Partitioned Low Rank Compression of Absorbing Boundary Conditions for the Helmholtz equation

Rosalie Bélanger-Rioux, Harvard University
Laurent Demanet, Massachusetts Institute of Technology Imaging and Computing Group

CSE 15
March 15, 2015

Helmholtz equation in unbounded domain

2D Helmholtz equation

$$
\Delta u(\mathbf{x})+\frac{\omega^{2}}{c^{2}(\mathbf{x})} u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

Solution u, frequency ω, medium $c(\mathbf{x})$, source $f(\mathbf{x})$.

Many sources!

Select outgoing waves using the Sommerfeld Radiation Condition

$$
\lim _{r \rightarrow \infty} r^{1 / 2}\left(\frac{\partial u}{\partial r}-i k u\right)=0, \quad k=\frac{\omega}{c}
$$

where r is the radial coordinate.

Applications

- Wave-based imaging, an inverse problem.
- Seismic imaging: for rock formations.
- Ultrasonic testing: non-destructive testing of objects for defects.
- Ultrasonic imaging: visualizing a fetus, muscle, tendon or organ.
- Synthetic-aperture radar imaging: visualizing a scene or detecting the presence of an object far away or through clouds, foliage.
- Photonics: studying the optical properties of crystals.
- Speeding up Domain Decomposition Methods.

Absorbing Boundary Conditions (ABCs) and Layers (ALs)

$$
\Delta u(\mathbf{x})+\frac{\omega^{2}}{c^{2}(\mathbf{x})} u(\mathbf{x})=f(\mathbf{x}), \quad k=\frac{\omega}{c(\mathbf{x})}, \quad \mathbf{x} \in \Omega .
$$

- Close system using Absorbing Boundary
Condition (ABC) or Absorbing Layer (AL).
- N pts per dimension, $h=1 / N$.

Issue: absorbing layers tend to get thick in heterogeneous media.

Absorbing Layers in heterogeneous media
Physical width $L>1$ or width in number of points $w>N$.

Our numerical scheme

Goal: Compress costly ABC or AL to speed up Helmholtz solver
Step 1: Obtain the exterior Dirichlet-to-Neumann (DtN) map D

- Matrix probing with solves of exterior problem

Step 2: Obtain a fast algorithm for matrix-vector products of D

- Partitioned low-rank (PLR) matrices, compress off-diagonal blocks

$$
D \xrightarrow[\text { expansion }]{\text { probing }} \tilde{D} \xrightarrow[\text { compression }]{\text { PLR }} \bar{D}
$$

Step 1: Obtain the exterior DtN map D

$$
D \xrightarrow[\text { expansion }]{\text { probing }} \tilde{D} \xrightarrow[\text { compression }]{\text { PLR }} \bar{D}
$$

The exterior problem to obtain the exterior DtN map

$$
\Delta u(\mathbf{x})+\frac{\omega^{2}}{c^{2}(\mathbf{x})} u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{2} \backslash \Omega
$$

- $u(\mathbf{x})=g(\mathbf{x}), \mathbf{x} \in \partial \Omega$.
- Use ABC or AL.
- Solution u_{1} on $1^{\text {st }}$ layer outside Ω.
- Obtain product of D with g :

$$
D g=\frac{u_{1}-g}{h}
$$

- Use D in a Helmholtz solver instead of ABC or AL.

Matrix probing

$$
M \in \mathbb{C}^{N \times N}, \quad \text { single random vector } z
$$

- Given: z and $M z$
- Problem: recover M
- Model: there exist B_{1}, \ldots, B_{p} (fixed, given) such that

$$
M=\sum_{j=1}^{p} c_{j} B_{j}
$$

\Rightarrow find c_{j}.

Matrix probing questions

- How to recover \mathbf{c} ?

$$
M z=\sum_{j=1}^{p} c_{j} B_{j} z=\Psi_{z} \mathbf{c}
$$

- 1 random realization: Ψ_{z} has dimension N by p.
- $q>1$ random realizations: Ψ_{z} has dimension $N q$ by p.
- How large can p get?
- Which B_{j} ?

See Chiu-Demanet, SINUM, 2012 and
Bélanger-Rioux-Demanet preprint (submitted), 2014.

Steps of matrix probing and their complexities

Steps of matrix probing:

- Orthonormalize B_{j} 's (QR).
- Build Ψ_{z} from products $B_{j} z$.
- Obtain Mz.
- Apply pseudoinverse of Ψ_{z}.

Complexity:

- $N^{2} p^{2}$.
- $N^{2} p q$.
- q solves of exterior problem.
- $N p^{2} q$.

Media considered (plots of $c(\mathbf{x})$)

Figure: Uniform.

Figure: Waveguide.

Figure: Slow disk.

Figure: Vertical fault.

Figure: Diagonal fault.

Figure: Periodic.

Real part of solutions $u, \omega=51.2, N=1024$.

Figure: Waveguide.

Figure: Slow disk.

Figure: Vertical, left.

Figure: Vertical, right.

Figure: Diagonal fault.

Figure: Periodic.

Probing results

$$
D \xrightarrow[\text { expansion }]{\text { probing }} \tilde{D} \xrightarrow[\text { compression }]{\text { PLR }} \bar{D}
$$

- Number of basis matrices $p \sim N^{0.2}$ at worst.
- Number of exterior solves q constant as N grows.
- Probing approximation does not degrade with grazing waves.
- Limitations:
- Easier for smooth media;
- Careful design of basis matrices needed.

Step 2: Obtain a fast algorithm for matrix-vector products of D

$$
D \xrightarrow[\text { expansion }]{\text { probing }} \tilde{D} \xrightarrow[\text { compression }]{\text { PLR }} \bar{D}
$$

Intuition: $D_{\text {half }}$ numerically low-rank away from singularity
Kernel of the uniform half-space DtN map: $K(r)=\frac{i k^{2} H_{2}^{(1)}(k r)}{2 k r}$.

Theorem (RBR, Demanet)

Let $0<\epsilon \leq 1 / 2$, and $0<r_{0}<1, r_{0}=\Theta(1 / k)$. There exists an integer J, functions $\left\{\Phi_{j}, \chi_{j}\right\}_{j=1}^{J}$ and a number C such that we can approximate $K(|x-y|)$ for $r_{0} \leq|x-y| \leq 1$:

$$
K(|x-y|)=\sum_{j=1}^{J} \Phi_{j}(x) \chi_{j}(y)+E(x, y)
$$

where $|E(x, y)| \leq \epsilon$, and $J \leq C(\log k \max (|\log \epsilon|, \log k))^{2}$ with C which does not depend on k or ϵ.

Numerically low-rank \Rightarrow low-rank matrix block

Function

$$
\begin{aligned}
K(|x-y|) & =\sum_{j=1}^{J} \Phi_{j}(x) \chi_{j}(y), \\
K\left(\left|x_{i}-y_{\ell}\right|\right) & =\sum_{j=1}^{J} \Phi_{j}\left(x_{i}\right) \chi_{j}\left(y_{\ell}\right) .
\end{aligned}
$$

Matrix $K_{i \ell}=K\left(\left|x_{i}-y_{\ell}\right|\right)$:

$$
K=\sum_{j=1}^{J} \vec{\Phi}_{j} \vec{\chi}_{j}^{*}=\Phi \chi^{*}
$$

with $\vec{\Phi}_{j}, \vec{\chi}_{j}$ the $j^{\text {th }}$ columns of matrices Φ, χ.
This is almost the Singular Value Decomposition (SVD) of matrix $K_{i \ell}$.

Proof: $D_{\text {half }}$ numerically low-rank away from singularity Kernel $K(r)=\frac{i k^{2} H_{1}^{(1)}(k r)}{2 k r}$ for uniform half-space DtN map.

Proof: $D_{\text {half }}$ numerically low-rank away from singularity Kernel $K(r)=\frac{i k^{2} H_{1}^{(1)}(k r)}{2 k r}$ for uniform half-space DtN map.

$$
\begin{equation*}
\frac{1}{k r}=\int_{0}^{\infty} e^{-k r t} d t \approx \int_{0}^{T} e^{-k r t} d t \tag{1}
\end{equation*}
$$

with error $\quad \int_{T}^{\infty} e^{-k r t} d t \leq \epsilon \quad$ for $\quad T=O(|\log \epsilon|)$.

Proof: $D_{\text {half }}$ numerically low-rank away from singularity
Use a Gaussian quadrature

$$
\frac{1}{k r} \approx \int_{0}^{T} e^{-k r t} d t \approx \sum_{j=1}^{n} w_{j} e^{-k r t_{j}}=\sum_{j=1}^{n} w_{j} e^{-k x t_{j}} e^{k y t_{j}} \quad x>y
$$

Proof: $D_{\text {half }}$ numerically low-rank away from singularity
Use a Gaussian quadrature

$$
\frac{1}{k r} \approx \int_{0}^{T} e^{-k r t} d t \approx \sum_{j=1}^{n} w_{j} e^{-k r t_{j}}=\sum_{j=1}^{n} w_{j} e^{-k x t_{j}} e^{k y t_{j}} \quad x>y
$$

but need a dyadic partition of the interval for convergence.

Proof: $D_{\text {half }}$ numerically low-rank away from singularity

- Kernel $K(r)=\frac{i k^{2} H_{1}^{(1)}(k r)}{2 k r}$ of uniform half-space DtN map.
- Use Gaussian quadratures for $1 / k r$ on dyadic partition of interval:

$$
\log k \text { subintervals, }|\log \epsilon| \text { pts each }
$$

- Treat integral form of Hankel function same way (Martinsson-Rokhlin 2007).
- Multiply $1 / k r$ with $H_{1}^{(1)}$, total number of quad. pts:

$$
J \approx(\log k|\log \epsilon|)^{2}
$$

Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.
Stop when numerical rank $\leq R_{\text {max }}$, with tolerance ϵ.

Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.
Stop when numerical rank $\leq R_{\max }$, with tolerance ϵ.

Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.
Stop when numerical rank $\leq R_{\max }$, with tolerance $\epsilon \Rightarrow$ "leaf".

Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.
Stop when numerical rank $\leq R_{\max }$, with tolerance $\epsilon \Rightarrow$ "leaf".

Figure: $\frac{N}{R_{\max }}=8$, weak hierarchical structure.

Figure: $\frac{N}{R_{\max }}=16$, strong hierarchical structure.

Figure: $\frac{N}{R_{\max }}=8$, corner PLR structure.

Complexity of compression: PLR matrices

Cost per block B dominated by (randomized) SVD: $O\left(N_{B} R_{\max }^{2}\right)$.

Figure: $\frac{N}{R_{\max }}=8$, weak h. structure.

Figure: $\frac{N}{R_{\max }}=16$, strong h. structure.

Total complexity:

Figure: $\frac{N}{R_{\text {max }}}=8$, corner PLR structure.
$O\left(N R_{\max }^{2} \log \frac{N}{R_{\max }}\right)$
$O\left(N R_{\max }^{2} \log \frac{N}{R_{\max }}\right)$
$O\left(N R_{\max }^{2}\right)$

Complexity of matrix-vector products: PLR matrices

Cost per leaf $B: O\left(N_{B} R_{\max }\right)$.

Figure: $\frac{N}{R_{\max }}=8$, weak h. structure.

Figure: $\frac{N}{R_{\max }}=16$, strong h. structure.

Total complexity:

Figure: $\frac{N}{R_{\text {max }}}=8$, corner PLR structure.

$$
O\left(N R_{\max } \log \frac{N}{R_{\max }}\right) \quad O\left(N R_{\max } \log \frac{N}{R_{\max }}\right) \quad O\left(N R_{\max }\right)
$$

Results of PLR compression after probing

- In general, ask for PLR tolerance

$$
\epsilon=\frac{1}{25} \frac{\|D-\tilde{D}\|_{F}}{\|D\|_{F}}
$$

Table: $c \equiv 1$

$R_{\max }$	ϵ	$\\|D-\bar{D}\\|_{F} /\\|D\\|_{F}$	$\\|u-\bar{u}\\|_{F} /\\|u\\|_{F}$
2	$1.6850 e-02$	$4.2126 e-01$	$6.5938 e-01$
2	$1.6802 e-03$	$4.2004 e-02$	$7.3655 e-02$
2	$5.0068 e-05$	$1.2517 e-03$	$2.4232 e-03$
4	$4.4840 e-06$	$1.1210 e-04$	$4.0003 e-04$
8	$4.3176 e-07$	$1.0794 e-05$	$1.4305 e-05$
8	$2.6198 e-08$	$6.5496 e-07$	$2.1741 e-06$

Results of PLR compression after probing

Table: c is the diagonal fault.

$R_{\max }$	ϵ	$\\|D-\bar{D}\\|_{F} /\\|D\\|_{F}$	$\\|u-\bar{u}\\|_{F} /\\|u\\|_{F}$
2	$5.7124 e-03$	$1.4281 e-01$	$5.3553 e-01$
2	$7.6432 e-04$	$1.9108 e-02$	$7.8969 e-02$
4	$1.0241 e-04$	$2.5602 e-03$	$8.7235 e-03$

Table: c is the periodic medium.

$R_{\max }$	ϵ	$\\|D-\bar{D}\\|_{F} /\\|D\\|_{F}$	$\\|u-\bar{u}\\|_{F} /\\|u\\|_{F}$
2	$5.1868 e-03$	$1.2967 e-01$	$2.1162 e-01$
2	$1.2242 e-03$	$3.0606 e-02$	$5.9562 e-02$
8	$3.6273 e-04$	$9.0682 e-03$	$2.6485 e-02$

PLR compression after probing

$$
D \xrightarrow[\text { expansion }]{\text { probing }} \tilde{D} \xrightarrow[\text { compression }]{\text { PLR }} \bar{D}
$$

- Small $R_{\max }$ needed in practice, $R_{\max } \leq 8$.
- Nearly linear matrix-vector product even in heterogeneous media.
- PLR compression is very flexible, "one size fits all".

Conclusion - so far

- Insights from half-space DtN map to expand then compress exterior DtN map
- Handful of PDE solves \Rightarrow exterior DtN map to good accuracy \Rightarrow HE solution to good accuracy
- Compressed DtN map \Rightarrow fast matrix-vector products

Conclusion - complexities

Constructing D :

- Matrix probing expansion, assuming fast solver.
- PLR compression.

Applying D :

- Dense matrix-vector product.
- PLR matrix-vector product.

Complexity:

- $\sim q(N+w)^{2}, \quad q \leq 50$.
- $\sim N R_{\max }^{2}, \quad R_{\max } \leq 8$.

Complexity:

- $\sim 16 N^{2}$.
- $\sim 4 N R_{\text {max }} \log \frac{N}{R_{\max }}$ $+12 N R_{\text {max }}$.

Conclusion - outlook

- 3D
- Probe (and compress) entire structure of the Green's function?
- Integrate in Domain Decomposition Methods

