keane,
& Vertfaellie, 2014; though see Kwan et al., 2015), in accordance with multiple process
hypotheses. From a theoretical standpoint, associative neural network models of region
CA3 naturally generate standard reward discounting curves derived from the predicted
similarity representations they produce with respect to future states (Laurent, 2013).

A final intriguing angle centers on analogical reasoning, which depends on higher-
order structural similarity and enables powerful generalization (Gentner, James Holyoak,
& Kokinov, 2001; Holyoak, 2012; Kolodner, 1997). Analogizing appears to be a
problem-solving ability near the peak of cognition and decision-making. Raven’s
Matrices, which test abstract relational reasoning, rank highly among mental tests in their
g-loading (Jensen, 1998). The flexible application and recombination of past cases in-
vokes more conscious processing involving our evolutionarily well-developed PFC
(Krawczyk, 2012; Zeithamova & Preston, 2010). Analogical thinking has been tested
in other species as well, and only chimpanzees have succeeded at a level modestly com-
parable to humans (Zentall, Wasserman, Lazareva, Thompson, & Rattermann, 2008).
Notably, successtul chimps were those with prior training in symbolic representations
like language or tokens. Thus, high-level relational comparisons may be key to both
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generalization and intelligence. These skills make a difference even at the frontier of
human ability. The brokerage firm Merrill Lynch was styled after cofounder Charlie
Merrill’s experience in the supermarket industry (Gavetti, Levinthal, & Rivkin, 2005),
and mathematician Stefan Banach often said that “good mathematicians see analogies
between theorems or theories; the very best ones see analogies between analogies.”

CONCLUSION

Decision neuroscience has been guided by the formal characterization of habitual and
goal-directed control in terms of model-free and model-based systems. Research
emerging from multiple fields points to the importance of alternative memory-based
mechanisms in learning and valuation, straining the boundaries of the traditional dichot-
omy. I have reviewed the behavioral and neural evidence characterizing these “case-
based” mechanisms from several angles.

Empirical research in psychology and economics shows that evaluation often occurs
on the basis of similarity judgments (Gilovich, 1981). Theoretical work from economics,
psychology, and computer science describes how decisions can be made by drawing on
similar past cases (Gilboa & Schmeidler, 1995a; Kolodner, 1992). Computational and sta-
tistical perspectives reveal that such methods have diftferent properties than typical model-
free and model-based rules, analogous to nonparametric techniques (Gilboa et al., 2011).
In particular, case-based evaluation makes fewer assumptions about problem structure
than model-based evaluation, while still generalizing beyond the circumstances of past
observations more than model-free evaluation. As a result, case-based approaches can
be adaptive compared to other systems in novel and complex settings (Gilboa et al.,
2013). This provides a normative justification for such alternative mechanisms and sug-
gests under which conditions we might expect them to be mobilized.

The hippocampus and broader MTL structures are natural candidates to subserve a
case-based system. Recent work in neuroscience indicates that these regions are involved
in value-based judgment to a previously unrecognized extent. The hippocampus can
reinstate memories of stimulus and reward associations when triggered by task-relevant
or external cues (Wimmer & Buchel, 2016), and it sometimes even represents value sig-
nals directly (Gluth et al., 2015). Hippocampal involvement occurs especially with stimuli
that are novel or natural objects (Barron et al., 2013) or when learning occurs over rela-
tively long timescales (Foerde et al., 2013). Case-based computations could also support
or compete with those of model-free or model-based systems, and both types of inter-
action have been observed (Bornstein & Daw, 2013; Wimmer et al., 2014).

A number of open questions follow from this perspective:

* Can tighter correspondences be found between brain activity and computational the-
ory for a case-based system? Representations of value derived from reinforcement
learning and expected utility have been observed in the striatum and prefrontal cortex
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(Daw & O’Doherty, 2013; Knutson, Taylor, Kaufman, Peterson, & Glover, 2005), as
have more exotic quantities such as regret (Lohrenz, McCabe, Camerer, &
Montague, 2007). Case-based decision theory provides another quantitative account
of value that may help explain neural activity.

*  How does the interaction between hippocampal and striatal functions depend on the
properties of the decision problem? In some tasks, the hippocampus reinstates contex-
tual features to support striatal value representations (Wimmer & Buchel, 2016),
while in other tasks, value signals appear to be represented in the hippocampus itself
(Gluth et al., 2015). The distributed representation of value likely depends on prop-
erties of the stimulus and environment, such as familiarity and complexity, but clear
principles are still to be laid out.

*  What other adaptive properties might normatively justify contributions of episodic
memory to decision-making? Computational noise in a model-based system can
stem from stringent memory demands, so episodic control may exhibit more robust
performance due to lower cognitive costs (Lengyel & Dayan, 2008). Such arguments
may suggest new predictions about how factors like cognitive load aftect learning and
behavior.

To address these questions will require moving beyond traditional neuroeconomic
paradigms in which artificial stimuli are presented repeatedly and value is learned incre-
mentally. Neuroimaging techniques with high spatial resolution must also be used to
measure brain activity in humans because the size, shape, and cytoarchitecture of the
hippocampus make it difficult to image.

Evaluation based on similarity has arisen time and again across the behavioral and
computational sciences. I have attempted to synthesize a wide range of relevant theoret-
ical and empirical findings into a cohesive foundation for neuroeconomics to build on.
These ideas reveal the need for studies that reflect the novel, unstructured, non-
Markovian, discontiguous—in short, messy—nature of the world at large. Decision-
making under such conditions may call upon different sets of mechanisms than those
traditionally considered. The transparency and simplicity of most neuroeconomic exper-
iments may obstruct our view of what happens when matters are not so tidy—and we
live in an untidy world.
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