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Improving the Accuracy of Geopo liti cal 
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The chances of life- threatening events, such as terrorist attacks, hurricanes, 
floods, or earthquakes, are the lifeblood of risk analy sis.  Those in the business 
of mea sur ing risks use a wide array of methods to quantify them. Perhaps the 
most common approach is statistical: risk is the relative frequency of a bad 
outcome in a well- defined set of outcomes. For instance, the annual risk of 
death in the United States due to terrorist attacks, floods, and earthquakes is 
1 in 3.5 million (between 1970 and 2007), 1 in 8 million, and 1 in 9 million, 
respectively.

The Risk of Unique Events

In many cases, risks that  matter are unique; they have no reference classes, 
perhaps  because they have never occurred. What is the chance of war 
breaking out with North  Korea or a cyberattack that leaves the United States 
completely defenseless? When reference classes do not exist, Bayesian meth-
ods allow decision- makers to express their beliefs about the chance of an out-
come, given the available evidence (e.g., Gill 2015). Bayesian techniques allow 
 people to report their beliefs about Trump being impeached, Greece exiting 
the Eurozone, or Iran complying with the 2015 nuclear agreement. Such be-
liefs provide the foundations of policy decisions, such as raising the federal 
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minimum wage, reducing domestic nuclear stockpiles, or brokering a trade 
deal with China.

The meaning of probability is a controversial topic. Many  people are skep-
tical that probabilities can ever be assigned to unique events (e.g., Mill 
1882; Keynes 1937).  Others argue that all events are, in some way, unique; it 
depends on how one defines the reference class (Berry 1993). This chapter 
demonstrates how we can improve the accuracy of forecasts about unique 
geopo liti cal events using better forecasters, improved psychological interven-
tions, enhanced statistical algorithms, and response scales with a greater 
number of uncertainty distinctions.

In the U.S. intelligence community, clear communication of risk and un-
certainty is essential. Yet quite often, analysts eschew numerical estimates as 
expressions of their beliefs. They prefer to express their hunches with phrases, 
such as “liable to happen,” “distinct possibility,” or “hard to tell.” Psychologi-
cal research on verbal uncertainty phrases shows that such vague verbiage is 
easily misconstrued. For instance, Wallsten et al. (1986) asked participants to 
assign numerical values to their interpretations of probability phrases. The 
resulting numbers differed in meaning across individuals. The word “pos si-
ble” had an interquartile range as large as 43% (Mosteller and Youtz 1990).

A particularly poignant example of how qualitative expressions can be 
misunderstood comes from a case study of President John F. Kennedy’s de-
cision to invade Cuba at the Bay of Pigs. In 1961, Kennedy asked the joint 
chiefs of staff to assess the plan’s feasibility. The chiefs believed the chances 
of success  were roughly 30%, but they conveyed their views verbally by say-
ing, “This plan has a fair chance of success.” The report’s author, Brigadier 
General David Gray,  later said, “We thought other  people would think ‘a fair 
chance’ would mean ‘not too good.’ ” However, President Kennedy allegedly 
interpreted this statement as something more likely. Gray believed that his 
imprecise language contributed to what was widely viewed as a serious stra-
tegic blunder (Wyden 1979, 88–90), a blunder that quantitative terminology 
might have avoided. Fifty years  later, quantitative estimates are still the ex-
ception, not the norm.

Tournaments to the Rescue

In recent years, IARPA (the Intelligence Advanced Research Proj ect Activity), 
the research wing of the U.S. intelligence community, has funded scientists to 
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discover how to better predict unique events. From 2011 to 2015, IARPA 
sponsored a program called ACE (Aggregative Contingent Estimation), com-
prising four massive geopo liti cal forecasting tournaments conducted over 
the span of four years. They supported five university teams to find optimal 
ways of eliciting beliefs from crowds and aggregating them.

Questions in the tournaments ranged from pandemics and global leader-
ship change to international negotiations and economic shifts. For example, 
a question released on September 9, 2011, asked, “Who  will be inaugurated as 
President of Rus sia in 2012?” Our team, The Good Judgment Proj ect, studied 
over a million forecasts provided by thousands of volunteers who attached 
numerical probabilities to over 500 such events (Mellers et al. 2014; Tetlock 
et al. 2014).

In the ACE tournaments, IARPA carefully defined predictive success 
using a metric called the Brier scoring rule (the sum of squared deviations 
between forecasts and outcomes, where outcomes  were 0 and 1 for the non-
occurrence and occurrence of events, respectively; Brier 1950). Consider the 
question, “ Will Bashar al- Assad be ousted from Syria’s presidency by the end 
of 2016?” For this question, outcomes  were binary; Assad  either stayed or left. 
Suppose a forecaster predicted that Assad had a 60% chance of staying and a 
40% chance of being ousted. If, at the end of 2016, Assad remained in power, 
the participant’s Brier score would be [(1–0.60)2 + (0–0.40)2] = 0.16. If Assad 
was ousted, the forecaster’s score would be worse [(0–0.60)2 + (1–0.40)2] = 0.36. 
With Brier scores, lower values mean greater accuracy, and zero is a perfect 
score. The winning university group had the lowest Brier scores, averaged 
over individuals, days, and questions.

The Good Judgment Proj ect won the ACE tournaments by a wide mar-
gin each year by being faster than the competition at finding ways to push 
probabilities  toward 0 for  things that did not happen and  toward 1 for  things 
that did happen. Five  drivers of accuracy accounted for our team’s success. 
They  were identifying talent, training forecasters in probabilistic reasoning, 
putting forecasters in teams, placing the best forecasters in elite teams to work 
with each other, and aggregating forecasts using new algorithms (Mellers 
et al. 2014; Mellers et al. 2015a; Mellers et al. 2015b). We  will briefly discuss 
each driver and then add another.
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Identifying Talent

Our team investigated the psychological traits, cognitive abilities, and po-
liti cal knowledge of thousands of forecasters to understand who they  were 
and what  factors correlated with their per for mance (Mellers et al. 2015a). Bet-
ter forecasters had more po liti cal knowledge and greater intelligence (both 
crystalized and fluid), as mea sured by the Raven’s Advanced Progressive Ma-
trices (Arthur et al. 1999; Balboni, Naglieri, and Cubelli 2010); the Shipley-2 
abstraction test (Shipley, Gruber, Martin, and Klein 2009); the cognitive re-
flection test (Frederick 2005); an extended version of the cognitive reflection 
test (Baron et al. 2015); and questions from two numeracy scales (Lipkus, 
Samsa, and Rimer 2001; Peters et al. 2006).

Cognitive styles also correlated with per for mance. Better forecasters 
had a competitive streak, a greater appetite for intellectual challenges, and a 
stronger tendency to change their minds in response to new evidence (Mellers 
et al. 2015a). They scored high on a test of “actively open- minded think-
ing,” which implied that they searched for and took into consideration in-
formation that ran  counter to their prior beliefs (Haran, Ritov, and Mellers 
2013). Fi nally, they had greater “need for cognition” (Cacioppo and Petty 1982; 
Cacioppo, Petty, and Kao 1984). They enjoyed analytic prob lems, complex 
puzzles, and intellectual challenges.

The most successful forecasters in the Good Judgment Proj ect be-
lieved that forecasting ability was not an innate, God- given ability. Every one 
knows the old joke about how to get to Car ne gie Hall: practice, practice, 
practice. They viewed highly skilled per for mance as something they could 
do only  after intense, focused, long- term commitment. Ericsson, Krampe, 
and Tesch- Romer (1993) argued that expert per for mance comes from delib-
erate practice or grit (Duckworth 2016). More successful forecasters  were 
more engaged and showed greater effort and perseverance. Frequency of 
belief updating turned out to be the strongest single behavioral predictor of 
accuracy.

The very top performers— a group called “superforecasters”— had many 
of  these characteristics and more (Mellers et al. 2015b; Tetlock and Gardner 
2015). They  were more inclined to embrace a secular, agnostic/atheistic world-
view that treats every thing as subject to deterministic laws of science. This 
worldview predisposed them to treat their beliefs more like testable probabi-
listic propositions than sacred possessions— and to be more cautious about 
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over interpreting coincidences by attributing them to super natural mecha-
nisms such as fate.

Training Forecasters in Probabilistic Reasoning

The Good Judgment Proj ect developed a training module in probabilistic rea-
soning to help guide participants through the forecasting pro cess. Psycholo-
gists have tried for de cades to discover methods of improving probability 
judgments. Promising approaches include statistical training (Fong, Krantz, 
and Nisbett 1986), feedback (Benson and Önkal 1992), exposure to multiple 
perspectives (Ariely et al. 2000; Herzog and Hertwig 2009), exposure to his-
torical analogies (Lovallo, Clarke, and Camerer 2012), decomposition of the 
prob lem into subsets (Fischhoff, Slovic, and Lichtenstein 1977), and explicit 
consideration of contradictory evidence (Koriat, Lichtenstein, and Fischhoff 
1980).

The Good Judgment training module contained a variety of forecasting 
recommendations. It gave practical tips about where to find professional and 
amateur forecasts on the internet. It instructed forecasters to consider mul-
tiple reference classes before taking into account information that was spe-
cific to the event. It suggested that when forecasters had multiple estimates 
of the same event from polls, models, or expert opinions, they should aver-
age the estimates. Forecasters  were also told to imagine pos si ble  futures, use 
decision trees, and avoid judgmental biases such as overconfidence and base- 
rate neglect (Kahneman, Slovic, and Tversky 1982). The module was interac-
tive, with questions and answers that checked participants’ understanding of 
the concepts.

Placing Forecasters in Teams

Numerous studies have shown that crowd predictions are frequently better 
than those of a single expert (e.g., Page 2007; Soll and Larrick 2009). But how 
should the crowd interact in order to generate the most accurate aggregate 
forecasts? Should they work in de pen dently without communicating? Or 
should they collaborate in teams that promote cooperation within the group 
and competition across groups? The Good Judgment Proj ect used randomized 
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control conditions to test the effects of in de pen dent forecasts versus forecasts 
based on team interactions.

The case for working alone is statistical. In de pen dent forecasts  will often 
have uncorrelated errors, and, in the aggregate, they should cancel out (Sur-
owiecki 2004). The case for working collaboratively is that groups can be more 
accurate than individuals when they are cohesive, engaged and share a  mental 
model of the task (Levine and Moreland 1990; Kerr and Tindale 2004). Social 
interactions can inspire  those who wish to perform well in the presence 
of  others. Team members can share information, answer each other’s ques-
tions, and encourage  those who are less involved. The Good Judgment Proj-
ect found that teams performed significantly better than individuals working 
alone (Mellers et al. 2014), and this result was replicated four years in a row.

Placing Top Forecasters in Elite Teams

A large lit er a ture on peer effects in the classroom suggests that students ben-
efit from working in cohorts of similar ability levels (see Epple and Romano 
2011, for a review). The Good Judgment Proj ect reasoned that superforecast-
ers (the top 2% of forecasters at the end of each year) might also enjoy an ad-
vantage if they worked with  those of similar skill. But any beneficial effects 
of tracking would depend on the extent to which geopo liti cal forecasting was 
attributable to skill versus luck. If forecasting accuracy was mostly luck, super-
forecasters should regress to the mean  after their initial success. If forecast-
ing accuracy was primarily skill, superforecasters should continue their 
superior per for mance and possibly do even better in a richer intellectual en-
vironment. Defying expectations of regression  toward the mean, superfore-
casters maintained high accuracy across hundreds of questions and a wide 
array of topics, year  after year (Mellers et al. 2015b). This intervention shows 
the astonishing potential of dedicated, talented forecasters as they tried to 
keep getting better.

Aggregation of Forecasts

The Good Judgment Proj ect tried many aggregation rules, but the most suc-
cessful was a relatively  simple one, with a single estimated pa ram e ter. Pre-
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dictions  were combined using the geometric mean of the log odds (Baron 
et al. 2014; Satopää et al. 2014a; Satopää et al. 2014b). An empirically estimated 
exponent was applied to the mean. It is well known that individuals are fre-
quently overconfident in their beliefs, but the mean of multiple forecasts may 
underestimate the total knowledge of the group. If the estimated exponent is 
greater than 1, the aggregate forecast is shifted  toward the nearest end of the 
probability scale (0 or 1) as if the aggregate has more information than is re-
flected in the mean. Similarly, when the exponent is less than 1, the aggre-
gate is shifted away from the nearest end of the scale, as if the aggregate has 
less information than the mean reflects. The exponent “recalibrates” the geo-
metric mean. The algorithm also discounted older forecasts and differen-
tially weighted individuals based on their previous accuracy and/or effort. 
This aggregation rule outperformed other methods each year for four years 
(Mellers et al. 2014). Almost a million aggregate forecasts from the Good 
Judgment Proj ect  were on the right side of maybe 86% of the time. This algo-
rithm outperformed the  simple mean of forecasts in a control condition by 
as much as 60%. In short, we discovered that the  human forecasts of unique 
events could not only be predicted, but they could be predicted with a sur-
prising degree of accuracy.

How Do Professional Intelligence Analysts Make Forecasts?

The 2004 Intelligence Reform and Terrorism Prevention Act requires that 
analysts “properly caveat and express uncertainties or confidence in analytic 
judgments.” Yet  there is no consensus on what it means to properly caveat. 
The intelligence community uses both qualitative and quantitative methods 
to express doubt. Common qualitative approaches include verbal terms (i.e., 
“we judge,” “we estimate”), confidence levels (expressed as low, medium, or 
high), or uncertainty phrases (i.e., “unlikely,” “pos si ble,” and “probable”) 
(Friedman et al. 2017).

This form of expression may seem reasonable at first glance, but the mean-
ing of such phrases is far from clear (Beyth- Marom 1982; Mosteller and 
Youtz 1990; Wallsten and Budescu 1995). Researchers have found between- 
subject and within- subject differences in the meaning of uncertainty phrases. 
When the same uncertainty phrases  were associated with diff er ent events, the 
same subjects assigned diff er ent levels of probability. “A good chance” of being 
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assaulted sounded greater to most  people than “a good chance” of rain to-
morrow. The meaning of probability phrases depended on the desirability of 
the event (Cohen 1986), the severity of the event (Weber and Hilton 1990), 
and the base rate of the event (Wallsten, Fillenbaum, and Cox 1986).

Intelligence analysts are currently asked to use a hybrid scale in which 
they express their beliefs using a numerical rating that is tied to a verbal 
phrase and a range of probabilities. In November 2015, the National Intelli-
gence Council recommended a seven- point scale, with each phrase anchored 
to unequal- sized bins of probabilities (Office of the Director of National In-
telligence 2015). Numbers  were labeled as “Remote,” “Very unlikely,” “Un-
likely,” “Even chance,” “Likely,” “Very likely,” and “Almost certainly.”

Rating scales such as  these represent a compromise between quantitative 
and qualitative mea sures. Such mea sures are typically defended on the basis 

Figure 12.1. The proportion of unique probability values used by forecasters.
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Figure 12.2. The proportion of forecasters using diff er ent percentages of more 
precise predictions (not multiples of 5% or 10%).
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of what decision theorists call the “congruence princi ple,” or the idea that 
probability assessors should use a level of precision that reflects their ability 
to justify and express their beliefs, but no more (Budescu and Wallsten 1987). 
In areas of high- risk decision- making, it goes without saying that one should 
not communicate uncertainty in a manner that suggests greater knowledge 
than one actually has. But is an uncertainty scale with seven categories 
enough for analysts to convey their beliefs? Is this the best mea sure for 
maximizing predictive accuracy?

Using data from the Good Judgment Proj ect, we could answer  these ques-
tions by tackling three smaller ones (Friedman et al. 2017). How many dis-
tinctions along the probability scale do forecasters typically make? How many 
categories of uncertainty do forecasters actually need? And what predicts the 
tendency to make more granular probability judgments? Answers  will tell us 
 whether current methods for expressing uncertainty used in the intelligence 
community are sufficiently precise.

Distinctions That Forecasters Make

 There are several ways to investigate categories of uncertainty that  people are 
able to use. One way is to count the number of unique probability values fore-
casters use during the course of a given tournament year. Figure 12.1 shows 
such data from the last three years of the Good Judgment Proj ect. The first 
year was not included  because additional analyses, discussed  later, required 
superforecasters, and they  were not identified  until the end of the first year. 
The proportion of forecasters who used diff er ent numbers of unique prob-
abilities (shown as bins of 0 to 9, 10 to 19, 20 to 29,  etc.) appear for years 2, 
3, and 4. Most forecasters used 10 to 29 unique values of probability for the 
questions they faced during the year. Average numbers of unique values 
 were 22, 30 and 30, in years 2, 3, and 4 respectively. If forecasters expressed 
their uncertainties in multiples of 10%, they would be making 11 distinc-
tions. If distinctions  were in all multiples of 5%, they would be making 21 
distinctions. Values of 22, 30, and 30 suggest that, in year 2,  people  were us-
ing multiples of 5% on average, and in  later years, they used more distinc-
tions.

A second way to ask how many levels of uncertainty  people can distin-
guish is to examine which percentages they use. To what extent did forecasters 
submit beliefs such as “19%” and “53%” versus “20%” and “50%”? Friedman 
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et al. (2017) examined instances in which forecasters made predictions that 
 were not multiples of 5% or 10%. Results are shown in Figure 12.2, with pro-
portions of forecasts that  were not multiples of 5% and 10% (in binned inter-
vals). In the second year, more than half of the forecasters made relatively 
few such predictions (e.g., 23% or 88%, 9% or fewer). As the years went on, 
forecasters made a greater number of more precise predictions. Both fig-
ures show that  there are widespread individual differences in the distinc-
tions of uncertainty that forecasters make across the entire probability 
continuum.

Distinctions That Forecasters Need

On the surface, one might conclude that more granular probabilities con-
vey more information. Yet, in practice, it is unclear  whether more precise 
responses have additional information or  whether they simply reflect a de-
sire on the forecaster’s part to appear more precise. If differences are purely 
superficial, one might be safe in assuming that  people  don’t need to express 
as many distinctions as they are actually making. On the other hand, if 
more precise forecasts are actually more accurate forecasts, then the intel-
ligence community should allow analysts to use more categories to express 
their beliefs.

To find out  whether more precise forecasts  were associated with greater 
accuracy, Mellers et al. (2015b) rounded the predictions of superforecast-
ers to the nearest 0.10, and 0.33 (corresponding to probability scales with 11 
distinctions and 4 distinctions, respectively). In both cases, the rounding of 
superforecasters’ predictions significantly decreased accuracy. That is, Brier 
scores computed on the rounded predictions  were less accurate than original 
Brier scores. Although  these analyses  don’t speak to cognitive pro cesses 
directly, they are consistent with the hypothesis that superforecasters  were 
capable of reliably making at least 12 distinctions on the probability con-
tinuum.

Friedman et al. (2017) used a similar, but more extensive method to esti-
mate the number of categories forecasters could reliably use. They drew on 
more than 750,000 predictions from over 1,700 forecasters, each of whom 
had made predictions on 25 or more questions in the last three years of the 
tournament. Each forecaster’s predictions  were rounded to the midpoint of 
equal- sized bins (b), where b ranged from 2 to 101 categories. Friedman et al. 
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recomputed Brier scores  after each rounding and compared them to the 
original Brier scores. Then they looked at the change in the Brier score  after 
rounding.

 Table 12.1 shows mean and median percentages of accuracy associated 
with three groups from the Good Judgment Proj ect (untrained individual 
forecasters, trained team forecasters, and superforecasters), as well as abbre-
viated statistical results concerning the impact of rounding of forecasts. 
 After groups, the  table pres ents unrounded Brier scores for each group. 
Superforecasters had the lowest Brier scores. Columns to the right show the 
percentage changes in Brier scores due to rounding. Both columns represent 
uncertainty scales with seven categories, reflecting the current scale used by 
the intelligence community. We show two diff er ent ways of operationalizing 
the scales. In the first case, the seven categories  were associated with equal- 
sized intervals, and in the second case, they  were unequal intervals. Round-
ing of forecasts to each number of categories was done by using the midpoints 
of the interval. Means of rounded and original scores  were compared with 
two- sided t tests, and medians  were compared with two- sided Wilcoxon 
signed- rank tests.

Positive percentages shown in the last two columns in  Table 12.1 indi-
cate the percentage increase in Brier scores  after rounding (less accuracy). 
Although  these changes are not large for untrained individual forecasters or 
trained team forecasters, differences are statistically significant when com-
pared to the original Brier scores. Decreases in predictive accuracy are much 
greater for superforecasters than any other groups. Superforecasters tended 

 Table 12.1. Rounding forecasts to seven categories: Original Brier scores for 
dif fer ent groups and percentage of errors added with rounding

Groups of 
forecasters

Original Brier 
scores

Seven categories, 
unequal 
intervals

Seven categories, 
equal intervals

Untrained  
 individuals

Mean: 0.1890
Median: 0.162

0.5%**
0.6%**

0.5%
0.2%**

Trained teams Mean: 0.1360 0.8%** 3.3%*
Median: 0.1000 0.9%** 2.4%**

Superforecasters Mean: 0.093 6.1%** 10.4%**
Median: 0.032 1.7%** 10.2%**

Note: * p < 0.05; ** p < 0.001.



220 Mellers, Tetlock, Baker, Friedman, and Zeckhauser

to make more granular predictions, and as Friedman et al.’s results demon-
strate, their precision often conveyed valuable information.

 Table 12.1 tells us that the category rating scales for expressing uncer-
tainty used in the intelligence community do not give forecasters— especially 
the very best forecasters— enough latitude to convey all of the information they 
actually have. Forecasters using those scales cannot make the precise pre-
dictions that would have maximized their accuracy. Accuracy suffered.

Who Makes Finer Distinctions?

Friedman et  al. (2017) developed an index of the granularity, or implicit 
precision, of each individual’s forecasts. They calculated the number of 
bins, b, for which rounded Brier scores  were not statistically diff er ent from 
unrounded Brier scores. The minimum number of categories was interpreted 
as an indirect mea sure of the fewest distinctions an individual was reliably 
capable of making. To explore the correlates of this granularity index, Fried-
man et al. conducted exploratory regressions using predictor variables such 
as forecasting accuracy, motivation, training, education, cognitive abilities, 
and cognitive styles.

Forecasting accuracy was the strongest predictor of the estimate of fore-
casters’ precision.  Those who made more distinctions along the probability 
continuum also tended to be more accurate.  These individuals also tended 
to have training in probabilistic reasoning and  were more engaged in the 
tournament (i.e., updated their forecasts more frequently and attempted to 
address more forecasting questions).  Those whose forecasts  were more pre-
cise also tended to have more experience by participating in the tournaments 
for a longer period of time.

 These results imply that intelligence analysts and other professional fore-
casters can increase their accuracy by learning to be more precise. Analysts 
are full- time professionals whose job it is to assess uncertainty on a daily basis 
over many years. They have more opportunities and incentives to refine and 
revise their forecasts in light of new information than did forecasters in the 
Good Judgment Proj ect, who  were largely participating for fun.

Variables that did not predict the granularity index, perhaps surprisingly, 
included education, numeracy, cognitive ability, and cognitive styles (Fried-
man et al. 2107).  These  factors represent more innate variables that are harder 
to change or manipulate, whereas incentives for effort, engagement, and 
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training in probabilistic reasoning are interventions that organ izations could 
make without huge investments in time and money. In sum, the ability to 
make more precise predictions appears to be something that forecasters can 
learn to do with the proper guidance and incentives.

Improving Current Practices

Our results show that standard methods of expressing uncertainty with 
seven- point rating scales as done in the intelligence community are simply 
too coarse. As discussed in Friedman et al. (2017), this finding did not de-
pend on the use of extreme probability estimates, questions with shorter time 
horizons, questions of diff er ent types (e.g., military, economic, health- related), 
or diff er ent categories of strictly proper scoring rules. Additionally— and per-
haps most importantly—it was the superforecasters who took the greatest 
hit to predictive accuracy when their response scales  were constrained. Given 
their remarkable accuracy, we suggest that, if anything, superforecasters 
should have the loudest voices when events are uncertain, information is am-
biguous, the stakes are high, or the consequences dire.

Some scholars and prac ti tion ers oppose the use of numerical probabili-
ties on grounds that the extra “precision” is essentially noise (e.g., Fingar 
2011). The National Intelligence Council (Office of the Director of National 
Intelligence 2007) also says that “assigning precise numerical ratings to [prob-
abilistic] judgments would imply more rigor than we intend.”  Others say 
that numerical probabilities would impose additional  mental costs on an-
alysts. Although  there may indeed be a learning period, this hypothesis 
requires empirical testing.

Our message  here is  simple. We know much more than we did a de cade 
ago about how to accurately estimate the chances of unique events. Some 
methods are demonstrably better than  others. The Good Judgment Proj ect 
found five ways of improving accuracy. With  these  drivers, intelligent lay 
 people could make forecasts that  were 30% more accurate than  those of pro-
fessional intelligence analysts, even in instances where analysts had access 
to additional, classified information (Goldstein et al. in press).

Better forecasts require identifying, training, teaming, and tracking fore-
casters, and optimally aggregating their forecasts. First, getting the right 
 people is essential. Better forecasters tend to take an analytical approach to 
predictions and to enjoy intellectual challenges. They search for evidence that 
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runs  counter to their favored beliefs and maintain open minds. Second, train-
ing helps.  People can learn to be better forecasters when they are instructed 
to use best practices for probabilistic reasoning. Third, geopo liti cal forecasters 
are more accurate when working in teams than when working in de pen dently. 
The shared information, encouragement and comradery introduced by the 
team structure in ACE demonstrably outweighed the potential for herding 
or groupthink. Fourth, accuracy gets an enormous boost when top perform-
ers are allowed to work together in elite teams. The added commitment 
and desire to not disappoint one’s teammates proves to be a stronger incen-
tive than we could have  imagined. Fi nally,  simple algorithms that incorpo-
rate the discounting of old forecasts, the differential skills of forecasters, 
and the degree of information overlap among the crowd are far superior to 
 simple averages.  These  factors show that it is the combination of statistical 
and psychological insights that improve the predictive accuracy of unique 
events.

Data from the Good Judgment Proj ect allowed us to test another driver 
of accuracy— the degree of precision intelligence analysts require in their ex-
pressions of uncertainty in order to maximize accuracy. Standard methods 
are seven- point category rating scales of uncertainty. A comparison of fore-
casters’ original accuracy scores to accuracy scores  after rounding to seven 
categories showed that inaccuracy grows if forecasters are constrained to ex-
press their beliefs using only seven categories. Even worse, it is top perform-
ers whose accuracy suffers the most when forced to communicate with 
restricted probability scales. This driver is, by far, the easiest one for the intel-
ligence community to implement.

Unfortunately, it is still the norm that intelligence analysts express un-
certainties with vague verbiage. What does it mean when a pundit asserts that 
a military operation is “likely” to succeed? Is the probability just above 55% 
or is it closer to 90%? Or, what if an expert says that a crisis is “unlikely” to 
escalate? Does that mean the probability is 10% or 40%? Despite the uncer-
tainty and subjectivity inherent to policy debates, evidence from the Good 
Judgment Proj ect suggests that  there are valid grounds for asking analysts 
to assess uncertainty numerically using the entire probability scale; greater 
accuracy  will be the result.

Although findings in one domain may not carry over into  others, it is 
worth considering the notion that other professions might be systematically 
sacrificing predictive accuracy by using qualitative expressions of probabil-
ity. Qualitative expression of uncertainty is commonly used in regulatory 
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policy (Sunstein 2104), medicine (Nakao and Axelrod 1983), and climate sci-
ence (Budescu et al. 2014).  These are all areas where risk and uncertainty 
play a crucial role in decision- making. Our research provides a method-
ological template for addressing this question in a principled way, with the 
first and foremost ingredient being to keep score.

Any organ ization that strives for the clearest communication of risks 
should extract as many useful signals from its  people and its environment as 
pos si ble. The Good Judgment Proj ect has tested a variety of methods scien-
tifically and found ways to bolster accuracy. The world is a messy place, and 
accurate predictions are unquestionably hard. But when the stakes are high— 
with billions of dollars or thousands of lives on the line— even small increases 
in predictive accuracy can translate into enormous benefits to society. 
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