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Abstract

Deterrence is a generic situation where a “Retaliator” (Player R) threatens to bash an
“Underminer” (Player U ) should he take a stealth threatening move. A typical Underminer
is a potential bomb builder, market invader or computer hacker. The Retaliator’s decision
whether to bash will depend on a noisy signal her intelligence receives about U ’s action. U
may or may not have the ability to disrupt R’s signal (type U+ and U−, respectively). U ’s
type is his private information. If U can and does disrupt, the signal to R’s intelligence is
random, in effect noise. The equilibrium of the game is basically unique. U is better off
with the disruption capability than without. More accurate intelligence makes R less likely
to bash U . Accordingly, all expected payoffs increase. As R’s belief about U ’s ability to
disrupt increases, R is more aggressive and U (whether he is able to disrupt or not) is less
aggressive. Yet, greater disruption potentially lowers the payoffs of the all players R, U+

and U−. Hence a more transparent information system with no potential disruption helps
both sides.
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1 Introduction

Powerful players, be they nations, companies, or individuals, must always guard against a
lesser player who could take secret moves that in expectation would bring them harm. For
example, an enemy nation may be pursuing a cloaked effort to develop nuclear weapons to
gain some parity with an existing nuclear power. If a potential Underminer, who is the secret
mover, can complete the secret move, thereby creating a capability to harm, the powerful
player (the Retaliator) will be in a much worse position. A nuclear-armed enemy will be both
emboldened and more dangerous.

In some situations, the Retaliator will be able to impair or eliminate the Underminer’s newly
created capability once it becomes known. Thus, the United States could conceivably knock
out much of North Korea’s nuclear weapon and missile delivery capabilities. But doing so too
late, once the capability is created, or mostly created, would be extremely expensive in terms
of dollar cost, military risk, and world opinion. And if the knock-out blow was delivered in
error, say because the capability did not exist, as was the case with Saddam Hussein’s fictitious
weapons of mass destruction, reputational costs could be massive.

A far preferable strategy for the Retaliator would be to deter the Underminer from taking a
secret move that will enable him to create a capability of harming her. (To facilitate exposition,
Underminers (U ) are treated as male and Retaliators (R) as female.) Thus, R will threaten to
make a move that imposes significant costs on the Underminer should he take that move. We
refer to R’s cost-imposing move as bashing, and assume that bashing eliminates U ’s capability
of harming R in case he created such a capability.

Thus, this is a two-stage game: U moves first and chooses in secret whether to harm or not
harm, then R based on a noisy intelligence system chooses whether to bash or not bash. The
two-move sequence concludes the game and determines the outcome, hence the players’
payoffs.

Given that the Underminer’s move will be taken in secret, i.e., will not be public absent further
efforts, the Retaliator will not know what move U took before bashing becomes impossible or
extremely costly. Once U ’s move becomes public information, i.e., once the capability of
harming R is created, bashing will no longer be desirable, and perhaps not even feasible.
Given R’s cost of either unjustified bashing or not bashing when it would avoid harm, she
developed an intelligence system before the game began. That system gives her information,
albeit imperfect (or noisy) information, on the move taken by U .

The Underminer, as is common in the real world, may have the ability to disrupt the
Retaliator’s intelligence. Thus, R’s intelligence will give him a signal on the move U took, but
U may have taken a disrupting action that impairs that signal. For example, Saddam Hussein
disrupted U.S. intelligence, which concluded that he did possess weapons of mass destruction.
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In this paper we analyze the case where U may or may not have a disruptive technology
(whether he does is his private information) that renders the intelligence of R uninformative.
The two types are denoted as U+ and U−, respectively.

This analysis has two features that distinguish it from classic conceptual models of deterrence:
Its focus is on deterring a secret not a public move by the Underminer. It attends to intelligence
gathering by the Retaliator. The classic theory, by contrast, focuses on deterring public moves
by the Underminer. Hence, intelligence is not a major component. Not a small bit of confusion
has arisen, we believe, because players (as well as analysts) have been guided by the classic
theory of deterrence in contexts where R’s objective in fact was to deter a secret move by U .

To avoid reacting too late, R needs an intelligence system. That system, usually imperfect, will
help her to bash on a timely and appropriate basis. Misguided retaliation is costly to both
parties. Of course, the system’s imperfection blunts R ’s ability to retaliate appropriately, and
the Underminer likes best the outcome where he takes the harmful move but escapes
retaliation.

This outcome of harm without retaliation is made more possible if the Underminer has a
technology to disrupt R’s intelligence system. The prime focus and main contribution of this
paper is on the consequences of this disruption capability in a framework where the
Underminer has a secret harmful move. It is shown (not surprisingly) that if there is the
potential for U to have a disruptive technology, he is better off having it. Namely, the
equilibrium payoff of U+ is greater than that of U−. Furthermore, U of both types and R are
better off the lower is the belief of R about U possessing a disruptive capability. This result is
quite intuitive with regards to U but less so with regards to R. Namely, R benefits as well if
she is led to believe that U is less likely to have disruptive capabilities. The Underminer will
rarely have a credible ability to forswear his use of his disruptive technology. As R’s prior
belief on U ’s ability to disrupt gets stronger, she acts more aggressively and increases the
probability of punishing U ; having anticipated this punishment, U will more likely be deterred.
Overall, a stronger prior belief on U ’s disruptive capability increases the chance of punishing
an innocent U by mistake, thus lowering both players’ equilibrium payoffs. In line with Jelnov,
Tauman and Zeckhauser (2017), a more accurate intelligence makes both players better off.
Therefore, a transparent system with accurate and intact signals benefits both sides. If it can be
made credibly, the Retaliator should be convinced that the Underminer has never developed
any disruptive technology. However, this ideal result cannot be sustained, since an Underminer
is better off with the disruption capability than without.
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2 Related Literature

Most1 analytic discussions of deterrence related to military affairs. It took many brilliant mind
years to understand the underpinnings of the deterrent effects of massive retaliation. As
Schelling (1960, p. 7) observes: “What is impressive is not how complicated the idea of
deterrence has become and how carefully it has been refined and developed, but how slow the
progress has been, how vague the concepts still are, and how inelegant the current theory of
deterrence is.” See Powell (1990) for an early extensive treatment of nuclear deterrence using
game theory. These pioneering analyses, as opposed to our analysis, were concerned with
deterring public moves. The prime illustration, of course, was deterring a nuclear attack. No
move could be more public.

Recently, a new generation has shown how game theory, combined with deep thinking and
Bayesian methods, can yield important insights into effective deterrence of moves taken in
secret. However, when moves are secret there is the potential for mistaken harmful moves
blossoms. Most of these recent analyses continue to be embedded in national security
contexts. Debs and Monteiro (2014, p. 1) address secret build ups, preventive wars, including
mistaken preventive wars: “states may be tempted to introduce power shifts as a fait accompli.
(Concerns about the Underminer’s fait accompli potential also feature in entry deterrence
models.) They employ the Iraq War to illustrate. It stemmed, they observe, from Iraq’s
inability to commit not to develop nuclear weapons combined with the United States’ inability
not to launch a preventive war. Bas and Coe (2012), use historical examples that stretch from
precolonial New Zealand to the 1967 Six-Days War to support their model of a potential power
shift as a trigger to war.

Information lies at the heart of many analyses of deterrence related to military subjects, such as
arms control. Coe and Vaynman (2020, p. 342) highlight the importance of information in any
attempt to limit armaments: “The main impediment to arms control is the need for monitoring
that renders a state’s arming transparent enough to assure its compliance but not so much as to
threaten its security.” Effective monitoring is thus critical, lest cheating be worthwhile.

Signal disruption, a key feature of this analysis, impedes an opponent’s ability to detect one’s
type. Refusing arms inspections is another way to deny information to a potential Retaliator.
Baliga and Sjostrom (2008) show that the strategic ambiguity such refusal introduces can deter
attacking. They also show, unfortunately, that ambiguity can lead to mistaken attacks.

Jelnov, Tauman and Zeckhauser (2017) address deterrence, also in the bomb-building context,
where intelligence plays a salient role. This paper broadens their analysis by considering a
potential signal disruption by the Underminer. Disruptive technologies are a common weapon
in real world contexts where the Retaliator has intelligence capabilities. As expected, her

1The discussion paper version of this paper contains a much more extensive literature review. See Ma, Tauman
and Zeckhauser (August 2020), Harvard Kennedy School Discussion Paper.
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choice whether to act cautiously or aggressively depends not only on the intact precision of
intelligence, but also on the Underminer’s ability to disrupt her intelligence.

To illustrate, cyberattacks for ransom have become a major problem recently. Thus in 2021
DarkSide, a criminal firm probably located in Russia, extorted $4.4 million from each of
Colonial Pipeline and Brenntag. The United States threatened retaliation. DarkSide then
announced that it was shutting down operations, but experts think that the shutdown may be a
ruse to disrupt the intelligence of potential Retaliators, and that Dark Side may be operating
again under a changed identity. In context where cyberattacks cannot be perfectly attributed to
hackers while a defender wants to retaliate against the guilty attacker only, Baliga, Mesquita
and Wolitzky (2020) show that some improvements in attribution can backfire, weakening
deterrence.

Patents represent a second area where deterrence and bashing are brought into play. A patent
holder must worry about a potential entrant or weak-patent competitor innovating around its
patent. The theoretical and empirical literature on using patents to deter entry, dating back to
the 1980s, examines an array of sophisticated strategies. For example, Ellison and Ellison
(2011) discuss the deterrence behavior of monopolist pharmaceutical firms in the period just
prior to patent expiration. They find examples where incumbent firms decreased advertising
slightly prior to patent expiration to shrink the market. In our terminology, they gain by
pre-bashing the profits of a potential entrant. Of course, the incumbent firm has a
countervailing consideration to possibly boost its advertising expenditures in anticipation of
patent expiration as a means to reinforce brand loyalty2.

Entry deterrence by patent holders is a subset of such deterrence by monopolists. Klemperer
(1987) shows how an incumbent firm can protect itself against market entry by building brand
loyalty, particularly if consumers perceive “switching costs” to be high. Ellison and Ellison
(2011) found evidence of such loyalty-building efforts shortly prior to patent expiration.
Sophisticated pricing strategies can also be used as a bashing weapon when firms do enter. If
consumers value authenticity, firms can bash counterfeiters by raising their prices. Qian (2008)
measured a 45% average price increase within two years of infringement in Chinese markets.

The general lesson from this literature review is that deterrence is a broadly observed
phenomena. Intelligence gathering and intelligence disruption are potent accompaniments.
Our analysis focuses on one-shot games, with two players, one powerful the other much
weaker, facing off against one another. Its Bayesian framework with signals, however, is
readily adapted to repeated games. Signals can also be player’s purposefully revealed
information, i.e., communications between players. Those communications can be public, as is
common with threats, or conveyed through back channels, or a mediator.

Effective deterrence almost always involves some form of monitoring, such as inspection or
intelligence. The player being deterred, because he would like to get away playing his harmful

2We are indebted to a referee for making this point.
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action, will often seek to disrupt that monitoring. However, as the analysis below will show,
his interests may suffer if he has such a disruptive capability.

3 Model

There are two players: an Underminer (U ) and a Retaliator (R). U moves first and wants to
take an action H that will harm R. The Retaliator seeks to deter U by threatening to bash him
if he has played H . “Successful” deterrence lowers the probability that the Underminer plays
H (taking the harmful action). U can choose H or NH (not taking the harmful action). The
Retaliator can either bash, B, or not bash, NB. Table 2 describes the two players’ payoffs for
the four possible outcomes:

Table 1: Payoff Table

U
R

NB B

NH w1, 1 r1, r2
H 1, 0 0, w2

It is assumed that 0 < ri < wi < 1, i = 1, 2. That is, the Underminer ranks the outcomes
(from best to worst) as follows: (H,NB), (NH,NB), (NH,B) and (H,B). The Retaliator
ranks the four possible outcomes (from best to worst) as follows: (NH,NB), (H,B),
(NH,B) and (H,NB). To simplify the analysis, it is assumed that the number of pure
strategies by U are discrete, and not continuous.

The major challenge to the Retaliator is that the Underminer’s action is taken in secret. To
determine whether or not to bash, R employs a noisy intelligence system to spy on U and
thereby detect whether he has taken a harmful action. The intelligence sends one of the two
possible signals: h or nh, indicating imperfectly whether U takes a harmful action. The
precision of intelligence is α, 1

2
< α < 1. Namely, if U chooses either H or NH , then with

probability α, the intelligence sends the signal h or nh, respectively. If α = 1
2
, the signal is

completely random.

Whether U has a disruptive capability is his private information. We refer to U+ as the player
U who has a disruptive capability and U− who does not. It is commonly known that R
believes U possesses a disruptive technology with probability β ∈ (0, 1).

If U+ chooses to operate the technology and Disrupt (D) the signal, then the signal is
intercepted and the precision drops to 1

2
( a random signal is sent to R). If U+ chooses Not to

Disrupt (ND) or if the player is U−, the precision of the signal, α, remains unchanged.
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In summary, the U+ type of Underminer has four strategies, A+
U = {H,NH} × {D,ND}, the

U− type of Underminer has two strategies, A−
U = {H,NH}.

Asymmetric information arises here: U knows his type, but R only knows the probability β of
her opponent’s type, namely whether or not he possesses the disruptive capability. Based on
the binary signal s ∈ {h, nh}, R chooses whether (or with what probability) to Bash.
The set of pure strategies for R is AR = {BhBnh, BhNnh, NhBnh, NhNnh}.

It is assumed that the game Γ1 described above is commonly known. Define the set of the six
parameters byW ×L, where

W ≡
{
(α, β)|1

2
< α < 1, 0 < β < 1

}
L ≡ {(r1, w1, r2, w2)|0 < ri < wi < 1, i = 1, 2}

The setsW and L are common knowledge. The case β ∈ (0, 1) indicates the asymmetric
information about the disruption capability. Disruption plays no role in Jelnov, Tauman and
Zeckhauser (2017) (β = 0). As a benchmark case, we will compare their result with ours,
thereby highlighting the role of information disruption. The case of β = 1, where it is
commonly known that U has the disruptive capability, will be discussed separately (see
Proposition 2(iii)).

3.1 Equilibrium Analysis

In this section, we first simplify the original game Γ1 to its reduced form Γ0. Then we describe
the unique equilibrium of Γ0 (Proposition 1). Based on the equilibrium outcome, we show how
the intelligence quality α and R’s belief on U ’s disruption capability, β, impact the strategies
(Proposition 2) and payoffs (Proposition 3) in the equilibrium of Γ0. All the lemmas and
propositions are proven in the Appendix.

The next two lemmas are essential for the equilibrium analysis.

Lemma 1. The strategy NhBnh of R is strictly dominated by BhNnh. In equilibrium, R plays
BhNnh with positive probability, and she does not mix BhBnh and NhNnh.

Corollary 1. Every equilibrium of Γ1 is one of the following three types: (i) R plays purely
BhNnh, (ii) R mixes BhNnh with NhNnh, or (iii) R mixes BhNnh with BhBnh.

By Lemma 1, following the intelligence’s recommendation (BhNnh) is strictly better for R
than acting opposite to it (NhBnh). It further narrows down R’s equilibrium strategy to three
possibilities as shown in the corollary, simplifying the analysis.

Lemma 2. The strategies (H,ND) and (NH,D) of U+ do not survive iterative elimination of
weakly dominated strategies.
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By Lemma 2, Player U+ is (weakly) better off disrupting the signal when choosing H (a
disrupted intelligence is more likely to send the nh signal, thus helping to camouflage his H
action). He is (weakly) better off not disrupting when choosing NH (an accurate intelligence
is more likely to send the nh signal).
Lemma 2 allows us to consider a simplified game in which the U+ type Underminer has only
two strategies, (H,D) and (NH,ND), and ignore his other two pure strategies (H,ND) and
(NH,D) that do not survive iterative elimination of weakly dominated strategies. To minimize
notation, we denote the two active strategies, (H,D) and (NH,ND) of U+, as H and NH ,
respectively. No confusion should arise, since U+ prefers combining D with H and ND with
NH . We use the same notations H and NH for U−, who has no capability to disrupt.

Denote the reduced game of Γ1 by Γ0. The extensive form of Γ0 is presented below.

Nature

U+

I

r1, r2B

w1, 1NB
h (1− α)

r1, r2B

w1, 1NB

nh (α)NH

I

0, w2B

1, 0NB
h ( 12 )

0, w2B

1, 0NB

nh ( 12 )

H(β)

U−

I

r1, r2B

w1, 1NB

h (1− α)

r1, r2B

w1, 1NB

nh (α)NH

I

0, w2B

1, 0NB
h (α)

0, w2B

1, 0NB

nh (1− α)

H

(1− β) R

R

Chance node
Choice node of S
Choice node of R
Terminal node

I Intelligence

Figure 1: The Reduced Game Γ0
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By Lemma 1, the equilibrium can be of three types, one of which involves a pure strategy of
R. In the next lemma, we solve this case.

Lemma 3. Consider an equilibrium where R plays purely BhNnh. Then U+ plays pure H and
U− plays pure NH .

We have the following lemma for the case where R plays a mixed strategy.

Lemma 4. Consider an equilibrium where R plays a mixed strategy.

(i) If α =
(1−r2)(1−β)− 1

2
βw2

(1−r2)(1−β)
or α =

1
2
βw2

(1−r2)(1−β)
, then U+ plays pure H and U− plays pure NH .

(ii) If α ̸= (1−r2)(1−β)− 1
2
βw2

(1−r2)(1−β)
and α ̸=

1
2
βw2

(1−r2)(1−β)
, one type of U plays a pure strategy and the

other type randomizes H and NH . U+ plays more aggressively than U−.

By Corollary 1, Lemma 3 and Lemma 4, it follows that every equilibrium of Γ0 (except for
α =

(1−r2)(1−β)− 1
2
βw2

(1−r2)(1−β)
or α =

1
2
βw2

(1−r2)(1−β)
) falls into one of the five categories described in Table

2. Moreover, Proposition 1 below asserts that for every (r1, w1, r2, w2) ∈ L, the setW is
partitioned into five regions and each is characterized by one of the categories of Table 2.

Table 2: Equilibrium Categories

Category R’s strategy U+’s strategy U−’s strategy
1 pure BhNnh pure H pure NH
2 mixes BhNnh with NhNnh pure H mixes H and NH
3 mixes BhNnh with NhNnh mixes H and NH pure NH
4 mixes BhNnh with BhBnh pure H mixes H and NH
5 mixes BhNnh with BhBnh mixes H and NH pure NH

Proposition 1. For any (w1, r1, w2, r2) ∈ L and for any (α, β) ∈ W , there is a partition ofW
into disjoint regions shown in Figures 2 and 3 s.t. in the interior of each region there exists a
unique equilibrium in Γ0 described in Table 4 and Table 5 in the Appendix.

(i) Suppose 1− w1 ≥ r1. ThenW is partitioned into five regions (see Figure 2).

• Γ0 has a pure strategy equilibrium iff 1−r1
1+w1−r1

< α <
1
2
−r1

w1−r1
and

2(1−α)(1−r2)
2(1−α)(1−r2)+w2

< β < 2α(1−r2)
2α(1−r2)+w2

. In equilibrium, R plays BhNnh, U+ plays H and U−

plays NH .

• Γ0 has a mixed strategy equilibrium in Regions 2 and 3, where α is high. The Retaliator
in equilibrium acts mildly. She does not bash if the signal is nh and with positive
probability even if the signal is h. The Underminer is more aggressive in Region 2
(where β is low) than in Region 3 (where β is high).

9



• Γ0 has a mixed strategy equilibrium in Regions 4 and 5, where α is low. The Retaliator
in equilibrium acts aggressively. She for sure bashes if the signal is h and with positive
probability even if the signal is nh. The Underminer is more aggressive in Region 4
(where β is low) than in Region 5 (where β is high).

(ii) Suppose 1− w1 < r1. ThenW is partitioned into just two regions and the equilibrium
strategies coincide with those of Region 2 and Region 3 in part (i) (see Figure 3 below). Only
the mild mixed strategy equilibrium exists, and the other three regions of (i) are empty.

Figure 2: Partition ofW in case 1− w1 ≥ r1 Figure 3: Partition ofW in case 1− w1 < r1
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Before we elaborate on the equilibrium in each region, we define the notion of aggressive and
mild strategies and actions of the players.

Definition: (i) We say that U i, i ∈ {−,+}, plays more aggressively if he plays H with greater
probability. He plays more mildly if he plays NH with greater probability.

(ii) For R, the strategy BhBnh is more aggressive than BhNnh, and BhNnh is more aggressive
than NhNnh. We say that R plays more aggressively if she plays a more aggressive strategy
with greater probability. She plays more mildly if she plays a less aggressive strategy with
greater probability.

Suppose first 1− w1 ≥ r1, namely, the Underminer is more concerned with missing the
opportunity of harming R than about getting caught. See Figure 2.

Region 1. 1−r1
1+w1−r1

< α <
1
2
−r1

w1−r1
and 2(1−α)(1−r2)

2(1−α)(1−r2)+w2
< β < 2α(1−r2)

2α(1−r2)+w2

In this region, both α and β take intermediate values and R’s belief about U ’s type is
ambiguous. Her best choice is simply to follow her intelligence which is moderately accurate
but still valuable. U+ harms her with probability 1 and generates a completely random signal.
Hence with probability 1

2
, he will not be bashed (his best outcome). Given R’s full trust on her

signal, U− is best off not harming. The outcome is a pure strategy equilibrium.

Region 2. 1−r1
1+w1−r1

< α < 1 and 0 < β < 2(1−α)(1−r2)
2(1−α)(1−r2)+w2

In this region, α is high and β is low. The signal is relatively accurate and R believes that U is
unlikely to disrupt her signal. Since the signal is quite reliable, U− knows that his action has a
good chance to be detected, and he chooses a non-harmful action (NH) with high probability.
R then expects to receive the signal nh, and if indeed this is the signal, she for sure does not
bash (NB). If, however, unexpectedly she obtains the signal h, she strongly believes this
signal is an error of her intelligence since U− is deterred and the chance of U+ is quite low.
She reduces the probability of mistakenly bashing U by playing NB with positive probability
even if the signal is h. Given the milder behavior of R, Player U+ masks R’s signal and with
probability 1 harms her (H).

Region 3.
1
2
−r1

w1−r1
< α < 1 and 2(1−α)(1−r2)

2(1−α)(1−r2)+w2
< β < 1 (it is empty if w1 ≤ 1

2
)

In this region, α is high and β is high. Since the intelligence is more reliable, U− is again
deterred. He lowers the probability to play H in fear of the harmful move being detected. Since
R highly believes she faces U+ who can disrupt her signal, she plays B with a slightly higher
probability than in Region 2. This also deters U+ and result in mild behaviors of all players.

Region 4. 1
2
< α < 1−r1

1+w1−r1
and 0 < β < 2α(1−r2)

2α(1−r2)+w2

In this region, α is low and β is low. R punishes excessively since she cannot trust the signal.
R bashes U for sure if the signal is h and with positive probability even if the signal is nh.
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However, R believes that her signal is likely intact and this encourages U+ to knock down R’s
intelligence. He harms R with probability 1. The result is aggressive behaviors by all players.

Region 5. 1
2
< α <

1
2
−r1

w1−r1
and 2α(1−r2)

2α(1−r2)+w2
< β < 1

In this region, α is low and β is high. Knowing that R cannot trust much her signal, U+ has
good reasons to harm R. To deter him, R plays even more aggressively than she plays in
Region 4. She bashes U for sure if the signal is h, and bashes U even if the signal is nh with
higher probability than in Region 4. R’s fierce retaliation deters U , so U acts less aggressively
than in Region 4.

Suppose next 1− w1 < r1. Namely, U is more concerned with getting caught than with
missing the opportunity of harming R. The shift of his concern eliminates the aggressive
equilibrium regions, leaving the game with only mild equilibrium outcomes. In this case, R
never bashes U if the signal is nh and with positive probability even if the signal is h. If she
strongly believes U has no ability to disrupt the signal (0 < β < 2α(1−r2)

2α(1−r2)+w2
), she bashes him

if the signal is h but with probability smaller than in case 2α(1−r2)
2α(1−r2)+w2

< β < 1. In the former
case, U+ uses this opportunity to mask her signal and he harms her with probability 1. In the
latter case he acts more cautiously and with positive probability he does not disrupt her signal.
The pattern of U−’s behavior is similar, with positive probability he does not harm U if β is
small and for sure he does not harm her if β is large.

Proposition 2. The unique equilibrium of Γ0 satisfies the following.

(i) As α increases, R’s equilibrium strategy is (weakly) less aggressive.

(ii) As β increases, R’s equilibrium strategy is (weakly) more aggressive, and the probability
of U (either type) harming R is weakly decreasing.

(iii) For each α ∈ (1
2
, 1), the equilibrium strategy profile and payoffs of Γ0 are

upper-semi-continuous in β, β ∈ (0, 1), and are continuous in β = 0 and β = 1.

A similar result to Proposition 2 part (i) appears in Jelnov, Tauman, Zeckhauser (2017),
dealing with the case β = 0, where it is common knowledge that U has no ability to disrupt3.
A more accurate intelligence induces a milder behavior of R.

Our new insight is the impact of β on the equilibrium strategies. Proposition 2 part (ii) shows
that if R strongly suspects U capable of disrupting the signal, she would act more aggressively
and as a result both U+ and U− are deterred. Since the equilibrium outcome is continuous in
β ∈ [0, 1], β = 1 (namely, it is common knowledge that U is of type U+) induces the most

3The model in JTZ (2017) is slightly different than the one we have. There U has the option to open his facility
fo public inspection. Yet, the conclusion in Proposition 2 (i) and Proposition 3 (i) remain true if this option is
eliminated. In line with JTZ (2017), we show that the probability of either type of U harming R is decreasing in α
in Regions 2 and 3, independent of α in Region 1, and increasing in α in Regions 4 and 5.
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aggressive strategy of R and the mildest strategy of U+; β = 0 (it is common knowledge that
U is of type U−) induces the mildest strategy of R and the most aggressive strategy of U−.

Proposition 3. (i) As α increases, U+’s, U−’s and R’s payoffs are strictly increasing in α with
one exception: if 1− w1 > r1, then in Region 1 (the pure strategy equilibrium region), U+’s
payoff is 1

2
, regardless of α. However, better disruption capabilities reduce R’s extra benefit

gained from a more precise intelligence

(ii) As β increases, U+’s, U−’s and R’s payoffs are non-increasing in β.

(iii) U+ plays more aggressively than U− (that is, p∗+ > p∗−), and the payoff of U+ is at least as
high as the payoff of U−.

A special case of Proposition 3 part (i) was noticed in Jelnov, Tauman, Zeckhauser (2017) (see
footnote 3). Greater precision α increases the payoff of U as well as the payoff of R.4

Moreover, the cross partial of R’s equilibrium payoff with respect to α and β is either negative
or zero (see Appendix, Table 7).

Part (iii) is intuitive: fixing R’s belief β of U ’s ability to disrupt, U is better off with a
disruptive capability than without.

As for Part (ii), the result can be explained by Proposition 2(ii). As β increases, R retaliates
more excessively, which deters both U+ and U− and lowers U ’s payoff. Since U of both types
acts more mildly, then R’s excessive retaliation results in a higher probability of mistakenly
bashing an innocent U . This in turn lowers R’s payoff as well. By Proposition 2(iii) (the
continuity of the equilibrium in β = 0), the best outcome happens when β = 0 where it is
commonly known that U cannot disrupt.

We just saw that higher assessment of R about U ’s ability to deploy a disruptive technology
hurts him as well as R. In light of Proposition 3(ii) and Proposition 2 (iii), a natural question
arises: why doesn’t U+ simply turn off his disruptive technology and make R believe that she
faces only Type U−? Both U+ and R would gain from a convincing turn-off. The unfortunate
reality is that U+ can not make a “turn off” action credible, since he would be better to keep it
turned on, if R for sure believed that it was turned off.

In practice, R can’t be sure if U possesses or not a disruptive capability and she assigns some
positive probability that U has it. U+ is better off having the disruptive technology, and at the
same time convincing R of his innocence.

4This result is based on α being common knowledge. For the analysis of the case where α is private information
of R, see Biran and Ma (2022).
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4 Discussion

4.1 Endogenous Intelligence and Disruption Capability

In this section5, we briefly discuss the establishment of the intelligence / counterintelligence
abilities, assuming an added first stage where U and R create these abilities at a cost.

Γ1 without an intelligence is a simultaneous game whose strategic form is shown in Table 1. It
can be verified that a unique mixed strategy equilibrium exists there, and R’s equilibrium
payoff is f 0

R ≡ w2

1+w2−r2
and U ’s equilibrium payoff is f 0

U = r1
1+r1−w1

.

Suppose R creates an intelligence system with precision α at a cost CR(α). Such an
investment is worthwhile as long as R’s net payoff is greater than f 0

R. The equilibrium
intelligence precision α∗ is the maximizer of R’s net payoff

fR(α) =

{
f 0
R if R does not build IS
ΠR(α)− CR(α) if R builds IS with precision α

where ΠR(α) is R’s payoff in Table 5 as shown in the Appendix.

As for the disruptive capability of U , the paper assumes that if U possesses such a technology,
it functions perfectly. Namely, it destroys R’s signal and turns it completely random with
probability 1. β is not the quality of the technology; it is the probability R assigns to U
possessing such a technology.

A slightly different model can be analyzed where β is the quality of the disruptive technology.
Consider a complete information game where it is common knowledge that U has a disruptive
technology of quality β. Namely, if U disrupts, then with probability β, the signal turns
random and with probability 1− β, it has no effect on R’s intelligence. U finds out if his
technology is effective only after using it. Suppose we add a preceding stage where
simultaneously U and R choose β and α, respectively, and choose whether and to what level to
build their technologies. Let Ct(α, β), t ∈ {U,R}, be t’s cost of building an intelligence/
counterintelligence ability, which may depend on both α and β. Then t’s net payoff is

ft(α, β) =


f 0
t if R does not build IS
Πt(α, β)− Ct(α, β) if R builds IS with precision α

and U builds Disruption with quality β

where Πt(α, β) is t’s equilibrium payoff in the subgame starting after the intelligence and
counterintelligence capabilities are established. The equilibrium of the two-person game with
the payoffs fU(α, β) and fR(α, β) determines α and β endogenously.

5We thank the associate editor and a referee for suggesting the two extensions of the model.

14



4.2 Higher Order of Information Asymmetry

This analysis assumes that all parameters are commonly known. With respect to α and β the
paper shows that both players’ ex ante expected payoffs are weakly increasing in α and weakly
decreasing in β. A recent paper (Biran and Ma (2023)) deals with the case where α is R’s
private information (disruption of information is not considered there). That paper shows
(different from ours) that for some (r1, w1, r2, w2) ∈ L, U ’s ex-post expected payoff is
decreasing in α.

We next show that similar outcome happens if β is not common knowledge. Let us make one
change in our game Γ1 and assume the belief of R on U ’s capability to disrupt is not common
knowledge, rather it is R’s private information with a commonly known distribution F (β).
Assume that F (β) is binomial: with probability δ, β = βhigh, and with probability 1− δ,
β = βlow. Denote the two types of R as Rhigh and Rlow, respectively.

Claim 1. Suppose F (β) follows a binomial distribution F (β) ∼ B(1, δ). There exists an
equilibrium where Rhigh plays purely BhBnh, Rlow plays a mixed strategy (q∗, 1− q∗) over
(BhBnh, BhNnh), 0 < q∗ < 1, U+ plays pure H and U− mixes (p∗−, 1− p∗−) over (H,NH).

Proof see the Appendix.

As an example, for the parameters
α = 0.55, βhigh = 0.9, βlow = 0.1, δ = 0.1, r1 = 0.125, w1 = 0.625, r2 = 0.5, w2 = 0.75,

such equilibrium exists, and U+ plays pure H , U− plays (0.38, 0.62) over (H,NH), Rhigh

plays pure BhBnh, and Rlow plays (0.21, 0.79) over (BhBnh, BhNnh). Finally, Rhigh obtains
0.735, and Rlow obtains 0.611. Opposite to the case where β is common knowledge, the
expected payoff of Rhigh is greater than that of Rlow.

Therefore, the common knowledge assumption is essential to drive our main result in the
original model.

5 Concluding Thoughts

Deterrence models have played a significant role in the academic literature, and ultimately
strategic thinking, since the late 1950s. These models were initially inspired by the need to
deter nuclear attacks and military aggression more generally. As would be expected, they
received renewed attention in 2022 when the threat of sanctions failed and Russia invaded the
Ukraine. Deterrence is a strategy that is employed broadly. When it is, potential Underminers
will seek to choose in secret. Potential Retaliators will therefore need to employ an
intelligence system lest they bash without justification, and thus lose value. Potential
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Underminers may counter that system with a disruptive technology. Surprisingly, employing
that technology may hurt rather than help them. Yet, potential Underminers may be unable to
foreswear the use of a technology that actually hurts them.
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7 Appendix

Proof of Lemma 1. Since α > 1
2
, it is easy to verify from Table 3 that NhBnh is strictly

dominated by BhNnh for the Retaliator, so NhBnh will never be played in equilibrium.
Clearly, no equilibrium exists in which R plays pure NhNnh or pure BhBnh.6

Based on the signal, R assigns conditional probabilities over U ’s actions, denoted by
P (H|h), P (NH|h) = 1− P (H|h), P (H|nh) and P (NH|nh) = 1− P (H|nh). By Baye’s
Rule,

P (H|h) =
1
2
β p+ + (1− β)αp−

β(1− p+)(1− α) + 1
2
βp+ + (1− β)(1− p−)(1− α) + (1− β)αp−

(1)

P (H|nh) =
1
2
β p+ + (1− β)(1− α)p−

β(1− p+)α + 1
2
βp+ + (1− β)(1− p−)α + (1− β)p−(1− α)

(2)

R’s conditional expected payoffs are

Π2(B|h) = P (H|h)w2 + P (NH|h)r2,
Π2(NB|h) = P (NH|h) · 1 + (1− P (H|h)) · 0 = P (NH|h)
Π2(B|nh) = P (H|nh)w2 + P (NH|nh)r2,

Π2(NB|nh) = P (NH|nh) · 1 + (1− P (NH|nh)) · 0 = P (NH|nh)

R weakly prefers B to NB given h iff

Π2(B|h) ≥ Π2(NB|h)←→ P (H|h) ≥ 1− r2
1− r2 + w2

(3)

Similarly, R weakly prefers B to NB given nh iff

Π2(B|nh) ≥ Π2(NB|nh)←→ P (H|nh) ≥ 1− r2
1− r2 + w2

(4)

Suppose R in equilibrium mixes NhNnh and BhBnh. Then P (H|h) = P (H|nh) = 1−r2
1−r2+w2

.
This implies that for β < 1 the signal is uninformative, contradicting α > 1

2
.

Proof of Lemma 2. The game Γ1 in strategic form is given by Table 3 below.

6If R plays in equilibrium NhNnh, both U+ and U− are better off playing pure H in which case R is better
off deviating to BhBnh. Similarly, if R plays in equilibrium BhBnh, both U+ and U− are better off playing pure
NH , and R is better off deviating to NhNnh.
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Table 3: Γ1 in Strategic Form

U+, U−
R

NhNnh BhNnh NhBnh BhBnh

(NH,ND), NH w1, w1, 1
αw1 + (1− α)r1,
αw1 + (1− α)r1,
α + (1− α)r2

(1− α)w1 + αr1,
(1− α)w1 + αr1,

1− α + αr2

r1, r1, r2

(NH,D), NH w1, w1, 1

1
2
w1 +

1
2
r1,

αw1 + (1− α)r1,
β(1

2
+ 1

2
r2) + (1− β)[α + (1− α)r2]

1
2
w1 +

1
2
r1,

(1− α)w1 + αr1,
β(1

2
+ 1

2
r2) + (1− β)(1− α + αr2)

r1, r1, r2

(NH,ND), H w1, 1, β
αw1 + (1− α)r1,

1− α,
β[α + (1− α)r2] + (1− β)αw2

(1− α)w1 + αr1,
α,

β(1− α + αr2) + (1− β)(1− α)w2

r1, 0, βr2 + (1− β)w2

(NH,D), H w1, 1, β

1
2
w1 +

1
2
r1,

1− α,
β(1

2
+ 1

2
r2) + (1− β)αw2

1
2
w1 +

1
2
r1,

α,
β(1

2
+ 1

2
r2) + (1− β)(1− α)w2

r1, 0, βr2 + (1− β)w2

(H,D), NH 1, w1, 1− β

1
2
,

αw1 + (1− α)r1,
β 1

2
w2 + (1− β)[α + (1− α)r2]

1
2
,

(1− α)w1 + αr1,
β 1

2
w2 + (1− β)(1− α + αr2)

0, r1, βw2 + (1− β)r2

(H,ND), NH 1, w1, 1− β
1− α,

αw1 + (1− α)r1,
βαw2 + (1− β)[α + (1− α)r2]

α,
(1− α)w1 + αr1,

β(1− α)w2 + (1− β)(1− α + αr2)
0, r1, βw2 + (1− β)r2

(H,D), H 1, 1, 0

1
2
,

1− α,
β 1

2
w2 + (1− β)αw2

1
2
,

α,
β 1

2
w2 + (1− β)(1− α)w2

0, 0, w2

(H,ND), H 1, 1, 0
1− α,
1− α,
αw2

α,
α,

(1− α)w2

0, 0, w2

By Lemma 1, we can eliminate NhBnh of R. Since α > 1
2
, the expected payoff to U+ when

playing (NH,ND) is greater than when playing (NH,D) (See Table 3). Similarly, U+’s
expected payoff by playing (H,D) is greater than that by playing (H,ND). Hence in
equilibrium, U+ must assign zero probability to both (NH,D) and (H,ND).

Proof of Lemma 3. Suppose R plays pure BhNnh. U+ obtains αw1 + (1− α)r1 by playing
NH , and obtains 1

2
by playing H . He strictly prefers NH to H iff α >

1
2
−r1

w1−r1
.

U− obtains αw1 + (1− α)r1 by playing NH , and obtains 1− α by playing H . He strictly
prefers NH to H iff α > 1−r1

1+w1−r1
.

Hence R is better off deviating to NhNnh if α > max{
1
2
−r1

w1−r1
, 1−r1
1+w1−r1

} and she is better off

deviating to BhBnh if α < min{
1
2
−r1

w1−r1
, 1−r1
1+w1−r1

}.

If a pure strategy equilibrium exists, either 1−r1
1+w1−r1

≤ α ≤
1
2
−r1

w1−r1
or

1
2
−r1

w1−r1
≤ α ≤ 1−r1

1+w1−r1
.

Note that the latter is true iff 1− w1 ≤ r1, but in this case
1
2
−r1

w1−r1
≤ 1−r1

1+w1−r1
≤ 1

2
< α, a
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contradiction. Hence if a pure strategy equilibrium exists, then

1− r1
1 + w1 − r1

≤ α ≤
1
2
− r1

w1 − r1
(5)

and U+ chooses H and U− chooses NH . Note that α ∈ (1
2
, 1) satisfies (5) iff

w1 < 1− r1 (6)

Using Table 3, it is easy to verify that R has no incentive to deviate from BhNnh given that U+

chooses H and U− chooses NH if

(1− β)[α + (1− α)r2] +
1

2
βw2 ≥ max{βw2 + (1− β)r2, 1− β}

Equivalently if

α ≥ max
{ 1

2
βw2

(1− β)(1− r2)
, 1−

1
2
βw2

(1− β)(1− r2)

}
(7)

Combining (5) and (7),

max
{ 1

2
βw2

(1− β)(1− r2)
, 1−

1
2
βw2

(1− β)(1− r2)
,

1− r1
1 + w1 − r1

}
≤ α ≤

1
2
− r1

w1 − r1
(8)

Given 1− w1 > r1, the interval in (8) is not empty iff
1
2
βw2

(1−β)(1−r2)
≤

1
2
−r1

w1−r1
and

1−
1
2
βw2

(1−β)(1−r2)
≤

1
2
−r1

w1−r1
. Hence (8) is not void iff

(1− r2)(w1 − 1
2
)

(1− r2)(w1 − 1
2
) + 1

2
w2(w1 − r1)

≤ β ≤
(1− r2)(

1
2
− r1)

(1− r2)(
1
2
− r1) +

1
2
w2(w1 − r1)

(9)

Note that the LHS of (9) imposes no restriction on β if w1 <
1
2
. If the denominator is positive

then the LHS of (9) is negative and if the denominator is negative then LHS> 1 and the sign of
the inequality changes to β ≤ LHS. Also since w1 − 1

2
< 1

2
− r1, (9) defines a non-empty

interval.

Hence a pure strategy equilibrium exists iff (8) and (9) hold and in this case R plays pure
BhNnh and obtains (1− β)[α + (1− α)r2] +

1
2
βw2, U+ plays pure H and obtains 1

2
, and U−

plays pure NH and obtains αw1 + (1− α)r1.

Proof of Lemma 4. Consider an equilibrium where R mixes BhNnh and NhNnh with
probability q and 1− q, respectively, 0 < q < 1.
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Given q, U+’s and U−’s payoffs when playing pure strategies are

Π+
1 (NH|q) = Π−

1 (NH|q) = q[αw1 + (1− α)r1] + (1− q)w1 (10)

Π+
1 (H|q) =

1

2
q + (1− q) > Π−

1 (H|q) = q(1− α) + (1− q) (11)

Suppose the equilibrium is separating. Then it has to be p+ = 1 and p− = 0 s.t.
Π+

1 (H|q) > Π+
1 (NH|q) = Π−

1 (NH|q) > Π−
1 (H|q). 7 Since R is indifferent with BhNnh and

NhNnh, by (3) and (4),

P (H|h) = 1− r2
1− r2 + w2

and P (H|nh) ≤ 1− r2
1− r2 + w2

(12)

Plugging in p+ = 1 and p− = 0 into (1) and setting it equal 1−r2
1−r2+w2

, we have

α =
(1− r2)(1− β)− 1

2
βw2

(1− r2)(1− β)

For other parameters, by (10) and (11), if U+ randomizes H and NH , U− must play pure
NH; if U− randomizes H and NH , U+ must play pure H .

Next consider an equilibrium where R mixes BhNnh and BhBnh with probability q and 1− q,
respectively, 0 < q < 1.

Given q, Player U+’s and U−’s payoffs if playing pure strategies are

Π+
1 (NH|q) = Π−

1 (NH|q) = q[αw1 + (1− α)r1] + (1− q)r1 (13)

Π+
1 (H|q) = q · 1

2
+ (1− q) · 0 > Π−

1 (H|q) = q(1− α) (14)

Suppose the equilibrium is separating. Then it has to be p+ = 1 and p− = 0. Since R is
indifferent with BhNnh and BhBnh, by (3) and (4),

P (H|h) ≥ 1− r2
1− r2 + w2

and P (H|nh) = 1− r2
1− r2 + w2

(15)

Plugging in p+ = 1 and p− = 0 into (2) and setting it equal 1−r2
1−r2+w2

, we have

α =
1
2
βw2

(1− r2)(1− β)

For other parameters, by (13) and (14), if U+ randomizes H and NH , U− must play pure
NH; if U− randomizes H and NH , U+ must play pure H .

7If it is to the contrary that p+ = 0 and p− = 1, then it suggests Π−
1 (H|q) > Π−

1 (NH|q) = Π+
1 (NH|q) >

Π+
1 (H|q), contradicting with Π+

1 (H|q) > Π−
1 (H|q).
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Proof of Proposition 1.

Case 1. Pure Strategy Equilibrium.

This case is shown in Lemma 3.

Next we deal with Case 2 and 3. Consider an equilibrium where R mixes BhNnh and NhNnh

with probability q and 1− q, respectively, 0 < q < 1. Suppose U+ chooses H with probability
p+; U− chooses H with probability p−.

By (12) and (1), P (H|h) = 1−r2
1−r2+w2

, that is

α =
(1− r2)[β(1− p+) + (1− β)(1− p−)]− 1

2
βw2p+

(1− r2)[β(1− p+) + (1− β)(1− p−)] + w2(1− β)p−
(16)

R ’s equilibrium payoff is the same whether she plays BhNnh or NhNnh, that is

Π2(p+, p−) = β(1− p+) + (1− β)(1− p−) (17)

Case 2. (Region 2) Suppose p∗+ = 1 and 0 < p∗− < 1.

Since Π−
1 (H|q) = Π−

1 (NH|q), by (10) and (11), we have

q∗ =
1− w1

α− (1− α)(w1 − r1)

and q∗ ∈ (0, 1) iff α > 1−r1
1+w1−r1

. This imposes no restriction if 1− w1 < r1 since then
1−r1

1+w1−r1
< 1

2
.

Π+∗
1 =

(1 + w1)(α− 1
2
) + r1(1− α)

α− (1− α)(w1 − r1)
, Π−∗

1 =
(2w1 − r1)α− (w1 − r1)

α− (1− α)(w1 − r1)
(18)

Since p+ = 1, by (16) we have

p∗+ = 1, p∗− =
(1− α)(1− r2)(1− β)− w2

1
2
β

(1− β)[αw2 + (1− α)(1− r2)]

and 0 < p∗− < 1 iff β < (1−α)(1−r2)

(1−α)(1−r2)+
1
2
w2

By (17),

Π∗
2 =

(1− β)αw2 + w2
1
2
β

αw2 + (1− α)(1− r2)
(19)
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Case 3. (Region 3) Suppose 0 < p∗+ < 1 and p∗− = 0.

Since Π+
1 (H|q) = Π+

1 (NH|q), by (10) and (11), we have

q∗ =
1− w1

1
2
− (1− α)(w1 − r1)

and q∗ ∈ (0, 1) iff α >
1
2
−r1

w1−r1
. Note that this region is not empty iff w1 >

1
2
. The equilibrium

payoffs of U+ and U− satisfy

Π+∗
1 = Π−∗

1 =
w1

1
2
− (1− α)(w1 − r1)

1
2
− (1− α)(w1 − r1)

(20)

Since p− = 0, by (16) we have

p∗+ =
(1− α)(1− r2)

w2
1
2
β + (1− r2)(1− α)β

, p∗− = 0

and 0 < p∗+ < 1 iff β > (1−α)(1−r2)

(1−α)(1−r2)+
1
2
w2

. By (17),

Π∗
2 =

w2
1
2

w2
1
2
+ (1− α)(1− r2)

(21)

Finally we analyze Case 4 and 5. Consider an equilibrium where R mixes BhNnh and BhBnh

with probability q and 1− q, respectively, 0 < q < 1. In this case, R is indifferent between
playing BhNnh and BhBnh. By (1), (2) and (15), setting P (H|nh) = 1−r2

1−r2+w2
we have

α =
1
2
βw2p+ + w2(1− β)p−

(1− r2)[β(1− p+) + (1− β)(1− p−)] + w2(1− β)p−
(22)

R obtains the same expected payoff whether she plays BhNnh or BhBnh,

Π2(p+, p−) = r2[β(1− p+) + (1− β)(1− p−)] + w2[βp+ + (1− β)p−] (23)

Case 4. (Region 4) Suppose 0 < p∗− < 0 and p∗+ = 1.

Since Π−
1 (H|q) = Π−

1 (NH|q), by (13) and (14), we have

q∗ =
r1

1− α− α(w1 − r1)

Clearly, q∗ ∈ (0, 1) iff α < 1−r1
1+w1−r1

. Note that 1−r1
1+w1−r1

> 1
2

iff 1− w1 > r1 and this region of
α is not empty.
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Since p+ = 1, by (22), we have

p∗+ = 1, p∗− =
(1− r2)(1− β)α− 1

2
βw2

(1− β)[w2 + (1− r2 − w2)α]

and 0 < p∗− < 1 iff β < α(1−r2)

α(1−r2)+
1
2
w2

.

By (23),

Π∗
2 = w2 ·

(w2 − r2)β(
1
2
− α) + (1− 2α)r2 + α

w2 + (1− r2 − w2)α
(24)

The equilibrium payoffs of U+ and U− are

Π+∗
1 =

r1
1
2

1− α− α(w1 − r1)
, Π−∗

1 =
r1(1− α)

1− α− α(w1 − r1)
(25)

Case 5. (Region 5) Suppose 0 < p∗+ < 1 and p∗− = 0.

Since Π+
1 (H|q) = Π+

1 (NH|q), by (13) and (14), we have

q∗ =
r1

1
2
− α(w1 − r1)

and q∗ ∈ (0, 1) iff α <
1
2
−r1

w1−r1
. Since α > 1

2
, we must have 1− w1 > r1 in this case.

Since p− = 0, by (22),

p∗+ =
α(1− r2)

[1
2
w2 + (1− r2)α]β

, p∗− = 0 (26)

and 0 < p∗+ < 1 iff β > α(1−r2)

α(1−r2)+
1
2
w2

.

By (23) and (26),

Π∗
2 = w2 ·

1
2
r2 + α(1− r2)

1
2
w2 + α(1− r2)

(27)

In this case, U of both types has expected payoff

Π+∗
1 = Π−∗

1 =
1
2
r1

1
2
− α(w1 − r1)

(28)
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Table 4: Equilibrium Strategies in the five regions

(p∗+ is the probability of U+ disrupting and harming. p∗− is the probability of U− harming.)
Region U+’s eq strategy U−’s eq strategy R’s eq strategy
1.Pure p∗+ = 1 p∗− = 0 P (BhNnh) = 1

2.
high α
low β

p∗+ = 1 p∗− =
(1−α)(1−r2)(1−β)− 1

2
w2β

(1−β)[αw2+(1−α)(1−r2)]

P (BhNnh) =
1−w1

α−(1−α)(w1−r1)

P (NhNnh) =
αw1−(1−α)(1−r1)
α−(1−α)(w1−r1)

3.
high α
high β

p∗+ = (1−α)(1−r2)

[ 1
2
w2+(1−r2)(1−α)]β

p∗− = 0
P (BhNnh) =

1−w1
1
2
−(1−α)(w1−r1)

P (NhNnh) =
αw1+(1−α)r1− 1

2
1
2
−(1−α)(w1−r1)

4.
low α
low β

p∗+ = 1 p∗− =
α(1−r2)(1−β)− 1

2
w2β

(1−β)[(1−α)w2+α(1−r2)]

P (BhNnh) =
r1

1−α−α(w1−r1)

P (BhBnh) =
(1−α)(1−r1)−αw1

1−α−α(w1−r1)

5.
low α
high β

p∗+ = α(1−r2)

[ 1
2
w2+(1−r2)α]β

p∗− = 0
P (BhNnh) =

r1
1
2
−α(w1−r1)

P (BhBnh) =
1
2
−αw1−(1−α)r1
1
2
−α(w1−r1)

Table 5: Equilibrium (ex ante) Payoffs in the five regions

Region U+’s payoff U−’s payoff R’s payoff
1.Pure 1

2
αw1 + (1− α)r1 (1− β)[α+ (1− α)r2] + β 1

2w2

2 (1+w1)(α− 1
2
)+r1(1−α)

α−(1−α)(w1−r1)
(2w1−r1)α−(w1−r1)
α−(1−α)(w1−r1)

(1−β)αw2+w2
1
2
β

αw2+(1−α)(1−r2)

3
1
2
w1−(1−α)(w1−r1)
1
2
−(1−α)(w1−r1)

1
2
w2

1
2
w2+(1−α)(1−r2)

4
1
2
r1

1−α−α(w1−r1)
r1(1−α)

1−α−α(w1−r1)
w2 ·

α−(2α−1)r2−(w2−r2)β(α− 1
2
)

w2+(1−r2−w2)α

5
1
2
r1

1
2
−α(w1−r1)

w2 ·
1
2
r2+α(1−r2)

1
2
w2+α(1−r2)

Proof of Proposition 2. (i) and (ii) can be verified by Table 4.

(iii) By Table 4, the strategies of U+ and U− are continuous in β within each region. By Table
5, the payoff of R is continuous in β within each region. If we plug in the value of β on the
border line, it can be verified that they are also continuous on the border. By Table 4, R’s
strategy is constant in β within each region. By Table 5, the payoffs of U+ and U− are constant
in β within each region. It can be verified that the value of β on the border line supports any
equilibrium of the adjacent regions. Hence the equilibrium is upper-semi-continuous in β.

The continuity of the equilibrium in β = 0 follows immediately from Jelnov, Tauman and
Zeckhauser(2017) and Table 4.

Suppose β = 1. That is, it is common knowledge that U is of type U+. Consider an
equilibrium where R mixes BhNnh and BhBnh with probability q and 1− q, respectively,
0 < q < 1. In this case, R is indifferent between playing BhNnh and BhBnh. By (1), (2) and
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(15), setting P (H|h) = 1−r2
1−r2+w2

we have

α =
w2

1
2
p+

(1− r2)(1− p+)

equivalently, p∗+ = α(1−r2)
1
2
w2+α(1−r2)

, and

Π∗
2 = r2(1− p+) + w2p+ = w2 ·

1
2
r2 + α(1− r2)

1
2
w2 + α(1− r2)

Since U+ is indifferent with NH and H .

Π+
1 (NH|q) = q[αw1 + (1− α)r1] + (1− q)r1 = Π+

1 (H|q) =
1

2
q

Hence, q∗ = r1
1
2
−α(w1−r1)

and Pr2(BhBnh) = 1− q∗. Note that q∗ ∈ (0, 1) iff α <
1
2
−r1

+w1−r1
. U ’s

expected payoff is Π∗
1 =

1
2
r1

1
2
−α(w1−r1)

.
Consider next an equilibrium where R mixes BhNnh and NhNnh with probability q and 1− q,
respectively. By (1), (2) and (12), setting P (H|nh) = 1−r2

1−r2+w2
we have

α =
(1− r2)(1− p+)− 1

2
p+w2

(1− r2)(1− p+)

and p∗+ = (1−α)(1−r2)
1
2
w2+(1−α)(1−r2)

. R obtains Π∗
2 = 1− p∗+ =

1
2
w2

1
2
w2+(1−α)(1−r2)

.

Since U is indifferent between H and NH ,
Π+

1 (NH) = q[αw1 + (1− α)r1] + (1− q)w1 = Π+
1 (H) = 1− 1

2
q. Hence q∗ = 1−w1

1
2
−(1−α)(w1−r1)

.

Finally, q∗ ∈ (0, 1) iff α >
1
2
−r1

w1−r1
, and U ’s expected payoff is Π∗

1 = 1−
1
2
(1−w1)

1
2
−(1−α)(w1−r1)

. This is
the same outcome obtained if we substitute β = 1 in Table 4 and Table 5.

Proof of Proposition 3. (i) First note that by Table 5, ∂2Πt∗
1

∂α∂β
= 0 and ∂Πt∗

1

∂β
= 0, for t ∈ {+,−}.

By Table 5, we can calculate the derivatives of the equilibrium payoffs with respect to α and β,
respectively, as well as the cross partial derivatives of the equilibrium payoffs with respect to α
and β. We present these derivatives in Tables 6 and 7.

(ii) Since Player R’s payoff within every region is weakly decreasing in β and it is continuous
in β in all regions, we conclude that R’s payoff is weakly decreasing in β for all β ∈ [0, 1].
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Table 6: Impact of α on U ’s Equilibrium (ex ante) Payoff

Region ∂Π+∗
1

∂α
(≥ 0)

∂Π−∗
1

∂α
(> 0)

1 0 w1 − r1
2 (1+w1−r1)(1−w1)

2[(r1−1−w1)α−r1+w1]
2

(2w1−r1)α−(w1−r1)
α−(1−α)(w1−r1)

3 2(1−w1)(w1−r1)

(2αr1−2αw1−2r1+2w1−1)2

4 r1(1+w1−r1)

2[1+(r1−1−w1)α]
2

r1(w1−r1)

[1+(r1−1−w1)α]
2

5 r1(w1−r1)

2[ 12+(r1−w1)α]
2

Table 7: Impact of α and β on R’s Equilibrium (ex ante) Payoff

Region ∂Π∗
2

∂α
(> 0)

∂Π∗
2

∂β
(≤ 0)

∂2Π∗
2

∂α∂β
(≤ 0)

1 (1− r2)(1− β) −α(1− r2)− r2 +
w2

2
−(1− r2)

2 [(2−β)(1−r2)−βw2]w2

2((α−1)r2+αw2−α+1)2
− (α− 1

2
)w2

(r2+w2−1)α−r2+1
− w2(1+w2−r2)

2[αw2+(1−α)(1−r2)]2

3 2w2(1−r2)

(2αr2−2α−2r2+w2+2)2
0 0

4 w2(w2 − r2) ·
(1−r2)(1− 1

2
β)− 1

2
βw2

[w2+(1−r2−w2)α]2
−w2(w2−r2)(α− 1

2
)

w2+(1−r2−w2)α
−w2(w2−r2)(1+w2−r2)

2[α(1−r2−w2)+w2]2

5 2w2(1−r2)(w2−r2)

(2αr2−2α−w2)
2 0 0

U+’s and U−’s payoffs are independent of β within each of the five regions. By Table 5 and
using Maple, we can show that for a fixed α, U+’s and U−’s payoffs are both decreasing across
regions as β increases.

(iii) It can be verified from Table 4 and Table 5.

Proof of Claim 1. In such equilibrium, both U+ and U− assign a probability δ + (1− δ)q on R
playing BhBnh and a probability (1− δ)(1− q) on R playing BhNnh. The payoffs of U+ and
U− if playing pure strategies are

Π+
1 (NH|q, δ) = Π−

1 (NH|q, δ) = (1− δ)(1− q)[αw1 + (1− α)r1] + (δ + (1− δ)q)r1

Π+
1 (H|q, δ) = (1− δ)(1− q) · 1

2
> Π−

1 (H|q, δ) = (1− δ)(1− q)(1− α)

U− mixes H and NH , then Π−
1 (H|q, δ) = Π−

1 (NH|q, δ). The solution in q is

q∗ = 1− r1
(1− δ)[1− α− α(w1 − r1)]

R’s best reply (as a function of the signal and β) is the same as in Γ0. Since Rlow mixes BhBnh
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and BhNnh, we have (see (15))

Plow(H|nh) =
1− r2

1− r2 + w2

(29)

where Plow(H|nh) is Rlow’s conditional probability on U playing H , given nh. By (2),
replacing β with βlow and substituting p+ = 1, we have

Plow(H|nh) =
1
2
βlow + (1− βlow)(1− α)p−

1
2
βlow + (1− βlow)(1− p−)α + (1− βlow)p−(1− α)

(30)

By (29) and (30), it can be verified that

p∗− =
(1− r2)(1− βlow)α− 1

2
βloww2

(1− βlow)[w2 + (1− r2 − w2)α]

Rlow obtains

Πlow
2 (1, p∗−) = r2[(1− βlow)(1− p∗−)] + w2[βlow + (1− βlow)p

∗
−] (31)

= r2(1− p∗−) + w2p
∗
− + (w2 − r2)(1− p∗−)βlow (32)

and since Rhigh plays purely BhBnh,

Πhigh
2 (1, p∗−) = r2(1− p∗−) + w2p

∗
− + (w2 − r2)(1− p∗−)βhigh (33)

Next we need to ensure that Rhigh has no incentive to deviate from BhBnh. By (3) and (4),
Phigh(H|h) ≥ 1−r2

1−r2+w2
and Phigh(H|nh) ≥ 1−r2

1−r2+w2
mus hold. By (1) and (2), for β = βhigh

and p+ = 1, we have

Phigh(H|h) =
1
2
βhigh + (1− βhigh)αp−

1
2
βhigh + (1− βhigh)(1− p−)(1− α) + (1− βhigh)αp−

≥ 1− r2
1− r2 + w2

(34)

Phigh(H|nh) =
1
2
βhigh + (1− βhigh)(1− α)p−

1
2
βhigh + (1− βhigh)(1− p−)α + (1− βhigh)p−(1− α)

≥ 1− r2
1− r2 + w2

(35)

To guarantee the existence of this equilibrium, we need to show that there exist parameters
(α, βhigh, βlow, δ, r1, w1, r2, w2) s.t. p∗− ∈ (0, 1), q∗ ∈ (0, 1) and (34) and (35) are satisfied.
Namely, α < 1−δ−r1

(1−δ)(1+w1−r1)
, βlow < α(1−r2)

α(1−r2)+
1
2
w2

and βhigh satisfies (34) and (35). It can be
shown that such a parameter set is non-empty. For example, if α = 0.55, βhigh = 0.9,
βlow = 0.1, δ = 0.1, r1 = 0.125, w1 = 0.625, r2 = 0.5, w2 = 0.75, such equilibrium exists.
U+ plays pure H , U− plays (0.38, 0.62) over (H,NH), Rhigh plays pure BhBnh, and Rlow

plays (0.21, 0.79) over (BhBnh, BhNnh).

Comparing Rhigh’s payoff (33) to that of Rlow (31), we show that in the equilibrium of this
game R is better off with a higher belief of U being able to disrupt.
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