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Although the structure of simple decision making is well described as the noisy
accumulation of evidence over time, the influence of subjective preferences for time use
in deliberation remains underexplored. Here, I show how reference dependence based
on expected time use can affect deliberative time allocation. In a motion discrimination
task, I provide some participants with an indication of how long the block will take to
complete. Once they exceed this benchmark, they spend less time accumulating
information, at the expense of forgone rewards. By incorporating reference dependence
into the drift diffusion model, I quantify the impact of the reference point on prefer-
ences directly. Moreover, I uncover the time course of preferences by estimating the
subjective value of time in a sliding window. Thus, I provide novel evidence on the
impact of temporal reference points and illuminate the role of subjective preferences in
deliberative behavior.
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To make decisions, people take time to pro-
cess information. Although deliberation over
simple alternatives is well characterized as the
sequential sampling of noisy information (Gold
& Shadlen, 2007; Laming, 1968; Ratcliff, 1978;
Stone, 1960), the impact of subjective prefer-
ences for time use in this process has remained
underexplored. Preferences are typically chal-
lenging to quantify, but understanding their role

is important for explaining and predicting de-
liberative behavior. In this article, I study how
deliberation is influenced by reference points of
expected time use. A decision maker who
spends longer than anticipated on a task may
feel discontentment, reducing his motivation to
continue working (Kőszegi & Rabin, 2006).

The purpose of deliberation is to reduce un-
certainty about which option is better. Accord-
ingly, decisions frequently involve an inverse
relationship between speed and accuracy; we
can make judgments that are fast but error-
prone or slow but high quality. In simple prob-
lems, patterns of choices and response times as
well as neural activity have been formally cap-
tured using sequential sampling models, which
describe decision making as the noisy accumu-
lation of evidence over time until a desired
standard of confidence is met (see Forstmann,
Ratcliff, & Wagenmakers, 2016; Ratcliff,
Smith, Brown, & McKoon, 2016). Although
these models generate a realistic speed–
accuracy trade-off, their applications are often
agnostic as to how agents negotiate this
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tradeoff. From a theoretical standpoint, an
agent’s stopping criterion incorporates all costs
and benefits of spending time (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006), but empiri-
cal analyses of subjective preferences remain
limited in scope. Subjective motivations are im-
portant drivers of deliberation but are also by
nature difficult to observe. Mostly, studies have
simply manipulated the speed–accuracy trade-
off using instructions that either ask participants
to favor fast responding, or accurate responding,
with straightforward qualitative results (Band,
Ridderinkhof, & van der Molen, 2003; de Hol-
lander et al., 2016; Forstmann et al., 2008; Hale,
1969; Herz et al., 2017; Howell & Kreidler,
1963; Ivanoff, Branning, & Marois, 2008; Os-
man et al., 2000; Palmer, Huk, & Shadlen,
2005; Ratcliff & McKoon, 2008; Ratcliff &
Rouder, 1998; Rinkenauer, Osman, Ulrich,
Müller-Gethmann, & Mattes, 2004; van der
Lubbe, Jaśkowski, Wauschkuhn, & Verleger,
2001; van Veen, Krug, & Carter, 2008; Zhang
& Rowe, 2014). Can deliberative behavior be
influenced in more sophisticated ways, and can
we directly quantify the shifts in preferences
that result?

Much research in behavioral economics dem-
onstrates that outcomes are evaluated relative to
reference points, which are increasingly thought
to stem from a decision maker’s expectations
(Bell, 1985; Gul, 1991; Kőszegi & Rabin, 2006;
Loomes & Sugden, 1986). Such theories help us
intuitively and elegantly explain a range of em-
pirical findings which are hard to understand
using traditional assumptions (e.g., Bartling,
Brandes, & Schunk, 2015; Eliaz & Spiegler,
2013; Pagel, 2017; Pope & Schweitzer, 2011).
Here, I focus on reference dependence in the
time dimension, which has been invoked to
capture important economic regularities per-
taining to labor supply (Kőszegi & Rabin, 2006;
Crawford & Meng, 2011), but which has also
been overshadowed by reference dependence in
terms of money or objects. Intuitively, workers
who exceed their expected shift length may be
less willing to persevere. Time is a crucial part
of deliberation, and so expectations of time use
may naturally play a special role in this domain.
Although subjective preferences are usually
hard to measure, studying behavior in a setting
where the structure of the decision process is
well understood enables us to precisely quantify
how preferences change.

I conduct a motion discrimination experiment
in which some participants are provided with
information about how long an entire block of
trials should take to complete. Such participants
speed up after exceeding this reference point, at
the expense of reduced accuracy. Some evi-
dence suggests that they also exhibit more dis-
pleasure as measured by their ratings of task
satisfaction. To quantitatively assess changes in
subjective preferences as directly as possible, I
incorporate reference dependence into the most
commonly used sequential sampling frame-
work, the drift diffusion model. By estimating
model parameters from trials within different
temporal windows, I can infer the location and
magnitude of the reference point’s impact on
preferences for time versus reward. This proce-
dure reveals a steep jump in subjective costs at
the reference point by a factor of nearly three.
Hence, exceeding a temporal benchmark on
block-level timescales may dramatically alter
the willingness to continue deliberating. I thus
provide novel evidence on the impact of time-
based reference points and illuminate the role of
subjective preferences in deliberative time allo-
cation.

Theory

For well over a century, psychological re-
search has made use of response times to help
understand and predict behavior (Donders,
1869/1969; Hick, 1952; Jensen, 2006; Stern-
berg, 1966; Shepard & Metzler, 1971). Sequen-
tial sampling models were developed as com-
putational tools to rigorously quantify insights
about the cognitive processes that give rise to
decisions (Busemeyer & Townsend, 1993; LaB-
erge, 1962; Pike, 1966; Shadlen & Newsome,
1996; Usher & McClelland, 2001; Vickers,
1970; Wang, 2002). These models propose that
to arrive at a choice, noisy information about
each alternative is continually sampled until
confidence in one option or another reaches a
threshold level (Gold & Shadlen, 2007). This
framework provides a precise statistical account
of how deeper cognitive parameters give rise to
time spent and performance attained, and in so
doing, allows for richer interpretations of be-
havioral data.

The earliest and most well-characterized se-
quential sampling model is the drift diffusion
model (DDM), originally developed half a cen-
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tury ago (Laming, 1968; Ratcliff, 1978; Stone,
1960). Beyond behavioral evidence showing
that the DDM closely fits patterns of choice and
response times in a variety of decision tasks,
direct recordings of neural activity demonstrate
that neurons in various brain regions implement
evidence accumulation processes that match the
model’s structure (Gold & Shadlen, 2002;
Hanes & Schall, 1996; Ratcliff, Cherian, & Se-
graves, 2003; Smith & Ratcliff, 2004; Shadlen
& Newsome, 2001). Indeed, the basic function-
ing of neurons involves transmitting all-or-
nothing signals that are triggered by inputs
reaching a critical threshold. Although the
DDM is commonly used to study perceptual
choice (Gold & Shadlen, 2007; Philiastides,
Ratcliff, & Sajda, 2006; Ratcliff et al., 2003;
Ratcliff, Philiastides, & Sajda, 2009; Ratcliff &
Rouder, 1998; Ratcliff & Smith, 2004; Smith &
Ratcliff, 2004; Voss, Rothermund, & Voss, 2004),
recent work extends it to value-based settings such
as consumer purchasing decisions and intertem-
poral choice (Krajbich, Armel, & Rangel, 2010;
Krajbich, Lu, Camerer, & Rangel, 2012; Krajbich
& Rangel, 2011; Milosavljevic, Malmaud, Huth,
& Rangel, 2010).

According to the DDM, the agent integrates
evidence over time for one alternative or an-
other until an evidence threshold is reached, and
the corresponding decision is made. This accu-
mulation includes inherent sensory noise and
hence is modeled as a stochastic differential
equation,

dx � Adt � cdW,

where x(t) is the difference in evidence between
the two alternatives (with x(0) � 0 in an unbi-
ased decision), A is the accumulation or drift
rate, and c represents the noise component. The
change dx over the small time interval dt is
broken up into the constant drift Adt and the
Gaussian white noise cdW with mean 0 and
variance c2dt. When the accumulated evidence
x reaches the critical threshold �z, the corre-
sponding choice is made.

This stochastic process generates a speed–
accuracy trade-off regulated by the confidence
threshold (z). A higher threshold entails a more
stringent standard of evidence and reduced sus-
ceptibility to errors at the cost of greater deci-
sion time. Conversely, a lower threshold re-
quires weaker evidence and thus less time to

make a decision but increases the error rate. The
drift rate (A) and noise (c) parameters describe
an individual’s information processing facul-
ties. Higher drift rates and lower accumulation
noise mean superior performance in terms of
higher accuracy rates with the same threshold.
Key mathematical properties of individual per-
formance conditional on the DDM parameters
have been characterized. These properties come
from solutions to the first passage problem in
which the stochastic accumulation process
crosses the decision threshold. In the current
simple setup,1 closed-form expressions exist for
the accuracy, a, and mean decision time, t (Bo-
gacz et al., 2006):

a(z, A, c) �
e2Az ⁄c2

1 � e2Az ⁄c2 ,

t(z, A, c) �
z

A
tanh�Az

c2 �.

The DDM was partly motivated by its origins
in efficient statistical algorithms for hypothesis
testing, appealing to researchers as an instance
of ideal observer analysis, which has generally
proven fruitful in psychophysics. Specifically,
the DDM is the continuous sampling limit of the
sequential probability ratio test, which mini-
mizes response time for a given error rate in a
Bayes optimal way (Arrow, Blackwell, & Gir-
shick, 1949; Wald, 1947). Theoretical derivations
of the DDM and some of its extensions imply that
the decision threshold is selected to balance the
benefit of spending more time working—which
reflects increased chances of winning monetary
payoffs—with the cost—which stems from the
value of forgone leisure. Various experiments
show that the estimated threshold and its neural
representation are indeed modulated by many
kinds of manipulations, including explicit in-
structions to emphasize either the speed or the
accuracy of responses (Band et al., 2003; de
Hollander et al., 2016; Forstmann et al., 2008;
Hale, 1969; Herz et al., 2017; Howell &
Kreidler, 1963; Ivanoff et al., 2008; Osman et
al., 2000; Palmer et al., 2005; Ratcliff &

1 Additional parameters dealing with, for example, vari-
ation in drift rate across trials are sometimes incorporated in
the extended DDM.
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Rouder, 1998; Ratcliff & McKoon, 2008;
Rinkenauer et al., 2004; van der Lubbe et al.,
2001; van Veen et al., 2008; Zhang & Rowe,
2014). These studies typically find that the in-
structions affect behavior via the decision
threshold, though occasionally changes in other
parameters are observed as well. However,
these findings are rarely translated into their
quantitative implications for preferences di-
rectly.

Formally, supposing each correct answer
yields a payoff of wage w and time expenditure
comes at an opportunity cost2 of rate �, a de-
cision maker is assumed to choose a threshold
that maximizes expected utility U�z; A, c� �
wa�z; A, c� � �t�z; A, c�. This optimization cri-
terion is equivalent to the Bayes Risk criterion
developed by Wald and Wolfowitz (1948) and
Edwards (1965), which assumes decision makers
minimize the cost function BR � k1t � k2(1 � a)
for k1, k2 � 0 and is known to have a unique
solution. The first-order condition with respect
to z is

�U

�z
� 0 � w� 2Ae2Az*⁄c2

c2�1 � e2Az*⁄c2��
� �z*

c2sech�Az*

c2 ��
1

A
tanh�Az*

c2 ���,

and rearranging this equation yields

�̂ �
wA2

2Az* � c2sinh�2Az* ⁄ c2�
. ���

In this way the opportunity cost of time is
identified for each person from the decision
threshold (z), drift rate (A), and accumulation
noise (c) parameters which can be estimated
from individual accuracy and response time
data.3

Theories of reference dependence imply a
scaling up of costs when the reference point r is
exceeded. A person with reference-dependent
preferences will be displeased if he spends lon-
ger than expected on the task. That is, if he
exceeds the reference point, a psychological
tax applies to each additional moment of
work. Expected utility is accordingly given
by U�z �r� � wa�z� � �rp�t�z� where �rp is
equal to the degree of loss aversion � � 1 after

passing the reference point and is 1 otherwise.
The theory predicts that to mitigate the loss
sensations, the decision maker will reduce time
expenditure on the task. This reduction comes at
the expense of accuracy, decreasing chances of
monetary reward. In this setup, the inferred cost
parameter in Expression (�) includes this extra
� coefficient after the reference point is passed
(i.e., the right-hand side expression is an esti-
mate of �� rather than just �). By comparing
parameters in the early and late regimes, or
across people given and not given reference
points, the intensity of loss aversion can be
isolated. I note that the exact psychological
source of loss aversion could be multifaceted.
Past work has used the term reference depen-
dence in nonspecific ways that could include
individual or social motivations. Though this
is surely an important question in understand-
ing the impact of reference dependence across
domains, in the present work I remain agnos-
tic about the precise nature of the aversion.

Method

The goal of the experiment was to test the
empirical implications of temporal reference de-
pendence, and quantitatively investigate its impact
in terms of underlying subjective preferences. I
used a standard perceptual paradigm, the random
dot motion task, in which behavior is known to be
closely fit by the drift diffusion model, allowing
me to focus on economic preferences. In this task,
many dots were moving on a screen; most were
moving in random directions, but a proportion
were moving consistently either left or right, and
participants had to figure out that consistent direc-
tion. A tradeoff between speed and accuracy came
into play. One could spend more time, gather
more sensory information, and be more likely to
answer correctly and get paid. Or one could spend
less time on the task and have more leisure time
afterward but face a higher chance of being wrong
and forgoing payment. I manipulated the willing-

2 Theoretically, the value of time is its opportunity cost,
so I use these terms interchangeably.

3 It is worth observing that a more typical economic
modeling approach would suppose that the agent directly
chooses the amount of time, t, to spend on each trial of the
task, yielding an accuracy of a(t). However, this formulation
would not allow estimation of preferences because the con-
nection between observed accuracy and time depends en-
dogenously on the individual’s stopping criterion.
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ness to trade accuracy for speed by indicating to
some participants the expected task length.

Participants

Participants were 35 college and graduate
students from Caltech recruited via the online
system in the Social Science Experimental Lab-
oratory. All participants received a $5 show-up
fee in addition to their earnings for performance
as described below. The study was approved by
the Caltech Committee for the Protection of
Human Subjects.

Materials

The focal task was the random dot motion task,
in each trial of which a hundred small white mov-
ing dots were displayed in random locations on a
black background. A small number of these dots
(“signal” dots) moved deterministically either all
left or all right, while the rest moved in random
directions. Twelve percent of the dots in all trials
were signal dots (i.e., the coherence was always
12%). Participants had to choose, using the num-
ber keys “1” and “2” on the keyboard, which
direction (left or right) the signal dots were mov-
ing in. They could respond at any time after the
stimulus was first presented. The direction of co-
herent motion was determined with equal proba-
bility randomly across trials. Explicit instructions
explaining the task including two comprehensive
examples were provided before regular trials. The
computerized experiment was programmed using

the Psychophysics Toolbox in MATLAB. The
aperture (i.e., dot field) was square with side
length 540 pixels. Dots had a 5-pixel diameter, a
velocity of 1 pixel per frame (at roughly 60 fps),
and a 20-frame lifetime. Intertrial intervals only
comprised a fixation cross shown for 1.5 s, over
which participants had no control.

Experimental Design

The full experimental design is depicted in Fig-
ure 1. Participants were divided into two condi-
tions, and the key treatment was to instantiate the
reference point at the outset of the dot motion task:
the instructions in the treatment condition con-
tained a line stating that the block “should take
about 10 minutes to complete,” which constituted
the experimental reference point. This was se-
lected because it was a natural unit of time that
was feasible to attain and slightly faster than the
median completion time in pilot tests. More
broadly, in the control condition, individuals com-
pleted two blocks of the random dot motion task.4

In the treatment condition, individuals completed
a single block of the focal task (random dot mo-
tion) following one quick block of a different filler

4 The second block was intended to study the modulatory
effects of prior experience on reference dependence. Be-
cause the results are suggestive but not clearly interpretable
due to confounding effects of fatigue, I present the results in
the Appendix for interested readers.

Random Dot 
Motion Task

Treatment

Reference 
point

Filler 
Task

Satisfaction 
rating?

Leisure

Leisure
Random Dot 
Motion Task

Control

Random Dot 
Motion Task

Experience

Reference 
point

Satisfaction 
rating?

x 100 trials

Figure 1. Setup of experiment. Participants engaged in blocks of perceptual decision-
making tasks. In the treatment group, participants were provided with a temporal reference
point indicating that a block of 100 dot motion trials should take about 10 min.
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task (blurred image categorization).5 This served
to stagger their start times on the focal task, avoid-
ing confounds due to any external disruptions
(such as loud noises) that could have spuriously
mimicked a shared reference point. All blocks
consisted of 100 trials and were separated by a
1-min break. Participants were paid $0.05 for each
correct answer and nothing for each wrong an-
swer. Feedback was only provided as totals at the
very end of the experiment. In what follows, I
focus on the comparison between participants en-
gaging in the dot motion task for the first time in
both conditions. Although the treatment and con-
trol groups were not perfectly matched due to the
auxiliary blocks, the data reveals no apparent dif-
ferences between them before the reference point
in terms of time expenditure or accuracy, as will
be seen.6

During all tasks the real-time clock and trial
number were displayed onscreen. At the end of
the experiment, participants were asked how
much they liked the task on a scale of 1 (very
little) and 10 (very much). They were asked to
remain in their seats until at least 30 min had
passed from the start of the experiment before
being paid but were allowed to browse the Internet
in the meantime once they were finished. The
marginal value of leisure was thus based on real
leisure (Corgnet, Hernán-González, & Schniter,
2015). For laboratory timing reasons the experi-
ment was set to end after 35 min and participants
were informed of this. Eighteen people were as-
signed to the control condition and 17 people to
the treatment condition. Two outlying participants
from the control group were excluded from anal-
ysis since they took too much time and did not
complete the full task, and so the two participants
with the longest dot motion task times in the
treatment group were excluded for balance
(though the main results do not appreciably
change if all participants are included).

Results

Reference dependence predicts that those
who exceed the given reference point will finish
working at a higher rate, at the expense of
accuracy. Figure 2 shows the empirical distri-
bution functions depicting the cumulative prob-
abilities of stopping across the same groups,
with 95% pointwise Wilson confidence bands.
Those given the reference point stop at a higher
rate, as indicated by a Cox proportional hazards

model (HR � 2.45, p � .032). In particular, the
hazard rate is significantly elevated only after
the reference point is hit (HRafter � 3.38, p �
.021; HRbefore � 1.39, p � .620). Further, the
treatment reduced aggregate accuracy from
82.0% to 77.7% (p � .003, test for equality of
proportions). Figure 3 shows the percent of cor-
rect answers in each group for individuals active
before and after the reference point, with exact
95% confidence intervals. Before the reference
point, both groups responded correctly about
80% of the time. Afterward, however, those
given the reference point scored 7.7 percentage
points lower than those who were not (p �
.015). Although the control group appears to
have increasing accuracy as the block proceeds
which could be a reflection of training effects,
this does not change the conclusion of the anal-
ysis. Variation in ability will moreover be ac-
counted for via the drift rate parameter in the
model estimation that follows.

Evidence of subjective displeasure comes
from participants’ postexperiment ratings of
how much they liked the task on a scale from 1
(very little) to 10 (very much). Figure 4 and
Figure 5 display the relationship between satis-
faction ratings and task completion time, with
95% nonparametric bootstrap confidence inter-
vals shown. Participants in the treatment group
who spent longer than 10 min rated the task on
average 3.3 points lower than those who fin-
ished quicker, a statistically significant differ-
ence according to a permutation test (p � .044).
No such difference was found in the control
group. Notwithstanding this result, it is possible
that the drop in ratings simply has to do with

5 Participants spent between 4 min 16 s and 7 min 7 s on
the filler block and had between 56% and 83% accuracy.
They were faced with a sequence of images of animals
(raccoons and porcupines), which were obscured using stan-
dard image processing filters. For each image they chose
one of the two categories using the keys “1” and “2.” The
images were from a machine learning image set collected
from an online image search. They were resized to approx-
imately 200 	 300 pixels, converted to grayscale, and
obscured using a 40-pixel range Gaussian blur.

6 This leaves open the possibility that other precipitating
factors might contribute to the observed behavior. For ex-
ample, the relative immediacy of leisure time in the treat-
ment group could enhance the impact of the reference point.
Investigating such factors and boundary conditions remains
an interesting topic for further study, as with research that
studies the role of salience in reference dependence (Bhatia
& Golman, in press; Bordalo, Gennaioli, & Shleifer, 2012).
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participants putting in less effort and therefore
giving noisier ratings, rather than necessarily
signifying dissatisfaction. This is an alternative
explanation which I cannot decisively rule out,
and hence note as a caveat.

To more deeply characterize the data in terms
of underlying preferences, I estimate the DDM
parameters for each participant, and translate
those into inferred subjective preference param-

eters. The drift rate A and decision threshold z
are estimated using the EZ diffusion model
(Wagenmakers, van Der Maas, & Grasman,
2007).7 This entails closed-form solutions for
the parameters based only on the proportion of
correct decisions (a) and the variance in re-
sponse times for correct decisions (var(t)):

A � sign�a �
1

2�c

�logit(a)�a2logit(a) � alogit(a) � a �
1

2�
var(t)

	
1
4

,

z �
2c2logit(a)

A
.

where logit�a� � log� a
1�a�. The properties of the

DDM depend only on the ratios z/c and A/c
rather than their absolute values so c � .1 is
assumed in estimation as is standard practice.

I use the EZ diffusion approach to parameter
estimation for two reasons. First, because of its
simplicity, it often has superior power to detect
experimental effects compared to other proce-
dures, especially with a small number of trials
(van Ravenzwaaij, Donkin, & Vandekerckhove,
2017). Second, its analytical tractability means

7 The nondecision time can also be estimated as the
residual mean response time. I only briefly analyze this
below.

Figure 2. Empirical cumulative distribution function of
completion time data. Shaded bands represent 95% point-
wise Wilson confidence bands. See the online article for the
color version of this figure.
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Figure 3. Accuracy rates across groups for participants
active before and after reference point. Error bars represent
exact 95% confidence intervals. See the online article for the
color version of this figure.

Figure 4. Subjective task satisfaction ratings on scale
from 1 (low) to 10 (high) in treatment group. Blue (gray)
bars represent 95% nonparametric bootstrap confidence in-
tervals for people finishing before and after the reference
point. See the online article for the color version of this
figure.
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that parameters are quick to numerically com-
pute. Both of these properties will be needed
particularly when estimating parameters using
subsets of trials within a sliding temporal win-
dow. Moreover, the EZ model assumptions
seem empirically reasonable in this dataset.
Since simple flat threshold DDMs (and the EZ
model) predict independence between time and
accuracy, theoretical extensions such as collaps-
ing thresholds or across-trial parameter variabil-
ity are often motivated by negative correlations
between these variables. In this dataset, logistic
regressions (not reported) attempting to predict
accuracy from time for each participant hold
almost no predictive power; the time coefficient
is not statistically significant for 85% of partic-
ipants. Thus, basic models seem sufficient for
the main goal of this article. This is perhaps to
be expected on both theoretical and empirical
grounds. Theoretically, a constant threshold is
indeed optimal in the present task under the
criterion used in this article (Fudenberg, Strack,
& Strzalecki, in press), and empirically, meta-
analyses typically find evidence primarily in
favor of fixed thresholds (Hawkins, Forstmann,
Wagenmakers, Ratcliff, & Brown, 2015). It is
also not obvious how to incorporate reference
dependence into complicated DDM variants
which do not have clear optimizing foundations,
making a simple model necessary for this ap-
plication.8

The resulting estimates are shown in Figure 6
with 95% nonparametric bootstrap confidence
intervals. The drift rate parameter is similar
across groups both before (p � .619, across-

group permutation test) and after (p � .709) the
reference point. Hence, changes in ability do not
seem to explain the treatment effects.9 In con-
trast, the decision threshold drops after the ref-
erence point is hit for the group provided with
the information (p � .009). This entails a shift
toward speed and away from accuracy, all else
equal. There were no statistically detectable dif-
ferences in nondecision time across groups ei-
ther before (p � .595) or after (p � .445) the
reference point. Thus, in line with many past
studies varying speed-accuracy instructions, the
only clear evidence of a treatment effect shows
up in the decision threshold.

These parameter estimates can be translated
into the opportunity cost of time using Expres-
sion (�). Analyzing the data on this level allows
us to directly quantify how subjective prefer-
ences are affected by the treatment, accounting
for individual variation in ability. I compute the
value of time for participants in both groups
based on their trials before and after the refer-
ence point was passed. Thus, the people repre-
sented in each group are the same across periods
in this analysis. To keep noise low in these
estimates, I include participants who spent
enough time to face at least 20 trials after the
reference point came into effect. The values
resulting from the procedure on a $/hour scale
are shown in Figure 7 with 95% nonparametric
bootstrap confidence intervals.

Table 1 contains the results of regressions
predicting the values based on period (before
vs. after reference point) and group (no-
information control vs. reference point informa-
tion treatment). As is apparent from the figure
as well as the significant positive interaction
between the two variables, the value of time
rose dramatically only among those who were
provided information and only after they ex-
ceeded the reference point. Before the reference
point was passed, the value of time was the
same regardless of whether groups were pro-

8 Nonetheless it must be noted that exact quantitative
results are conditional on the model used and the assump-
tions it makes (such as constancy of parameters). These
assumptions are not universally true and may require novel
theoretical modifications depending on the application.

9 Drift rates do exhibit a mild and statistically significant
increase likely due to improvement from experience as
mentioned earlier (p � .032, paired t-test pooling both
groups), but this does not alter the conclusion.

Figure 5. Subjective task satisfaction ratings on scale
from 1 (low) to 10 (high) in control group. Blue (gray) bars
represent 95% nonparametric bootstrap confidence intervals
for people finishing before and after the reference point. See
the online article for the color version of this figure.

294 BHUI

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



vided information. After the reference point was
passed, the control group’s preferences re-
mained the same. Note that this is the case even
though drift rates increased with experience;
preference parameters naturally incorporate
variation in ability by the way in which they are
calculated, making them useful tools if one is
interested in preferences specifically.

We can compare opportunity costs both be-
tween groups and within individuals to estimate
the strength of loss aversion. Under the model
specified earlier, the loss aversion parameter �
is given as the ratio between opportunity costs
when loss aversion is and is not in effect. Note
that because the value of a correct response
factors in multiplicatively as seen in Expression
(�), this is robust to certain assumptions about
the utility of winning, including heterogeneous
risk attitudes or psychological success bonuses.
The within-person estimate is based on the ratio
of opportunity costs after versus before the ref-
erence point for each individual in the treatment

Table 1
Effect of Reference Point on Value of Time

Variable

Dependent variable:
Value of time

(1) (2)

Constant 2.636 (.782) 3.187 (1.892)
Treatment �.138 (1.219) �2.149 (2.702)
After reference point �.365 (1.106) �.365 (1.141)
Treatment 	 After

reference point 4.388 (1.723) 4.388 (1.778)
Individual fixed effects No Yes
Observations 34 34
R2 .334 .646

Note. Standard errors are in parentheses.
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Figure 6. Mean estimated drift diffusion model parameters across groups for participants
active before and after the reference point. Error bars represent 95% nonparametric bootstrap
confidence intervals. See the online article for the color version of this figure.
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Figure 7. Mean estimated values of time across groups for
participants active before and after the reference point. Error
bars represent 95% nonparametric bootstrap confidence in-
tervals. See the online article for the color version of this
figure.
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group. The between-group estimate is based on
the ratio of treatment to control group opportu-
nity costs after the reference point. Although we
cannot observe the behavior after the reference
point of individuals who finish the task too
quickly, if the loss aversion parameter is inde-
pendent of the baseline opportunity cost, these
assessments will provide unbiased estimates of
loss aversion in the population. They agree with
each other reasonably well. The mean within-
person estimate is �̂w � 3.33 with a 95% non-
parametric bootstrap confidence interval of [1.
34, 6.41], and the mean between-group estimate
is �̂B � 2.87 with a confidence interval of [1.45,
4.94]. These quantities summarize how in-
tensely shortfalls of time are felt compared to
surpluses. The figures here appear similar in
magnitude to the most comparable figures from
the few other time-based studies that exist. The
best fitting models in Crawford and Meng’s
(2011) analysis yield values of 1.67, 2.31, and
2.89, while Abdellaoui and Kemel’s (2014) find
mean values of 2.54 and 3.80.10

The above analysis was conducted with a
particular reference point in mind. However, the
technique discussed can be used not only to
measure the strength of loss aversion, but also
to detect the location of its impact. Rather than
dividing the data into regimes reflecting before
and after the reference point, I estimate time-use
preferences in a sliding window. Displayed in
Figure 8 is the 10% trimmed mean of the value
of time in each group based on a 3-min window
for the period of time in which at least three
individuals were active.11 The inferred prefer-
ences are relatively stable and comparable in
both groups until the reference point is hit. At
that point, the mean value of time among the
remaining participants given the reference point
sharply rises. The horizontal bar above the data
denotes periods with a statistically significant
difference in group means at the 5% level ac-
cording to a permutation test. Thus, reference
points may be identified from the data itself.
Intriguingly, there is only a little evidence of
forward-looking sophistication, as the cost of
time remains fairly stable in advance of refer-
ence point. However, the decision threshold
does appear to be mildly lower among the treat-
ment group starting from about halfway to the
reference point (see the Appendix).

Discussion

In this article, I empirically investigated the
effects of temporal reference dependence on
deliberative time allocation. This was done
within the context of a standard perceptual de-
cision-making paradigm, the random dot mo-
tion task, in which behavior is known to be
well-described by the DDM. By providing some
participants with an expectation of how long a
set of perceptual decision problems will take to
complete, a benchmark was induced which,
when exceeded, led people to shift their prefer-
ences toward speed over accuracy. Such people
may also have experienced more subjective dis-
satisfaction as a result.

To directly quantify the treatment effects in
terms of underlying preferences, I interpreted
the decision threshold as a choice variable se-
lected to trade off the decision maker’s costs
and benefits of time expenditure. This enabled
me to infer the subjective value of time versus
reward for each individual across trials. Within-
individual and between-group analyses both re-
vealed a roughly threefold increase in the cost
of time after the reference point was exceeded.
Moreover, by estimating preferences based on
data within a sliding window, the reference
point could be recovered without assuming its
existence.

The preference-based analysis used in this
article rests on two theoretical assumptions: that
the costs and benefits of time expenditure are
exclusively captured by the decision threshold,
and that the decision threshold reflects the op-
timal balance between costs and benefits. The
first assumption seems borne out by the data, as
the only parameter modulated by the treatment
appeared to be the decision threshold, while
drift rate and nondecision time did not show

10 It must be noted that Crawford and Meng’s (2011)
parameter includes an extra coefficient reflecting other as-
pects of reference dependence, and Abdellaoui and Kemel’s
(2014) study involves framed gambles over amounts of time
that participants were made to spend in a room later without
entertainment, and are therefore not perfectly comparable to
my estimates. De Borger and Fosgerau (2008) quantita-
tively assessed loss aversion from hypothetical travel time
choices but do not estimate a comparable parameter.

11 I exclude each individual’s 100th trial and maximum
estimated value of time, due to a sizable drop in perfor-
mance specific to the last trial, and to ensure the results are
not driven by other outliers.
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discernible differences across groups. This as-
sumption is moreover consistent with many
other studies in this context. For example, par-
ticipants in Experiment 2 of Palmer et al. (2005)
were instructed to aim for various mean re-
sponse times (0.5 s, 1 s, or 2 s), and this ma-
nipulation only yielded lower thresholds with
no clear changes in other parameters (though
see Zhang & Rowe, 2014). Furthermore, neural
evidence indicates that strategic control of the
speed–accuracy trade-off appears regulated by
downstream decision-related regions (such as
presupplementary motor area, striatum, and
dorsolateral prefrontal cortex), as opposed to
early sensory areas which might be expected to
reflect parameters other than the decision
threshold (Bogacz, Wagenmakers, Forstmann,
& Nieuwenhuis, 2010; Forstmann et al., 2008,
2010; Ivanoff et al., 2008; van Veen et al., 2008;
Wenzlaff, Bauer, Maess, & Heekeren, 2011).

Although the second assumption cannot be
directly tested here, to a limited extent the proof
is in the pudding. This study and others have
found that the estimated decision threshold and
its neural correlates qualitatively respond to incen-
tives and instructions as predicted by principles of
optimality (Domenech & Dreher, 2010; Gluth,
Rieskamp, & Büchel, 2013; Green, Biele, &
Heekeren, 2012; Hanks, Kiani, & Shadlen, 2014).
The most relevant quantitative evidence comes
from Drugowitsch, Moreno-Bote, Churchland,

Shadlen, and Pouget (2012) who used similar
methods to estimate within-trial cost functions for
monkeys and humans. They found that inferred
costs seemed to exhibit certain rational properties.
For example, in the experimental protocol faced
by the monkeys, rewards for quick responses were
delayed to a minimum reward time of approxi-
mately 1 s (whereas any later decisions resulted in
immediate reward). Hence, there was no cost to
continued accumulation early on, and indeed, in-
ferred costs were close to zero before the mini-
mum reward time. Thus, internal costs appear
sensitive to the nature of decision problems at
least on short timescales.

Countless studies have influenced delibera-
tion by manipulating objective features of the
decision task such as monetary incentives or
trial timing (Heitz, 2014). Fewer have altered
subjective perceptions of the task, and almost
none have quantified the effects of their manip-
ulations in terms of preferences. This quantifi-
cation is important for both predicting behavior
precisely and understanding the internal moti-
vations that contribute to deliberative decision
making. By more firmly linking the DDM to its
cost-benefit foundations, we might hopefully
gain further insight into perceptual and eco-
nomic decisions as well as generate deeper hy-
potheses regarding the neural implementation
of individual deliberation. In separate para-
digms, the basal ganglia have been associated
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Figure 8. Moving average of estimated values of time across groups. Horizontal bar
represents periods in which values are statistically significantly different across groups at the
5% level according to a permutation test. See the online article for the color version of this
figure.
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with subjective value representations including
loss aversion (Canessa et al., 2013; Tom, Fox,
Trepel, & Poldrack, 2007) and modulation of
the decision threshold (Forstmann et al., 2008,
2010; Ivanoff et al., 2008; van Veen et al.,
2008). Thus, there are many possible avenues
for exploring the interaction of deliberation
with reward processing (e.g., Frank et al.,
2015).

Future research might consider other in-
sights on subjective preferences in time use.
For instance, reference dependence in the
monetary domain could be studied by setting
expectations about monetary earnings, as has
been done in many different economic para-
digms (Abeler, Falk, Goette, & Huffman,
2011; Ericson & Fuster, 2011; Gill & Prowse,
2012; Heffetz & List, 2014; Smith, 2012).
Like the present study, this may induce par-
ticipants to work less hard once they have
reached the target. More broadly, the value of
time is relatively ambiguous and lacks stable
benchmarks—a dollar is a dollar, but a mo-
ment of life is less interchangeable with any
other moment. Research in psychology and
marketing accordingly reveals a great deal of
flexibility in the appraisal and allocation of
time (Okada & Hoch, 2004) and shows that
people often allocate time more heuristically
than money (Saini & Monga, 2008). Such
perspectives may prove important to under-
standing how deliberation unfolds over time.
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Appendix

Analysis of Intertemporal Sophistication

Decision makers with temporal deadlines
such as reference points could in principle alter
their behavior in a forward-looking manner,
speeding up in advance of the deadline to im-
prove their chances of timely completion. The
earlier analysis reveals little evidence of this,
although Figure A1 which plots the continuously-
estimated parameters12 hints at a suggestive
lowering of the decision threshold around the
5-min mark. This is intriguing as 5 min is half-
way to the reference point and could indicate a
temporal benchmark that is used for pacing.

Forward-looking pacing may be easier when
one has experience with the task. Figure A2
shows the distribution of completion times for
each dot motion block, including for partici-
pants who were provided the reference point

their second time around. It indicates their com-
pletion times cluster right before the reference
point. Figure A3 shows the moving average of
the cost of time for this group, which is rela-
tively elevated. This could be a result of either
sophistication or fatigue. Interestingly, the cost
of time peaks around the 5-minute mark.
Whether this reflects a temporal benchmark or
is simply a coincidence is unknown.

12 It should be noted that the mean parameter values get
noisier towards the end of the time period because the
number of participants remaining (i.e., those who have not
finished the task at each point in time) declines. The oscil-
lation in nondecision time appears to be the result of erratic
estimates for a single subject.

(Appendix continues)
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Figure A1. Moving average of estimated drift diffusion model parameters across groups.
Blue (dark gray) and orange (light gray) represent control and treatment groups. See the online
article for the color version of this figure.

(Appendix continues)

302 BHUI

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



Received May 15, 2018
Revision received July 4, 2018

Accepted July 12, 2018 �

0 500 15000.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

1000

D
en

si
ty

reference
point

Figure A2. Kernel density estimate of completion time data with experienced participants.
See the online article for the color version of this figure.
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Figure A3. Moving average of estimated values of time with experienced participants. See
the online article for the color version of this figure.
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