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EFFICIENCY DESPITE MUTUALLY PAYOFF-RELEVANT
PRIVATE INFORMATION: THE FINITE CASE

By ScOTT JOHNSON, JOEN W. PRATT, AND RICHARD J. ZECKHAUSER!

Individuals have or observe partly private information. They independently choose acts,
possibly including messages. The center may also act. Individuals’ utilities may depend on
all acts and information, including others’ private information. Are there incentives
depending only on public information that make desired behavior a Bayesian equilibrium?

Assume incentive payments are separable and fully transferable. Appropriate incentives
exist either if the center’s information—perhaps solely messages—depends stochastically,
however slightly, on all relevant private information, or if individuals’ relative valuations of
acts, however divergent, are not too dissimilarly affected by different states of nature. More
generally, we give necessary and sufficient conditions for existence whenever the strategy
profile asks agents to reveal all private knowledge relevant to their beliefs about the center’s
information. We also develop equivalences on the possible values of private
information—concepts of similarity of agent types—that are key to resolving existence
questions without such responsiveness or requiring budget balance.

K_.EYWOR.DS: Decentralization, incentives, private information, group decision, proper
scoring, permutation dominance,

1, INTRODUCTION

THE PROBLEMS OF eliciting honest information and inducing appropriate actions,
central challenges for most groups of individuals, are the subject of this paper.
We make no welfare judgments beyond the desirability of increasing any individ-
ual’s expected utility; Pareto optimality is our implicit criterion for group
performance. When we seek to influence individual behavior, it is natural to
introduce monetary incentives, given the substantial drawbacks and social inef-
ficiencies of alternatives such as sodium pentothal, mind control, and torture. Qur
formulation is traditional: a central authority makes a monetary payment (possi-
bly negative) to an individual depending on his actions and additional informa-
tion available to the central authority, including the actions and reports of others.
The central authority may be some overarching ruler, a hired professional outside
the group, a trusted agent within the group, or the group members acting
collectively on their own behalf, as they might in a partnership. The payments
may or may not be constrained to some arbitrary budget, or to balance within the
group.

We assume that individuals, whom we often call agents, are risk neutral. We
derive surprisingly strong positive results. For incentive payments to exist it
suffices that, at the desired equilibrium, the information available to the central
authority—which may consist solely of reports from other individuals—be
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stochastically dependent, howevcr slightly, on all relevant private information of
the individuals. Alternatively, even when there is independence, hence no possi-
bility of monitoring, an effective payment scheme exists if no individual’s
evaluation of potential actions, however divergent from the group’s evaluation, is
too dissimilarly affected by different states of nature. To illustrate, if a couple is
deciding what recreation to pursue, the tennis enthusiast and the movie maven
must both believe rain to be more harmful to the pleasures of tennis.

We describe settings in which the issues mentioned above can be resolved
either positively or negatively. Section 2 introduces the notation needed and
presents a model encompassing all essential aspects of the problem. The infinite
variety of nature is approximated by a finite set of states with positive proba-
bilities. We assume throughout that each agent’s utility has two separable
components. The first component incorporates the effects of the actions and
information of all agents, public information, and quite possibly actions by a
central administration which depend upon these. The second component merely
reflects that agent’s financial payments from or to the central authority.

Section 2 also discusses the relationship of some of the resuits here to results in
recent literature. We use the Bayesian equilibrium concept of Harsanyi (1967-68),
coupled sometimes with Harsanyi’s condition of consistent beliefs. This is well
motivated by Myerson (1985). Although Myerson is not concerned with transfer
payment schemes, this theme is taken up, for instance, by Arrow (1979),
d’Aspremont and Gérard-Varet (1979), and in the special case of auctions, by
Crémer and McLean (1985) and Wilson (1985). Of these, only Myerson and
Crémer and McLean permit, as we do, mutually payoff-relevant information: the
agents’ utility functions may depend directly on the information and actions
(including messages) of other members of the group.

One characteristic common to these papers has been that the center or
mediator is free to choose any mechanism, which includes a choice of strategies
to be implemented, in order to induce an efficient Bayesian equilibrium. Much of
the literature invokes the revelation principle; this says that it suffices to consider
only mechanisms that induce agents to reveal honestly all privately held informa-
tion. By contrast, we find conditions under which a fixed strategy profile can be
implemented using only transfer payments, whether or not the strategy profile
happens to be efficient or completely or honestly revealing of private information.
Thus we do not appeal to the revelation principle or require truth revelation,
although we sometimes specialize our results to that important case. In our
context, the revelation principle is intuitively obvious but confers no significant
technical advantage. Moreover, routine transformation to an equivalent problem
with truth revelation would obscure the implementability conditions, especially
when there are real externalities. We do, however, get our best results under a
responsiveness assumption that can be interpreted as a weakened version of truth
revelation. It requires that the strategy ask agents to reveal any private knowledge
relevant to their beliefs about information available to the central authority.

In Section 3 we present some results ignoring budget balance and assuming
responsiveness. Necessary and sufficient conditions are given for the existence of
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a transfer payment scheme which can implement a given strategy profile.

Section 4 develops the notion of an equivalence on the possible values of
private information, or fypes of agents. This notion can be used to address the
implementation question when the assumption of responsiveness is dropped. In
general the center cannot induce an agent to behave differently depending on
differences of type between which the center cannot differentiate even stochasti-
cally. The more easily the center can differentiate stochastically between two
types, the less “similar” those types are. Finding the correct equivalence, or
notion of similarity between types, is the key to answering the strategy-induce-
ment question.

For example, this enables us to show in Section 5 (assuming consistent beliefs
and responsiveness) that appropriate behavior can always be induced with budget
balancing exactly when no agent is asked to act differently as a function of types
that are “similar” in a particular, constructively defined sense. This sense of
similarity is, in general, strictly weaker than the sense of similarity relevant to the
strategy-inducement question without budget balancing. In fact these two senses
of similarity coincide (a condition which we call (LINK)) if and only if budget
balancing always comes for free when strategy inducement is possible. In the case
of truth revelation, and still assuming consistent beliefs, we show that (LINK) is
equivalent to the discrete case of the compatibility condition of d’Aspremont and
Gérard-Varet (1982),2 thus offering an interpretation of that condition. A special
case of (LINK) is that two types are similar (in either sense) only when they are
equal. This condition is equivalent to d’Aspremont and Gérard-Varet’s condition
B, while their condition F is equivalent to the strong similarity of all of some
agent’s types, which also implies (LINK). It will be clear from our formulation
that there is plenty of scope for (LINK) to hold aside from these two (mutually
exclusive) cases, thus answering a question they raise.

When an agent is asked to act differently given different but similar types,
results depend on the particular shape of that agent’s utility function as well as
on the beliefs of the agents. It turns out that work on what is called announce-
ment-proof equilibria by Green, Hylland, Pratt, and Zeckhauser (1984), and
ex post Nash equilibria by Crémer and McLean (1985) applies here. When certain
results from these papers are translated and generalized to our context, they
combine with the theory of equivalences to form a general picture of the
responsive case. » )

This picture is blurred somewhat when responsiveness is not in force, Never-
theless, Section 4 shows how positive results can be obtained by weakening our
notions of similarity to accommodate responsiveness in a weaker form.

Section 5 is devoted to the question of balancing the budget, assuming
responsiveness. Johnson, Pratt, and Zeckhauser (1988) give further results with-
out responsiveness, both with and without budget balance.

.2 We will show in the Appendix that this is strictly weaker than the compatibility condition given
in d’Aspremont and Gérard-Varet (1979), even in the case of consistent beliefs.
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* 2. THE MODEL

There are n agents in the group. For each ie N={1,2,...,n}, agent i/
privately observes his type r; and chooses an act a; depending only on r; (and
not, for instance on a; for j+ i). After the agents choose g =(ay,..., a,), the
central authority will observe a and the value of a random variable # which
includes all public information and possibly information possessed only by the
center. The center then acts according to a known rule and pays each agent / an
amount 7,(z, a) (depending only on z and a). Although r; will not be observed
by any but agent i, the payment scheme t = (1,, t,,..., t,) is common knowledge.
It may sometimes be convenient to let —co be in the range of ¢, representing
death or some other event, any positive probability of which is worse than losing
one dollar. A budget balance constraint X7_;t,(z,4)=0 for all z and a will
sometimes be imposed. Throughout the remainder of this paper we assume
finiteness:

(FIN) 7 and each 7 can have only finitely many different values.

A strategy for agent i is a function A4; of agent i’s private information
specifying the action agent i will take. We call 4 =(4,,..., 4,) a strategy profile
and say agent i/ follows A4, or follows A if, whenever r; is observed, A4,(r;) is
agent i’s chosen action. We let r_; denote (ry,..., %;_q, ;41,---, I,,), and similarly
fora_,and 4_,.

For each i and r, agent i has a joint probability distribution over the other
agents’ types 7_; and the center’s information Z. We write P(z, r_;|r;) for the
probability that 2=z and 7_;=r_; given type r,. (The center is assumed to
know the functions P(—| —).) These beliefs are said to be consistent (see
Harsanyi (1967-68)) if:

(CON) The probabilities P(z, r_;|r;) are derived from a common joint prior
distribution of (Z, F) using Bayes’ rule.

Although (CON) is commonly assumed, only some results in Section 5 need it
in their proofs and we will not invoke it until then.

The utility function of agent i is of the form V(z, g, r) + W(¢;(z, a)) where V,
is what we call the direct return function, the utility agent i would receive in the
absence of any transfer payments, and #; is some increasing function from R to
R such that W,(0)=0. V; incorporates the effects on agent i of the center’s
action. Agent i is assumed to act so as to maximize his or her expected utility.
Throughout the remainder of this paper we assume risk neutrality:

(RNEUT) For each i, W, is linear.

For convenience, we take W, to be the identity, so that agent i’s utility is
Vi(z, a,r)+t,(z, g) with ¢, separable and fully transferable.
To simplify notation, let

IJi(ailri) = E{ V;(Z’ A—I(F—I)’ a;, f) + tl(Z’ A—i(F—i)9 ai)m: "i} 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which 1s agent i’s expected utility (after observing r;) if everyone else uses the
strategy profile 4 and the payment scheme is . This notation suppresses the
dependence of U, on 4, ¥, and ¢.

Clearly, given some designated strategy profile 4, agent / does not necessarily
have an incentive to follow A4; even if it is assumed that the other agents are
following A_;. A pair (¢, 4) is called an equilibrium if A is a Bayes-Nash
equilibrium ngen t, that is, for all i and r,,

7(A4:(rdln) = maax U(agrn).

Then we say that each agent has an incentive to follow 4 and that ¢ is
A-inducing.

Given a designated strategy profile 4, we seek conditions under which there is
an A-inducing payment scheme, and conditions under which such a payment
scheme can be chosen to balance the budget.

A special case of this model, of additional interest because of its relationship to
the revelation principle (see Myerson (1982)), is that of rruth revelation:

(TR) 4, is a one-to-one function for all i.

This is equivalent for mathematical purposes to the requirement that 4, be the
identity for all i, and corresponds to the case that agents are asked to reveal all
their private information fully. When (TR) is in effect, “A4-inducing” will be
replaced by “truth-inducing.” ’

This model also includes the case that for some functions fj,..., f,, Vi(z, a, r)
=f(C(z,a),r) for all i, z, a and r, where C(z, g) is a choice of action by the
central authority (usually a specified part of a mechanism). If the central
authority is seeking to induce 4 so as to maximize group utility we would have:

(2.1) 2 Vi(z, A(r),r) = 2 Vi(z,a,r) forall z, a,and r.

We call V standard if it satisfies (2.1). Under natural definitions of efficiency,
such as ex ante or ex post Pareto optimality, 4 will be efficient (for a given V)
whenever (2.1) holds, though the converse may fail for weak notions of efficiency.

Another reasonable restriction one could place on the utility profile is that no
agent’s private information can directly affect the utility of another agent:

(2.2) V{(z,a,r)=V(z,a,r;) forallz, a, r,andi.

Either of these assumptions by itself is innocuous:

PROPOSITION 2.1: Given an arbitrary utility profile V, there exist a standard V*
anda ¥ satisfying (2.2) such that any payment scheme t is A-inducing for V iff it is
A-inducing for V* and iff it is A-inducing for V V.

ProorF: For all i, let

Hawn=|;
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let
I}-(G;a ) =E{ V-(z A_(F_)),a; F)l£=r-}

and notice that the expected utilities U are the same whether they are derived
from ¥, V°, or V. It is clear that ¥ satisfies (2.2) and that ¥* is standard provided
L is sufficiently large. Q.E.D.

Thus, when considering the problem of finding 4-inducing payment schemes
for arbitrary utility profiles, one could (though we do not do so here) restrict
attention to standard utilities or to those utilities satisfying (2.2). However (2.1)
and (2.2) taken together have strong consequences. We call a utility profile ¥
satisfying both (2.1) and (2.2) public. Under (TR), d’Aspremont and Gérard-Varet
(1979) have shown that a truth-inducing payment scheme ¢ exists for all public ¥
(by (2.2) one can construct an externality payment which is 4-inducing by (2.1)).
On the other hand our Proposition 3.3 (for instance) shows that there are many
general ¥ for which there is no 4-inducing payment scheme. Thus we will allow
arbitrary utility profiles ¥V, since neither (2.1) nor (2.2) greatly simplifies our
analysis, and since there is real loss of generality in assuming both.

A case considered by Arrow (1979) and by d’Aspremont and Gérard-Varet
(1979) in their work on collective decision problems is that of truth revelation, no
7 and public V. Assuming also that the types are mutually independent, they
obtain analytic expressions for transfer payments that induce honest reporting
(with a balanced budget). Pratt and Zeckhauser (1986) derive these payments
directly as expected externalities. They also allow agents to take actions that
directly affect other agents, to have information other than on preferences,
possibly not independent, and to act and signal repeatedly, simultaneously or
sequentially. However, when one agent’s unsignalled private information affects
others directly, his expected externality may be unknowable by others, which
would prevent the approach from being implemented. Whether or not
efficiency-inducing transfers nevertheless exist is the question addressed in this
paper.

Myerson (1982, 1985) allows for mutually payoff-relevant information, though
there is nothing in his general formulation that corresponds to our restriction to
separable utility functions that are linear in the transfer payments. Thus, for
instance, Myerson’s result that there is no loss of generality in restricting
consideration to the case of consistent beliefs and independent types is not valid
for our model. Myerson defines an incentive-compatible mechanism as one for
which honest and obedient behavior by the agents is a Bayes-Nash equilibrium.
He then characterizes those incentive compatible mechanisms which are also
efficient. Here we focus, rather, on the question of the existence of transfer
payment schemes for which obedience to a given strategy profile is an equilib-
rium.

A special problem of strategy or truth inducement studied extensively in the
literature is optimal auction design. Crémer and McLean (1985), for example,
give conditions under which a seller can extract full surplus from a group of
buyers who have mutually payoff-relevant information. They also use a strong
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equilibrium concept—which they cail ex post Nash equilibrium—and require as
an individual rationality constraint that all buyers have nonnegative expected
returns. Though the question they consider differs somewhat from the questions
that concern us, two of their assumptions relate directly to conditions we employ.
First, they use a condition of monotonicity in the derivative of the agents’ utility
functions to construct payments which induce honesty. The same condition
always implies the existence of truth-inducing payment schemes in our context,
though we give a weaker condition, based on Green, Hylland, Pratt, and
Zeckhauser (1984), which does the same. Also, in Sections 4 and 5 we use a
condition of linear independence of certain probability vectors of which Assump-
tion 4 of Crémer and McLean (1985) is a special case used for a similar purpose.

Another treatment of auctions under incomplete information is given by
Wilson (1984) who finds that a certain double auction is both optimal and
individually rational, assuming independent information, no payofi-relevant in-
formation, truth revelation, and a restricted form of utility function.

Although it is true that, following Myerson (1982); one can essentially reduce
the problem of finding a strategy-inducing transfer-payment scheme to a linear
feasibility problem, we seek simpler or more insightful characterizations where
possible. Our conditions involve only those parameters which are part of the data
of the problem, i.e., the probability assessments, the strategy profile, and the
direct returns. We do not ask for the consistency of inequalities in external
parameters.

For example, as noted in the Introduction, we define a condition (LINK)
which we show is equivalent to the discrete case of the compatibility condition of
d’Aspremont and Gérard-Varet (1982) assuming consistent beliefs and truth
revelation. Unlike the compatibility condition, however, (LINK) is defined in a
way which makes its verification a straightforward (and polynomial-time) compu-
tational procedure. Our conditions on beliefs can be interpreted in terms of
certain notions of similarity on types as discussed in the Introduction. However,
computational complexity of necessary and sufficient conditions for strategy
inducement involving the utility functions as well as the beliefs is (in a certain
formal sense) unavoidable even in the responsive case.

3. RESPONSIVE STRATEGY INDUCEMENT

The strategy profile 4 will be fixed throughout. We will assume that every
action lies in the range of 4 (without loss of generality, since the center can
always punish heavily for actions chosen outside this range, even while balancing
the budget). Hence we may write P(z, a_,|r;) for the probability that =z and
A_,(F_;)=a_, given the type r,.

As mentioned in the Introduction, notions of similarity between different
possible types of an agent will play a key role in our results. The first and most
basic of these notions is strong similarity.

We say two types r; and r/ are strongly similar, and write r; ~ r/, if they give
agent / the same distribution of (A4_,(F_)), Z), that is, if P(z,a_,|r)=
P(z,a_,|r}) for all z and a_,. This says that the conditional distribution of all
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other agents’ acts (under 4) and the center’s information Z is the same given 7, as
it is given r/. Equivalently, under consistent beliefs, whether 7;=r, or r/ is
independent of the other agents’ acts and # jointly. Hence the latter provide no
information whatever distinguishing in any way between 7, and r/ and, con-
versely, this distinction is useless to agent i, in the sense of sufficient statistics or
partitions, for inference about the other agents’ acts and Z. Clearly ~ is a vector
of equivalence relations, one for each agent.

The next condition can be regarded as a weakened form of truth revelation,
though it includes other cases of interest not covered by truth revelation.
Throughout this section we assume responsiveness:

(RESP) A,(r;)) =A(r)=>r~r/.

In words, (RESP) says that the designated strategy profile must ask each agent to
reveal any information relevant to others’ acts and z that he or she observes.
Note that it is implied by truth revelation (TR) since r,=r/ = r;~r/.

In this section we give necessary and sufficient conditions for the existence of a
transfer payment scheme which is A-inducing, assuming responsiveness. The next
section examines the case when (RESP) may fail, and Section 5 examines the
problem of balancing the budget.

Under the assumption (CON) of consistent beliefs, a weaker form of budget
balancing used by d’Aspremont and Gérard-Varet (1982) is expected budge:
balance:

(EBB) E}.1,(Z, A(F))=0.

This always comes for free when there exists an 4-inducing payment scheme ¢,
since we can set t/(z, a) = t,(z, a) — E{t,(Z, A(F))}. The payment scheme ¢’ will
still be 4-inducing, since adding a constant to an agent’s payment cannot alter
incentives, and ¢’ clearly satisfies (EBB).

To motivate the ideas behind the theorems we will look at two fundamental
special cases of responsiveness. These two cases are primitives from which all
other responsive cases can be derived. The first is the case of belief announcement:

(BA) A4(r)=A4,(r)=n~r.

This means that A4, essentially asks agent i/ to announce his beliefs concerning
A_{(7_;) and Z and no more. Clearly (BA) implies (RESP). Under (BA) the
action desired of an agent strictly depends stochasticaily on the other information
available to the center. This makes it possible for the center to induce the desired
action. In an extreme case, if the central authority’s information is the same as all
of the private information, it can simply punish an agent heavily for any
deviation from 4. (BA) guarantees only that obedience to 4 can be monitored
probabilistically, but this suffices for an A-inducing payment scheme to exist.
The second special case of responsiveness, in a sense the opposite of (BA), is
the case that each agent’s type is independent of all information obtained by the
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center not from that agent:
(IND) The distribution of A_,(F_,) and £ is independent of agent i’s type.

Put another way, (IND) says r; ~ r/ for all types r; and r/. Thus (IND) implies
(RESP) trivially. For this case we present simple linear inequalities on the direct
returns only, inequalities that are satisfied if and only if an 4-inducing payment
scheme exists.

(BA) and (IND) are incompatible conditions unless 4 is a degenerate, single-
action strategy profile.

3.1. Belief Announcement

The special case of the problem under (BA) in which the direct returns are zero
has been studied in the literature on proper scoring rules. It is well known (e.g.,
Good (1952), van Naerssen (1962), Mosteller and Wallace (1964), Winkler
(1967)), that an expected-value maximizing agent i can be induced to state his
true distribution of (£, 4_,(F_;)) by paying him the logarithm of his stated
probability P'(Z, A_,(F_;)). Under (BA), therefore, the central authority can
make agent i’s payment such a large multiple of this log likelihood that on
average the benefit to agent i from the increased payment for signalling the
correct distribution exceeds any benefit through agent i’s direct return from
choosing to deceive.

LeMMA 3.1: Let S be any finite set and P and P’ be arbitrary probability mass
functions on S. Let g(P, P')=X¥ < sP(s)In P'(s). Then for each P, g(P, P’) is
strictly maximized at P’ = P.

ProOF: By Jensen’s inequality, g(P, P') — g(P, P) =X P(s)In[P'(s)/P(s)] <
In[ZP(s)P'(s)/P(s)]=0if P’ # P, See also references above. Q.E.D.

If (BA) fails, the existence of an A-inducing payment scheme depends on the
utility profile (this is made precise in Theorem 3.8). To analyze this we turn to the
case where (BA) fails maximally.

3.2. Independent Information

To avoid cumbersome notation, we use the following abbreviation: for any i,
and 4, and any function f depending on the information and the actions of the
agents, let

Ef(a;|r) = E{ (&7 r A_(FL), ai)|"i} -

In the case of independent information the existence of an A4-inducing pay-
ment scheme ¢ is equivalent to the existence, for each i, of quantities ¢(a;) such
that EV,(a;|r;) + c(a;) is maximized at a,= A;(r;). If there is such a function c,
we can let 1,(z, a)=c(a,;) and ¢ will be 4-inducing. Conversely, if (z, 4) is an
equilibrium pair we can let ¢(a,) = Er,(a;|r;), which does not depend on the
choice of r; by the independence assumption.
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If for a given i there is a function ¢ as above, then we will call the pair
{EV,, A;) a transfer maximum. More generally, if B is a set of types for agent i,
we say (EV,, 4;) is a transfer maximum on B if there exists a real-valued
function ¢ of agent i’s actions such that EV(a,r;)+ c(a;) is maximized at
a;= A,(r,) for all r,€ B. One would like a straightforward way of checking this
property. For example, suppose 4, is the identity and B = {1,2}. Then (EV,, 4;)
is a transfer maximum on B if and only if there exist two numbers ¢; and c,
such that

EV,(1]1) + ¢; = EV,(2|1) +¢,, and
EV(2]2) + ¢ = EV,(1]2) + ¢;.

Adding the inequalities together yields
31)  EV(1]1) + EV(22) > EV;(2]1) + EV(1]2)
which is therefore a necessary condition for (EV}, 4;) to be a transfer maximum
on B. Setting ¢; = EV;(2]2) and ¢, = EV,(1|2), we see that (3.1) is also sufficient.

For a more general example, we get from Crémer and McLean (1985) that in
the case where B={1,...,k} and 4, is the identity (i.e., (TR) holds), the
following condition is sufficient for (EV;, 4;) to be a transfer maximum on B:
(3.2) EV,(m+1)l+1) - EV,(m|l+1) > EV,(m + 1|l) — EV,(m|l)

forall/<k and m<k.
This requires the cross-difference of EV; with respect to / and m to be nonnega-
tive. However, this condition is far from necessary for k > 2.

The appropriate generalization of (3.1) is straightforward except possibly in the
absence of truth revelation when for some action a; there may be several types r;
such that 4,(r;) = a,. A representative function is a function r from the actions in
A,(B)={4,(r): r,EB} to the types in B such that A4,(r(a;))=a; for all
a; € A;(B). Under (TR) (where 4; is one to one) there is only one such function,
namely the inverse of 4,. (In general r is sometimes called a partial inverse to
A;)

We call 4; permutation dominant for EV; on B if:

(PD)  For all permutations 7 of 4;( B) and all representative functions r,

Y EV(alr(a))= X EVi(w(a)ir(a)).
@ €4,(B) a,€4,(B)
Here A,(B) is the range of 4; on B, so that 4, is a function onto 4,(B). If B
consists of all possible types for agent i we simply say that A4, is permutation
dominant for EV,.

If A,(B) consists of only one action, then permutation dominance is trivially
satisfied as (PD) becomes an equality in a single summand. If 4, is the identity
and if B = {1,2), (PD) is precisely the condition (3.1).

1t is easiest to interpret permutation dominance when B={1,2,..., k} and 4,
is the identity. In this case (PD) becomes

k k
Y Ev.()1) = ¥ EV,(=(D))I) for all permutations 7 of {1,...,k}.
=1 =1
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This says that in the k X k matrix { EV;(J, j): 1<I<k, 1 <j<k}, the sum of
the elements along the main diagonal is at least as big as the sum of any other &
elements picked with one from each row and one from each column. This gives
k! — 1 inequalities, though efficient algorithms can reduce the number of calcula-
tions to the order of 2%.

In general, note that if B C B’ then permutation dominance on B’ implies
permutation dominance on B, that is, permutation dominance is more easily
satisfied on smaller sets of types.

LEmMMA 3.2: (EV, A,) is a transfer maximum on B iff A; is permutation
dominant for EV, on B. In this case we may take

c¢(a;) = min { kil [EVi(Ai(rik)l"ik)
—EV,(4;(r¥* k)]s m>1, rkeB
forl<sk<m+1, andA(r}),..., 4,(r) are distinct}
for a, € A,(B) ( provided we take c(a;) sufficiently small for a; & A;(B)).

This is proved in the Appendix. The choice of ¢ in Lemma 3.2 is by no means
unique even up to an additive constant. The case of this lemma when 4, is the
identity is indicated in Green, Hylland, Pratt, and Zeckhauser (1984).

If B is not too large it should be much easier to check permutation dominance
than to try to verify directly whether there is a ¢ such that EV,(a;|r,) + c(a;) is
maximized at a;=4,(r;).3

From the remarks above we get:

PROPOSITION 3.3: Under (IND), there exists an A-inducing payment scheme t iff
for all i, A, is permutation dominant for EV,(a;|r;). In this case we can choose t to
be budget balancing.

Proor: All except budget balancing follows immediately from Lemma 3.2
since we are assuming finiteness (FIN). To get budget balancing, let

1
ti(z,a) =c(a;) - n—1 Zc(aj)
J#i
with ¢ as in the Lemma. Clearly ¢ is budget balancing, and since agent i has no
control over a; for j # i, his incentives are as if #;=¢. Q.E.D.

3If Bis large, however, permutation dominance is nontrivial to check. It is equivalent under (TR)
to a form of traveling salesman problem which is known to be NP-complete (for instance, TSP-
SUBOPTIMALITY in Lawler, Lenstra, Rinnooy Kan, and Shmoys (1985)). Any efficient algorithm
for the usual travelling salesman problem gives an efficient algorithm for checking permutation
dominance. However, by the next proposition the 4-inducement problem is itself NP-complete, so
there is probably no polynomial-time algorithm for checking 4-inducement.
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3.3. The General Responsive Case

Although the Lemmas above seem to apply only to the two fundamental cases
mentioned so far, they can be used to resolve the general responsive case.

Given any r; we define ~[r] to be {1/: r/ ~r;}, the equivalence class of 7
under ~ . We call any such class an alikeness-class for agent i.

The first main result follows easily from Lemma 3.2.

THEOREM 3.4: Given direct return functions V and a strategy profile A, if there is
an A-inducing payment scheme, then for all i and all alikeness classes B for agent
i, A; is permutation dominant for EV; on B.

PrROOF: Suppose (¢, 4) is an equilibrium pair. For a,€ 4,(B) let c(a;)=
Et,(a,|r;) where r, € B. As (1, 4) is an equilibrium, EV](a;|r;) + Et,(a;|r;) must
be maximized at a,=A4,(r;) for all r,&B. But this means EV(A4,(r)|r;)+
c(A;(r)) = EV(a;|r)+ c(a;) for all a;€A,(B). So (EV, 4,) is a transfer
maximum on B and therefore, by Lemma 3.2, 4, is permutation dominant for
EV,on B. Q.E.D.

Thus A4-inducement is impossible if permutation dominance fails on any
alikeness class of any agent. Notice that the above proof made no use of (RESP).
Responsiveness is essential only for our positive results in this section.

Given 4, each r; corresponds to an action, namely A4;(r;). Without truth
revelation one action may correspond to more than one type. Under responsive-
ness, however, each action a; for agent i corresponds to a unique probability
distribution over Z and A _,(7_;) (which we write as P(— |a,)). If two actions a,
and a/ correspond to the same distribution, then we say a; is strongly similar to
a! and write a;~ a{. That is, a; ~ a/ iff there exist r;~r/ with a,=A4,(r;) and
a] = A;(r/). With this notation (BA) is equivalent to a; ~ a} iff a;=a/.

THEOREM 3.5: Under (RESP), given V and A, there is an A-inducing payment
scheme t (not necessarily balancing the budget) iff, for all i and all alikeness classes
B for agent i, A; is permutation dominant for EV, on B.

PrOOF: Theorem 3.4 gives us the necessity, so we need only prove sufficiency.

We will assume that — oo is a valid payment. If finite payments are required we
can always find an M large enough so that —oo can be replaced by —M
throughout without affecting the validity of the result.

Since for each i and each alikeness class B, 4; is permutation dominant for
EV, on B, we have from Lemma 3.2 that (EV}, 4;) is a transfer maximum on B
for each B. Let ¢; be a real-valued function such that EV,(a;|r;) + ¢;(a;) is
maximized among the a; € 4,(B) at a;=A,(r;), for each alikeness class B and
r,€ B. Now let fi(z,a)=1InP(z,a_;a;). Here #,(z,a)= —co is possible (if
=z and A_,(F_;)=a_, is impossible given a,). Invoking Lemma 3.1 we see
that Ef,(A4,(r)|r) = Ef,(4,(r))|r,), with equality holding iff 7 ~ r/.
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Let t,(z, a)=Li(z,a)+ c;(a;) for all i, z and g. If L is sufficiently large,
then a best action for any agent i with any type r; must maximize Ef,(a;|r;) and
must therefore be strongly similar to 4,(r;). Among the actions strongly similar
to A,(r;), Ef,(a;|r;) is constant and EVj(a;|r;) + ¢;(a;) is maximized at a;= A, (r;)
(by definition of c¢). Hence 4;(r,) is a best action for agent i with type r; and
(¢, A)is an equilibrium. Q.E.D.

COROLLARY 3.6: Under (TR), given direct returns V, there is a truth-inducing
payment scheme t (not necessarily balancing the budget) iff, for all i and all
alikeness classes B for agent i, truth is permutation dominant for EV; on B.

3.4. Conditions on Beliefs Only

The conditions in Theorem 3.5 involve both the beliefs of each agent and their
direct returns. As d’Aspremont and Gérard-Varet (1982) do in their situation, we
now give conditions involving only the beliefs of the agents (and the strategy
profile 4).

First we observe that it does not matter whether or not we require ¥ to be
standard, even without assuming responsiveness, and even with budget balancing,.

PROPOSITION 3.7: For any strategy profile A, the following are equivalent.
(a) For all V there is an A-inducing payment scheme. (b) For all standard V there
is an A-inducing payment scheme. (c) There is a payment scheme t such that:

Et,(A,(r)Ir) > Et;(a;lr;)  foralli, r;, anda,+ A,(r;).
These remain equivalent if “payment scheme” is replaced throughout by “budget-

balancing payment scheme.”

PrOOF: (a) < (b) by Proposition 2.1,
(a) = (¢): Define ¥ by

Yz ar) = {1 if a,.¢:4,.(r,-) and a_;=A_,(r_;)
0 otherwise.
Under (a) there is a ¢ such that:
Et,(4,(r)r) = EV,(4;(r)Ir) + Et,(A;(r)in)
> EV,(a;ir;) + Et;(a;lr;)
=1+ Et,(ajjr,) > Et,(a,lr)
forall i, r;, and a;# 4,(r;).

Hence (c) holds.

(c) = (a): Given ¢ as in (c) and given any direct returns ¥, by finiteness there is
an L large enough so that Lt is 4-inducing for V. Clearly this proof works in the
budget-balancing case as well. O.E.D.
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In the case of budget-balancing, truth revelation, and no Z, condition (c) above
is the same as Condition B of d’Aspremont and Gérard-Varet (1982).

TueoREM 3.8: Under (RESP), (BA) holds for all i< for all V there is an
A-inducing payment scheme.

ProoOF: = : This follows from Theorem 3.5 since under (Bs) an alikeness
class B for agent i corresponds to a particular action a; such that r,€ B iff
A,(r;) = a,. Permutation dominance holds trivially on such an alikeness class.

< If (BA) fails for some i, then there are types r; ~ r/ such that 4,(r;) # A4,(r7)
(by (RESP)). But then for any ¢ satisfying (c) of Proposition 3.7,

Et,(4,(r)ir) > Et(A,(r)Ir;) = Et,(A4;(r/)ir!) > Et;(A4,(r)Ir)
= Et,(4,(r)In),

a contradiction. Q.ED.

As indicated in Section 2, we cannot replace “standard” by “public” in part
(b) of Proposition 3.7. The result proved by d’Aspremont and Gérard-Varet
(1979) that there always exists a transfer payment scheme for public ¥ in the
truth revelation case generalizes to the case of responsiveness.

PROPOSITION 3.9: If V is public and if (RESP) holds, then there is always an
A-inducing payment scheme.

ProOOF: Let

(z,a)= ZE{I/}(Z, g,Fj)lai} + Lln P(z,a_,a;) foralli.

J=i

If L is large enough, a best act for agent i must be strongly similar to 4,(r,).
Among such acts, the total expected utility for agent i is equal to his expectation
of the group’s total direct return, which is maximized at a;=4,(r;) since V is
public. Q.E.D.

Assuming consistent beliefs, &’ Aspremont and Gérard-Varet (1982) show that
this payment scheme can be chosen to balance the budget on expected value, a
fact that also follows from the remarks at the beginning of this section.

4. GENERAL STRATEGY INDUCEMENT

This section presents an approach to the implementation question when
responsiveness is not assumed. As noted in the last section, the permutation-
dominance requirement in Theorem 3.4 does not depend on responsiveness.
However, the converse of Theorem 3.4 is false, as the next result shows. For this
we consider an assumption used in Crémer and McLean (1985).
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4.1. Complete Distinguishability

For each agent i we define the belief matrix Q, with rows indexed by the
alikeness classes for agent i and columns indexed by all possible values of
(z, A_;(r_;)). If B is an alikeness class for agent i and r,€ B, let Q;(B,z,a_;)
be P(z, a_;|r;). By the definition of alikeness class, this value depends only on B
and not on the particular representative 7; in B. The rows of Q; are precisely the
different possible beliefs agent i could have about 7 and A _,(7_;). We call the
alikeness classes completely distinguishable if:

(CD)  For every i, the rows of Q, are linearly independent.

This condition is used in Crémer and McLean (1985) (their Assumption 4) to
construct a payment scheme where a seller can extract full surplus from a group
of buyers in an auction. An indication that something like this condition is
needed for A-inducement is given by the following theorem.

THEOREM 4.1: Given the designated strategies A_; of the other agents, if the
alikeness classes for agent i are not completely distinguishable (i.e., if (CD) fails),
then there is a standard V and an A; such that A; is permutation dominant for EV,
on B for all alikeness classes B for agent i, but there is no A-inducing payment
scheme.

PROOF: Suppose Q;(B;) =L, pm(B)Q;(B). Pick a? +a} and let

a’ ifr,e B, m(B)>0,and B+ B,
Ai(ri)= a1

otherwise,

and let
ifa=A(r),
0 otherwise.

P(a,r) = {

Let V= — V and V= 2V for j # i. Clearly 4, is permutation dominant for EV;
on B since there is only one element of 4; (B) for each B. Suppose (I, A) is an
equilibrium and thus gives the agents an incentive to act according to the group
optimal strategy profile 4. Since agent i’s interest is directly opposed to that of
the group, we must have

Et,(a|B) > Et;(a}|B) if m(B)>0and B+ By,

Et,(a®|B) < Et;(a}|B) otherwise.
But then Et,(a|By) = Ly, pm(B)Et(al|B) > Lp.pm(B)EY (at|B) =
Et,(at|B,), which is a contradiction. Q.E.D.

This theorem suggests that somewhat different conditions from those of
Section 3 will be needed when responsiveness is not assumed. One way to extend
the results of Section 3 is to force a condition like responsiveness to hold by
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enlarging the alikeness classes of an agent. This method is explored in 4.2 using
the general notion of an equivalence. Alternatively we can ask for some form of
linear independence in the matrix Q; such as complete distinguishability and use
this (in a way similar to Crémer and McLean) to construct an A-inducing
payment scheme. These two approaches are combined to give more general
positive results in Johnson, Pratt, and Zeckhauser (1988, Section IV.3).

4.2. Equivalences

An equivalence p is an n-tuple (p,,..., p,) where for each i, p, is an equiva-
lence relation on the possible types of agent i. (We will write r,pr/ in place of
r,p;r! since the added subscript is unnecessary.) An equivalence p partitions the
set of possible types of each agent i into equivalence classes, which we will call
p-alikeness classes for agent i or pralikeness classes. An equivalence on actions is
defined similarly.

Examples of equivalences include the two trivial ones, A (equality) and Vv,
where r,Ar/ iff r,=r/ and r,vr/ for all r, and r/. Of course ~ is an
equivalence. There is also an equivalence & naturally associated with the strategy
profile 4 defined by r,ar/ iff 4,(r;)=4,(r/).

Given two equivalences p and o, we call p finer than ¢ and write p< o if
every p-alikeness class is contained in a o-alikeness class (i.e., if o1/ = r,or/).
Thus A is the finest equivalence while ¥ is the coarsest. In general < is only a
partial order on the set of equivalences since two equivalences may be incompa-
rable. We also define the intersection pNo by r(pno)r! iff rpr! and ror/.
Clearly this always gives another equivalence which is the coarsest equivalence
finer than both p and o.

An equivalence p is called responsive if a < p, i.e., if A;(r;) =A4,(r/)= rpr/. If
p is responsive, then it induces an equivalence on actions (which we also denote
by p) by letting 4,(r;)pA,(r/) iff r,pr/. In fact this gives a one-to-one correspon-
dence between responsive equivalences and equivalences on actions.

Many of our assumptions from Section 3 can be expressed in terms of these
equivalences. Specifically,

(RESP) =a<~,
(BA) Sa=~,
(IND) o~=y,
(TR) Sa=A.

1t is clear how any one of (BA), (IND), and (TR) implies (RESP).

Proper scoring works on the basis that an agent’s action can be interpreted as
announcing a belief about other information available to the center. We therefore
focus on equivalences which can be defined in terms of such beliefs. An i-external
event is any subset e of the possible values of (z, a_;), and we let P(e|r;) denote
the probability that (Z, A_,(F_;)) € e given type r. Given a set S; of i-external
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events for each i we may define an equivalence ext(S) by

‘4.1) riext(S)ry iUf P(elr;)=P(elry) foralleess,.

Informally, (4.1) says that r; and r/ are ext(S)-alike just when they correspond
to the same beliefs about those events concerning the information available to the
center which lie in S;. We call any equivalence which can be defined in this way
an external equivalence.

For example if S; consists of all i~external events for each i, then ext(S) is just
~ (of course, it suffices here to take only all singleton events {(z, a_;)} for each
i). At the other extreme, if S, is empty for each i, ext(S) is the trivial equivalence
v.Thus ~ is the finest external equivalence while v is the coarsest.

If p is external it may be definable from many different S. Even when p is
not external, however, there is a canonical vector of event sets S(p)=
(Si(p), .-+, S,(p)) given by

S;(p)={e: ror/=Plelr,) =P(e|r/)} = U S;.
S: p<ext(S)
This is the set of all external events which are stochastically independent of the
types within every p-alikeness class. We call ext(S(p)) the external closure of p
(since it is the finest external equivalence coarser than p), and we denote it by p.
Of course, p is external iff p = p. If p is responsive and if e € S;(p), then we let
P(ela;) be P(e|r,) where a;=A/(r;) and note that this is well defined. An
important equivalence when responsiveness is not assumed is &, the smallest
equivalence which is both responsive and external.
Thus we have the following picture of equivalences:
e defines external

~

A< @ < every external responsive o ) < V.
a<

M

{p defines responsive

If b is a p-alikeness class for agent i and if e € S;(p), then we define P(e|b) to
be P(elr;) for some r; € b. By definition of S;(p), this definition is independent of
the particular representative r; of the alikeness class b.

If we now replace ~ by @, the positive half of Theorem 3.5 still holds:

THEOREM 4.2: If, for all &-alikeness classes B, A; is permutation dominant for
EV, on B, then there exists an A-inducing payment scheme t.

This is proved as a corollary of a more general result in Johnson, Pratt, and
Zeckhauser (1988, Corollary 1V.3).

5. BUDGET BALANCING

Until now we have ignored the constraint of budget-balancing:

i

(BB) > t,(z,a) =0 forall zand a.

i=1
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This has been a prime concern for many authors. In the case of public ¥ and
responsiveness it is the only case of difficulty, in view of Proposition 3.9, and
d’Aspremont and Gérard-Varet in (1979, 1982) have studied the budget balance
problem for the more general case of compact distributions.

We will not require ¥ to be public, though some of our assumptions are related
to those in d’Aspremont and Gérard-Varet (1979, 1982). As before, the situation
is simpler under responsiveness (RESP), and we assume it here. Johnson, Pratt,
and Zeckhauser (1988) give comparable results without responsiveness. Section
5.1 studies the budget balance problem for given ¥V, while 5.2 presents results
involving conditions only on the agents’ beliefs.

5.1. Budget Balancing Under Responsiveness

Just as ~ was the important equivalence in Section 3, there will be a key
equivalence B for the budget-balancing problem. In the responsive case without
budget balancing we constructed payments depending on In P(z, a_;|a;) which
induced 4, to within ~ -alikeness. The difficulty with this if we are trying to
balance the budget is that for any j#i, agent j cannot pay any part of
In P(z, a_;|a;) without (possibly) changing his incentives. We can solve this
problem if we replace P(z, a_,|a;) by P(z, a_,_;|a;). If agent j pays a function
of this to agent i/, it will not affect the incentives of agent j. With an appro-
priate informational assumption In P(z, a_;_;|a;) might also induce 4, up to
~ -alikeness, though in general it will only work up to a weaker alikeness,
requiring permutation dominance on larger classes for full A-inducement. If
some property corresponding to (BA) held with respect to (z, a_;_;) then, using
the techniques of Section 3 we could always balance the budget while induc-
ing A.

We can get by with weaker assumptions however. The remarks above motivate
the first stage in the construction of the equivalence 8 which will play a crucial
role in budget balancing. Before presenting this construction, some more notation
is useful.

Let p[r] denote the p-alikeness class of r;, i.e., the set of types r;/ such that
r/pr;. Extending the notation introduced in Sections 3 and 4 for expressing
probabilities, we write p[r;] within a probability expression to indicate the event
Fpr;. Thus, for example, P(z, r_;_;, p[r;]|r;) is the probability that 7 =z, F
r_;_; and Fpr; given type r; for agent i.

If p is responsive (as any external equivalence is if (RESP) is assumed), let
pla;] denote the p-alikeness class of a;,, We will use abbreviations such as
P(z,a_,_;, pla;]|r,) for agent i’s probability that =2z, 4_, (F_,_;)=a
and A4;(7)pa; given type r;.

We construct a sequence p', p% ... of external equivalences inductively as
follows (always assuming (RESP)).

Let p' = v, so that r,p7/ for all i, r, and r/. Given p*, define p**! by r,p**1r/
iff, for all j+# i, all a_; and all z,

(1) P(z, a_i—j» pk[aj]Iri) = P(z, a_i—p» Pk[ajll'}')-
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That is, r, and r} are p**l-equivalent if, for each j# i, they correspond to the

same joint beliefs about the actions of all agents but agent j, and the action of
agent j up to p*-equivalence. The point of this construction is, once we are
guaranteed that A4 can always be induced to within p*-alikeness, we are free to let
agent j make payments which only depend on the p*-alikeness class for his
action. Doing so may allow us to induce 4 to within a stronger alikeness, and so
on.

This sequence has the following properties. (i} p* is external, and therefore
responsive for all k> 1. (ii) p**1 < p* for all k> 1. (iii) There exists a K with
p*=pX iff k> K. (K is the stage at which the inductive construction stabilizes.)

PROOF: (i) p' = v, which is external as already noted. Assuming p* is external,
we have ~ < p* and therefore a < p* by responsiveness. Thus p*[a;] is defined
and p**! is external.

(ii) Clearly p?< ¢ = v. Suppose inductively that p* < p*~L If rp**1r/ then
for all j+i, a_; and z,(1,) holds. Summing (1,) over all p*-alikeness classes for
agent j which lie in the p*~!-alikeness class of a; gives (1,_;) and hence r,p"r;.
Thus p**+! < p*.

(iii) This follows from (ii) and finiteness. Q.E.D.

We define 8 to be pX where K is as in (iii). Thus 8 satisfies:

(5.1) For all i, r, and r/: r;Br/ if and only if for all j+i,all a_; and all z,
) P(z,a_;_; Blajlin) = P(z,a_;_j, Bla,]Ir). '

(In fact, B is the coarsest such external equivalence.) If there are only two agents
and no 7, this process gives p¥ = v for all & and hence 8 = v . Otherwise it is not
hard to show that K< 3 + X7 ,(T; — 2) where T; is the number of possible types
for agent i. In particular, if there are only two possible types for each agent,
K < 3. However, given any k and n > 3, there exist consistent beliefs of n agents
such that the construction above does not stop for at least k stages (i.e., K > k).
In most practical cases a calculation of B should take only a few stages.
Since B is external, we have ~ < 8.

THEOREM 5.1: Under (RESP), if for all i and all B-alikeness classes B for agent
i, A; is permutation dominant for EV, on B, then there exists an A-inducing,
budget-balancing payment scheme ¢.

PrOOF: We define a sequence of payment schemes ¢, 15=3 .. ! such that
for all k:
(2k) EVi(Ai(ri)lri) + Et:‘(Ai(’i)Vi) > EVi(ailri) + Etxk(ailri)
for all i, r;, and a, such that a;p*4,(r;);
(30) 3 tF(z,a) =0 forall z and a.
i=1

This construction proceeds by backward induction. As A; is permutation
dominant for EV; on B for any B-alikeness class B, we have from Lemma 3.2
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that (EV,, 4;) is a transfer maximum on B for each such B. Let ¢; be a
real-valued function such that for every r,, the maximum of EV,(a;|r;) + c;(a;)
over the a; € B[A4,(r)] is attained at a;=A,(r;). Let

1
tX(z,a) =¢(a;) ~ p— IACHE
ji

Then (2) holds, since the second term in the definition of ¢X is independent of
agent i’s action, and (3x) holds easily.
Suppose now that we are given a t**1 satisfying (2,.,) and (3;.,). Let

_flnx ifx>0,
o () =124 itx=0

and let
f(z,a) = ¥ Iny Pz, a_;_;, p*[a;]la;)

ji
- Z ]‘nMP(z’a—i—j’ pk[ai]laj)'
i#i

By Lemma 3.1, if we take M to be oo so that In, x is just Inx, then
ETE(A,(r)\1) = Ef¥(a}\r,) for all a} such that a/p*4,(r;) (notice that the second
term in the definition of ¢f is constant on p*-alikeness classes), with equality iff
alp**4,(r,). By (FIN) there is a finite M large enough so that the above still
remains true. Let t5(z, @) = t¥*Y(z, @) + Lf¥(z, a) for all i,z and a. If L is
sufficiently large, then for any agent i and any type r;, a best action from the
p-alikeness class of 4,(r,) for agent i must maximize Ef,(a,, r;) and must
therefore be p**-alike to 4,(r;). But among the acticns which are p**!-alike to
A,(r), Ef,(a,|r,) is constant and Etf*(a,|r,) is maximized at A,(r;) (by the
induction hypothesis). Thus ¢* satisfies (2,), and by its definition (and the
induction hypothesis) it satisfies (3,). So the induction argument is complete.

As gt = v, 1! is budget balancing and 4-inducing, since we are assuming that
each agent i must choose an action in the range of 4,. Q.ED.

Comparing this result with Theorem 3.5 we see that the hypotheses of Theorem
5.1 are necessary as well as sufficient under the assumption 8= ~ . In fact, we get
necessary and sufficient conditions under the following weaker assumption:

(LINK) a<~ and for some i, 8;= ~;.

This condition says that the inductive construction of B eventually collapses to
give the equivalence ~ for some agent i. Later (Theorem 5.7) we will show that
(CON) and (LINK) together imply 8=~ (i.e, ;= ~; for all j). A special case
of (LINK) is Condition F of d’Aspremont and Gérard-Varet (1982) which states
that some agent’s type is independent of the other agents’ types (and of ) so that
~;=V;=p,;. Theorem 3.5 and Theorem 5.1 combine to give the following
corollarv.
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COROLLARY 5.2: Under (LINK) (and therefore (RESP)), there is an A-induc-
ing payment scheme <> there is a budget-balancing, A-inducing payment scheme

< for all j and all ~ -alikeness classes B for agent j, A; is permutation dominant
for EV; on B.

Proor: The only thing left to prove is sufficiency of (LINK) for budget
balancing. So suppose 8;= ~;. By the same argument as used in the proof of
Proposition 3.3, we can find a budget-balancing ¢X*! such that

EV(A,(5)ln) + B (4,0r)in) > B i) + B (e

for all j, r;, and a; such that a;~ 4,(r)).
For j#i, let iX(z,a)=InP(z,a_ja;) and let tf(z,a)=1f"1(z,a)+
L(f¥(z, a) — Eff(a;la,)) where L s large. Let 1f(z, a) = (2, a)
+LY,,(Eff(a;la;) — if(z, a)) so that t¥ is budget-balancing. If L is suffi-
ciently large, EV(a;ir;)+ Etf(a;|r;) is maximized at a;=A;(r;) for all j+i
and all ;.
For agent i, if a,Ba/, then

Eif(afla,) = EtF*Y(ala,) + L( X Eif(afla)) - Eif(afla)

J#i
= EtiK“( afla;),
since we actually have a; ~ a/ by (LINK). Thus (2;) and (3x) of the proof of

Theorem 5.1 hold and the rest of the induction argument of that proof now
applies. Q.E.D.

COROLLARY 5.3: Under (LINK) there is a budget-balancing, A-inducing pay-
ment scheme for all public V.

Proor: This follows immediately from Proposition 3.9 and Corollary 5.2.
Q.E.D.

It can be shown that under the assumption of consistent beliefs, (LINK) is
equivalent to a compatibility condition which we denote by (C). It is the discrete
case of the compatibility condition of d’Aspremont and Gérard-Varet (1982). In
the Appendix we define (C) formally and prove the following proposition.

PROPOSITION 5.4: Assuming (CON), (TR), and no Z, (LINK) < (C).

As d’Aspremont and Gérard-Varet showed in (1982), the converse of Corollary
5.3 is not true. Their counterexample can be generalized* to show that given
(CON), no %, and only two agents each with two states of the world, there is
always a budget-balancing, truth-inducing payment scheme for any public V. Of

4 The details of this demonstration are rather lengthy and are not included here.
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course, in this case (LINK) is equivalent to (IND) and is therefore far from
necessary for the conclusion of Corollary 5.3.

Our next result is an impossibility result for budget-balancing and relies on the
assumption (CON) that agents have consistent beliefs.

Assuming (CON), let P(z, a) denote the probability that 7=z and A(F) =g
and let P(a/|B[a;]) denote the conditional probability that 4,(7) = a/ given that
A(F)Ba;. We will also use similar abbreviations following the same pattern.
Given a direct return V, we define a modified direct return ¥’ such that ¥,/ gives
agent i/ the same direct return for actions in the same B-alikeness class:

(52) Vi/(z,a,r)= X P(allBla))Vi(z,a_,a],1).

aiBa;

The sufficient conditions for budget-balancing 4-inducement given in Theorem
5.1 fail to be necessary. This is not surprising, since these conditions do not
involve any utility comparisons between agents, while budget balancing is a
matter of making transfers between agents. Our next theorem derives necessary
conditions for budget balancing in the case of consistent beliefs and responsive-
ness.

THEOREM 5.5: Under (CONY) and (RESP), if V is such that
(s3)  E(L(a40).5) <E(Zv(2. 4(0).5)).
i i
then there is no budget-balancing transfer payment scheme which is A-inducing.

PROOF: Suppose ¢ is such a payment scheme. Let a,=A,(r;) and a]=A4,(+/)
to simplify notation. As ¢; is 4inducing, we must have

EV,(aj\r) + Et;(a,|r;) > EV(a{|r;) + Et;(a}\r;)

and
EVi(aj|r!) + Etj(af|r!) = EVi(a)|r!) + Et;(a,|r?).
Adding these together and multiplying by P(r,)P(r/) gives:

Z [P(Z, Q)P(I}') —P(Z’a—i’ aa{)P(ri)I(ti(z’ Q) —f,-(z, a_;, an,))

= ~E [P(z’[)P(ri’)(Vi(z’Ai(r—i)’a;:f) - Vi(z7A—i(ri)9ai’r))
—P(z,r_i,r,.’)P(r,.)(V,-(z,A_,-(r_i),a{, r_ir?)

- Vi(zv A_(ro)aprey, "i'))]-
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Summing this over all pairs r; and r/ such that r,8r/, and dividing by P(B[r;]),
gives
2 o,(z,a)t,(z,a) > EV/ (2, A(F), F) — EVi(Z, A(F),

z,a

)

I~

where

0,(z,a) =P(z,a) - P(z, a_;,Bla;1)P(a;1B[a;]).

The proof will be complete once we have shown that o;(z, a) = a(z, a) does not
depend on i, for then we will have

0= .20(2, Q)Zti(z’g)

> E(Z7/(54(5).0) - E(ZH(z 4. ).
Hence let us calculate (making use of (CON))
o,(z,a) - oj(z’ a)

=P(aj|B[aj])P(z,a_j,B[aj])
—P(a;|Bla;]) P(z,a_;, Bla;])

=P(z’a—i—jrﬁ[aj]1ﬂ[ai])

X(P(ajI:B[aj])P(ailz’a—i—j?B[ai]?B[aj])

_P(ailﬂ[ai])P(ajlz’a—i—jaﬁ[ai],ﬁ[aj]))-

Now from (5.1), for all i and j#1, (2, A_;,_(F_,_;), B[4;(7)]) is independent of
A(F) given A,(F)Ba;. Thus

P(aJIB{aj]) =P(ajlz’a—i—j’B[ai]’B[aj]) and
P(a)Bla;])= P(aiIZ, a*i_j,,B[a;], B[aj])’
so that o,(z, @) = 0y(z, a). Q.E.D.

5.2. Conditions on Beliefs for Budget Balancing

We get as an easy corollary of our results in the responsive case:

THEOREM 5.6: Under (RESP) and (CON), B=a<for all V there is a
budget-balancing, A-inducing payment scheme.

PROOF: =>: By Theorem 5.1 it suffices to have permutation dominance on all
B-alikeness classes. but each of these corresponds to a single action if 8= «, so
permutation dominance is trivial.

<: Let ¥V be as in the proof of Proposition 3.7 so that, in particular,
I/i(z, 4(!)7 !:) =0 for all z and I, while I/;‘I(zy “_1([), [) = Zal’ﬁal: a,’aea,P(a“.B[ai])
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> 0 where V' is defined by (5.2) and a;= A4,(r;). If B+ «, then there are a/fa;
with a!+ a;, so that V;/(z, A(r),r)> 0 for some i, z, and r with P(z,r)>0.
Thus inequality (5.3) of Theorem 5.5 holds. Q.E.D.

In fact, in the case of truth revelation (a = A), consistent beliefs, and no Z, the
condition B8=a becomes B=A which is then equivalent to Condition B of
d’Aspremont and Gérard-Varet (1982). This follows from Proposition 3.7, Theo-
rem 5.6, and the fact that in this case, condition (c) of Proposition 3.7 is the
Condition B just mentioned. Because 8 is computable from its inductive defini-
tion, this shows exactly how much stochastic relevance between the agents’ types
is needed for Condition B to hold, in the finite case of consistent beliefs.

Our last theorem characterizes the condition (LINK) as the condition that
budget balancing always comes for free.

THEOREM 5.7: Under (RESP) and (CON) the following are equivalent:
(@) ~=p; (b) (LINK); (c) for all V, if there is an A-inducing payment scheme
then there is a budget-balancing, A-inducing payment scheme; (d) for all standard
V, if there is an A-inducing payment scheme then there is a budget-balancing,
A-inducing payment scheme.

PROOF: (a) = (b) and (c) = (d) are trivial, while (b) = (c) follows at once from
Corollary 5.2. To show (d) = (a), let ¥ be given by

=2 ifa;# A;(r;) some j#1i,
Vi(z,a,r)={ 1 ifa,+A4,(r)anda_,=4_,(r_,)
0 otherwise.

Clearly ¥V is standard. Also, V;(z, A(r),r) =0 for all z and r, while
Vi(z,4(r),r)= X P(a}|Bla,]) >0 where a,=4,(r).
ajBa,

aj~a

If B +# ~ then there are a/Ba; with a/ + a; so that ¥V;/(a, A(r), r) > 0 for some i,
z, and r with P(z,r)>0. Thus ECY/( A(F), P)) > ECV(Z A(F), F) and
by Theorem 5.5 there fails to be a budget-balancing, A-inducing payment
scheme. On the other hand, EV,(a;|r;) =0 whenever a; ~ 4,(r;), so permutation
dominance holds trivially on all ~ -alikeness classes and hence there is an
A-inducing payment scheme which cannot be budget balancing. Q.ED.

6. CONCLUSION

This analysis demonstrates the possibility of inducing risk neutral agents to
take actions and reveal private information in a manner that achieves a specified
outcome even though the acts and information are relevant to the payoffs of
other agents and interests diverge. A central authority oversees the process and
makes relevant transfer payments. A necessary condition (in the finite case) is
that, in the absence of any transfer payments, no agent should prefer to permute
the acts he is called upon to make given an equal-chance lottery over an alikeness
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class (an information set that the center cannot monitor, even probabilistically,
on the basis of its information and other agents’ actions). Under this condition,
strategy-inducing transfers exist if in addition the conditional distributions of the
center’s monitoring information given the agents’ alikeness classes are linearly
independent. Any agent for which this fails can merely be called upon to reveal
his alikeness class. (Analogous conditions apply when not all other agents’ acts
are used in monitoring.) The budget can be balanced as well, if the above
conditions hold with a weaker notion of alikeness.

Here we have dealt only with the finite case. Unfortunately, results for the
continuous case do not follow by taking limits (or by analogy) because the
transfer functions may have infinite limits or no limits as the finite approximation
approaches a continuous problem. We have begun work on the continuous case
and also on special conditions that permit efficient coordination despite risk
aversion or possibly collusive behavior on the part of the agents.

A central challenge in the design of an economic system is to develop
procedures that are effective despite privately-held information that is important
to the well-being of others. The information may relate to such matters as future
market conditions, pollution effects, or anti-competitive behavior. Here we show
under what particular information conditions the use of financial incentives can
accomplish this task, and when they cannot.
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and
John F. Kennedy School of Government, Harvard University, Cambridge, MA
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APPENDIX

The version of Lemma 3.2 which we prove here is stated in more general terms, primarily to avoid
a clutter of symbols. If B and 4, are finite sets, if A is a function from B to 4, and if V is any
real-valued function on B X Ag, then we can clearly generalize the notions of transfer maximum and
permutation dominance.

Call (V,A) a transfer maximum if there exists a real-valued function ¢ on A, such thal
V(r,a)+ c(a) is maximized at a=A(r) for all r. Call X permutation dominant for V if, for all
permutations 7 of A(B) (= {A(r): r€ B)) and for all representative functions r, L, c 5(g)V (/s @) >
LaermV . m(a) (where r is a representative function if A(r,)=a for all a € A(b)).

Lemma 3.2: (V, ) is a transfer maximum iff X is permutation dominant for V. In this case we may
take

c(a)= min{ ;l[v(rk,x(rk)) = V(5 Mg )] A(fmar) =@, m=1,

and A(n),.... A(r,) are dislinct}

for a € A(B) ( provided we take c(a) sufficiently small for a & A(B)).
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PROOF = : If (¥, A) is a transfer maximum, then for any {r,: a € A} such that A(r,) = a for all
a, and any permutation = of 4:

T Vima)y=— X c(a)+ X (V(rara) +¢(a))

a€Ag a€Ay ac€d4dp

>- ¥ e(a)+ X (V(rm(a)) +c(n(a)))

a€dg acAy
= E V(rn,':r(a)).
a€dp

< Suppose V(r, A(r)) + c(A(r)) < V(r, a%) + ¢(a®) for some r € B, a® & Ay, where c is defined
as in the statement of the lemma. Then for some ry,..., fpyy With A(n)s...» A(r,) distinct and
A1) =A(r):

V(r.A(r)) + kE [V(res A(r)) = V(s Mrean))] < V(s a®) +¢(a®).
-l

In fact we may take 7., =r. So c(a®)>ZPFIV (e, A1) = V(7 M(tg+1)) Where Alr,i2) = a%.
This contradicts the definition of ¢(a®) unless A(r,) = A(r) for some (unique) kg < m.
By permutation dominance and the fact that A(r,) = A(hps1)

m m
T V(e A(m)) 2 L V(A (5ks1)), S0
kmko kmko

ko—1

c(a®) > kE V(o A (%)) = V(s A (7k1))
-1

+ V(rrn+l' k("rrH-l)) - V(rm-(-l' >‘(rm+2))‘

This contradicts the definition of ¢(a®) (even if kg = 1). Hence V(r, A(r)) + c(A(r)) = V(r, a) + c(a)
for all &€ B and a EA(B).

For those a in Ay which are not in A(B), we can clearly make c(a) negative enough so that
{V\ ) is a transfer maximum. Q.E.D.

We next prove Proposition 5.4 in a more general setting. We assume responsiveness, so that
probabilities conditional on acts make sense. Let A, denote the set of all nonnegative real valued
functions A,(a;, a) where a; and af are distinct acts for agent i. Let A denote the subset of A,
consisting of those A; which are symmetric, i.e. A;(a;. af) =A;(a}, a;). We consider the following
conditions on beliefs (always assuming (RESP)).

(C) (compatibility):

Forall A€ A, XAy X -+ X A, ifforall i,z,a,
Z (P(z a—ilal))‘i(ai,val)_'P(z'a—llall)ki(ai’all)) =x(z,4)
alial+a;

where k does not depend on /, then k= 0.
(STRC) (strong compatibility):

Replace A;(a!,a;) by A;(a;,al)in (C).
(SYMC) (symmetric compatibility):
Replace A; XA, X ++» XA, by A} X Ay X -+ X 4} in (C).

Step 3 of the proof of Theorem 7 of d’Aspremont and Gérard-Varet (1979) (which is clearly valid
for our slightly more general setting) shows:

ifforalli,z, a

(=) Z (P(z.a_4la,)(a;,a) = P(z, a_jlal)\(af,a})) =«(z,a)

af: al+a;
where x does not depend on i, then for all i, a;,

Z A(ala)= Z Ai(a;. af).

aj: al+a; aj:al%a;
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From (*) it is clear that (STRC) = (C) while it is trivial that (C) = (SYMC). In the case of (TR)
and no Z, (C) is the discrete case of the compatibility condition of d’Aspremont and Gérard-Varet
(1982), and (STRC) is the compatibility condition of d’Aspremont and Gérard-Varet (1979). We will
show below that (STRC) is strictly stronger than (C) even under (CON). First we have the following
proposition.

PROPOSITION 5.4: Under (RESP), each of the following is equivalent to (C). (a) For all V, if there is
an A-inducing payment scheme then there is a budget-balancing, A-inducing payment scheme; (b) there
is a budget-baluncing payment scheme t such that for all i, a;, af,Et;(a;|a;) ~ Et;(afla;) >0 with
equality only if a;~ a{. Under (CON), these conditions are also equivalent to (LINK) and to (SYMC).

Proor: (C) = (a): This is essentially proved in d’Aspremont and Gérard-Varet (1982) since
everything proved there about public ¥ applies equally well to those V for which there exists an
A-inducing payment scheme. In particular, the compatibility condition implies the existence of a
budget-balancing, A-inducing payment scheme for such V.

(a) = (b): Consider the utility profile

1 if a;+ A; (1),
V‘.(z.g.[)_{o ifa;~A;(r).

There is an A-inducing payment scheme by Theorem 3.5, so under (a) there is a budget-balancing,
A-inducing payment scheme ¢. Clearly ¢ must satisfy the inequalities of (b).

(b) = (C): By finiteness, (b) is equivalent to the existence of a ¢ such that £7_,#,(z,a) =0 forall z
and g, and

Y P(z.a_ja)(i(z,a) ~ (2 a_;al)) »

r,a_y

1 ifaf+a;,
0 ifaj~a;.
By Theorem 1 of Ky Fan (1956), a necessary and sufficient condition for the above system of
inequalities to be consistent is that the “if” clause of (C) imply A;(4/, a;) =0 whenever 4! ~ a;. By
(=) and the definition of ~ this implies (C).
Now assume (CON). We already know (by Theorem 5.7) that (LINK) « (a). Also (C) = (SYMC)
trivially. Thus it suffices to show that (SYMC) = (LINK).
Let

A,_(‘,,.,,;)={P(a.-)P(a;)/P(B[aiD if a,Baf,
0 otherwise.
Then for all i, a;, a],

Y MN(anal)(P(zia_ila) — P(z,a_,|al))

= ,;;B P(al)P(a)\Bla;,)(P(z,a_;la;) ~ P(z,a_;|a}))
=P(z.4)~P(z,a_;. Bla;]) P(a;1Bla,]) = 0(z, a).

which from the proof of Theorem 5.5 does not depend on i. From (SYMC) we get a(z, a) =0 for all
z, u. But then

a(z a)=P(a;)(P(z,a_;la;) = P(z,a_;|B[q;])) =0
for all z, g, which can only happenif 8=~ . Q.E.D.
The following example shows that (C) = (STRC) even under (CON). Assume (TR) and no 7 and

suppose there are three agents with two types each (types 0 and 1 say). Suppose beliefs are derived
from the following joint prior distribution:

%=0 B=1 7=0 A1

7 1/16 3/16 1/8 1/8

R=1 | 3/16 1/16 1/8 1/8
%=0 B=1
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Then, calculating 8 from its definition in Section 5.1, we get p' = v; pl =4,, pd =4, and g} = w;;
and p; =A=f =~ . Hence (LINK) and therefore (C) hold. In fact, following the proof of Theorem
5.1, we construct the payment scheme: .

n(a)=LnP(az)a) —In P(ayaz|a;3). t;(a)=LInP(alay),
13(a) =In P(aya,la3) — L(In P(ay|a;) + In P(a,|ay)).

This is clearly budget-balancing and it satisfies condition B of d'Aspremont and Gérard-Varet (1982),
Et;(r;|r;) > Et;(a;|r;) for all i, r;, and a; # r;, if L is sufficiently large (L =3 will do for this case).
However, if

Ap(0.1) =2;(1,0) =2,(0,1) =A,(1.0) =1, A;(0,1)=2, and A;(1.0)=0,
then the “if” clause of (STRC) holds with

%(0,0,0)=«(1,1,0) = —-1/4, «(0,1,0)=«(1,0,0)= —1/4, x(a)=0 otherwise,
and (STRC) fails.
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