Mediating a work conflict (source: radicalmath.org)

We have this information concerning wages at a fictional company:

Number of people in each position	Position	Yearly individual salary	Total salary per position
1	President	$\$ 200,000$	$\$ 200,000$
3	Vice Presidents	$\$ 100,000$	$\$ 300,000$
5	Managers	$\$ 50,000$	$\$ 250,000$
10	Supervisors	$\$ 30,000$	$\$ 300,000$
11	Workers	$\$ 28,000$	$\$ 308,000$
20	Workers	$\$ 20,000$	$\$ 400,000$
22	Workers	$\$ 18,000$	$\$ 396,000$
6	Workers	$\$ 16,000$	$\$ 96,000$

The union leader, who represents the 59 workers of the company, claims the average yearly salary is $\$ 18,000$ and suggests all workers get a raise of $\$ 7,000$ a year. How did the union leader obtain such an "average"?

The company owners claim the average yearly salary in the company is $\$ 28,846$. They propose each worker receive a raise of $\$ 1,000$ a year. How did the company owners obtain this "average"?

Mediating a work conflict (source: radicalmath.org)

We have this information concerning wages at a fictional company:

Number of people in each position	Position	Yearly individual salary	Total salary per position
1	President	$\$ 200,000$	$\$ 200,000$
3	Vice Presidents	$\$ 100,000$	$\$ 300,000$
5	Managers	$\$ 50,000$	$\$ 250,000$
10	Supervisors	$\$ 30,000$	$\$ 300,000$
11	Workers	$\$ 28,000$	$\$ 308,000$
20	Workers	$\$ 20,000$	$\$ 400,000$
22	Workers	$\$ 18,000$	$\$ 396,000$
6	Workers	$\$ 16,000$	$\$ 96,000$

The union leader, who represents the 59 workers of the company, claims the average yearly salary is $\$ 18,000$ and suggests all workers get a raise of $\$ 7,000$ a year. How did the union leader obtain such an "average"? \$18,000 is actually the mode: the most frequent salary.
The company owners claim the average yearly salary in the company is $\$ 28,846$.
They propose each worker receive a raise of $\$ 1,000$ a year. How did the company owners obtain this "average"? This is the mean of everyone's salary.

On "Averages"

Given a set of n data points $x_{1}, x_{2}, \ldots, x_{n}$, we have:

- The mean \bar{x} ("x bar") is the sum of all the data points, divided by the number of points:

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

- The mode is the most frequent value appearing in the data points.
- The median is the number "in the middle" once the list has been ordered from smallest to largest.

We also have a measure of the spread of the data, given by the standard deviation σ ("sigma"), which is related to how far are the data points from the mean:

$$
\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}
$$

Can we describe all our data using just a few numbers?

Here a few questions to ponder for today:

- Can you find two sets of three numbers that have the same mean but look very different?
- Can you find two sets of three numbers that have the same mean and the same standard deviation but look very different?
- Can you find two sets of 10 numbers that have the same mean but look very different?
- Can you find two sets of 10 numbers that have the same mean and the same standard deviation but look very different?

Challenge: can you find a set of 10 different (x, y) points such that the mean of the x 's is 9 , the standard deviation of the x 's is 11 , while the mean of the y 's is 7.5 ?

Super Challenge! Can you find two different answers to the above challenge, that look very different?!

Anscombe's Quartet (1973. Source: Wikipedia.)

This is Anscombe's Quartet, demonstrating the importance of graphing data and the effects of outliers on statistical properties.

