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 THE OPTIMAL CONSUMPTION OF

 DEPLETABLE NATURAL RESOURCES *

 MILTON C. WEINSTEIN

 RICHARD J. ZECKHAUSER

 I. Introduction, 371.-Il. The simple model, 372.- III. Market equilib-

 rium in the simple model, 375.- IV. The extended model -optimal and

 equilibrium allocation with nonzero extraction costs, 377.-V. Equilibrium
 with uncertain future demand, 381.-VI. Monopoly behavior, 387.-VII.

 Summary and conclusion, 389.-Appendix: proof of the optimality of the N-

 period market equilibrium under uncertainty if suppliers are risk-neutral, 390.

 I. INTRODUCTION

 There is an energy crisis, we are told, facing this nation and the

 world. It is widely asserted that our economic system leads to an

 excessive consumption rate for coal, oil, and natural gas, and that

 something approaching a Malthusian catastrophe may be upon us

 within our lifetimes or those of our children. This argument is ex-

 tended elsewhere to relate to wide varieties of extractable minerals

 and depletable natural resources.1 An extreme version of this point

 of view was expressed by ardent conservationist Samuel H. Ordway

 two decades ago:

 ... Within foreseeable time increasing consumption of resources can
 produce scarcities serious enough to destroy our American Dream.

 * This research was supported in part by the Analytic Methods Seminar
 Kennedy School of Government, Harvard University. We are indebted to
 Robert Dorfman, Fred Peterson, Howard Raiffa, Thomas Schelling, and a ref-
 eree for helpful comments.

 1. They include, for example, helium and other inert gases. The govern-
 ment's helium conservation program is predicated as a policy response to such
 arguments.

 2. S. Ordway, Resources and the American Dream (New York: Ronald
 Press, 1953), p. 8. H. H. Barnett and C. Morse (Economics of Resource Scar-
 city; Washington, D.C.: Resources for the Future, 1959) provided this quota-
 tion and the rest of the historical background material that complements our
 analysis in this paper. They discuss the following authors: J. Ise ("The
 Theory of Value as Applied to Natural Resources," American Economic Re-
 view, XV (1925), 284-91), an early analyst who "finds that the time distribu-
 tion of the destructive utilization of resources is dangerously biased toward
 the present"; H. Hotelling ("The Economics of Exhaustible Resources,"
 Journal of Political Economy, XXXIX (April 1931, 137-75), who demon-
 strates the efficiency of the competitive market allocation under assumptions
 more restrictive than those considered here; and E. 0. Heady ("Efficiency
 in Public Soil Conservation Programs," Journal of Political Economy, LIX
 (Feb. 1951), 47-60), who presents an empirically based analysis of optimal
 programs for soil conservation.
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 372 QUARTERLY JOURNAL OF ECONOMICS

 In response to these fears the government is enacting an increas-
 ing number of policy measures that would slow down the rate of con-

 sumption of such natural resources. One example of such a measure

 is the provision in the National Environmental Policy Act that
 requires all Federal agencies to identify for all proposed projects

 ''any irreversible and irretrievable commitments of resources which
 would be involved." 3 The clear implication is that the market prices

 of such commodities do not reflect long-run social cost and that the

 government must price these commodities de novo in each instance
 in order to capture their value to the future.4

 Our purpose is to demonstrate that, under certain standard
 simplifying assumptions, the consumption stream of a depletable,
 nonreclaimable, nonreproducible resource that is produced by com-

 petitive market behavior does, in fact, coincide with the socially

 efficient consumption stream. We then extend the analysis to cases
 where future demand is uncertain and where the costs of extraction
 may vary. The latter extension enables us to include as well re-
 sources that are reclaimable or reproducible, but at prices sufficiently

 high to make conservation questions of interest. In addition, we

 examine the behavior of a monopolist seller and demonstrate that in

 general the direction and magnitude of the departure from optimal-
 ity cannot be predicted.

 The present analysis is directed primarily toward resources

 whose natural sources can be privately owned. Resources that are

 publicly owned are handled by the model if a central authority
 makes appropriate charges for removal of the resource.5

 II. THE SIMPLE MODEL

 We begin with the most restrictive assumptions and then relax
 a subset of them one at a time, showing how each produces devia-

 tions from the initial result. The simple model deals with a resource

 3. Public Law 91-190, Section 102 (2) C (V), 1969.
 4. Most environmentalists would assert that the government is doing far

 too little to slow rates of resource depletion. Some policies such as mineral
 depletion allowances may have the net effect of stepping up resource con-
 sumption.

 5. In a wide variety of policy relevant cases, insufficient or zero charges
 are levied for a publicly owned resource. A problem of congestion of the
 commons is the result. See G. Hardin, "Tragedy of the Commons," Science,
 CLXII (1965), 1243-48. In the natural resource context, this leads to over-
 consumption. See M. Spence ("A Policy Analysis of International Whaling,"
 in Assorted Fall Term Course Materials: Public Policy 210, Kennedy School
 of Government, Sept, 1972), for a discussion of how this problem relates to the
 multination whaling industry.
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 OPTIMAL CONSUMPTION OF RESOURCES 373

 that is depletable in the strict sense. There exists a fixed quantity

 Q. Once it is used, it is gone forever. It is nonreproducible.6 Its

 costs of extraction and storage for a supplier are zero.

 Consumer demand is assumed to be separable by time period.

 The demand functions are represented as

 (1) pt = dt (qt),
 where t is an index over time periods, qt is the total quantity con-
 sumed (not the amount purchased) in period t, and Pt is the price in

 that period. Consumers have no storage capability. This implies
 that the between-period cross elasticities of demand are zero.

 Finally, there is a perfect capital market with a stable, risk-free in-
 terest rate r, which reflects the social rate of discount.7

 The yardstick by which we shall measure the optimality of

 a consumption stream is the discounted sum of consumer-plus-

 producer surplus. (To keep units comparable, we must assume that

 the marginal utility of income is essentially constant.) Represent

 this sum 8 by
 00 qt

 (2) S= Y. (l + r) itf dt (et) det.
 t=o 0

 The optimal consumption stream is therefore given by the sequence

 {q*t}, which maximizes S, subject to the condition,
 00

 (3) E qt?<Q.
 t=O

 Adjoining (3) to (2) by a multiplier x and differentiating with re-

 spect to each qt, we get the optimality conditions,

 (4) dt(q*t) = ((+r) I (t=O, 1, 2, . . . ),
 which is equivalent to

 (5) P*t= (1 + r)tp*o (t=O 1, 2, . . . ),
 since X=do(q*o) from substitution of t=O into (4) and since p*t-

 6. This model excludes diamonds because their use does not depreciate
 or consume them. Heavy metals are excluded because they are reclaimable;
 timber is excluded because it is reproducible. Of course, if one returns to the
 atomic level, all resources are reproducible at a price. If the price of repro-
 duction is high enough, the resource fits this simple model. Our initial examples
 of oil, coal, and natural gas are splendid in this regard.

 7. That the market and social rates of discount coincide implies a cor-
 respondence between individual and societal valuations of future generations.
 Society-at-large must have the same trade-off rate as producers and investors
 between their income and the income of their heirs.

 8. The consumer surplus integral will be finite as long as the real income
 of all individuals is bounded. Even if coal or oil are "necessities," there is a
 limit to how much people will pay for them. If there are expensive, but feas-
 ible, alternative technologies, then the existence of this upper bound becomes
 more apparent.
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 374 QUARTERLY JOURNAL OF ECONOMICS

 dt(q*t) by definition. Thus, (5) specifies that the optimal prices
 must grow geometrically at the rate r.9 The initial price is deter-

 mined by the constraint (3), which, when binding, is written as
 00

 (6) :, dt-1(^pt)=Q
 t=O

 Note that if the demand curves intersect the vertical axis, then it

 is possible that q*t vanishes after p*t rises sufficiently high. In this
 case it may turn out that the optimal consumption stream is a

 finite stream, terminating at some period T. This case is consistent

 with the results of (5) and (6), where dt- I(pt) vanishes for t> T.'
 Equation (6) suggests a graphical interpretation of this result

 that will be useful in describing the market equilibrium conditions.
 Interpret the left-hand side of (6) as a long-run inverse demand
 function based on the price at t= 0,

 (7) D-1(po0) = :4 dt-1{po(1 +r)%}
 t=O

 where pt= po (1 +r) t has been substituted from (5). Figure I displays
 the condition that long-run demand must equal long-run supply (the
 latter being completely inelastic at Q). The optimal initial price

 p*0 is thus determined as the price at which the supply is just ex-
 hausted.2

 9. The analogy between this result and the behavior of von Neumann's
 model of balanced growth is interesting. In the classical von Neumann model
 equilibrium prices remain constant over time, while here the price of the
 fixed-supply resource increases geometrically. The interpretation is that a non-
 replenishable resource cannot be part of a "golden age" equilibrium in the von
 Neumann sense. As the stock of the depletable resource diminishes, it becomes
 eliminated from the system; the geometric price increase is but a transient
 phenomenon associated with a transient good. If there are no substitutes for
 the depletable good, then continued production is impossible, and the only
 long-run equilibrium will be one of extinction.

 1. This situation would occur, for example, if there were substitutes for
 the good. Suppose, for example, that there exists a perfect substitute that can
 be produced at a constant marginal cost 7r. Then the demand curves for the
 depletable good must intersect the vertical axis at Pt r for all t. The optimal
 consumption stream in this case would involve utilizing the free but depletable
 good until it is exhausted (which occurs when its price reaches the price of its
 substitute 7r) and then switching to the substitute. If, however, the cost of ex-
 tracting the depletable resource were nonzero, then it may be optimal to switch
 partially or totally to the substitute prior to exhaustion of the fixed supply.
 We see this latter behavior, for example, in the switch from coal to nuclear
 power.

 2. Notice that, in principle, the long-run demand curve in Figure I could
 intersect the horizontal axis before Q, thus implying that it is optimal not to
 use up all of the resource. This can happen, of course, only if the total demand
 for the resource at zero price does not add up to Q- an unlikely possibility
 that we rule out.
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 PO

 P ~ ~ ~ ~ ~ ~~ - (POus)=Ed-'( po( I+r~t)

 0 q

 FIGURE I

 Long-Run Optimality Condition

 III. MARKET EQUILIBRIUM IN THE SIMPLE MODEL

 The main result is that, in equilibrium, a competitive market

 will result in the optimal consumption stream described by (5) and
 (6). Equivalently, the market price will rise by exactly the factor
 (l+r) each year, and in the limit the supply will be just exhausted.3

 Suppose for now that the suppliers have perfect foresight of the
 consumer demand functions, and further assume that consumers can
 store the resource at zero cost (so that they could purchase a life-
 time supply of the resource now if they chose to do so). These two
 assumptions will be relaxed presently. The effect of these assump-
 tions is to allow the market to be resolved immediately. On the
 supply side, consider individual inverse supply functions Sti=

 fti(Qi, Po, Pi, . . . ) for the ith supplier in the time period t, where

 Qi= Sti. Since to the supplier a dollar today is always worth
 t=O

 (l+r) dollars next period, this function displays infinite cross elas-
 ticities along the rays defined by pt=po(1+r)t. In other words,
 nothing will be marketed in periods when

 (8) pt(1 +r) -t < max pt (1 +r) -t

 3. It should be noted that the optimality and equilibrium results hold
 even if there are several depletable resources that serve related purposes in the
 economy (e.g., oil and coal). In particular, it is clear that for any time stream
 of prices for good A the optimal - and equilibrium - prices for good B will
 rise at the period rate r. The other good is treated essentially like any other
 good in the economy. (The strong interdependence between the two will be re-
 flected in starting price levels.) This implies that in equilibrium the prices for
 each of the two goods will rise at this constant exponential rate.
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 On the demand side, since it costs nothing to buy in advance, the

 individual demand functions Dt'=ht (pc, p, . . . ) will display a
 similar property. Nothing will be bought in any period t for which

 there exists an earlier period t'<t such that pt>pt, (I+1r)t-t'.4
 At equilibrium, prices must rise at exactly the rate r. The long-

 run demand function (7) becomes operational, due to the zero

 storage costs to the consumers. The equilibrium is determined as in
 Figure I. The resulting consumption stream is efficient since it

 satisfies the optimality conditions (5) and (6).

 It is more difficult, but nevertheless possible, to see that the same

 equilibrium holds if either one of the assumptions about perfect in-

 formation or zero storage cost is not satisfied. If suppliers have

 perfect foresight of demand, but consumers must use what they

 purchase in the period of purchase (the most stringent case where

 their storage costs are effectively infinite), then the individual

 supply functions remain the same, while the demand functions be-

 come the consumption demand functions (1). In this case, the

 behavior of the suppliers will be sufficient to insure that the price
 rises at the rate r. Given their perfect foresight of demand, if the

 quantity supplied in any period were such that the prices could not

 stay in the fixed geometric growth sequence, suppliers would sell

 nothing in periods when (8) holds. Such a situation cannot be in

 equilibrium (unless demand at zero price vanishes in those periods).

 Thus, the quantities supplied must be such that price rises at the
 rate r. (This result will be demonstrated more rigorously as a special

 case of the situation where future demand is uncertain.)

 As for the case where producers do not have perfect informa-

 tion, but where consumers can store the commodity at zero cost,
 we would expect the market to be resolved immediately through the

 long-run demand function shown in Figure I. Given the free storage,

 consumers become equivalent to producers in every way, and prices

 must rise at the rate r in equilibrium. In the case where producers

 do not have perfect information, and where consumers face effec-

 tively infinite storage costs, the functioning of a futures market will
 insure the same equilibrium. However, if future demand is genuinely

 unknown (even to consumers), then we are in the case of uncertain
 demand to be treated in Section V.

 4. A property of these demand functions is as follows. If prices rise at a
 rate greater than r, consumers will purchase everything in period zero. If
 prices rise at a rate smaller than r, however, the actual demand function will
 coincide with the consumption demand functions (1).
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 IV. THE EXTENDED MODEL - OPTIMAL AND EQUILIBRIUM
 ALLOCATION WITH NONZERO EXTRACTION COSTS

 The first major assumption to be relaxed is that the cost of ex-
 tracting the resource is zero or negligible.5 We consider first the case

 where the marginal cost of extraction is constant and then turn to the

 more realistic case where the marginal cost of extraction increases

 as the supply diminishes. It will be shown in both cases that the

 socially optimal consumption stream still coincides with the market
 equilibrium.

 A. Constant Marginal Cost

 Let the marginal cost of extraction be constant at m. Then the

 optimal time stream {q*t} is the one that maximizes
 00 qt

 (9) S= Y (1+r) -t f (dt(t) -m)det,
 t=O 0

 subject to the supply constraint (3). Adjoining (3) to (9) by a mul-
 tiplier A, we get the result that

 dt (q*t) - = (1 +r)tA I (t=0 1, 2, . . . ),

 which is equivalent to

 (10) P*t-m= (1+r)I(p*o-m) (t=0, 1, 2, . . .
 Thus, (10), in a manner analogous to (5), specifies that price minus

 marginal cost should grow at the rate r. Note that this implies that
 price itself grows more slowly, but that the rate of price rise ap-
 proaches r in the limit.

 It is clear that this is exactly what happens in equilibrium.

 Suppliers are indifferent between a dollar of profit now and 1 +r
 dollars in the next period, so that the amount supplied will be non-
 zero only if price minus marginal cost grows at the rate r. On the
 demand side it is irrelevant whether the commodity can be stored.
 Since the price rises more slowly than r, consumers will purchase the
 amount they wish to consume in each period. The long-run inverse
 demand curve is then given by

 (11) D-I(po)=> dt-'(pt)
 t 0

 5. It is worth noting here that there is an analytical analogy between this
 extended model and another model that would take into account the possibility
 of recycling, where the cost of recycling plays the role of the cost of extraction.
 The relationship between market outcomes and optimal allocations when there
 is a possibility for recycling is discussed in M. Weinstein and R. Zeckhauser,
 "Use Patterns for Depletable and Recycleable Resources," Review of Eco-
 nomic Studies, Symposium, XLII (1974), 67-88.
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 where Pt satisfies (pt-rn) = (po-in) (1+r)'. The equilibrium is
 shown in Figure II. The equilibrium initial price p*o is determined

 Pot-
 P~O

 q D' (po)

 Q q

 FIGURE II

 Long-Run Optimality Condition with Constant Marginal Extraction Cost

 by (6) with Pt appropriately redefined, so that pt-rn, not Pt, grows
 at the rate r. Note that it is possible that the long-run demand curve
 may cut the marginal cost curve at some q' < Q as in Figure III. In
 this case the initial price is set equal to marginal cost, and through
 (10) this implies that the price always remains at marginal cost.
 What is happening here is that the supply constraint is not binding;
 the shadow price A = po-n is zero. Intuitively, this reflects a situation
 where the cost of extraction runs ahead of demand so that it does
 not pay to use the total supply. In reality such a situation may
 exist for such resources as sand and gravel, and possibly coal, but
 it is unlikely for oil and natural gas. Indeed, for resources like
 sand, the cost of extraction and delivery may be so great that the
 effective value of the resource in its natural state may be essentially
 zero.6

 6. Consider, for example, the value of an acre of sand under the ocean or
 of an acre of unexplored wilderness during the Gold Rush.
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 Po~~ X
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 q Q q

 FIGURE III

 Incomplete Utilization of the Resource with Constant Marginal Cost

 B. Increasing Marginal Cost

 Now suppose that the total cost of extracting the first q units

 is given by c (q), regardless of when the extraction takes place.7 The

 marginal cost of removing a unit is c'(q) for O q? Q. Each pro-

 ducer has his own marginal cost curve C'k (qk) that depends only on
 the amount qk that he has extracted to date. The aggregate mar-

 ginal cost curve is derived as the horizontal sum of these individual

 curves.

 The socially optimal sequence {qt} is the one that maximizes

 00 qt t t-1
 S= E (1+r)-t[ S dt(et)det-c( E q)+c( > qi)],
 t=o 0 i=O i=0

 subject to the supply constraint (3). Adjoining the constraint and

 differentiating, we get the optimality conditions,

 t 00 i

 (12) dt(q*t)-C'( :> q5>i)- N. (1+r)-j[c'( N. q*i+t)
 i=0 j=1 i=0
 j-i

 -c'( :, q*i+t)]=(l+r)tk,
 i=0

 where, by substitution of t=O,

 7. Note that under these assumptions, it is always optimal for suppliers
 with perfect information to postpone extraction until the period of sale.
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 380 QUARTERLY JOURNAL OF ECONOMICS

 (12a) xzdo(q*o) -c'(q*o)- + (1r) -I[c'( > q*j)
 i=o

 -c'( q*j)]-
 i=o

 The interpretation of the left-hand side of (12) is as follows. The
 first term dt(q*t) =p*t is the price. The remaining terms represent
 the discounted total of increased costs entailed by supplying an addi-
 tional unit in period t. The second term gives the within-period
 marginal cost, as it is conventionally understood, of supplying this
 unit. But given that the cost-of-extraction curve is rising, supply-
 ing this unit will increase all future extraction costs as well. Thus,
 the third term gives the discounted sum of these increments to cost in
 all future periods. The two terms together give the true, for all
 time, marginal cost of supplying an additional unit in this period.8
 Thus, (12) and (12a) express essentially the same condition we saw
 in (10): price minus marginal cost grows at the rate r.

 The market equilibrium yields the same allocation as the social
 optimum. Suppliers will set price minus "marginal cost" equal to
 the shadow price A, and the market will clear only when the initial
 price p*o is set so that

 I00 D-1 (p*O)- vY. dt-1 (p*t) = Q.
 t=O

 Again it is possible that behavior analogous to that shown in Figure
 III may occur, in which case k=O, and price equals marginal cost
 (in the extended sense defined by (12)) both in equilibrium and at
 the optimum.

 The efficiency of the market allocation can be seen as follows.
 Recall that the aggregate marginal cost function c'(q) is the hori-
 zontal sum of the individual marginal cost functions C'k(qk). Now
 the individual supplier faced with a sequence of price {pt} and a
 fixed supply Qk will clearly allocate his resources to satisfy
 (13)

 t 00j -

 Pt-C k( Y qjk) . (1?r)-i[c'k( Y qk Y).',k( q
 i=o j=1 i=o i=o

 = (1+r)tk.

 8. Most discussions of marginal cost need not be concerned with incre-
 ments to future costs because they assume that marginal cost curves in in-
 dividual periods are independent of one another.

 Parking fine structures in many cities reflect the interdependent cost
 structure of the example in the text, at least over a one-year period. The first
 violation costs zero dollars, the next is five, then ten, and so on. A friend bor-
 rows your car at the beginning of the year and secures you your first ticket.
 Clearly, although his violation carries no fine, he is imposing on you an in-
 creased cost for all future violations (until your slate is wiped clean). If his
 compensation to you is to "make you whole," it must equal the discounted
 total of these increments to fines.
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 Note that this equation is identical to (12) with c' replaced by C'k,

 and the q*j replaced by qik. But since c' is merely the horizontal sum
 of the C'k,

 t t t

 Cf ( 4 q) = C" ( Y, Y qik) = C k (Y. qik),
 i=O i==O k i=O

 where qi= - qik by definition. Thus, the market equilibrium con-
 k

 dition (13) reduces to the optimizing conditions (12), and the allo-
 cation is seen to be efficient.9

 V. EQUILIBRIUM WITH UNCERTAIN FUTURE DEMAND

 Let us return to the situation where extraction costs are zero,

 but now suppose that the demand functions in future periods are

 unknown and are revealed at the start of each period. We now ex-

 amine the properties of the equilibrium consumption stream (or the

 equilibrium probability distribution on consumption streams) when
 future demand is uncertain. We begin with a two-period model,

 which illustrates some of the characteristics of the general result,

 and then turn to a three-period model, which generalizes easily to

 N periods. The generalization to infinite horizon is not given here.

 A. Two-Period Model

 Let Qi be the total quantity owned by the ith producer. Let Qt

 be the total quantity supplied in period t, and let qit be the quantity
 supplied in period t by the jth producer. Let the demand functions in

 the two periods be given by

 po = do (Qo)
 and

 pi=di(Qi, z1),
 where z1, is a random variable of arbitrary dimension. Suppose
 that the ith producer has a von Neumann-Morgenstern utility func-

 9. In an interesting but anomalous second model of production, each sup-
 plier owns his own stock of resource, but they all collectively face a joint cost
 function c(q), which measures the cost of extracting the first q units, regardless
 of which supplier extracts them. Under these circumstances, we might expect
 that suppliers would prematurely extract the resource, rushing to pass the
 "externality" of higher future extraction costs on to others. In fact, this does
 not happen. The market equilibrium satisfies (12), even though (13) no longer
 applies. The intuitive reason for this surprising result is that the "externality"
 of passing higher costs on to other suppliers is not a physical or technological
 externality for the industry as a whole; the real cost of extracting the first q
 units remains c(q) no matter how extraction occurs. Since there is no real
 externality, it is not surprising after all to find that the market allocates the
 resource efficiently.
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 tion ui on discounted assets. Then the ith producer will select qjo to
 maximize Euj(poqiO+p(l+r) -lqjl) subject to qio+q1= Qi. Since
 Pi depends only on z1 and on Q,= Q - Qo, this maximization defines
 a function fi such that

 (14) qio = fi (po,Qo), all i.
 Market equilibrium is determined by (14) together with the condi-
 tions,

 (15) Qo= qo

 and

 (16) po= do (Qo).

 If there are I producers, then (14)-(16) form I+2 equations in the

 I+2 unknowns {qio}, Qo, and po.
 Consider now some special cases. If Pi is known (i.e., if z1 has

 zero variance), then the supplier's maximization yields a function

 fi such that

 F Qi if pi<po(1+r)
 qio= 0 if pl>po(1+r)

 l indeterminate if p1=po(1+r).
 In order for demand in both periods to be met, (i.e., in order for a
 nonzero quantity to be supplied in both periods), it must be the case

 that pl=po(1+r). This was the result presented for the certainty
 case in Section III, and this is the efficient allocation.

 Suppose now that z1 is unknown but has probability distribu-
 tion that all producers agree upon. Suppose further that producers
 are risk-neutral. Then producers will choose qio to maximize

 J=E(poqio+pl(1+r) -qil)
 =poqio+ (Ep1) (1+r) -lq1.

 Suppliers will therefore select

 F Qi if Epl<po(1+r)
 qio= q 0 if Ep1>po(1+r)

 F indeterminate if Epl =po (1 +r),

 so that at equilibrium, we must have

 (17) Ep1 = po (1 +r).

 In other words, if suppliers are risk-neutral, the initial (t=O) allo-
 cation is such that the expected price rises at the rate r.

 It is easy to show that if society wishes to maximize expected
 discounted surplus,

 (18) E [S] =E0 f do0(o)deo+ f di(el, zi) de,]
 0 0
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 then the optimal allocation is such that (17) holds, where

 pi = di (qjj 01)
 and

 po= do (qo) -
 Thus, if suppliers are risk-neutral, the market equilibrium is optimal

 in terms of E [SI]. This is demonstrated more generally for the multi-
 period case in the Appendix.

 Suppose finally that suppliers are risk-averse. In this case the

 market equilibrium will result in an expected price rise by a factor
 larger than (1-+r). Thus, risk-averse suppliers will underconserve

 the resource, relative to the numeraire E[S].1 To see this, consider

 the supplier who selects qjo to maximize

 JzzEui(pOq+pi 1(I+r) -'qij),
 subj ect to qio + qii = Qi. Suppose that

 E (p1)= p and Var (pi) = pi,.

 Now if p =po (1 +r) exactly, then the supplier will set qjo Qi and
 qi= 0 because he can never achieve a higher expected value than
 p0Qi but can minimize his variance by selling all of his supply at the

 certain price po. This situation cannot be in equilibrium, since
 nothing would be left for period 1. In equilibrium we must have

 (19) pigpo(1+r)
 in order for suppliers to save any of their stock for the future.

 As an illustration, suppose a supplier has a constant risk aver-
 sion utility function for discounted revenue r given by

 ud (r) =-e-sir

 Suppose further that Pi is distributed normally with mean p? and
 variance piv. Then, if the supplier allocates qjo to period 0 and qj,
 to period 1, his certainty equivalent 2 is given by

 CE =ci (cipoqj + pi(I + r) - 1(Qi - qn) - cqpl (Qi - qjo) /2 (I +r) 2).

 1. Strictly speaking, it is not appropriate to put a cardinal utility func-
 tion on unknown future streams of increments to consumption (i.e., incomes),
 as distinguished from streams of pure consumption. This is because decisions
 concerning interperiod transfers (i.e., borrowing and lending) must occur
 before resolution of uncertainty in the future. The proper evaluation of un-
 certain income streams requires the solution of a complex dynamic program-
 ming problem in which future decisions are considered. See M. Spence and R.
 Zeckhauser, "The Effect of the Timing of Consumption Decisions and the Res-
 olution of Lotteries on the Choice of Lotteries," Econometrica, XL (March
 1972), 401-03. Nevertheless, it is a common and convenient practice to use
 utility of discounted income as a surrogate for utility for consumption.

 2. Using moment-generating functions, it is straightforward to show that
 a gamble with mean A and variance 02 has a certainty equivalent cAu-c2o,/2
 where c is the parameter of the exponential utility function (i.e., the risk aver-
 sion).
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 This is maximized when 3

 Qi-qio = (p1A-po (l+r) ) (1 +r) /cpl".
 Thus, if p1g =po(1+r), then q1 = Qi, and all is sold in period 0. In
 equilibrium, the (pit, pil) pair must be such that the market just

 clears in period 0. This can happen only if pig >po(1+r). Note that,
 unlike the case where suppliers are risk-neutral, there is no clear-
 cut value of p'g below which all is sold in the first period and above
 which all is sold in the second period. Here, there is a range of values
 of Pil (for given p1") for which nonzero quantities are supplied in
 both periods. There is generally, however, a unique ( Pip) com-
 bination at which the two-period market equilibrates.

 In summary, the results of the two-period market under un-
 certainty are the following. If suppliers are risk-neutral, then ex-
 pected price rises by a factor of (1+r), which is optimal in terms of
 expected discounted surplus. If suppliers are risk-averse, then ex-
 pected price rises by a factor greater than (1+r), which results in
 underconservation of the resource relative to the social optimum in
 terms of expected discounted surplus.

 B. Multiperiod Model

 In extending the results obtained in the two-period case to
 three periods and more, we encounter a qualitative difference in
 the decision making that underlies the market equilibrium. Where
 demand is uncertain at least two periods into the future, fully ra-
 tional suppliers will be forced to turn to closed-loop, or adaptive,
 dynamic programming, rather than simple open-loop optimization
 where allocations in all periods would be determined at the start.4

 o -

 P/4o q\ /0 P. q11' Z 2 P2 qj2

 FIGURE IV

 Three-Period Decision Tree

 3. We ignore boundary solutions, since the market equilibrium must
 generally involve nonzero sales in both periods.

 4. In the two-period case, of course, the two methods are identical be-
 cause there is only one free decision variable. See R. E. Bellman and S. C.
 Dreyfus, Applied Dynamic Programming (Princeton, N.J.: Princeton Uni-
 versity Press, 1962).
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 Each supplier faces a decision tree as in Figure IV. We assume that
 the probability distributions for the zi (i = 1, 2) are independent,

 The sequence of events is as follows. Given full information
 about the market in period 0, the ith supplier chooses to sell qjo at
 the market price po. After all suppliers have chosen their {qio}
 values, the market will be in equilibrium only if Qo = Yqio (indicated

 by the dashed line in Figure IV). In the next period the uncertainty
 about demand in period 1 (z1) is resolved. Then the process repeats
 itself, and equilibrium is reached in period 1. Finally, the uncertainty
 about period 2 (Z2) is resolved, and the remaining events are pre-
 determined since the rest of the supply (Q-Qo-Q1) must be sold
 at the revealed market price P2.

 The above producer-optimization cum equilibrium system re-
 sults in a probability distribution over the space of possible alloca-
 tions of the supply Q. Fortunately, it is possible to say a great deal
 about the resulting distribution. These results are now demonstrated
 in the three-period case, only because the notation gets out of hand
 as the number of periods grows. The same results hold in the N-
 period case.

 Consider the situation at the start of period 1 (i.e., the second
 period) after z1 is revealed. Given z1 (and Qo), the resulting equi-
 librium consisting of {qj1}, Q1, and Pi is known (since it is no more
 than the resultant of a two-period process starting with supply
 Q _ Q0 = (Qi_ qjo) ). Thus, the functions,

 i

 (20) Pi (z1,Qo), Q, (z1, Qo), and {qi1 (z1, qjo)},
 are known at the start of period 0. Furthermore, the probability
 distribution for

 (21) P2=d2 (Z2, Q2) = d2(Z2, Q-Qo-Q1[Z1, Q0])
 is also known at the outset by (20). The individual supplier will
 choose his initial qio to maximize

 (22) J=Ez1,z27i [poqio+ (1 +r) - 'pi [z1, Qo] qji [z1, qjo]
 + (1 +r ) -9d2 [Z2, Q -Qo- Ql[zl, Qo] ](Qi-qjo-qjj[zli7qjo])

 where the dependence of all prices and quantities on z1 and z2 is
 shown explicitly. The expression (22) is a function of qjo, Qo, and
 po, so that the optimal qjo is a function of Qo and po:

 qjo = f-(Qo., Po)-.
 The equilibrium is completed by the conditions,

 Qo Yqio
 and

 po do (Qo).
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 Consider the properties of this equilibrium in some important

 special cases. In the case where 01 and 62 are known, the maximand
 (22) reduces to

 J =poqio+ (1 +r) - 'di[Qo] qii
 + (1+r) -2 d2[Q-Qo-Q1] (Qi-qi0-qii).

 We know in advance, however, that P2=pl(l+r), so this reduces
 further to

 J =poqio + (I +r) - 'di [Qo I (Qi -qio).

 As in the two-period case, the supplier will choose

 r Qi if p1<po(1+r)
 qio= 0 if p1>po(1+r)

 L indeterminate if pl =po(1+r),
 and market equilibrium holds, in general, only if p=pop(1+r).
 Therefore, as claimed in Section III, the market equilibrium yields

 Pi =po (1 -+r)

 in the certainty case.

 If the zi are uncertain, but suppliers are risk-neutral, then it is
 an easy matter to deduce the result that the expected price rises
 at the rate r; that is,

 (23) Ezlz2p2 = (1 +-r) Ezlpl =(1 r) 2po.

 To see this, note that the two-period equilibrium at the start of

 period 1 must satisfy the left-hand equality in (23). Therefore, by
 "folding back" one more step using (22), it is clear that either all or

 none will be sold in period 0 unless the right-hand equality in (23)
 also holds. This result extends easily to N periods, the general re-
 sult being that

 (24) Epi = (1 + r) ipo.

 It turns out that this market equilibrium is socially optimal in

 terms of expected discounted surplus,

 Q

 (25) E [S] = E[ fC)do (eo) do+ :4 (1 +r) -t f dt (et, zt) det],
 0 t=1 0

 where society solves its own closed-loop (adaptive) dynamic pro-
 gramming problem. This result is given in the Appendix.

 Finally, it is worth noting that, as in the two-period case, if
 suppliers are risk-averse, the expected price will rise at a (not

 necessarily constant) rate higher than r, so that, judged by the

 numeraire E [S] in (25), the resource is being used up too quickly.
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 VI. MONOPOLY BEHAVIOR

 When Progressivism and Conservationism were flourishing side
 by side in the early part of this century, it was generally believed
 that monopolies were the enemies of conservation. Monopolists,
 the common wisdom went, would exploit our natural resources for
 their own profits at a rate too fast for the good of society.

 A closer examination of the economics of monopoly, however,
 leads one to suspect that the tendency of a monopolist to restrict
 supply below optimal levels would mean that the resource, if monop-
 olized, would actually be overconserved.5 If the truth be known,
 depending upon circumstances a monopolist may underconserve,
 overconserve, or optimally conserve a resource. For expected sets
 of circumstances, however, the tendency is toward overconserva-
 tion.

 The simple model illustrates the possibilities. Extraction costs
 are zero; there is perfect foresight of demand. The monopolist must
 choose the sequence {Qt} to maximize revenue,

 00

 (26) Rz= Y (1-+r)-tdt(Qt)Qt,
 t=O

 subj ect to the constraint,

 (27) Q? Y Qt.
 t=O

 Adjoining (27) to (26) by a multiplier A and differentiating with
 respect to the {Qt}, we see that the monopolist's constrained opti-
 mum occurs when

 (28) dt (Qt) +d't (Qt) Qt = (1 +r) tA.
 Recognizing the left-hand side of (28) as marginal revenue in
 period t (MRt) and solving for the initial condition at t=0, we get
 the condition,

 (29) MRt= (1-+r)tMRo,

 so that marginal revenue, not price, grows at the rate r. If the con-
 straint (27) is not binding (an unlikely occurrence in reality), then
 A = O. and the monopolist will sell in each period up to the point where
 marginal revenue is zero.6

 5. T. Schelling ("Monopolistic Restriction and the Production of Bads,"
 mimeograph, Kennedy School of Government, Harvard University, 1972)
 makes a similar observation in suggesting that a monopolistic industry may
 produce fewer public bads (i.e., pollution) than it would if it were competitively
 organized.

 6. If this occurred, then at least in the long run the monopolist would
 overconserve, since it is never socially optimal to fail to meet (27) with
 equality.
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 Growth of marginal revenue at rate r implies nothing about
 social optimality. The key factor is the growth rate of price. Con-
 sider cases where the monopolist exhausts his stock (X> 0). If price
 grows less swiftly than r, he is overconserving. If it grows at the
 rate r, his allocation is socially optimal. If price rises faster than r,
 he is underconserving. In cases where he does not exhaust his
 stock (xk0), the result is ambiguous if price rises faster than r,
 otherwise he is definitely overconserving.

 Suppose first that the demand curve in period t is given by

 pt= at- btQt

 so that the marginal revenue is given by

 mt = at - 2btQt.

 Hence,

 pt= (at+mt)/2,

 independent of the slope bt. Suppose that mt is growing at the rate
 r per period, according to the monopolist's optimum. Then

 pt 1 r)- t~ -at (I+r) +mt (1+r) at+,+mt(l+r)
 pt(1-I-r)-Pt+i-- 2 2

 at (1 +r) -at+i

 2

 Therefore, if the intercept at is growing at a rate less than r,
 then price also grows at a rate less than r, and the resource is over-
 conserved. Otherwise, both society and the monopolist would seek to
 preserve the resource from consumption indefinitely. In practice, it
 seems unlikely that the intercept (i.e., the price above which none
 of the good is demanded) will grow as rapidly as the interest rate.
 It is more likely that demand would shift horizontally by a factor
 representing population growth, this having no effect on the inter-
 cept. Therefore, in the linear case we are inclined to conclude that
 a monopolist will overconserve the resource.

 Now consider the case of constant elasticity demand:

 pt =Atqt-at (0 < at < 1) .

 In this case, marginal revenue is proportional to price:

 mt= (l-at)pt.

 Now if the inverse elasticity at is constant over time, then a geo-
 metric increase in mt at the rate r implies a geometric increase in
 price at the same rate. Therefore, with constant and stable elasticity
 of demand, the monopolist's allocation coincides with the market
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 equilibrium and is socially optimal." If the inverse elasticities at
 increase (decrease) (remain constant) with time, then price in-

 creases at a rate greater than (less than) (equal to) r if marginal
 revenue increases at the rate r. In this case the monopolist under-

 conserves (overconserves) (conserves optimally).

 Only empirical study can determine what set of assumptions
 about demand for a monopolized resource is satisfied in a particular

 instance. Once that is known, as these examples illustrate, it can be
 determined whether a monopolist is guilty of overprotecting or
 underprotecting the resource under his control. It is just possible
 that he is behaving optimally in this respect.

 VII. SUMMARY AND CONCLUSION

 It has been shown that a perfectly competitive market for a
 depletable natural resource will, under certain conditions, result in

 efficient intertemporal allocation. This allocation pattern is char-

 acterized by an exponential price increase at the marginal rate of

 time preference in the society. Where there is a positive extraction
 cost, exponential growth will be in the difference between price and

 the marginal extraction cost, appropriately measured.

 The conditions specified include that the participants have ac-

 cess to perfect capital markets, that the resource can be privately

 owned, and that there are no unpriced externalities. If these condi-

 tions are not satisfied, there may be an argument for government
 participation, for example, to encourage mineral production that

 provides an externality for national security, to license a fishing
 area that would otherwise be overharvested, or to impose a variety

 of conservation measures because an excess in suppliers' effective
 interest rates over the marginal rate of time preference leads them

 to deplete the resource too rapidly.

 Uncertainty about future demand has no adverse effect on op-
 timality if suppliers are risk-neutral. If suppliers are risk-averse,
 but society is risk-neutral, then the resource will tend to be under-
 conserved. The presence of monopoly may produce either under-
 or overconservation, though overconservation would be the expected
 result.

 In general, despite the presence of factors that prevent us from

 7. Provided that the supply constraint (27) is binding. We would expect
 the constraint to be binding in general, since if it were not then the monopolist
 would sell up to the point where marginal revenue is zero in each period and
 never use up his supply. In the constant elasticity case this is impossible since
 marginal revenue never reaches zero.
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 fully generalizing our efficiency findings, we feel that it is appropri-
 ate to conclude on a note of cautious optimism and to point out

 that some recent doomsday predictions about our inevitable bare
 cupboards seem overdrawn.8 It is powerful solace to know that

 underlying market forces will work to produce appropriate rates of

 resource consumption. Fisher and Potter conclude that

 There will, indeed, be supply problems for particular resources at par-
 ticular times and places; but technological and economic progress, building
 upon an ample and diversified resource and industrial base, gives assurance
 that supply problems can be met.9

 Finally, we can think of no more appropriate oracle than John von

 Neumann himself, who, confronted with the dawn of the nuclear age,
 wrote that

 It is likely that we shall gradually develop procedures more naturally
 and effectively adjusted to the new sources of energy, abandoning the con-
 ventional kinks and detours inherited from chemical-fuel processes. Conse-

 quently, a few decades hence energy may be free -just like the unmetered
 air -with coal and oil used mainly as raw materials for organic chemical
 synthesis, to which, as experience has shown, their properties are best suited.'

 APPENDIX: PROOF OF THE OPTIMALITY OF THE N-PERIOD MARKET

 EQUILIBRIUM UNDER UNCERTAINTY IF SUPPLIERS ARE
 RISK-NEUTRAL

 It was shown in Section VI that the market equilibrium in the
 case where future demand is uncertain but where suppliers are risk-
 neutral is characterized by the property that the expected price rises
 at the interest rate r:

 (i) po = ( 1 +r) - 'Ept.
 It was claimed then, and is proven here, that such an allocation
 strategy is optimal from the point of view of maximizing expected
 discounted surplus:

 QO

 (ii) E[S] =E[ f do (eo) deo
 0

 00 Qt
 + > (1+r)-' f dt(5tzt)d5t],
 t=1 0

 8. A good gloomy example is provided by D. Meadows et al., The Limits
 of Growth: A Report of the Club of Rome's Project on the Predicament of
 Mankind (New York: Universe, 1972).

 9. J. L. Fisher and N. Potter, "The Effects of Population Growth on
 Resource Adequacy and Quality," in Rapid Population Growth: Consequences
 and Policy Implications, Vol. 2 (Baltimore: National Academy of Sciences,
 1971), p. 224.

 1. J. von Neumann, "Can We Survive Technology?" in The Fabulous
 Future, (New York: E. P. Dutton and Co., 1955), p. 37.
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 subject, of course, to the constraint that
 N

 (ii) Q= Y Qt-

 The proof given here is by induction. The result is first proved
 in the case N = 1 and then generalized to N = K by assuming the
 result to be true for N=K- 1. It will be useful for notational pur-
 poses to suppress the expectation operator and to express the inte-
 gration over the parameter spaces Ot explicitly.

 The two-period proof is straightforward, since there is only
 one decision variable QO and no possibility for adaptive control. We
 want to choose Qo to maximize

 Qo Q-Qo
 E [S] =f Odo (to) deo+ (1 +r) -1 X C di (ei,zi) deldzi.

 0 Z 0

 Taking the derivative with respect to Qo and setting it equal to zero
 yields

 (iv) do (QO)- (1 +r)' f di (Q1,z1) dz1 = O.
 Z1

 where Q= Q - QO. Rewriting (iv) in terms of expected values and
 prices, we see that

 (v) po = (1 +r) -1E [pi],
 which completes the proof for the case N = 1.

 Now suppose that the result is true for N=K- 1. Then the in-
 duction hypothesis may be written in terms of the last K periods of
 the case N=K as follows:

 (vi) p1=(1+r) -I-E(pt) (tz1, . . ., K).
 We wish to show that this extends backwards to period 0, i.e., that
 (vii) po (1[+r)-tE(pt) (t=1, . . , K).

 Before embarking on this proof, it must be noted that in this
 closed-loop optimization, only Qo must be chosen. The remaining
 Qt may be chosen in the future, conditionally on information received
 up to that time.2 Thus, Qt is actually a function of Qo, . . . , Qti
 and z1, . . ., Zt:
 (viii) Qt=Qt(Qo, . I . Qt_i; zil . . .,7 Zt) .
 In the maximization procedure it will be necessary to differentiate
 Qt with respect to Qo. We shall use the notation dQt/dQo to denote
 the total derivative of (viii) with respect to QO (including the de-
 pendency through Q1, . . . , Qt_1) and not just the partial deriv-
 ative with respect to the first argument. Thus for example,

 dQ2 DQ2 DQ2 DQ1

 dQo DQo aQi DQo

 2. The optimal open-loop allocation (which is suboptimal in general) will
 generally be different from the optimal closed-loop solution. In general, the
 open-loop solution will be characterized by too much early consumption and
 not enough conservation. It is interesting to note that although the open-loop
 solution is still characterized by expected price rises at the rate r, the solu-
 tions do differ.
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 We are now ready to proceed. The maximand is
 (ix)

 E[S]_ = fdo(to)ddo+(1+r)-l f r dj(eizj)deidzj+**-
 o Z1 0

 QK-1

 +(1+r)l-K f . r dK-I(eK-1,ZK-l)ddK-ldZK-l . dzl
 Z1 ZK-10

 ( K f C Q-Q?- ..-QK-1 d( )d + (1~+rYK f dK (eKIzK) dKdZK . . . di
 Zi ZK 0

 where the Qt are actually functions as in (viii). Differentiating (ix)
 completely with respect to Qo and setting the derivative equal to
 zero, we get

 (x)

 do(Qo)+(1+r)-1 r d1(Qjz1) 'dzi+ ..
 Z1 xdQ

 + (1+r)1-K Sf 'd~(~,Z dQK1
 Zl . . . + )dQ dZK . . . dz ~~(1+rV K 5 f dK(Q-QO- . QK. .k

 (i+dQl + . . Q- Z z
 dQ0 ~dQo.. z

 =0.

 By the induction hypothesis, however,

 (xi) d1 (Q1,z1) = (1 +r) -51 d2 (Q2,Z2) dZ2=
 z2

 = (1+r)1-K 5 5 dK(QKZK)dZK * * * dZ2-
 Z2 ZZK

 Substituting (xi) into (x) and noticing that most of (x) cancels and
 that QK=Q-Qo- . . . -QK-1, we get

 (xii) Po = (1 +r)-KE (PK) .
 By combining (xii) with the induction hypothesis (vi), the proof
 of (vii) is completed.

 HARVARD UNIVERSITY
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