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Abstract 

We represent the desires of agents to be close to one another, and to such features 
as harbors or museums, by disutility of distance functions. Each individual (or firm) 
adds disutilities, then selects the location that minimizes the sum. 

We find the spatial (Nash) equilibrium, first on a line, and then for higher 
dimensional spaces. Under reasonable conditions on disutility functions, individuals 
will have a unique optimal choice in reaction to the choices of others. Moreover, the 
equilibrium will be unique, though not Pareto optimal. Surprisingly, some Pareto- 
superior outcomes are actually less dense than the equilibrium. 
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O. Introduction 

The clustering of firms and individuals fosters economic activity. By 
facilitating the exchange of information, thickening markets, and reducing 
transportation costs, concentrating economic activity proves beneficial. 
Concentration also permits residents to capitalize on economies of scale in 
consumption, to enjoy such facilities as theaters and museums, specialized 
retail establishments, a diversity of restaurants, and the like. In the classic 
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words of Jane Jacobs (1969, p. 6), "Cities have long been acknowledged as 
primary organs of cultural development; that is, of the vast and intricate 
collections of ideas and institutions called civilization." 

Our discussion employs the metaphor of physical location decisions. The 
analysis, however, is perfectly general, and applies to any space of attributes 
where decision makers have a personal preferred position which is balanced 
against the desire to be close to others. For example, individuals selecting 
political attitudes, modes of behavior, or approaches to scientific problems 
might be concerned with how closely aligned they are to their colleagues and 
friends, yet might be pulled as well toward their own underlying beliefs and 
philosophies. Our model is one of pure location choice; rents, if any, are 
exogenous. 

The new growth theory in e c o n o m i c s - s e e  the pioneering works of 
Romer  (1986) and Lucas (1988) -  pays fundamental attention to the gains 
from clustering. Romer  (1986, p. 1003) stresses the role of knowledge in 
fostering growth, and the natural externality associated with its production. 
"The  creation of new knowledge by one firm is assumed to have a positive 
external effect on the production possibilities of other firms because 
knowledge cannot be perfectly patented or kept secret." Presumably, the 
more closely the firms are clustered, the greater the spillovers. Lucas, 
addressing the puzzle of why rates of economic development do not 
converge across nations, also stresses the central role played by another 
externality, the external benefits that accretions of human capital have on 
the productivity of all factors of production. Lucas makes comparisons 
based on national data, the most readily available source. The external 
effects he discusses would apply on whatever geographic scale factors 
interact, such as cities or regions. Intra-nation migration may spread the 
benefits that originally derive from agglomeration on a more local basis. 

There  is direct evidence of agglomeration effects at the city leveiJ In 
assessing the economic factors that account for the existence of urban areas, 
Nakamura (1985, p. 108) concludes that: "Agglomeration economies are the 
most important in explaining modern cities." Following Isard (1956), he 
divides agglomeration benefits into two categories: localization and urbani- 
zation economies. The former relate to external economies in a city among 
firms within an industry. Urbanization economies refer to city-specific 
external effects among firms in different industries. Looking at Japanese 

t The city as public good and the city as production center are two well established functions 
in the urban economics literature. Papageorgiou (1979) adds the third role of city as service 
center, where cities reduce aggregate production costs, one possible interpretation of our 
formulation below. 
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urban manufacturing firms, he finds that firms in light industries experience 
greater urbanization economies in production; for heavy industries, localiza- 
tion economies are more significant. 

Segal (1976, p. 347), in work using U.S. data for 1967, found an 
agglomeration effect "makes units of labor and capital 8% more prod- 
uctive" in the largest cities. Fogarty and Garofalo (1988, p. 69) examine 
agglomeration economies in Standard Metropolitan Statistical Areas 
(SMSAs) in the United States. They find clear evidence of agglomeration 
economies. Of the virtues of density, they conclude that: "declining central 
densities and flattening of density gradients may have reduced productivity 
growth over the period 1957-77." 

International experience is suggestive on the relationship between density 
and productivity. Japan and the Gang of Four (Korea, Hong Kong, Taiwan, 
and Singapore), exemplar nations for economic development in the past few 
decades, are all geographically small countries with highly concentrated 
populations. In both the developed and developing world, the increasing 
concentration of populations in cities and their environs has been a salient 
phenomenon. (The decline of many American cities may have come about 
because such factors as racial tension, pollution, congestion, and crime, 
more than counterbalanced agglomeration benefits.) 

Assuming that people do wish to live in close proximity to each other, and 
that there are certain existing features-harbors,  highways, universities- 
that are also attractors, what sort of spatial equilibrium will result? We 
represent preferences for proximity by an additive disutility of distance 
function. 2 We examine the spatial equilibrium assuming each individual 
maximizes for himself, ignoring the well-being and response of others. That 
is, we seek a Nash equilibrium. See Fujita's (1990) excellent overview of this 
subject area. He refers to situations where the agent chooses location freely, 
taking the locations of others as fixed, as the general-location equilibrium 
problem. 

We shall be interested in three primary questions. Does an equilibrium 

-' Earlier analyses have also employed disutility of distance functions, though usually in a 
more specialized form. Ogawa and Fujita (1980), for example, develop a non-monocentric 
model of land use based on the assumption that transaction costs between any two firms are 
equal to a constant times the distance between the two. 

Papageorgiou and Thisse (1985) consider firm and household locations on a line. Households 
are attracted to firms because of the opportunities they offer. Firms are attracted to households 
because of profit opportunities. Both households and firms are repelled by their own type, 
households because of congestion, firms because of intensified competition. Despite the 
repulsion elements, the spatial equilibrium is an agglomeration. 
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exist? If so, will it be unique? And will it be Pareto optimal? Section 1 
briefly lays out the model• Section 2 addresses the existence and uniqueness 
questions for the one-dimensional case. Section 3 considers these issues in 
multiple dimensions. Section 4 shows that equilibria will in general be 
inefficient• Section 5 concludes. 

1. The model 

We find a general-location equilibrium, first on a line, and then for higher 
dimensional spaces• We show that under reasonable conditions on disutility 
funct ions-s t ronger  in multiple d imens ions- there  will be a unique 

• • • 3 

eqmhbrtum.- Though our discussion is phrased in terms of individuals 
selecting locations, the analysis applies immediately if some or all of the 
individuals are in fact firms or government agencies. 

There are two components to an individual's welfare: his distance from 
other individuals, and his distance from his ideal location in relation to 
existing physical features• In each case closer is better• Our formulation is 
presented in terms of disutility, where disutility is separable and additive in 
the two components• Disutility is assumed to be convex, i.e. to have 
increasing marginal costs of distance. 

More formally, individual i chooses position x~, i =  1 , 2 , . . .  ,n.  Let 
fii(x~- xj) be the disutility to i of separation from j. Let gi(x~) be the dis- 
utility to i of less than ideal physical location as regards features such as 
sports facilities or geographic amenities. If there is an exogenous rent 
function, it can be incorporated in each gi. 

3 In effect, we solve for an equilibrium assuming either no rent gradient,  or an exogenous 
rent gradient which is reflected in the disutility of  distance function. The no-rent  case is 
consistent  with examples where one wants to be close to others in behavior or scientific beliefs, 
say, or any situation where space is not scarce, perhaps because ' residents '  do not  take up 
space. Future work should introduce rents into these models. When  there is a preference for 
proximity,  rents rise if as more individuals choose the same location it becomes increasingly 
expensive to accommodate  them,  for example because high-rise buildings cost more per square 
foot than  low-rise. All residents at a location pay the marginal cost of the last entrant .  The 
landlord reaps infra-marginal rents. Such rents may push a present  resident away, inefficiently 
so if the benefits the departer 's  proximity yields to others exceeds the gap between the rental 
price and the departer 's  willingness-to-pay to reside at the location. If locations compete  to 
become high-density areas, implying that they will yield rents to landlords, then the landlords 
will be willing to lose monies  at the start-up stage. Subsidies to early committers  represent  an 
efficient form of early loss; newly constructed office buildings with a good chance to s tand 
vacant are an inefficient form. 
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2. One-d imens ional  case 

We invoke two assumptions. 

A s s u m p t i o n  I: Convex  disutility. The domain of possible positions is an 
interval and each individual i has disutility 

fq(x  i - x j)  + gi(xi) (1) 
) 

where all f~j and g~ are non-negative, differentiable, convex functions, all 
fT(0) = 0, and each gi achieves its minimum on a non-empty set B~. 4 

The cost functions fq on separation between individuals are U-shaped with 
a minimum at 0; the g~ can have a minimum anywhere, including at one end 
of the interval of possible positions. None of these functions need be 
symmetric or strictly convex. 

Thus for i it would be ideal to have everyone located at a single point 
in Bg, and outside B i would be strictly worse; accordingly, we call Bi i's 
ideal set. It follows from the continuity and convexity of g~ that B~ is a 
closed interval. We allow g,. to be constant (B~ to be the entire space), as 
it would be for a purely social individual who did not care about proximi- 
ty to geographic features. We also allow gi to take infinite values, imply- 
ing that locating in particular regions incurs infinite cost or is physically 
impossible. This makes it possible to restrict different individuals to 
different convex sets. 

Too little strict convexity could lead to multiple equilibria. For example, a 
clique of individuals who want to be together,  but don' t  care about outsiders 
or geographic location, could locate anywhere. This difficulty is obviated 
through a reasonable additional assumption, which we label no floating 
groups. Informally, every group has at least one member  who is attracted 
ei ther to someone outside the group or to a particular location. 

A s s u m p t i o n  H: N o  f loating groups.  Every non-empty set of individuals 
includes at least one individual i with either strictly convex gi or strictly 
convex f~i for some j not in the set. 

Assumption II clearly holds if every gi is strictly convex, in which case 
every individual has just one ideal point. It is easily checked recursively by 
calling i attached either if gi is strictly convex, or if fq is strictly convex and j 
is already attached, repeating the latter step until no one more becomes 

4 See Fujita and Smith (1990) for a discussion of the additive-interactive formulation. 
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attached. Assumption II holds if everyone ultimately becomes attached. 
Otherwise the unattached individuals constitute a floating group. 

Applying Assumption II to the set of all individuals, or using the 
attachment step based on gi in the previous paragraph, shows that: 

Proposition I. Given Assumptions I and II, at least one ideal set is a single 
point. 

Applying Assumption II to a one-person set gives an important result: 

Proposition 2. (Unique optimal reactions). Given Assumptions I and H, for 
every i, at least one of  the functions gi or fq is strictly convex. Hence i's 
disutility (1) is strictly convex in x~, as is i's expected disutility for any 
probability distribution of  the others' positions• Therefore i's optimal reaction 
function is single-valued, whether the others' strategies are pure or mixed. 

With these propositions in hand, we can proceed to prove the existence 
• - • 5 and uniqueness of an equthbrmm. 

Theorem 1. In one dimension, under Assumptions I and H, there is a unique 
Nash equilibrium and all equilibrium strategies are pure. Moreover, the 
equilibrium positions x i all lie in the shortest interval B containing at least one 
point o f  every ideal set B i.6 

Specifically, B is defined as follows. Recalling that B i is closed, let b i and 
/~i be its left and right end-points (possibly infinite)• Let  b = max i b i and 
6 = min i 6 i. Since at least one B i is a single point (Proposition 1), it is easy 
to see that /~<~b and the interval B =[/~, b] is the shortest interval 
containing at least one point of every B i. 

Proof  o f  Theorem 1. Assumption I implies that i's payoff function (utility) is 
continuous in all xj jointly and quasi-concave in x i. Hence if the domain of 
possible positions is compact, a classic equilibrium theorem shows that a 

We need Assumpt ion  II and not  merely the properties of Propositions 1 and 2 because all 
these properties hold without a unique equilibrium if one individual has a one-point  ideal set 
and all o ther  individuals form a clique of the type ment ioned earlier. We also remark that if, 
contrary to the first sentence of Proposition 2, for some i, the function g, and all the functions fq 
have linear portions, then for some positions xj, individual i 's disutility will have a linear 
portion. However,  the slope there need not be 0, and i 's optimal reaction function might still be 
single-valued. 

6 We thank a colleague for suggesting the shortest interval result for the case when each ideal 
set is a point. 
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pure-strategy equilibrium exists. (See Fudenberg and Tirole, 1991, p. 34.) 
We shall show that it is the only equilibrium and that it has all xi in B. It 
follows immediately that the same is true when the domain is not compact. 

Proposition 2 implies that all equilibrium strategies are pure. Further- 
more, there cannot be two different pure Nash equilibria ( x ~ , . . . ,  x , )  and 
(Yl . . . . .  y , ) .  To see this, suppose there were two different equilibria with x 
and y labeled so that maxj yi - xj > 0. Let S be the set of individuals who 
achieve this maximum, and let i satisfy Assumption II for the set S; then 
yi - X i > 0 and, 

fo r j  ~ c S, Yi - xi =yj - x~, which implies y~ - yj =x i - xj; (2) 

t t v ~ ¢ . 2 fq(Yi-Yj) +gi(Yi)>~, fq(xi-xj) gi(xi) 
J i 

(3) 

Now the two sides of (3) are agent i's marginal disutilities in the two 
equilibria. If both equilibria are interior, then both sides of (3) are equal to 
zero, which contradicts the strict inequality. In any case, either the left-hand 
side of (3) must be positive or the right-hand side must be negative. 
Therefore, either reducing Yi or increasing x i would reduce i's cost in the 
corresponding equilibrium; since both actions are feasible, we still have a 
contradiction. If maxg Yi >-b in equilibrium, then choosing i to satisfy 
Assumption II among i maximizing Yi gives (3) with the right-hand side 
replaced by 0, again leading to a contradiction. Another similar argument or 
a reversal of sign shows min i y~ < 6 is also impossible. Q.E.D. 

2.1. Remarks  on uniqueness 

The proof that the equilibrium is unique obviously depends on strict 
convexity somewhere and on something drawing the individuals toward 
some one location rather than another; Assumption II appears to be the 
weakest simple condition of this type that suffices. 

An example illustrates that uniqueness requires differentiability even with 
all f/i and gi strictly convex. Consider a two-person world with f12(x)= 
f21(X)=lX[+X 2 and g l ( x ) = g z ( x ) = x  2. In this case, every (x l , x2 )  with 
- 1 / 2 < ~ x ~ = x 2 < ~ l / 2  is an equilibrium. That is, wherever individual 1 
locates in the interval will be the preferred location for 2, and vice versa. 

3. Mult id imens ional  case 

We assume that the functions fq and gi are sums of functions defined on 
the dimensions separately, say 
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fij(x) = ~'~ fkii(x k) and gi(x) = ~ gki(x k) (4) 
k k 

where x k is the kth element of the vector x. In this case, convexity and 
differentiability of the components and of the sum are equivalent, while 
applying Assumption II to the components is actually weaker than applying 
it to the sum, since it allows the strict convexity to occur differently in 
different components. 

For the multidimensional case, the shape and orientation of the domain of 
possible locations prove critical. Theorem 2 proves uniqueness given that 
each dimension is restricted to an interval as it was by Assumption I for 
Theorem 1. If this restriction is not imposed, problems may arise, including 
multiple or nonexistent equilibria. We give an example illustrating the 
possibility of multiple equilibria on the boundary. Theorem 3 then shows 
that there cannot be multiple interior equilibria. Theorem 4 addresses the 
important special case of squared distance. 

Theorem 2. Under (4), if  the fkij and gki satisfy Assumptions I and H, then 
there is a unique Nash equilibrium, all equilibrium strategies are pure, and in 
each dimension, the equilibrium positions x~ all lie in the shortest interval B k 
containing at least one point o f  every B~. 

Proof. Under the assumptions, a multidimensional equilibrium must be an 
equilibrium in each dimension and Theorem 1 applies to each dimension. 
The result follows. Q.E.D. 

If the domain of possible positions is an arbitrary convex set, not 
necessarily a generalized rectangle, then a variety of problems can arise. For 
example, an individual's ideal in each dimension may not be jointly 
possible-  the world is cruel. Equilibria may occur at the boundary, and if 
the domain is not compact they may therefore fail to exist. Furthermore, the 
proof of uniqueness fails because the moves after (3) may not be possible. 
Indeed there may be multiple equilibria on the boundary, as the following 
example illustrates. (The notation IIxl - x  2 [1 denotes the distance between x~ 
and x2. ) 

3.1. Example of  multiple equilibria on the boundary 

Consider two people in two dimensions. The domain of possible positions 
is the convex hull of (0, 1), (1, 0), (2, 0), and (0.5, 0.9), as shown in Fig. 1. 
The disutility functions are indicated on the figure. The pairs x 1 = (0, 1), 
x: = (0.5, 0.9) and xl = (1, 0), x 2 = (2, 0) are both equilibria if the convex fs 
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(o,1) 

(l,O)- &,o) 
• (3,0) 

• (-3,-1) 

g,(x)=b+(3, g2(x)=lx-(3 ,  o)~ 2 

fl2 (z, w) = ft ( -z)  f21 (z, w) = f2 ( -w)  

25 10 
fl '(0.5) < 2, 6<  f l ' ( l )  <8, - -  < f2'(O.l)+l.S < 25 f2'(O) < - -  

3 3 
Fig. 1. Mult iple equilibria on the boundary .  

satisfy the inequalities shown on the figure. It is reassuring that any 
difficulties with multiple equilibria are confined to the boundary, as 
Theorem 3 shows. 

Theorem 3. Under (4), if the disutilities satisfy Assumption I but without 
restriction on the domain of  possible positions, and if the fk,j and gk~ satisfy 
Assumption H for each k, then there is at most one interior Nash equilibrium 
and it is pure. 

Proof. Any interior optimum response is a unique optimum, and hence pure 
as before. If two interior equilibria did exist, then on a dimension where 
they differ, (3) would hold with both sides equal to 0, a 
contradiction. Q.E.D. 

3.2. The case of  squared distance 

For particular distance metrics additional results are possible. For exam- 
ple, if individual's disutilities have all components proportional to squared 
distance, either distance from others or from their personal ideal point b i, 
then they are of the form (4) and also invariant under rotation. This affords 
a stronger result: 

Theorem 4. I f  the domain of  possible positions is a closed convex set, if 
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f ~ j ( x )  = ai ,  l lxll  2 with a~j >I 0 for all i, j, if g,(x) = c, l lx  - bill: with c i ~ 0 for all 
i, and if every non-empty set S of  individuals includes at least one individual i 
with Ej¢ s a~j + c~ > 0 ,  then there is a unique Nash equilibrium and all 
equilibrium strategies are pure. 

Proof. For S = {i}, we have Ej aq + c~ > 0 and hence strictly convex utilities 
and unique optimal reactions. Therefore a Nash equilibrium exists and all 
equilibrium strategies are pure, as before. It remains to prove uniqueness. 
Generalizing the proof of Theorem 1, let i maximize Ilyj-x~[I and rotate 
axes so that Yl > xl and y/g = x/~ for k > 1; then the argument at (2) and (3) 
applies to dimension 1. Q.E.D. 

4. Inefficiency of the Nash equilibrium 

Barring very exceptional circumstances, the Nash equilibrium will not be 
efficient. 

Theorem 5. Under (4), if the disutilities fkq and gk~ satisfy Assumption I and 
every fkij is strictly convex in some neighborhood of O, then a Nash 
equilibrium is Pareto optimal if and only if  it is ideal for everyone, that is, 
everyone's position is the same and belongs to every ideal set B r 

Proof. Consider first the one-dimensional case. Note that the convexity 
conditions imply f i ' j (x)>(<)O for x > ( < ) 0  and g'i(x) > ( < ) 0  for x above 
(below) B/. Consider an equilibrium in which the positions x/ do not 
coincide. Increase the smallest x i and decrease the largest x i by ~5. Only the 
movers can be losers. We shall show that everyone gains if 6 is sufficiently 
small. For i and j at the same extreme, f~j(x i - xj) is unchanged. For i at one 
extreme and j elsewhere, the change in xj decreases by order tS, that is, by at 
least E6 for some E > 0 and all sufficiently small 3. By the equilibrium 
conditions, the change in x i costs i an amount of smaller order than 6. 
Hence, for all sufficiently small 6, everyone gains at least E~ and loses less, a 
Pareto improvement. It follows that in a Pareto-optimal equilibrium, 
everyone's position must be the same. If the common position is not in B i, 
then i's disutility (1) has derivative g'i(xi) ~ 0 at x~ and i can gain by moving 
slightly in the direction of B/, contradicting equilibrium. 

In the multidimensional case, the foregoing proof can be applied to each 
dimension separately. Q.E.D. 

Given the attraction of individuals to each other, it might seem that 
outcomes that are both Pareto optimal and Pareto superior to the Nash 
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equilibrium would be denser than that equilibrium. 7 This will often be the 
case, but it is not necessarily so. Consider individuals 1, 2, 3, and 4 with 
unique ideal points increasing with number. Say 1 and 2 only care about 
each other; similarly with 3 and 4. Pareto improvements will move 1 and 2 
closer together; so too with 3 and 4. Assume that 1 and 4 have exceedingly 
concave gi functions (marginal cost rapidly increases with distance from ideal 
point), with the other cost functions being rather linear. This implies that to 
secure a net benefit from moving in further from their ideal points, 1 and 4 
will require substantial outward movement from their partners. Pareto- 
optimal, Pareto-superior outcomes may thus require that 2 and 3 move out 
more than 1 and 4 move in. If so, the change in density is ambiguous. 

5. Concluding remarks 

This analysis treats location decisions as if they were determined through 
a tatonnement process, where all final decisions are individually optimal. 
Preferences are assumed to exhibit increasing marginal costs of distance 
from other individuals or attractive locales. In such a world, a traditional 
world of equilibrium analyses, there exists a unique Nash equilibrium. It is 
not surprising that equilibrium is inefficient, given the externalities that each 
individual's location imposes on others. An immediate extension of our 
analysis shows that a unique Nash equilibrium will also exist if people must 
choose locations over time, assuming early 'settlers' know the f functions of 
those who will locate subsequently. 

Future work should consider a range of related problems where decision 
makers choose locations, including nonphysical realms such as the choice of 
philosophies or behavior patterns. Location models should also assess the 
roles of decisions not taken by individuals choosing locations. Governments, 
for example, enact zoning ordinances and site facilities, and thereby affect 
the spatial distribution of individuals and firms. Our results show that 
regularity, though alas not optimality, is likely to emerge from the chaos of 
myriad decision makers choosing for themselves. 
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