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Helmholtz equation in unbounded domain

2D Helmholtz equation

∆u(x) +
ω2

c2(x)
u(x) = f(x), x = (x1, x2) ∈ R2.

Solution u, frequency ω, medium c(x), source f(x).

Many sources!

Select outgoing waves using the Sommerfeld Radiation Condition

lim
r→∞

r1/2
(
∂u

∂r
− iku

)
= 0, k =

ω

c
,

where r is the radial coordinate.
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Applications

Wave-based imaging, an inverse problem.

I Seismic imaging: for rock formations.

I Ultrasonic testing: non-destructive testing of objects for defects.

I Ultrasonic imaging: visualizing a fetus, muscle, tendon or organ.

I Synthetic-aperture radar imaging: visualizing a scene or detecting
the presence of an object far away or through clouds, foliage.

Photonics: studying the optical properties of crystals.

Speeding up Domain Decomposition Methods.
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Absorbing Boundary Conditions (ABCs) and Layers (ALs)

∆u(x) +
ω2

c2(x)
u(x) = f(x), k =

ω

c(x)
, x ∈ Ω.

Close system using
Absorbing Boundary
Condition (ABC) or
Absorbing Layer (AL).

N pts per dimension,
h = 1/N .

Issue: absorbing layers tend to get thick in heterogeneous media.
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Absorbing Layers in heterogeneous media

Physical width L > 1 or width in number of points w > N .
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Our numerical scheme

Goal: Compress costly ABC or AL to speed up Helmholtz solver

Step 1: Obtain the exterior Dirichlet-to-Neumann (DtN) map D

Matrix probing with solves of exterior problem

Step 2: Obtain a fast algorithm for matrix-vector products of D

Partitioned low-rank (PLR) matrices, compress off-diagonal blocks

D
probing−−−−−−−→

expansion
D̃

PLR−−−−−−−−→
compression

D
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Step 1: Obtain the exterior DtN map D

D
probing−−−−−−−→

expansion
D̃

PLR−−−−−−−−→
compression

D
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The exterior problem to obtain the exterior DtN map

∆u(x) +
ω2

c2(x)
u(x) = f(x), x ∈ R2 \ Ω

u(x) = g(x), x ∈ ∂Ω.

Use ABC or AL.

Solution u1 on 1st layer outside Ω.

Obtain product of D with g:

Dg =
u1 − g
h

.

Use D in a Helmholtz solver
instead of ABC or AL.
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Matrix probing

M ∈ CN×N , single random vector z

Given: z and Mz

Problem: recover M

Model: there exist B1, . . . , Bp (fixed, given) such that

M =

p∑
j=1

cjBj

⇒ find cj .
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Matrix probing questions

How to recover c?

Mz =

p∑
j=1

cjBjz = Ψz c

I 1 random realization: Ψz has dimension N by p.
I q > 1 random realizations: Ψz has dimension Nq by p.

How large can p get?

Which Bj?

See Chiu-Demanet, SINUM, 2012 and
Bélanger-Rioux-Demanet preprint (submitted), 2014.
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Steps of matrix probing and their complexities

Steps of matrix probing:

Orthonormalize Bj ’s (QR).

Build Ψz from products Bjz.

Obtain Mz.

Apply pseudoinverse of Ψz.

Complexity:

N2p2.

N2pq.

q solves of exterior problem.

Np2q.
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Media considered (plots of c(x))
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Real part of solutions u, ω = 51.2, N = 1024.
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Probing results

D
probing−−−−−−−→

expansion
D̃

PLR−−−−−−−−→
compression

D

Number of basis matrices p ∼ N0.2 at worst.

Number of exterior solves q constant as N grows.

Probing approximation does not degrade with grazing waves.

Limitations:

I Easier for smooth media;

I Careful design of basis matrices needed.
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Step 2: Obtain a fast algorithm for matrix-vector products of D

D
probing−−−−−−−→

expansion
D̃

PLR−−−−−−−−→
compression

D
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Intuition: Dhalf numerically low-rank away from singularity

Kernel of the uniform half-space DtN map: K(r) =
ik2H

(1)
1 (kr)
2kr .

Theorem (RBR, Demanet)

Let 0 < ε ≤ 1/2, and 0 < r0 < 1, r0 = Θ(1/k). There exists an integer
J , functions {Φj , χj}Jj=1 and a number C such that we can
approximate K(|x− y|) for r0 ≤ |x− y| ≤ 1 :

K(|x− y|) =

J∑
j=1

Φj(x)χj(y) + E(x, y)

where |E(x, y)| ≤ ε, and J ≤ C (log kmax(| log ε|, log k))2 with C which
does not depend on k or ε.
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Numerically low-rank ⇒ low-rank matrix block

Function

K(|x− y|) =

J∑
j=1

Φj(x)χj(y),

K(|xi − y`|) =

J∑
j=1

Φj(xi)χj(y`).

Matrix Ki` = K(|xi − y`|):

K =

J∑
j=1

~Φj ~χ
∗
j = Φ χ ∗

with ~Φj , ~χj the jth columns of matrices Φ, χ.

This is almost the Singular Value Decomposition (SVD) of matrix Ki`.
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Proof: Dhalf numerically low-rank away from singularity
Kernel K(r) =

ik2H
(1)
1 (kr)
2kr for uniform half-space DtN map.

1

kr
=

∫ ∞
0

e−krtdt ≈
∫ T

0
e−krtdt (1)

with error

∫ ∞
T

e−krtdt ≤ ε for T = O(| log ε|).

0 T
0

0.2

0.4

0.6

0.8

1

t

ex
p(

−
kr

t)
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Proof: Dhalf numerically low-rank away from singularity
Use a Gaussian quadrature

1

kr
≈
∫ T

0
e−krtdt ≈

n∑
j=1

wje
−krtj =

n∑
j=1

wje
−kxtjekytj x > y

but need a dyadic partition of the interval for convergence.
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Proof: Dhalf numerically low-rank away from singularity

Kernel K(r) =
ik2H

(1)
1 (kr)
2kr of uniform half-space DtN map.

Use Gaussian quadratures for 1/kr on dyadic partition of interval:

log k subintervals, | log ε| pts each

Treat integral form of Hankel function same way
(Martinsson-Rokhlin 2007).

Multiply 1/kr with H
(1)
1 , total number of quad. pts:

J ≈ (log k| log ε|)2.
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Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.

Stop when numerical rank ≤ Rmax, with tolerance ε.
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Partitioned low-rank (PLR) matrices
Adaptively, recursively divide blocks of matrix.

Stop when numerical rank ≤ Rmax, with tolerance ε⇒ “leaf”.

?
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Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.

Stop when numerical rank ≤ Rmax, with tolerance ε⇒ “leaf”.

Figure: N
Rmax

= 8, weak
hierarchical structure.

Figure: N
Rmax

= 16,
strong hierarchical
structure.

Figure: N
Rmax

= 8,
corner PLR structure.
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Complexity of compression: PLR matrices

Cost per block B dominated by (randomized) SVD: O(NBR
2
max).

Figure: N
Rmax

= 8, weak
h. structure.

O(NR2
max log N

Rmax
)

Figure: N
Rmax

= 16,
strong h. structure.

Total complexity:

O(NR2
max log N

Rmax
)

Figure: N
Rmax

= 8,
corner PLR structure.

O(NR2
max)
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Complexity of matrix-vector products: PLR matrices

Cost per leaf B: O(NBRmax).

Figure: N
Rmax

= 8, weak
h. structure.

O(NRmax log N
Rmax

)

Figure: N
Rmax

= 16,
strong h. structure.

Total complexity:

O(NRmax log N
Rmax

)

Figure: N
Rmax

= 8,
corner PLR structure.

O(NRmax)
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Results of PLR compression after probing

In general, ask for PLR tolerance

ε =
1

25

‖D − D̃‖F
‖D‖F

.

Table: c ≡ 1

Rmax ε ‖D −D‖F /‖D‖F ‖u− u‖F /‖u‖F
2 1.6850e− 02 4.2126e− 01 6.5938e− 01

2 1.6802e− 03 4.2004e− 02 7.3655e− 02

2 5.0068e− 05 1.2517e− 03 2.4232e− 03

4 4.4840e− 06 1.1210e− 04 4.0003e− 04

8 4.3176e− 07 1.0794e− 05 1.4305e− 05

8 2.6198e− 08 6.5496e− 07 2.1741e− 06
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Results of PLR compression after probing

Table: c is the diagonal fault.

Rmax ε ‖D −D‖F /‖D‖F ‖u− u‖F /‖u‖F
2 5.7124e− 03 1.4281e− 01 5.3553e− 01

2 7.6432e− 04 1.9108e− 02 7.8969e− 02

4 1.0241e− 04 2.5602e− 03 8.7235e− 03

Table: c is the periodic medium.

Rmax ε ‖D −D‖F /‖D‖F ‖u− u‖F /‖u‖F
2 5.1868e− 03 1.2967e− 01 2.1162e− 01

2 1.2242e− 03 3.0606e− 02 5.9562e− 02

8 3.6273e− 04 9.0682e− 03 2.6485e− 02
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PLR compression after probing

D
probing−−−−−−−→

expansion
D̃

PLR−−−−−−−−→
compression

D

Small Rmax needed in practice, Rmax ≤ 8.

Nearly linear matrix-vector product even in heterogeneous media.

PLR compression is very flexible, “one size fits all”.
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Conclusion – so far

Insights from half-space DtN map to expand then compress
exterior DtN map

Handful of PDE solves ⇒ exterior DtN map to good accuracy ⇒
HE solution to good accuracy

Compressed DtN map ⇒ fast matrix-vector products
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Conclusion – complexities

Constructing D:

Matrix probing expansion,
assuming fast solver.

PLR compression.

Complexity:

∼ q(N + w)2, q ≤ 50.

∼ NR2
max, Rmax ≤ 8.

Applying D:

Dense matrix-vector product.

PLR matrix-vector product.

Complexity:

∼ 16N2.

∼ 4NRmax log N
Rmax

+12NRmax.
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Conclusion – outlook

3D

Probe (and compress) entire structure of the Green’s function?

Integrate in Domain Decomposition Methods
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