USING ELASTIC ANKLE EXOSKELETONS TO COUNTERACT AGE-RELATED STRUCTURE-FUNCTION **DEFICITS**

Richard Nuckols (rwnuckol@ncsu.edu), Taylor Dick, Jason Franz, Gregory Sawicki

INTRODUCTION

Aging is associated with a decline in gait performance.

We suspect that ankle pushoff in older adults is disrupted due to structural changes in the plantarflexor muscle-tenon unit [1].

- Decreased tendon stiffness
- 2. Decreased muscle strength

Muscle in older adults (A) on a less favorable point on muscle length-tension curve:

- . Increased normalized force generation
- Shorter muscle fascicle average length
- Increased muscle activation

In young adults (B), elastic exoskeleton assistance results in decreased biological moment[2], increased fascicle length[3], and decreased muscle activation[2].

Hypothesis: Adding parallel elastic assistance during walking in older adults would lead to a:

- 1. Decrease in the biological ankle moment
- 2. Increase in soleus muscle fascicle operating lengths
- 3. Decrease in plantarflexor muscle activation

REFERENCES

- Franz, J. R. Exerc Sport Sci Rev, 2016 44(4): 129-136
- Collins SH, Wiggin MB, Sawicki GS. Nature, 2015
- Sawicki G., et al. IEEE Trans Biomed Eng. 2015 Oct 15.

National Institutes of Health, National Institutes of Nursing Research Award # R01 NR017456 to GSS.

METHODS

Evaluated Elastic Exoskeleton Assistance on One Older Adult (68 years old)

Walked at 1.25 m/s for 5 minute trials with two stiffness conditions

- No Assistance (0 Nm/rad)
- Exo Assistance (150 Nm/rad)

Measured Physiologic Response to **Exoskeleton Assistance**

- Whole Body Metabolic Demand
- Joint Mechanics Inverse Dynamics
- Neuromuscular Activation EMG
- Muscle Dynamics B-mode ultrasound of soleus muscle

Proximal Distal

No Assistance Total

RESULTS

Elastic ankle exoskeleton assistance on an older adult resulted in

- Decrease in biological moment (Peak and Average) (A)
- Increase in muscle fascicle length (B)
- Decrease in muscle activation (C)

CONCLUSION

- Exoskeleton potentially offsets muscle level changes associated with aging
- Potential to prescribe device properties to the individuals morphology