
Internet Appendix
“Conviction and volume: Measuring the information
content of hedge fund trading”

C Maximum likelihood estimation
C.1 Building the likelihoood function

Let Θ = (Θ1; Θ2) = (σ2
ε , σ

2
η, σ

2
u, π; β1, λ1, β2, λ2, φ) be the vector of parameters. Let

X = (x1,s,t, x2,s,t, r1,s,t, r2,s,t) be the vector of observables, with r2 = p2 − p1 and r1 = p1. Let
1(x) be an indicator variable equal to 1 if the event x has occured, and 0 otherwise. Let
g(x) be the standard normal PDF and G(x) the standard normal CDF.

Solve for the probability of X given Θ. s indexes stocks, t indexes information episodes
(rather than quarters), and the subscript of 1 (subscript of 2) denotes the first (second)
quarter in each episode. The likelihood function for observing X given Θ, with x1 and x2

censored below at xc and information publicly released after quarter 1 (as opposed to after
quarter 2) if x1 > xc and x2 ≤ xc, is:

likelihood(X|θ) =
T∏
t=1

S∏
s=1

1(x1,s,t > xc and x2,s,t ≤ xc) ∗ Pr(X1 = x1,s,t andR1 = r1,s,t)+

1(x1,s,t > xc and x2,s,t > xc) ∗ Pr(X1 = x1,s,t andR1 = r1,s,t andX2 = x2,s,t andR2 = r2,s,t)

+ 1(x1,s,t ≤ xc) ∗ Pr(X1 ≤ xc) (11)

Now solve and plug in for the vector of unobserved random variables (is,t,u1,s,t, u2,s,t) as a
function of X and Θ. Combined with taking the log of the likelihood function, this produces:

log(likelihood(X|Θ)) =

T∑
t=1

S∑
s=1

1(x1,s,t > xc andx2,s,t ≤ xc) ∗
{
log(g(

r1,s,t − λ1x1,s,t
λ1σu

))

+log(g(
x1,s,t

β1φ
√
σ2
ε + σ2

η

))
}
+1(x1,s,t > xc andx2,s,t > xc)∗

{
log(g(

r1,s,t − λ1x1,s,t
λ1σu

))+log(g(
r2,s,t − λ2x2,s,t

λ2σu
))

+ log(g(
x1,s,t

2β1φ
√
σ2
ε + σ2

η

+
x2,s,t + β2r1,s,t

2β2φ
√
σ2
ε + σ2

η

))
}
+ 1(x1,s,t ≤ xc) ∗G(

xc

β1φ
√
σ2
ε + σ2

η

) (12)

The model is also subject to constraints, equations (6)-(10), which implicitly define Θ2 by
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f1(Θ1; Θ2) = 0. Equation (10) is trivial. Equations (6)-(9) can be reduced to single implicit
equation for f2(Θ1; β1) = 0:

a3 ∗ (2
√
a1a2 − πσu

√
a3) = a2 ∗ (

√
a1a2 − πσu

√
a3) (13)

with a1 = σ2
u + β2

1φ
2σ2

η, a2 = σ2
u + β2

1φσ
2
ε , and a3 = β2

1φσ
2
ε . Thus given Θ1, one can

numerically solve for β1. Once one has solved for β1, one can explicitly obtain λ1 = f3(β1),
λ2 = f4(β1, λ1), and β2 = f5(λ2) in turn.

A maximum likelihood approach is implemented by maximizing equation (12) over Θ1,
subject to the constraints on Θ2 (equation (13)), given data X.

I use maximum likelihood because it allows me to both utilize the Kyle model’s explicit
structure on error terms (i.e., u1 and u2 are normal and the market maker infers information
from order flow based on that parametrization) and to model censoring (by integrating those
errors terms over the relevant range for censored data). In the likelihood function, in the case
that both x1,s,t and x2,s,t are observed above the point of censoring I combine information
from equations (1) and (2) to solve for is,t. In order do so, I utilize a modeling technique to
address the fact that the model imposes a restriction on the data – not the parameters – that
does not hold exactly. The issue is that both equations (1) and (2) can be solved for φi. To
proceed, I rewrite (1) and (2) with a noise term added to each, ξ1,s,t and ξ2,s,t, respectively.
I assume both of these variables are i.i.d. N(0, σ2

ξ ) and independent of all other random
variables. I take σ2

ξ � β2
i (σ

2
ε +σ2

η), i = 1, 2, so that the likelihood function ignores this noise
(since it is so small relative to other sources of variation). The intuition I hope to gain from
the structural model is based on imposing that hedge fund trades are based on information.
Rather than introducing a free parameter for noise in hedge fund trading, I introduce a
minimal amount of noise to informed trading to implement the model. The result of this
technique is that if both x1,s,t and x2,s,t are observed above the point of censoring, the model
simply averages the information they contain for is,t (from equations (1) and (2)).

C.2 CARA informed trader and public information shocks
I solve the model with risk aversion and new information shocks.
First, I assume the informed trader has CARA utility. Second, I assume that public

“new information” arrives during each period that is independent of the original information
draw. This information is public in the sense that it moves prices without trading as soon
as it is generated. Note that a risk neutral trader would simply ignore such information (if
it is mean zero) in her optimization.

Specifically, the informed trader has utility U = −e−aW , where W is her wealth at the
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end of the current two-quarter information event. The informed trader’s maximization now
must take into account the risk generated by noise trading and the public new information
events. The informed trader maximizes E[profits]− a

2
variance(profits).

Denote the public new information shock each period as nit∼ N(0, σ2
ni). Profits from

the second period of trading are x2(ε − p1 − λ2u2 + ni2) − x2
2λ2. Trading during period 2

is assumed to take place before the price shock ni2, and hence new information in period
2 affects profits on the quantity traded during period 2 (x2). Choosing x2 to maximize the
mean minus (a

2
∗) the variance of this quantity produces x2 = β2(φi − p1), with β2 = 1/D,

and D = {2λ2+aλ2
2σ

2
u+aσ2

ni+a(1−φ)σ2
ε}. Note from this equation that, strictly speaking,

with risk aversion the optimal amount of informed trading is no longer linearly related to the
mispricing divided by the expected magnitude of noise trading. The former enters linearly,
but the latter does not. As a result, my empirical proxy for xt may not be as effective in
this extension.

Stepping back to the first period, the informed trader maximizes the mean minus (a
2
∗)

the variance of x1(ε − λ1u1 + ni2 + ni1) − x2
1λ1 + π ∗ (profits fromsecond period) over x1.

The quantity traded during period 1 is assumed to be subject to both price shocks ni1 and
ni2.

This produces x1 = β1(φi), with β1 satisfying the following equation:

β1 ∗ {−(−2λ1D
4 + 2λ2

1πD
3 − 2πλ2

1λ2D
2) + a{(1− φ)σ2

ε (D
2 − πλ1D)2+

σ2
u(π

2λ2
1λ

2
2D

2 + (−λ1D
2 + 2πλ2

1D − 2πλ2
1λ2)

2 + σ2
ni(D

2 − πλ1D)2 + σ2
niD

4}}

= {D4 − 2πλ1D
3 + 2πλ1λ2D

2 − a{(1− φ)σ2
επ(D

3 − πλ1D
2)+

σ2
u(−π2λ1λ

2
2D

2 + (−λ1D
2 + 2πλ2

1D − 2πλ2
1λ2)(−πλ1D + 2πλ1λ2)) + σ2

niπ(D
3 − πλ1D

2)}}
(14)

The market maker proceeds as before, given that the informed trader will trade an amount
proportional to βt times the remaining mispricing.

The likelihood function is the same as above. The constraints, however, can no longer
be reduced to a single constraint. Instead, I numerically solve the revised constraint for β1

jointly with equations (8) and (9). Given β1, λ1, and λ2, I calculate D, which in turn gives
β2.

C.3 Converting short-horizon price impact estimates to a quar-
terly horizon

As a point of comparison, I linearly aggregate three existing short-horizon estimates of
total price impact (temporary plus permanent) across a calendar quarter. Two of these

3



estimates are from the academic literature, while one is an industry estimate. Reassuringly,
my estimate of the permanent price impact component is less than these estimates of total
price impact.57

Frazzini, Israel, and Moskowitz (2012) estimate that trading 1% of daily volume in a
U.S. equity generates 1.30 bps of market impact (their Table 5, column 8, the coefficient
that describes price impact that is linear in the fraction of daily volume). Aggregating this
figure suggests that trading 1% of volume for an entire quarter generates: 63 trading days
*1.30 bps = 0.82% total price impact.

Collin-Dufresne and Fos (2015) find that on average, when 13D filers trade prior to their
public filing date, they take up 26.1% of daily volume (their Table 1 row 10). On those same
days, the excess return averages 34 bps (their Table 6 column 2). Thus trading 1% of daily
volume generates an estimated market impact of (34 bps / 26.1% =) 1.30 bps, the same
figure as in Frazzini, Israel, and Moskowitz (2012).

Brennan and Subrahmanyam (1996) find that the the average price impact generated by
purchasing 1% of the shares outstanding of a stock in the middle quintile of size (market
cap) and the middle quintile of illiquidity is 1.7% (their Table 1, panel B, estimates of Cn).
In my sample, on average quarterly volume is roughly 50% of the market cap of a stock (my
Table 1). Brennan and Subrahmanyam’s estimate thus implies that trading 1% of volume
for an entire quarter generates: 1.7% *50% = 0.85% of total price impact.

Investment Technology Group estimates a price impact of approximately 85 bps for con-
suming 5% of the volume in a $1.4 billion market cap stock over 30 days.58 This estimate
is based on the average execution price of an order (the weighted average of shares traded
and the price of each transaction), so it represents a lower bound on the total price impact
(final price minus initial price). Early trades will presumably be executed before prices have
moved substantially. Nevertheless, aggregating ITG’s estimate suggests that trading 1% of
volume for an entire quarter generates at least: 85 bps /5% *3 months = 0.51% of total
price impact. At the extreme, if one assumes that all price impact is permanent and that
component trades are made in infinitesimally small amounts, then the price impact after all
trades have been executed will simply be twice this amount (1.02%). Thus ITG’s compara-
ble estimate of price impact most likely falls somewhere in the range of 0.51% to 1.02%, the
midpoint of which is 0.77%.

57These calculations do not account for the fact that I measure trades relative to lagged volume, while
the authors of these estimates measure trades relative to contemporaneous volume. In my sample, contem-
poraneous volume tends to increase relative to lagged volume for high volume consumed positions. Using
contemporaneous volume, my estimates of permanent price impact would decline slightly.

58Hanson, Samuel G. ”The FLV Capital Trading Desk (A).” Harvard Business School Teaching Note
215-053, January 2015.
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D Data appendix
D.1 Standardized earnings surprises (SUE)

In the data, to ensure that earnings reflect firm performance over the same period that
hedge funds are trading, I include only companies with calendar quarter-end fiscal periods
to match the 13F effective dates. For these companies, hedge fund trading over the course
of quarter t can be mapped to an earnings release that reflects company performance over
that same quarter.

The earnings return in quarter t+1 is measured as the return over the three trading-day
window centered around the first Compustat earnings announcement date in quarter t + 1

for stock s, using characteristic-adjusted daily returns. The return on “other days” in the
quarter is the average daily characteristic-adjusted return outside of the earnings window,
multiplied by three for comparability.

Standardized unexpected earnings (SUE), SUEs,t, is measured as earningss,t+1−median analyst forecasts,t
Ps,t

,
as in Baker, Litov, Wachter, and Wurgler (2010). To form the median forecast, I take the
median across the last earnings forecast made by each analyst who published an earnings
forecast during quarter t. I use only analyst forecasts made during quarter t to ensure that
forecasts are made during the same time interval over which I measure hedge fund trades.

To faciliate interpretation, I standardize SUE in the cross section by quarter.

D.2 Constructing mutual fund flows
I identify funds subject to extreme fund-flows as in Coval and Stafford (2007, CS).
First, I link CRSP mutual fund returns and assets to the Thompson Reuters mutual

fund holdings data, using the MFLINKS dataset provided by WRDS. As in CS, I remove
funds with an IOC code (Thompson Reuters) of international, municipal bonds, bonds and
preferred, or metals (1, 5, 6, or 8). I also eliminate funds with fewer than 5 holdings or
with less than $5 million in assets. I aggregate multiple share classes in CRSP (which
are all linked to a single Thompson Reuters fund-quarter holdings entry), summing assets
and forming returns as the asset-weighted average return of the underlying share classes. I
then use the CRSP data to measure fund flows for fund f during quarter t: FLOW crsp

f,t =

assetscrspf,t − assetscrspf,t−1 ∗ (1 + retcrspf,t ) − mergerscrspf,t , where retcrspf,t is the return of fund f

from the end of quarter t − 1 until the end of quarter t, assetscrspf,t is the total net assets
of fund f at the end of quarter t, and mergerscrspf,t represents the assets that fund f gained
from mutual fund mergers during quarter t. I denote these variables as “CRSP” variables to
explicitly denote that they are taken from CRSP, as opposed to returns and flows calculated
using the holdings data (13Fs or mutual fund holdings). I then translate this into “relative”
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flows at the fund level: flowcrsp
f,t =

FLOW crsp
f,t

assetscrspf,t−1
. I sort mutual funds into deciles at the end of

each quarter t based on their flowcrsp
f,t .

Funds in the top decile of flows (flowcrsp
f,t ) are “extreme inflow” funds, while funds in the

bottom decile are “extreme outflow” funds.

D.3 Constructing funds’ return gaps
Kacperczyk, Sialm, and Zheng (2008, KSZ) construct a measure of the differential be-

tween a fund’s returns and the returns of its underlying holdings (assuming that trades are
made costlessly at period ends), dubbed the fund’s “return gap.” KSZ find that funds with
the highest return gaps (where the fund returns are much greater than the holding returns)
generate the highest overall fund-level returns.

KSZ’s Appendix A lists a comprehensive explanation of their sample selection. I follow
the same process to identify mutual funds to include in the sample. KSZ filter by the
Thompson Reuters (IOC) and CRSP (ICDI, Strategic Insight, Weisenberger, Policy) mutual
fund objective codes. They also eliminate funds that hold less than 80% or above 105%
in stocks, on average. KSZ eliminate funds with fewer than 10 holdings or with less than
$5 million in assets. They aggregate share classes in CRSP by forming the asset-weighted
return of different shareclasses before matching with the Thompson Reuters holding data. I
follow all of these procedures.

The monthly return gap is the differential between a fund’s gross returns reported to
CRSP (formed by taking the net return each month and adding back the expense ratio
divided by 12) and the returns of the fund’s most recently reported asset holdings during
that month. With m indexing months, the net fund return is reported to CRSP, retcrspf,m ,
as described above in Appendix D.2. grossretCRSP

f,m = retcrspf,m +
expense ratiof,m−1

12
, where

expense ratiof,m−1 is the fund’s most recently reported annual expense ratio as of the pre-
vious month end. holdretf,m =

∑
s rets,m∗sharess,f,m−1∗Ps,m−1∑

s sharess,f,m−1∗Ps,m−1
, where sharess,f,m−1 are the most

recent shareholdings reported by manager f in stock s as of the end of the previous month
(m− 1), Ps,m−1 is the price of stock s as of the most recent month end (m− 1), and rets,m

is the total return of stock s during month m. I include fund holdings that are up to six
months old when calculating holding period returns.

At each calendar quarter end, I rank funds into deciles based on
∑12

k=1 grossret
CRSP
f,m−k+1−

holdretf,m−k+1, where m indexes months. The top decile includes funds with the highest
return gap. In my analysis in Section 5.2, because I analyze fund trades I only include funds
that file consecutive quarter end holdings reports.
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E Additional results
E.1 Additional summary tables

Table E.1: Summary statistics
This table displays additional summary statistics of volume consumed (aggregation method 1)
portfolios by decile. Calculations are based on 13F filings from 12/31/1989-9/30/2012. Statistics
are calculated as the time-series average across 13F filings. The value at each quarter t is
calculated as the equal-weighted average across all stocks s in the corresponding decile portfolio at
t. For manager statistics, before averaging across stocks a data point is calculated for each stock
s as the equal-weighted average across all funds f who purchased stock s during quarter t. For
stock-characteristic quintile averages, the value of a given characteristic for stock s is calculated as
of the end of quarter t − 1, to distinguish stock characteristics from the potential price impact of
trades during quarter t. For quintiles, a value of 5 represents a higher measure of the underlying
statistic, i.e., the largest market cap quintile, the highest book-to-market quintile, or the highest
trailing 12-month performance (excluding the most recent month) quintile. Stocks below the 20th
percentile of NYSE market cap have been removed.

Avg Avg Avg Avg
Decile of Avg mgr Avg stock stock stock
volume mgr assets mgr age size book momentum

consumed (t) # positions ($ MM) (quarters) quintile quintile quintile

1 88.4 $478 21.4 3.61 2.71 3.07
2 86.2 $559 20.9 3.69 2.69 3.13
3 84.1 $602 20.8 3.66 2.69 3.14
4 83.0 $652 21.1 3.59 2.73 3.16
5 81.8 $708 21.2 3.50 2.75 3.19
6 81.0 $780 21.5 3.40 2.76 3.22
7 79.4 $821 21.4 3.28 2.78 3.23
8 78.1 $898 21.5 3.14 2.79 3.17
9 76.0 $1,085 21.9 2.97 2.82 3.16
10 72.5 $1,116 21.9 2.73 2.85 3.14
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E.2 Contemporaneous performance portfolios

Table E.2: Contemporaneous performance
This table displays the contemporaneous market-adjusted and characteristic-adjusted monthly
performance of calendar-time portfolios sorted into deciles based on volume consumed in quarter t
by aggregation methods 1 (columns 1-2), 2 (column 3), and 3 (column 4). For comparison, I also
display the monthly performance during quarter t + 1 of portfolios of all stocks sorted by quarter
t characteristic-adjusted performance (method †) and the monthly performance during quarter
t of portfolios sorted by valoftradeopens,t = shares tradeds,t ∗ Ps,t−1 (method ‡). Calculations are
based on 13F filings from 12/31/1989-9/30/2012. Positions are weighted equally. T-statistics are
displayed in brackets. ** and * denote significance at the 5% and 10% levels, respectively.

Column: (1) (2) (3) (4) (5) (6)

Agg. method: (1) (1) (2) (3) (†) (‡)

Decile of Mkt.- Char.- Char.- Char.- Char.- Char.-
volume adj adj adj adj adj adj

consumed (t) ret (t) ret (t) ret (t) ret (t) ret (t+1) ret (t)

1 0.25% 0.14% 0.44% 0.29% 0.03% 0.72%
[1.43] [1.47] [6.29]** [2.38]** [0.11] [5.14]**

2 0.43% 0.27% 0.51% 0.03% 0.16% 0.95%
[2.42]** [2.93]** [6.95]** [0.34] [1.32] [8.71]**

3 0.49% 0.37% 0.51% -0.15% 0.18% 0.99%
[2.95]** [4.25]** [6.64]** [-1.79]* [2.37]** [9.95]**

4 0.60% 0.46% 0.50% -0.09% 0.16% 0.82%
[3.39]** [4.85]** [6.57]** [-0.99] [2.78]** [7.91]**

5 0.65% 0.49% 0.64% -0.09% 0.04% 0.78%
[3.76]** [5.67]** [8.46]** [-0.93] [0.68] [8.32]**

6 0.93% 0.69% 0.73% 0.33% 0.09% 0.80%
[4.95]** [7.87]** [9.11]** [3.51]** [1.59] [9.31]**

7 0.95% 0.73% 0.90% 0.55% -0.01% 0.65%
[5.01]** [7.63]** [12.38]** [6.69]** [-0.20] [6.97]**

8 0.93% 0.73% 1.03% 0.76% -0.12% 0.52%
[4.68]** [7.15]** [12.36]** [7.80]** [-1.90]* [5.70]**

9 1.38% 1.18% 1.15% 0.92% -0.07% 0.54%
[6.44]** [10.13]** [13.74]** [9.29]** [-0.81] [6.06]**

10 2.28% 2.07% 1.63% 1.75% 0.03% 0.21%
[9.90]** [13.69]** [14.61]** [14.63]** [0.16] [2.04]**

L/S (10-1) 2.04% 1.94% 1.18% 1.47% 0.00% -0.52%
[9.54]** [10.44]** [8.44]** [13.05]** [0.01] [-3.00]**
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E.3 Future trading portfolios

Table E.3: Future trading
This table displays the volume consumed (% of quarterly volume) during quarter t+1 of
calendar-time portfolios sorted into deciles based on volume consumed in t by aggregation
methods 1 (columns 1-2), 2 (column 3), and 3 (column 4). For each portfolio, volume consumed
in quarter t+ 1 is calculated using the same aggregation method used to calculate volume
consumed during quarter t. Calculations are based on 13F filings from 12/31/1989-9/30/2012.
Positions are weighted equally. T-statistics of the long-short portfolios are displayed in brackets.
** and * denote significance at the 5% and 10% levels, respectively. Volume consumed has been
winsorized at the 1%/99% levels.

Column: (1) (2) (3) (4)

Agg. method: (1) (1) (2) (3)

Decile of
volume Volume Volume Volume Volume

consumed (t) consumed (t) consumed (t+1) consumed (t+1) consumed (t+1)

1 0.05% 1.01% 0.01% -1.21%
2 0.18% 1.22% 0.03% -0.33%
3 0.37% 1.37% 0.05% -0.05%
4 0.63% 1.52% 0.08% 0.12%
5 0.99% 1.81% 0.12% 0.33%
6 1.52% 2.06% 0.17% 0.42%
7 2.33% 2.42% 0.27% 0.46%
8 3.72% 2.94% 0.43% 0.48%
9 6.62% 3.75% 0.82% 0.63%
10 17.63% 5.11% 2.90% 0.98%

L/S (10-1) 17.59% 4.09% 2.89% 2.19%
[34.02]** [22.17]** [23.28]** [17.45]**
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E.4 Additional tables for earnings regressions

Table E.4: SUE and earnings returns
This table displays additional results involving earnings announcement returns and standardized
earnings surprises. The characteristic-adjusted earnings return measures the return of stock s dur-
ing the three trading-day window centered around its first earnings announcement during quarter
t+1. SUE is the standardized earnings surprise for stock s, normalized to have a cross-sectional
standard deviation of one each quarter. MEs,t, V −1

s,t−1, IORs,t, and BEMEs,t are the log of
market cap, the log of the inverse of dollar volume, the level of institutional ownership, and the
log of the book-to-market ratio of stock s at the end of quarter t (t-1 for volume), respectively.
All variables are winsorized at the 1%/99% levels. Calculations are based on 13F filings from
12/31/1989-9/30/2012. T-statistics are displayed in brackets. ** and * denote significance at the
5% and 10% levels, respectively. Panel A shows the coefficient on SUE by three groups of volume
consumed (none or bottom quintile, the middle three quintiles, and the top quintile) in a Fama-
MacBeth regression of the earnings return on SUE using observations with positive SUE. Panel B
repeats the analysis of panel A using using observations with negative SUE.
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Panel A: Regression of characteristic-adjusted earnings returns (t+1)
on positive SUE (t+1) by volume consumed groups

Coefficient on
Volume consumed (t) SUE (t+1) [t-stat]

None or bottom quintile 2.52% [7.93]**
Middle quintiles 2.08% [8.73]**
Top quintile 1.50% [3.62]**

Volume consumed (t) Constant [t-stat]

None or bottom quintile omitted
Middle quintiles 0.16% [1.65]*
Top quintile 0.54% [3.37]**

Controls Coefficient [t-stat]

MEs,t -0.31% [-4.01]**
V −1
s,t−1 -0.06% [-0.83]

IORs,t 0.75% [4.23]**
BEMEs,t -0.24% [-5.49]**

Test F-stat p-value
SUE coefficient: top-bottom? 6.35 0.014**

Fama-MacBeth Y
Observations 80,362
R-squared 0.047
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Panel B: Regression of characteristic-adjusted earnings returns (t+1)
on negative SUE (t+1) by volume consumed groups

Coefficient on
Volume consumed (t) SUE (t+1) [t-stat]

None or bottom quintile 0.42% [8.05]**
Middle quintiles 0.30% [4.55]**
Top quintile 0.49% [3.69]**

Volume consumed (t) Constant [t-stat]

None or bottom quintile omitted
Middle quintiles 0.21% [2.49]**
Top quintile 0.89% [5.53]**

Controls Coefficient [t-stat]

MEs,t 0.35% [3.87]**
V −1
s,t−1 0.16% [2.08]**

IORs,t -1.10% [-4.17]**
BEMEs,t 0.50% [6.56]**

Test F-stat p-value
SUE coefficient: top-bottom? 0.24 0.627

Fama-MacBeth Y
Observations 40,387
R-squared 0.047
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E.5 Mutual fund portfolios

Table E.5: Mutual fund trades, volume consumed, and performance
This table displays the volume consumed (% of quarterly volume) and monthly performance of
mutual fund trades. Stocks are sorted into deciles based on volume consumed (aggregation method
1) during quarter t. Calculations are based on mutual fund holdings from 12/31/1989-9/30/2012
(except for active share results, which end at 12/31/2009). Positions are weighted equally.
T-statistics are displayed in brackets. ** and * denote significance at the 5% and 10% levels,
respectively. In calculating future performance, stocks below the 20th percentile of NYSE market
cap have been removed. Volume consumed has been winsorized at the 1%/99% levels. Panel A
displays volume consumed, contemporaneous performance, and future performance of mutual fund
trades. Panel B displays future performance of the trades of subsets of mutual funds: funds in the
top/bottom quintile of return gap or funds with above/below median active share.

Panel A: Mutual fund volume consumed – contemporaneous performance and
future performance

Column: (1) (2) (3) (4) (5)
Decile of Mkt.- Char.- Mkt.- Char.-
volume Volume adj adj adj adj

consumed (t) consumed (t) ret (t) ret (t) ret (t+1) ret (t+1)
1 0.10% 0.22% -0.01% 0.15% 0.03%

[1.35] [0.10] [0.84] [0.32]
2 0.31% 0.40% 0.22% 0.19% 0.10%

[2.61]* [2.31]** [1.29] [1.10]
3 0.56% 0.57% 0.36% 0.25% 0.05%

[3.73]** [4.39]** [1.76]* [0.55]
4 0.83% 0.67% 0.45% 0.11% 0.06%

[4.53]** [5.64]** [0.83] [0.72]
5 1.14% 0.81% 0.59% 0.14% 0.05%

[5.19]** [6.61]** [1.13] [0.66]
6 1.54% 0.85% 0.70% 0.20% 0.10%

[5.65]** [8.24]** [1.56] [1.36]
7 2.06% 0.91% 0.68% 0.21% 0.11%

[5.68]** [7.96]** [1.66]* [1.42]
8 2.82% 1.02% 0.79% 0.20% 0.07%

[5.77]** [7.96]** [1.64] [0.83]
9 4.20% 0.96% 0.74% 0.11% -0.05%

[5.11]** [6.76]** [0.93] [-0.67]
10 7.48% 1.06% 0.79% 0.22% 0.17%

[4.38]** [5.28]** [1.79]* [1.85]*

L/S (10-1) 7.38% 1.05% 0.80% 0.07% 0.14%
[5.45]** [5.22]** [0.46] [1.08]
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Panel B: Mutual fund subsets – future performance

Column: (1) (2) (3) (4)

Return gap,
Return gap, bottom Active share Active share
top quintile quintile > median < median

Decile of Char.- Char.- Char.- Char.-
volume adj adj adj adj

consumed (t) ret (t+1) ret (t+1) ret (t+1) ret (t+1)

1 0.20% 0.13% 0.03% 0.10%
[1.75]* [1.16] [0.29] [0.79]

2 0.03% 0.01% 0.10% 0.00%
[0.28] [0.13] [0.93] [-0.02]

3 -0.07% 0.12% 0.00% 0.05%
[-0.71] [1.20] [-0.02] [0.48]

4 0.01% 0.05% 0.21% 0.05%
[0.09] [0.61] [2.04]** [0.54]

5 0.06% 0.06% -0.09% 0.03%
[0.59] [0.58] [-1.08] [0.36]

6 0.07% 0.03% 0.09% -0.02%
[0.73] [0.41] [0.91] [-0.21]

7 0.25% 0.19% -0.02% 0.14%
[2.50]** [2.16]** [-0.20] [1.89]*

8 0.26% 0.10% 0.39% 0.05%
[2.49]** [1.08] [4.27]** [0.56]

9 0.21% 0.23% 0.26% 0.09%
[1.90]* [2.32]** [2.69]** [1.09]

10 0.37% 0.07% 0.29% -0.02%
[3.15]** [0.58] [2.78]** [-0.21]

L/S (10-1) 0.18% -0.06% 0.26% -0.12%
[1.03] [-0.42] [1.62] [-0.82]
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E.6 Wurgler and Zhuravskaya (2002) and “best ideas”
Wurgler and Zhuravskaya (2002, WZ) also motivate weighted idiosyncratic risk as a

trade-level limit, similar to Cohen, Polk, and Silli (2010). WZ model an arbitrageur that
has exponential utility with constant absolute risk aversion (who is thus a mean-variance
optimizer). When the arbitrageur is aware of a mispriced stock, she buys (or sells) that
stock and attempts to hedge the position with a substitute portfolio. In this framework,
idiosyncratic risk captures the risk of the trade after hedging. WZ show that variation
in idiosyncratic risk helps explain cross-sectional variation in stock returns around index
additions.

WZ use two empirical proxies for idiosyncratic risk. The first proxy is the variance of
the simple market-adjusted return of a stock. The second proxy is the variance of a stock’s
return relative to the return of a characteristic-matched portfolio. The matching portfolio is
constructed by finding three stocks in the same industry with similar market capitalizations
and book-to-market ratios to the stock in question.

CAPM idiosyncratic variance – which I employ in Section 7.2 to identify funds’ “best
ideas” – closely corresponds to WZ’s first proxy. It captures the risk remaining in a stock after
the arbitrageur hedges that stock using the (beta-weighted) market portfolio. In unreported
results, I also employ the variance of stocks’ characteristic-adjusted returns to proxy for
idiosyncratic risk when identifying funds’ best ideas. This proxy is similar in spirit to WZ’s
second proxy. This measure of risk implicitly supposes the arbitrageur hedges her position
in a stock with its characteristic-matched (DGTW) portfolio. Using characteristic-adjusted
idiosyncratic risk produces similar results to my results using CAPM idiosyncratic risk. Best
ideas remains uninformative.

Robustness to this variation is consistent with WZ. WZ find that the correlation between
their two measures of idiosyncratic risk is 0.98. WZ find that idiosyncratic risk is difficult
to hedge in general, as it is hard to find close substitutes for individual stocks.
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E.7 Best ideas extended results

Table E.6: Volume consumed and best ideas
This table displays results comparing volume consumed and best ideas. It shows the characteristic-
adjusted monthly performance during quarter t+1 of calendar-time portfolios sorted independently
along measures of volume consumed and best ideas in quarter t. Positive volume consumed
(aggregation method 2) positions are sorted into quintiles, with all positions with zero or negative
values placed into a separate bin. Positions are independently sorted by their intra-manager best
ideas ranking (relative to other stocks s in fund f ’s portfolio at quarter t). Calculations are based
on 13F filings from 12/31/1989-9/30/2012. Positions are weighted equally. Stocks below the 20th
percentile of NYSE market cap have been removed. T-statistics are displayed in brackets. ** and
* denote significance at the 5% and 10% levels, respectively. The proportion of total positions
within each bin is displayed in italics.

Char.-adj ret (t+1) / [t-stat] / proportion of total positions)

Best ideas position rank (t; 1 = highest best ideas)

21+ 11-20 6-10 4-5 2-3 1
0.08% 0.08% 0.05% 0.06% 0.05% 0.06%

Sale [2.95]** [1.81]* [0.82] [0.64] [0.51] [0.38]
or hold 32.4% 7.3% 3.8% 1.5% 1.5% 0.7%

0.03% 0.27% 0.02% 0.31% 0.11% 0.36%
1 [0.78] [2.96]** [0.19] [1.62] [0.49] [1.19]

8.6% 1.4% 0.7% 0.2% 0.2% 0.1%

Volume 0.04% 0.06% -0.08% 0.02% 0.08% 0.04%
consumed 2 [0.78] [0.64] -[0.55] [0.08] [0.38] [0.16]
quintile (t) 7.5% 1.7% 0.9% 0.3% 0.3% 0.1%

0.17% 0.07% 0.02% -0.01% -0.01% 0.28%
3 [3.44]** [0.80] [0.17] -[0.07] -[0.03] [1.01]

6.5% 2.1% 1.1% 0.4% 0.4% 0.2%

0.27% 0.19% 0.13% 0.09% 0.20% -0.01%
4 [5.40]** [2.32]** [1.24] [0.59] [1.27] -[0.04]

5.4% 2.3% 1.3% 0.5% 0.5% 0.2%

0.30% 0.33% 0.57% 0.30% 0.30% 0.41%
5 [4.91]** [4.86]** [6.27]** [2.40]** [2.20]** [2.02]**

3.9% 2.4% 1.6% 0.7% 0.7% 0.4%
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F Competition
F.1 Competition

The Kyle model assumes the insider is an information monopolist. The model can be
extended to the case of multiple informed agents.

In my empirical results, I primarily focus on aggregating purchases at the stock-quarter
level because price impact should aggregate. Disaggregated purchases at the stock-fund-
quarter level also strongly predict future stock performance (Table 3). In this appendix, I
examine variation in how multiple funds simultaneously trade a single stock.

Holden and Subrahmanyam (1992; HS) show that in a Kyle model with multiple identi-
cally informed agents and a large number of periods, informed traders aggressively compete,
rapidly pushing prices towards fair value. Foster and Viswanathan (1996; FV) and Back,
Cao, and Willard (2000) show that in contrast, prices gradually move towards fair value over
time – as in the single agent case – if the informed agents’ private signals are sufficiently
heterogeneous.59 These theoretical studies take the level of competition as exogenously fixed.

Applying these multi-agent versions of the Kyle model to my data poses several chal-
lenges. First, competition is not exogenously fixed. Competition varies based on how funds
assign their limited attention. To a first approximation, competition may be randomly as-
signed. I model this extension below. In reality, competition is endogenous. Skilled funds
may be adept at deciding what stocks to learn more about: more mispriced stocks may
attract more competition. Second, in order to model competition, one must take a stance on
the information structure underlying not only asset prices and what funds know about asset
prices, but also what funds know about what other funds know about asset prices. Funds
act based on their expectations of competitors’ behavior. Third, the models assume that
agents act independently. Some funds may coordinate their actions, as many hedge fund
managers share common employment and educational backgrounds.60 Fourth, the number of
time periods has major implications for some competitive effects. My assumption that trade
occurs once a quarter – the frequency of my data – is more stark in such an environment.

I explicitly elaborate on the first point. In Appendix F.2, I construct a one-period Kyle
model that features a random level of competition. Each of two traders are randomly active
or inactive. I assume the econometrician can only observe informed purchases, an aspect
of my data. This model makes a key point: observing more insiders purchasing an asset

59Koudijs (2014) also notes this distinction when applying the Kyle model to his data.
60In perhaps the best known example, a number of proteges of Julian Robertson manage hedge funds.

This group of funds, known as “Tiger Cubs,” frequently trade in the same stocks. “There at least
30 ‘Tiger Cubs’...[and] 40-odd ‘Tiger Seeds,’ or funds that are backed by Robertson’s money....it is be-
lieved that many of the managers still share ideas,” from http://www.benzinga.com/trading-ideas/long-
ideas/12/09/2876699/the-five-stocks-tiger-cubs-love#ixzz3n4IPTUFL, accessed 9/15/2015.
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increases estimated price impact but also increases the expected value of the asset. The
correlation of the informed traders’ signals determines which effect dominates.

If the econometrician observes a single informed trader purchasing a stock, the econo-
metrician may expect that stock will perform particularly well in the future. The informed
trader was able to build her position at a lower price because the second trader did not also
purchase shares. However, observing two informed traders purchasing a stock increases the
estimate of the asset’s value. When forming the posterior distribution of the information,
two observations receive more weight than one. Furthermore, the second informed trader
may have been active but received a negative signal (and therefore gone unobserved).61

With perfectly correlated signals, observing a single informed trader leads to greater
expected future returns. Signals are identical, so a second purchase would not increase
the expected value of the asset. In contrast, with relatively uncorrelated signals, a second
purchase increases the expected value of the asset by more than the incremental price impact.
The same reasoning applies to observing a single trader purchasing 2x shares compared
to observing two traders who each purchase 1x shares. I illustrate these points with a
parametrized example in Appendix F.4 and Figure F.1.

Empirically, when multiple funds simultaneously purchase a stock in my sample, the
amount that each fund purchases varies substantially. When at least three funds purchase a
stock simultaneously, the mean ratio of the standard deviation of volume consumed divided
by average volume consumed is 1.25.62 This pattern suggests information signals may be
weakly correlated.63

In Table F.1, I present regressions of future returns on proxies for competition: the
number of funds that purchase a stock (positively related to competition) and the average
volume consumed in that stock (negatively related to competition). The number of funds
that purchase a stock is positively related to the stock’s future returns after controlling
for its volume-consumed quintile. The average volume consumed is negatively related to
future returns. However, the predictive effects of these proxies are insignificant when I limit
the sample to the top quintile of volume consumed, where I have the strongest evidence
that hedge funds trade based on information. These findings provide some evidence for the
multi-agent Kyle model in which funds have relatively uncorrelated signals (as in FV). At the
very least, more observable competition for a given total amount of trading does not appear

61If hedge funds endogenously allocate their attention, random assignment may understate this effect.
Hedge funds may actively avoid competing with each other except in assets that are particularly mispriced.

62That is, I calculate var(volconsumeds,f,t)
1/2
s,t∑F

f=1 volconsumeds,f,t/Ns,t
for stock s at quarter t. Ns,t is the number of funds with

positive volume consumed in stock s during quarter t, and the volatility calculation includes only positive
observations of volume consumed in stock s during quarter t. I then average across stocks and quarters.

63This variation could also reflect non-information based motives for trade.
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to predict strongly diminished future returns (an implication of HS). The complications
outlined above caution against interpreting these results too strongly.

F.2 Kyle model with a random number of informed traders (0, 1,
or 2)

I construct a one-period Kyle model with an uncertain number of informed traders.
Notation is the same as in Section 2, but without time subscripts. Each of two informed
traders has a δ probability of being “active” in the asset, independent of whether the other
trader is present. If both traders are active, they draw signals i = ε + η and i′ = ε + η′,
with η and η′ i.i.d. N(0, σ2

η). The market maker can not observe traders’ presence, and
therefore reacts to trades using a probability weighted average of the linear reaction function
she would employ in each scenario.

“Future returns” are proxied by ε − p. These are the returns realized by asset holders
after trading takes place at price p.

The model solution proceeds as it does for the two-period model in Appendix A.
First, optimize from the perspective of an informed trader. She solves maxxE[x(ε−λu−

λx − δλβ(φi′)| i], where i is the agent’s own information signal and i′ is the information
signal of the other agent (if that agent is active). The solution, after setting β = β′ (since
the agents are identical), gives β = 1

λ(2+δ)
.

Note that E[p] = λβφ(i+ i′) if two traders are present, and E[p] = λβφi if one trader is
present. Thus λβ∗(#traders) represents the proportion of the informed traders’ information
that gets into prices in expectation. Suppose that at least a single informed trader is present.
As δ → 0, this reduces to the classic Kyle model solution that λβ = 1

2
. If the single informed

trader knows that the odds of her competing with another informed trader are approximately
zero, then she will trade to get half of her information into price. As δ → 1, on the other
hand, λβ → 1

3
. Since both traders are active with certainty, that means that 2βλ = 2

3
of

their information gets into price. Thus as more agents compete over the asset, they get more
information into prices for a given true amount of information ε.

The market maker posts a single linear response coefficient λ (so that p = λ(x + u)).
The market maker probabilistically averages her response function across the scenarios of no
active informed traders, one active informed trader, and two active informed traders:
λ = 2(1− δ)δ βφσ2

ε

β2φ2(σ2
ε+σ2

η)+σ2
u
+ δ2 βφσ2

ε

4β2φ2σ2
ε+2β2φ2σ2

η+σ2
u
.

F.3 Expected returns conditional on observing one vs. two traders
when the econometrician only observes purchases

Assume the econometrician only observes informed purchases. In the model, if two
informed traders purchase an asset, then the econometrician can infer the information of
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both traders. However, if the econometrician observes one informed purchase, she can not
be sure if there was in fact only a single informed trader active or if instead a second informed
trader was active but decided not to purchase (i.e., shorted) the asset.

In order to compare expected returns conditional upon observing informed purchases
from one vs. two traders, three quantities are needed: (1) E[ε−p] if there is truly one trader
active; (2) E[ε− p] if there are two traders active but one trader decides to short the asset;
and (3) E[ε− p] if there are two traders active and both purchase the asset.

For the first quantity, the calculation is simple: E[ε− p| i] = E[ε− λβφi| i] = φi(1+δ
2+δ

), if
only one trader is active and we observe i.

For the second quantity, we need the expectation of ε conditional on the second agent
drawing a negative signal. This calculation utilizes the truncated normal distribution, so
there is no analytical solution. Instead, solve for ε by maximizing its likelihood: g( i−ε

ση
)G(−ε

ση
)g( ε

σε
),

with g and G the standard normal PDF and CDF, respectively (the first term represents the
probability that the first informed trader draws a signal i, given ε; the second term reflects
the probability that the second signal i′ is negative, given ε; and the third term represents
the prior probability that ε takes the given value). Then calculate the expected signal for
the second trader, conditional on it being less than zero, using the moments of a truncated
normal distribution (truncated at zero, with mean φi and variance (1 − φ)σ2

ε + σ2
η). Given

the expected signal for the second trader, the expected value of ε, and φi for the observed
trader, calculate E[ε − p] = E[ε] − λβ(i + E[i′]), with all the expectations conditional on
observing i and knowing that the second unobserved trader receives a negative signal i′.

The third quantity is calculated similarly. We need the expectation of ε conditional on
a hypothetical positive draw for the second trader. Solve for the expected value of ε by
maximizing the likelihood g( i−ε

ση
)(1−G(−ε

ση
))g( ε

σε
). Then proceed as above.

Finally, calculate the expected return conditional on observing one trader purchasing the
asset as the probability weighted average of (1) there being only a single active trader and
(2) the possiblity that a second trader was active but decided not to purchase the asset:
E[ε−p1| observe one trader]= Prob(truly one trader)

Prob(truly one trader)+Prob(unobserved second trader)
∗E[ε−p1| truly one trader]

+ Prob(unobserved second trader)
Prob(truly one trader)+Prob(unobserved second trader)

∗ E[ε− p1|unobserved second trader].
Compare that quantity to E[ε− p1| observe two traders].

An alternative manner of conceptualizing this dynamic is to consider expected returns
conditional on observing a single purchase of 2x to expected returns conditonal on observing
two smaller purchases that sum to 2x.

The latter expectation is trivial. Assuming that the two traders observe signals of itwo and
i′two, where itwo+i′two = ione, with ione the signal of the single large trader and itwo, i

′
two, ione >
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0, then E[ε− p] = E[ε]− λβφ(itwo + i′two). E[ε] =
2

σ2
η
(itwo+i′two)/2

1

σ2
ε
+ 2

σ2
η

, based on forming a normal

posterior from a prior (the distribution of ε) and data (observations of i and i′).
The former expectation is calculated using the same method as above: probabilistically

average the expectation if the trader is active on her own and the expectation if a second
trader was active but decided not to purchase the asset.

F.4 Parametrized example
To get a quantitative sense of these dynamics, I construct a parametrized example of the

model. I assume the econometrician only observes informed purchases.
Figure F.1 illustrates expected returns, E[ε− p], as one varies the noise of the informed

traders’ signals, σ2
η. I assume that σ2

ε = 1 and δ = 0.5 (note that I do not need to make an
assumption on σ2

u, since I only need to know λβ, not λ on its own). These results are based
on 50,000 simulations of the model for each value of σ2

η. In each simulation, I randomly draw
a positive value of i = ε+ η. I then calculate expected returns conditional on seeing a single
purchase based on that signal. I also calculate expected returns if one were to observe a
(random) second informed purchase. Finally, I calculate expected returns if instead of seeing
a single informed purchase, the econometrician observes two informed purchases that are
each half the size of the (larger) single purchase.

Expected returns are higher conditional upon observing a single informed purchase, com-
pared to what one would expect if one observed a second informed purchase, for σ2

η ≤ 1. At
higher values of σ2

η, the increase in the expected value of ε from observing a second purchase
outweighs the increase in price impact (expected value of p). In that part of the parameter
space, expected returns are higher if the econometrician observes two informed purchases.

I also compare one informed purchase to two informed purchases that are each half the
size of the single purchase.64 In this scenario, the point of preference shifts to a higher
value of σ2

η. Expected returns are higher for observing a single informed purchase if σ2
η ≤ 4.

At higher values of σ2
η, returns are higher conditional on observing two smaller informed

purchases.
With random assignment of informed traders and an inability to observe shorts, expected

returns may be higher after observing more purchases or after observing fewer purchases.
The noise in informed traders’ signals determines the relative ranking.

64Mathematically, this solution applies to any two purchases that add up to the magnitude of the single
larger purchase.
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Figure F.1: Competition - parametrized example
This figure displays expected returns, E[ε − p], conditional on different observed patterns of
trading in a one-period Kyle model with two randomly assigned informed traders, as in Appendix
F.2. Expected returns are displayed as a function of σ2

η. σ2
ε = 1 (the variance of information) and

δ = 0.5 (the probability a given informed trader is “active” in a stock).
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F.5 Competition – Results

Table F.1: Competition and future returns
This table displays information involving competition and future monthly characteristic-adjusted
returns. #fundss,t is the number of hedge funds that purchased a stock s in quarter t. The
sample is limited to stocks with #fundss,t > 0. Average volume consumed is the average volume
consumed in that stock: volconsumeds,t

#fundss,t
. VCQ is the quintile of volume consumed (aggregation

method 1; 1-5 for stocks with hedge fund purchases, and 0 for stocks with no hedge fund purchases)
for stock s. MEs,t, V −1

s,t , IORs,t, and BEMEs,t are the log of market cap, the log of the inverse
of dollar volume, the level of institutional ownership, and the log of the book-to-market ratio of
stock s at the end of quarter t (t-1 for volume), respectively. All variables are winsorized at the
1%/99% levels. Calculations are based on 13F filings from 12/31/1989-9/30/2012. T-statistics are
displayed in brackets. ** and * denote significance at the 5% and 10% levels, respectively.

Column: (1) (2) (3) (4)

Char.-adj Char.-adj Char.-adj Char.-adj
Dependent variable: ret (t+1) ret (t+1) ret (t+1) ret (t+1)

VCQ (t) 0.0010 0.0015
[3.77]** [5.21]**

#fundss,t 0.0004 0.0002
[2.53]** [0.68]

Average volume -0.0341 -0.0187
consumed (t) [-2.35]** [-1.07]

MEs,t -0.0009 -0.0007 -0.0031 -0.0031
[-0.75] [-0.61] [-2.58]** [-2.60]**

V −1
s,t−1 0.0004 0.0003 0.0024 0.0022

[0.38] [0.33] [2.60]** [2.37]**
IORs,t 0.0022 0.0015 0.0053 0.0046

[0.91] [0.59] [1.78]* [1.63]
BEMEs,t 0.0012 0.0012 0.0006 0.0007

[2.57]** [2.60]** [0.71] [0.86]

Fama-MacBeth Y Y Y Y
Only top quintile of - - Y Yvolume consumed?

Observations 148,996 148,996 30,278 30,278
R-squared 0.024 0.024 0.033 0.033
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