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Abstract

In this paper we provide a systematic study of how the the probability limit and central limit
theorem for realised multipower variation changes when we add finite activity and infinite activity
jump processes to an underlying Brownian semimartingale.
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1 Introduction

Multipower variation is the probability limit of normalised partial sums of powers of lags of absolute high

frequency increments of a semimartingale as the sampling frequency goes to infinity. It was introduced

by Barndorff-Nielsen and Shephard (2003,2004b,2004a,2006) in a series of papers motivated by some

problems in financial econometrics. Realised multipower variation estimates this limit process and was

shown, by Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005), to reveal integrated

volatility powers in general Brownian semimartingales. These authors also derived the corresponding

central limit theory. Some detailed discussion of the econometric uses of these results are given in

Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006). Such continuous sample path limit processes

are of interest in themselves, however Barndorff-Nielsen and Shephard were also interested in realised

multipower variation as they showed it has some features which are robust to finite activity jump

processes (i.e. jump components with finite numbers of jumps in finite time). In this paper we return

to that issue, sharpening the results in the finite activity case and giving an analysis of the case where

there are an infinite number of jumps. For a closely related analysis see Woerner (2006).
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Specifically, we ask two new questions: (i) do these kinds of robustness results also hold when the

jump process has infinite activity, (ii) is it possible to construct central limit theorems for realised

multipower variation processes when there are jumps? In Section 2 of the paper we establish notation

and provide various definitions. This is followed in Section 3 with an analysis of multipower variation

in the case where the processes are Brownian semimartingales plus jumps. In Section 4 we specialise

the discussion to the case where the jumps are Lévy or OU processes.

2 Multipower Variation (MPV)

Let X be an arbitrary stochastic process. Then the realised multipower variation (MPV) of X is based

on increments, recorded every δ > 0 time periods,

xj = Xjδ − X(j−1)δ, j = 1, 2, ..., bt/δc .

It can be defined via the unnormalised version

[Xδ]
[r]
t = [Xδ]

[r1,...,rm]
t = [Xδ, ..., Xδ ]

[r1,...,rm] =

bt/δc
∑

j=m

|xj−m+1|
r1 · · · |xj |

rm ,

or through its normalised version

{Xδ}
[r]
t = {Xδ}

[r1,...,rm]
t = δ1−r+/2[Xδ]

[r]
t ,

where r is short for r1, ..., rm and r+ =
∑m

j=1 rj . It will be convenient to write max r = max{r1, , , , rm}.

Similarly, for arbitrary processes X (1), ..., X(m) we let

[X
(1)
δ , ..., X

(m)
δ ]

[r]
t =

bt/δc
∑

j=m

|x
(1)
j−m+1|

r1 · · · |x
(m)
j |rm ,

while we always assume that rj ≥ 0 and r+ > 0.

3 MPVCiP and MPVCLT for BSM + jump process

Brownian semimartingales (denoted BSM) are defined as the class of continuous semimartingales

Yt =

∫ t

0
audu +

∫ t

0
σudWu, (1)

where a is predictable, W is standard Brownian motion and σ is càdlàg.

We say that the Brownian semimartingale Y satisfies CiP (converges in probability) for MPV (de-

noted MPVCiP) provided that

{Yδ}
[r]
t

p
→ drσ

r+∗
t = dr

∫ t

0
σr+

u du,

where dr is a known constant depending only on r.
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We say that Y satisfies the central limit theorem (CLT) for MPV (denoted MPVCLT) provided

δ−1/2
(

{Yδ}
[r]
t − drσ

r+∗
t

)

law
→ cr

∫ t

0
σr+

u dBu

where B is a Brownian motion, Y ⊥⊥B (i.e. Y is independent of B), and cr is a known constant

depending only on r. Under some mild additional assumptions on the σ process such a CLT holds, see

Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005).

We will now study what happens to the limiting distribution when we add jumps to Y . The only

existing results we know of are due to Jacod and Protter (1998) who studied the case where r = 2,

Y ∈ BSM and the jumps come from a purely discontinuous Lévy process, and Woerner (2006) who

derives closely related results to ours. Thus we shall discuss extensions of MPVCiP and MPVCLT for

BSM to processes of the form

X = Y + Z

where Y ∈ BSM while Z is a process exhibiting jumps.

We assume that Y satisfies MPVCiP or MPVCLT and consider to which extent this behaviour

remains the same when Z is added to Y , i.e. whether the influence of Z is negligible (in this respect).

When it is negligible we say that MPVCiP or MPVCLT holds for X. Thus we ask whether:

(i) For the CiP case

δ1−r+/2
(

[Xδ, ..., , Xδ ]
[r1,...,rm] − [Yδ, ..., , Yδ ]

[r1,...,rm]
)

= op(1).

(ii) For the CLT case

δ1−r+/2
(

[Xδ, ..., , Xδ ]
[r1,...,rm] − [Yδ, ..., , Yδ ]

[r1,...,rm]
)

= op(δ
1/2).

We shall use the following fact

Lemma 1 The Brownian semimartingale Y satisfies, uniformly in j,

δ−1/2|Yjδ − Y(j−1)δ| = Op(| log δ|1/2). (2)

Proof. First we split

|Yjδ − Y(j−1)δ| ≤

∣

∣

∣

∣

∣

∫ jδ

(j−1)δ
audu

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ jδ

(j−1)δ
σudWu

∣

∣

∣

∣

∣

and note that the first part is Op(δ) whereas, by the Dubins-Schwarz theorem,
∫ t

0
σudWu = B∫ t

0
σ2

sds

for a standard Brownian motion B. Lévy’s theorem on the uniform modulus of continuity of Brownian

motion states that

P

(

lim sup
ε↓0

(

sup
0≤t1<t2≤T :t2−t1≤ε

|Bt2 − Bt1 |
√

2ε| log(ε)|

)

= 1

)

= 1.
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Since
∫ t2

t1

σ2
sds ≤ |t2 − t1| sup

0≤s≤T
σ2

s

and the latter supremum is a.s. finite, we deduce that, as required,

P

(

lim sup
ε↓0

(

sup
0≤t1<t2≤T :t2−t1≤ε

|Yt2 − Yt1 |
√

2ε| log(ε)|

)

< ∞

)

= 1.

Without the sup over t1 and t2, for fixed t, the result holds with log replaced by log log.

3.1 Finite activity case

We first perturb a suitable Y ∈ BSM for which MPVCiP (and/or MPVCLT) holds by a finite activity

jump process Z, not necessarily independent of Y .

Proposition 1 When Z is a finite activity jump process, (i) MPVCiP holds if max r < 2, (ii) MPVCLT

holds if max r < 1.

Proof. Consider the m-th order MPV process [Xδ]
[r]. Pathwise, the number of jumps of Z is finite

and, for sufficiently small δ, none of the additive terms in [Xδ , ..., Xδ ]
[r1,...,rm] involves more than one

jump. Each of the terms in [Xδ , ..., Xδ ]
[r1,...,rm] that contains no jumps are of order Op

(

(δ| log δ|)r+/2
)

.

Any of the terms that do include a jump is of order Op

(

(δ| log δ|)(r+−max r)/2
)

. Hence

δ1−r+/2([Xδ ]
[r] − [Yδ]

[r]) = δ1−r+/2Op((δ| log δ|)(r+−max r)/2)

= Op(δ
1−max r/2| log δ|(r+−max r)/2).

So CiP is not influenced by Z so long as max r < 2, while CLT continues to hold if max r < 1.

The bounds max r < 2 and max r < 1 are tight conditions. If the equality was to hold, we get

discontinuous distributional limits. If the inequalities are reversed, limits jump to infinity at the first

jump time of Z, except in trivial cases.

The above CLT result is of some importance. It means that we can use multipower variation to

make mixed Gaussian inference about
∫ t
0 σ2

udu, integrated variance, in the presence of finite activity

jumps processes so long as max r < 1 and r+ = 2. An example of this is where m = 3 and we take

r1 = r2 = r3 = 2/3 (that is using Tripower Variation (TPV)).

3.2 Infinite activity (IA) case

We start by establishing an inequality for MPV. Let a, b, c etc. denote arbitrary real numbers with

a + b = c. The classical inequality
∣

∣

∣

∣

∣

∣

n
∑

j=1

|aj |
r −

n
∑

j=1

|bj |
r

∣

∣

∣

∣

∣

∣

≤

n
∑

j=1

|cj |
r, (3)
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which holds for 0 < r ≤ 1, implies that if max r ≤ 1 then
∣

∣[Xδ , ..., Xδ ]
[r1,...,rm] − [Yδ, ..., Yδ ]

[r1,...,rm]
∣

∣

≤ [Zδ, ..., Zδ ]
[r1,...,rm] + [Zδ, ..., Zδ , Yδ]

[r1,...,rm] [
(m

1

)

]

+ [Zδ, ..., Zδ , Yδ, Yδ]
[r1,...,rm] [

(m
2

)

] + · · ·

+ [Zδ, Yδ, Yδ, ..., Yδ ]
[r1,...,rm] [

(

m
m−1

)

]

(4)

where the binomial coefficients indicate the relevant number of similar terms.

In the following we shall mostly restrict consideration to the case r1 = · · · = rm = r.

3.2.1 Convergence in probability

For MPVCiP it suffices that the following conditions are met:

δ1−mr/2[Zδ, ..., Zδ ]
[r,...,r] = op(1), (5)

δ1−(m−1)r/2| log δ|r/2[Zδ , ..., Zδ ]
[r,...,r] [

(m
1

)

] = op(1), ... (6)

δ1−r/2| log δ|(m−1)r/2[Zδ]
[r] [
(

m
m−1

)

] = op(1). (7)

To show this we need to distinguish between the cases 0 < r ≤ 1 and r > 1.

When 0 < r ≤ 1 we have, by (4),

δ1−mr/2
∣

∣[Xδ , ..., Xδ ]
[r,...,r] − [Yδ, ..., Yδ ]

[r,...,r]
∣

∣

≤ δ1−mr/2[Zδ, ..., Zδ ]
[r,...,r] + δ1−(m−1)r/2[Zδ , ..., Zδ , δ

−1/2Yδ]
[r,...,r] [

(m
1

)

]

+ δ1−(m−2)r/2[Zδ, ..., Zδ , δ
−1/2Yδ, δ

−1/2Yδ]
[r,...,r] [

(m
2

)

] + · · ·

+ δ1−r/2[Zδ, δ
−1/2Yδ, ..., δ

−1/2Yδ]
[r,...,r] [

( m
m−1

)

].

(8)

and the sufficiency of (5)-(7) follows.

For r > 1 we have
∣

∣

∣

∣

(

δ1−mr/2[Xδ, ..., Xδ ]
[r,...,r]

)1/r
−
(

δ1−mr/2[Yδ, ..., Yδ ]
[r,...,r]

)1/r
∣

∣

∣

∣

≤
(

δ1−mr/2S
)1/r

where, in a compact notation,

S =

bt/δc
∑

j=m

∣

∣

∣

∣

∑

ω

∏

yk
∏

zl

∣

∣

∣

∣

r

and
∑

ω

∏

yk
∏

zl = (yj−m+1 + zj−m+1) · · · (yj + zj) − yj−m+1 · · · yj,

where ω runs over all selections of one factor from each of the parentheses in the above equation, except

the one leading to yj−m+1 · · · yj.

Now, if

δ1−mr/2S = op(1) (9)

then, on account of the previously established fact that δ1−mr/2[Yδ, ..., Yδ ]
[r,...,r] converges in probability

to a positive random variable, we can conclude from the Minkovsky inequality that

(
(

δ1−mr/2
)1/r

(

(

[Xδ, ..., Xδ ]
[r,...,r]

)1/r
−
(

[Yδ, ..., Yδ ]
[r,...,r]

)1/r
)

= op(1).
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To determine a sufficient condition for (9), and hence for MPVCiP, we note that in view of the

inequality |b + c|r ≤ 2r−1(|b|r + |c|r) there exists a constant C such that

|
∑

ω

∏

yk
∏

zl|
r ≤ C

∑

ω
|
∏

yk
∏

zl|
r.

This yields

S ≤ C

bt/δc
∑

j=m

∑

ω
|
∏

yk
∏

zl|
r = C

∑

ω

bt/δc
∑

j=m

|
∏

yk
∏

zl|
r.

It follows that (9) will hold if, for all ω,

δ1−mr/2

bt/δc
∑

j=1

|
∏

yk
∏

zl|
r = op(1).

But this is equivalent to the set of conditions (5)-(7).

3.2.2 Central limit theorem

In the IA setting, for CLT we are assuming that r ≤ 1. It will be seen, from the examples to be discussed

in the next Section, that the restriction to r ≤ 1 is essentially necessary. From (8) we find:

For MPVCLT it suffices that the following conditions are met for r ≤ 1:

δ(1−mr)/2[Zδ, ..., Zδ ]
[r,...,r] = op(1), (10)

δ(1−(m−1)r)/2 | log δ|r/2[Zδ, ..., Zδ ]
[r,...,r] [

(

m
1

)

] = op(1), ... (11)

δ(1−r)/2| log δ|(m−1)r/2[Zδ ]
[r] [
( m
m−1

)

] = op(1). (12)

For PCLT this reduces to

δ(1−r)/2[Zδ ]
[r] = op(1)

which can only be satisfied for r < 1.

For BPCLT the conditions (in the general [r, s] case) are

δ(1−r−s)/2[Zδ, Zδ]
[r,s] = op(1) (13)

δ(1−r)/2[Zδ, δ
−1/2Yδ]

[r,s] = op(1) (14)

δ(1−s)/2[δ−1/2Yδ, Zδ]
[r,s] = op(1). (15)

Due to Lemma 1, sufficient for the relations (14) and (15) are

δ(1−r)/2| log δ|s/2[Zδ]
[r] = op(1) (16)

δ(1−s)/2| log δ|r/2[Zδ]
[s] = op(1). (17)

Sufficient for (16) is 0 < r < 1 and supδ[Zδ]
[r] < ∞. And similarly for (17).
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4 Lévy processes with no continuous component

4.1 Preliminaries on Lévy processes and their small-time behaviour

Lévy processes (e.g. Bertoin (1996) and Sato (1999)) with no continuous component are a versatile class

of jump processes. Whether MPVCiP or MPVCLT hold, depends on the characteristics of the Lévy

process. Notably the number of small jumps is important. We have seen that finite activity restricts

max r < 2 and max r < 1, respectively for MPVCiP and MPVCLT. We will get further restrictions, in

general, when we have IA.

Let Zt denote a Lévy process with no continuous component. It incorporates jumps (∆Zt)t≥0 whose

Lévy measure we will write as Π. Π is a Radon measure on R∗ = R − {0} with

∫

R∗

(

|x|2 ∧ 1
)

Π(dx) < ∞. (18)

If the stronger condition
∫

R∗
(|x| ∧ 1)Π(dx) < ∞ holds, then we can write

Zt =
∑

s≤t

∆Zs and E(exp{iλZt}) = exp{−tΨ(λ)}, where Ψ(λ) =

∫

R∗

(1 − eiλx)Π(dx),

and Z has paths of locally bounded variation. If
∫

R∗
(|x| ∧ 1)Π(dx) = ∞, we allow an additional drift

parameter a ∈ R so that

E(exp{iλZt}) = exp{−tΨ(λ)}, where Ψ(λ) = −iλa +

∫

R∗

(1 − eiλx + iλx1{|x|≤1})Π(dx),

and in this case Z has paths of locally unbounded variation.

We define an index

α = inf

{

γ ≥ 0 :

∫

[−1,1]
|x|γΠ(dx) < ∞

}

∈ [0, 2].

The number α measures how heavily infinite Π is at zero, i.e. how many small jumps Z has.

If Z has bounded variation, then 0 ≤ α ≤ 1. If Z has unbounded variation, then 1 ≤ α ≤ 2.

The boundary α = 1 is attained for both bounded and unbounded variation processes. Π(dx) =

|x|−2| log |x/2||−1−β1[−1,1](x)dx is an example for a bounded variation process with α = 1.

The index α can be seen to be greater than or equal (usually equal) to the Blumenthal and Getoor

(1961) upper index

α∗ = inf{γ ≥ 0 : lim sup
λ→∞

|Ψ(λ)|/λγ = 0} ∈ [0, 2].

Without loss of generality we can decompose Z into Zt = Z
(1)
t + Z

(2)
t , where Z(1) and Z(2) are

independent processes and Z (2) is defined as

Z
(2)
t =

∑

s≤t

∆ZsI (|∆Zs| > 1) .
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Clearly Z(2) is a compound Poisson process, and hence of finite activity. The effect of Z (2) on MPVCiP

and MPVCLT was studied in the previous Section and so from now on in this Section we can, without

loss of generality, set Z (2) to zero, i.e. assume Π is concentrated on [−1, 1].

Lemma 2 Let Z be a Lévy process with no continuous component and index α. Then

sup
δ>0

E |Zδ|
γ

δ
< ∞,

for all α < γ ≤ 1 if Z has finite mean and bounded variation, and for all 1 ≤ α < γ ≤ 2 if Z is a

zero-mean Lévy process with finite variance.

Proof. Let α < 1. From (3) and the compensation formula for Poisson point processes we get for

all α < γ ≤ 1

E |Zδ|
γ = E

∣

∣

∣

∣

∣

∣

∑

0≤s≤δ

∆Zs

∣

∣

∣

∣

∣

∣

γ

≤ E
∑

0≤s≤δ

|∆Zs|
γ = δ

∫

R∗

|z|γΠZ(dz) < ∞.

If 1 ≤ α < 2, we use Monroe embedding Zt = BTt into a Brownian motion B, for a subordinator Tt

of stopping times for B, with E(Tt) = E
(

Z2
t

)

< ∞. Using the explicit embedding of Winkel (2005), we

have as Lévy measure of T

ΠT =

∫

R∗

ρ|x|Π(dx) +

∫

R∗

∫ |x|

0

|x|

y2
ρ|x| ∗ ρ|x|dyΠ(dx),

where ρx is the distribution of the first passage time at x of a three-dimensional Bessel process starting

from zero. In particular, Rx ∼ ρx has first moment E(Rx) = x2/3, so that for all 2 ≥ γ > α ≥ 1, by

Jensen’s inequality,

∫

R∗

E(R
γ/2
|x| )Π(dx) ≤

∫

R∗

(

E(R|x|)
)γ/2

Π(dx) =

(

1

3

)γ/2 ∫

R∗

|x|γΠ(dx) < ∞,

and similarly

∫

R∗

∫ |x|

0

|x|

y2
E((R|y| + R̃|y|)

γ/2)dyΠ(dx) ≤

(

2

3

)γ/2 ∫

R∗

∫ |x|

0

|x|

y2
yγdyΠ(dx)

=

(

2

3

)γ/2 1

γ − 1

∫

R∗

|x|γΠ(dx) < ∞.

The sum of the left hand sides is
∫

(0,∞) |z|
γ/2ΠT (dz), so that the index of T is (at most) α/2.

Now we invoke Revuz and Yor (1999, Exercise V.(1.23)): E |Bτ |
2p ≤ CpE (τp), for all (bounded, but

then all) stopping times τ with E (τ p) < ∞, all p > 0, and universal constants Cp; see also Revuz and

Yor (1999, Theorem IV.(4.10)). This implies E |Zδ|
γ = E |BTδ

|γ ≤ CpET
γ/2
δ and an application of the

bounded variation case to the subordinator T completes the proof.
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4.2 General results on multipower variation for BSM plus Lévy

We recall that we are working with X = Y +Z, where Y ∈ BSM. No assumptions are made regarding

dependence between Y and Z. We can now show the following general result

Theorem 1 Let Z be a no continuous component Lévy process with index α ∈ [0, 2]. Then (i) 0 < r < 2

⇒ PCiP is valid, (ii) α < 2 and 0 < max r < 2 ⇒ MPVCiP is valid, (iii) α < 1 and α/(2−α) < r < 1

⇒ PCLT is valid, (iv) α < 1 and α/(2 − α) < min r ≤ max r < 1 ⇒ MPVCLT is valid.

Proof. For the PCiP, note that Ψ(λ)/λ2 → 0 as λ → ∞ since we have no Gaussian coefficient (cf.

Bertoin (1996, Proposition I.2)). Therefore

E

(

exp

{

iλ
Zδ

δ1/2

})

= exp

{

−δΨ

(

λ

δ1/2

)}

→ 1

i.e. Zδ/δ
1/2 → 0 in probability as δ ↓ 0. Since also E(Z2

δ ) = cδ, we have that (Zδ/δ
1/2)δ>0 is bounded in

L2, i.e. convergent in Lr, 1 ≤ r < 2, and it is easily seen that this extends to 0 < r < 2 (e.g. by raising

Zδ/δ
1/2 to a small power and applying the argument again). Therefore

E
(

δ1−r/2[Zδ]
[r]
t

)

= δ bt/δc
E|Zδ|

r

δr/2
→ 0.

By (5) PCiP follows. For MPVCiP the argument works for (5) holds by independent increments as

E
(

δ1−r+/2[Zδ, . . . , Zδ]
[r]
t

)

= δ b1 − m + t/δc
m
∏

j=1

E|Zδ|
rj

δrj/2
→ 0,

but fails for (6)-(7) because of the log-terms e.g. in (7). However, if α < 2, we can adapt the argument

as follows. By Lemma 2, we have supδ>0

(

δ−1E|Zδ|
γ
)

< ∞ for all α∗ ≤ α < γ ≤ 2. As above, we have

Zδ/δ
1/γ → 0 in probability, and hence in Lr for r < γ. This allows us to check (7) for 0 < rj < γ:

E

(

δ1−rj/2

(

log

(

1

δ

))r+−rj

[Zδ]
[rj ]
t

)

= δ bt/δc
E|Zδ|

rj

δrj/2
(

log
(

1
δ

))rj−r+
≤ δ bt/δc

E|Zδ|
rj

δrj/γ
→ 0,

and similarly all (5)-(7).

For the MPVCLT note that α < 1 implies that Z has bounded variation. Furthermore, we can

assume that Z has no drift, as this can be placed in the Y process. Now, Lemma 2 gives the basis for

the above MPVCiP argument to apply here, for α < γ < 1, and we can check (12):

E

(

δ1/2−rj/2

(

log

(

1

δ

))r+−rj

[Zδ]
[rj ]
t

)

= δ bt/δc
E|Zδ|

rj

δrj/2+1/2
(

log
(

1
δ

))rj−r+
≤ δ bt/δc

E|Zδ|
rj

δrj/γ
→ 0

if and only if rj/2 + 1/2 < rj/γ, i.e. rj > γ/(2 − γ) ↓ α/(2 − α) as γ ↓ α. It is now easy to repeat the

argument and check that then also the remaining equations in (10-12) hold.

Apart from a finer distinction on the boundaries such as α = 2 or r = α/(2 −α) in terms of powers

of logs or integral criteria, we believe that the ranges for α and r cannot be extended.
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4.3 Examples

In the examples we shall discuss Z is a Lévy jump process and r1 = ... = rm = r. However, as will be

noted at the end of this Section, quite similar results hold for Z being a process of OU type.

Example 1 Suppose Z is the Γ(ν, λ) subordinator, i.e. Z is the Lévy process for which the probability

density of Z1 is λνxν−1e−λx/Γ(ν). This has IA and α = 0 as its index. Consequently: (i) MPVCiP

is valid for all m = 1, 2, ... and 0 < r < 2. (ii) MPVCLT is valid for all m = 1, 2, ... and 0 < r < 1.

However, BPVCLT does not hold if r = 1 and Y ⊥⊥ Z.

Example 2 Let Z be the IG(φ, γ) subordinator, i.e. Z is the Lévy process for which the probability

density Z1 is δ (2π)−1/2 eδγx−3/2e−
1

2
(φ2x−1+γ2x). Again, this has IA, with α = 1/2. Consequently: (i)

MPVCiP is valid for all m = 1, 2, ... and 0 < r < 2. (ii) MPVCLT is valid for all m if 1
3 = α

2−α < r < 1.

In particular, MPVCLT holds for tripower variation with r = 2/3.

Example 3 Let Z be a Variance Gamma Lévy process with parameters ν and λ. This means it can

be written as Zt = BTt , where B is Brownian motion and T is a Γ(ν, λ) subordinator, while B ⊥⊥ T .

Here α = 0 and consequently we have the same conclusion as in Example 1.

Example 4 Let Z be the NIG(γ, 0, 0, φ) Lévy process. This is representable as the subordination of a

Brownian motion B by the IG(φ, γ) subordinator. Hence, α = 2 × 1
2 = 1. Consequently: (i) MPVCiP

is valid for all m = 1, 2, ... and 0 < r < 2. (ii) MPVCLT does not hold for any value of r.

Remark 1 Suppose Z is an OU process V with a background driving Lévy process (BDLP) L. Letting

V ∗
t =

∫ t
0 Vsds we have, since V is the solution of dVt = −λVt + dLλt, that Vt = V0 − λV ∗

t + Lλt. Hence,

letting Y ′ = Y + V0 − λV ∗ we see that Y ′ satisfies the condition (2). Therefore the asymptotics are the

same whether Z = V or Z = L. In the latter case we are back in the setting of the above examples,

where we now apply Theorem 1 to the dependent processes Y ′ and L.
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