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An extreme event, such as a nuclear accident, an earthquake, a
cluster of adverse reactions io a particular drug, or excessive
breakdowns of some class of equipment, frequently focuses
attention for the first time on an important issue. By then, however,
data on the incidence and magnitudes of relevant past events may
be unavailable or too costly to reconstruct. Using a simple
probability model, we derive methods for drawing statistical
inferences based only on the magnitude of the first event noticed
Abstract and the amount of exposure before this event occurred. We assume
that an event is noticed only when its magnitude exceeds some
threshold, and we develop methods of inference that are valid even
when this threshold is unknown. One tempting but incorrect
approach is to treat the magnitude of the observed event as if it were
the threshold, forgetting that smaller magnitudes might have been
noticed as well, The biases that arise when this mistake is made
turn out to be substantial; risks can easily be overstated by
a factor of 3.

THE PROBLEM Modern industrial societies employ a proliferating array of sub-
stances and technologies that appear when introduced to involve
low-probability risks of possibly high conscquence, but of low
probability. It is neither physically possible nor economically
sensible to monitor fully the performance of every conceivable
hazard in each of the settings in which it is found. The screening
strategy that society follows, at least implicitly, is to permit the
use of these substances and technologies, requiring a test that
“proves safety” in some cases, but to remain alert for surprising or
extreme outcomes. Three Mile Island and the heightened incidence
of leukemia among vinyl chloride workers are classic cases of such
outcomes. In the same way, many social processes, such as the
operation of businesses or government agencies, are assumed to be
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acceptable as long as no significantly untoward consequences
come to light.

Because economic development has tended to increase the
physical concentration of the population as well as its reliance on
large-scale interdependent technologies, society has become in-
creasingly vulnerable to low-probability natural disasters as well.
A major quake along the San Andreas Fault would provide a
dramatic illustration. Yet California remains densely populated in
many regions near the fault; significant tremors might sound an
alarm and lead to changes in the location and construction of
residential and industrial buildings.

Society’s strategy for dealing with low-probability risk relies, in
effect, on a watchdog that is aroused only occasionally. Whatever
the merits of this approach—the quintessence of crisis
management—once the dog does bark, appropriate inferences
need to be drawn to predict future levels of risk. The problem is
subtle because the level of stimulus required to arouse the dog, a
critical consideration here, may not even be known. Inappropriate
inferences are all too easy to make and, as we shall show, may lead
to large systematic errors, creating the potential for important
biases in policy.

To predict future levels of risk, a statistically attractive possibil-
ity would be to go back and collect all data on relevant past
experience and then draw appropriate conclusions based on the
complete time series. For example, after an assassination attempt
that wounds a leader, his security staff may assess how frequently
they have received threats or warnings, intercepted bombs or
weapons, or had other indications of danger. Often, unfortunately,
such reconstruction is not possible. In some instances, no data at
all have been collected. Thus, an auto manufacturer might not
know how often a particular steering mechanism in its cars was
involved in accidents. Consistent reconstruction of past data is
especially likely to be infeasible (or excessively expensive) in areas
not covered by the normal recording procedures of our society.
This may be the case with activities outside the law, such as illicit
drugs or illegal immigrants, or with currently unidentified risks
such as those associated with industrial wastes or with food
substances that are generally regarded as safe (GRAS).

In other instances, the past data may have been collected in
incompatible forms, perhaps from a diversity of sources. In the
case of the Three Mile Island nuclear accident,' the different
accounts of past histories diverge dramatically. One group of
commentators tells of 500 reactor years without a significant
accident. Another recounts several serious situations and near
misses. Although it may be possible to reconstruct our experiences
with nuclear power on a consistent and agreed-upon basis, a
significant commitment of resources and time will be required,
and not a little debate. An interim evaluation may be useful.

To keep the analysis tractable, we shall invoke a strong simplify-
ing assumption: The only known facts are the magnitude of the
extreme event that activated the alarm and the number of trials or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—_

total amount of exposure before it occurred. Many fields offer
examples that could fit our models with no more than the level of
elaboration traditionally required to pass from simple abstrac-
tions to real world phenomena. An adverse symptom may be
noticed in a cluster of individuals taking a particular drug;
corruption may be discovered within a government agency; some
class of equipment may be found to break down excessively; three
tenured professors may quit a department in a single year. The
inference problem we consider is particularly germane to the
control of potentially toxic substances. The monitoring and regula-
tion of thousands of such substances is the purpose of the widely
debated but indisputably consequential Toxic Substances Control
Act of 1976.?

For purposes of illustration, we shall use a simple, noncontrov-
ersial example based on an actual legal case in which one of the
authors was asked but chose not to participate. It involves a rivet
gun. A rivet has ricocheted and blinded an individual in one eye.
We know the number of rivets that have been sold for this brand of
gun, most of which have presumably been fired. To settle a product
liability suit, or to decide what regulatory action should be taken
toward the gun, it must be determined how dangerous it is. Surely
any previous injury as severe as a blinding would have been
reported. If less severe injuries had occurred, however, some of
them would presumably also have been reported. What inferences
should be drawn from the fact that no previous injuries have been
reported? As another investigator demonstrated, it is a subtle
matter to draw inferences when a watchdog doesn’t bark.

“Is there any other point to which you would wish to draw my
attention?”’

‘““To the curious incident of the dog in the night-time."”

“The dog did nothing in the night-time.”

“That was the curious incident,” remarked Sherlock Holmes.?

With the rivet gun, the question for attention is: How severe an
injury would have led to a report? Our tale concerns a not-so-
clementary follow-up question: How can we draw inferences
properly from the magnitude of and time until an alarming event,
when the threshold for notice or report is not known?

We have two analytic objectives in this article. First, we wish to
examine the bias inherent in some intuitively appealing but
incorrect approaches to this problem; this is a subject of impor-
tance to anyone concerned with the formulation of public policy
towards risk. To determine the importance of the bias, we shall
examine it numerically as well as algebraically. Second, we seck to
illustrate the use of statistical methodologies appropriate for
situations that only become a focus of attention once some extreme
event occurs; this is a subject that will be germane for only those
readers who might actually conduct an analysis. For ease of
exposition, we emphasize classical statistical methods, and
hypothesis testing in particular, though our personal philosophy of
inference is, in principle, Bayesian.}
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THE UNDERLYING
PROBABILITY MODEL

Our broader purpose is to heighten consciousness of the impor-
tance of drawing inferences logically and clearly when, by chang-
ing the perception of a process, extreme outcomes motivate discus-
sion or policy action. We examine only those biases that arise when
formal statistical methods are brought into play and are used
inappropriately. Thus we present at best a metaphor for the
processes of informal reasoning that are employed most frequently
in real world decisions, particularly crisis decisions. The decision
processes actually used are unlikely to match the logic and clarity
of formal statistical analysis. Consequently, our estimates of biases
are likely to prove conservative as compared with real world
decisions, and our warnings about pitfalls are likely to be un-
derstated.

To provide a specific analysis of situations like those described
above, picture the following process. At random intervals of time,
events occur (for example, a rivet hits someone). Time is measured
in units appropriate to the situation (for example, rivets fired or
reactor years). Each event has a magnitude, also random, that
indicates its seriousness. How seriousness is measured and how
the measure is distributed turn out to matter little for our main
results.

We assume that an event will be noticed if and only if its
magnitude exceeds an unchanging threshold a.® (A more general
formulation would make the probability of noticing an event
increase as a function of its magnitude over some range, rather
than jump abruptly from 0 to 1 at a single point a. This would
allow, for example, some classes of injuries that would be reported
sometimes but not always.) For the rivet gun, the threshold might
be an injury that requires hospitalization. A central aspect of the
problem is that the value of a is not necessarily known. Let the first
event noticed have magnitude b and occur at time T. In this
notation, our concern is drawing inferences from the limited
observed information T and b, and whatever information (possibly
subjective) exists about the value of the threshold a.

The probability model we employ is natural and standard. Its
parameters are an unknown constant A, denoting the frequency or
rate at which events occur on average, and a function G(y),
denoting the probability that an event, whenever it occurs, will
have magnitude y or greater. The average frequency with which
events of magnitude y or greater occur therefore is AG(y). Techni-
cally, the model is equivalent to an assumption that the number of
events of magnitude at least y occurring before time ¢ has the
Poisson probability distribution with mean tAG(y).* The model
treats time as continuous. For discrete time, the effects we are
concerned with are stronger, but only slightly, and the analysis is
more complex.’

For the rivet gun, with the usual approximation of discrete trials
by continuous time, each shot has probability A of hitting someone
and probability AG(y) of inflicting an injury of severity of at least y;
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HYPOTHESIS TESTING

the number of such injuries inflicted by the first ¢ shots has a
Poisson distribution with mean tAG(y). If one shot in 2500 hits
somecone, then A = 0.0004. If y denotes blinding, and such a severe
injury occurs once in 1000 hits, then G(y) = 0.001. In 1,000,000
shots, the number of injuries at least as severe as blinding will then
have a Poisson distribution with mean tAG(y) = 1,000,000 x 0.0004
% 0.001 = 0.4. According to this distribution, the probability of no
such injury in 1,000,000 firings is 0.67, the probability of 1 is 0.27,
the probability of 2 is 0.05, and the probability of 3 or more is 0.01.

One implication of our model willl be especially useful. Clearly
T, the time until the occurrence of the first event exceeding the
threshold a, exceeds a given time ¢ if and only if no such event
occurs up to time ¢. The probability of this is given by the Poisson
distribution as

Prob(T > {) = ¢ 6@ a

The expression on the right is the exponential function evaluated
at l—-t)\G(a). (The distribution of T is accordingly called “exponen-
tial.”)

Once an event has been noticed, how should inferences be
drawn? In addressing this question, there is a tendency to forget
that smaller magnitudes might have been noticed as well. This
natural mistake in effect treats the magnitude b of the first event
noticed as if it were the threshold a. In this article we (1) identify
correct methods of inference when a is known, (2) provide a
quantitative appraisal of the bias arising when b is mistakenly
treated as the threshold a, and (3) define correct methods to be
used when a is known. (This explains the mongrelized subtitle we
used in the discussion paper version of this article, “False Tails and
True When Finally the Watchdog Barks.”)

We carry out this analysis for classical hypothesis testing and
apply the results to the rivet gun. Then with a bow to our
upbringing, we present a straightforward “Bayesian” probability
analysis. Using the wrong threshold produces similar biases in
other forms of inference.” Throughout, technicalities are relegated
to the Notes section where possible.

Society employs two basic approaches to the control of low-
probability risks. In the framework of classical hypothesis test-
ing,®? these approaches give rise to two different types of null
hypothesis. A null hypothesis representing danger would be in the
spirit of the current U.S. regulatory procedure for the introduction
of new drugs: A drug is considered unacceptable for use until it is
proven both safe and efficacious.!® Our approach to most consumer
products, on the other hand, is to assume they are safe until
contrary evidence appears.!” A null hypothesis of safety would
formalize this assumption. When extreme events excite notice, the
approach assuming safety is ordinarily the one that has been
followed. Hence we shall concentrate on it, but each of our tables
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Null Hypothesis
Representing Safety

Correct Inference When
the Threshold is Known

includes an additional row for the case where the null hypothesis
represents danger.

We consider a null hypothesis chosen to represent conditions of
low risk or safe operation. Rejecting it should sound an alarm;
accepting it should provide reassurance. Specifically, adopting the
model described earlier, let an event frequency Ay and magnitude
distribution G, be chosen to represent safe conditions. The statisti-
cal null hypothesis is that extreme events are no more likely than
under Ag and G,. Let the test statistic be the amount of time T until
an extreme event is first noticed. By eq. (1), the distribution of time
until notice depends only on the product AG(a), where a is the
threshold for notice. We may theretore take as the null hypothesis

Hg: AG(a) < AGfa) 2)

This says specifically that the frequency with which events suffi-
ciently extreme for notice occur on average is at most A¢Ggla), a
chosen safety level.

Assume now that the threshold for notice, a, is known. The null
hypothesis of safety is rejected if a noticeably extreme event occurs
too soon, that is, if T is too small. Under the null hypothesis (2), by
eq. (1), the probability that an event as extreme as a would have
occurred by time T was at most

PAT) = 1 — ¢ ThGo@ 3

A traditional classical statistical test at significance level « is to
reject Hg if and only if this probability is less than or equal to the
significance level, i.e., if P,(T') < «. The value of P(T) is sometimes
called the P value. P values are often interpreted as measuring the
strength of the evidence against the null hypothesis.

For any threshold a and significance level «, there will be a time
such that if an event as extreme as a occurs before then, the null
hypothesis of safety is rejected. If it takes longer, then we will be
reassured. Accordingly, we shall call this time the reassurance
time. (It is also called the “critical value” of the test statistic 7.) It
is obtained by setting eq. (3) equal to « and solving for T". By a bit of
algebraic manipulation, the reassurance time, denoted T, (), can
be expressed in terms of natural logarithms as

_ =In(l - o)
T,(a) = W)_a 0]

In summary, when the threshold a is known, a classical statisti-
cal test of the null hypothesis of safety can be based on the time T’
to first notice. A safety level A(Gga) must be chosen for the
frequency of noticeable events. Either formula (3) for the P value or
formula (4) for the reassurance time can be evaluated. The null
hypothesis is rejected if the P value is less than some chosen
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Mistaking the Observed
Magnitude for the
Threshold

significance level « or, what amounts to the same thing, if notice
occurs before the reassurance time.

When the threshold a is unknown or ignored, what is the effect of
mistakenly treating the first magnitude noticed, b, as if it were the
threshold? That is, if the P value (3) or the reassurance time (4) is
erroncously calculated with b in place of a, how serious is the
error?

To a strict hypothesis tester, the relationship between the true
and asserted significance levels of the erroneous test probably
provides the most definitive measure of ecror. Remember that G,
stands for the distribution of the magnitude of the events chosen to
represent borderline safety. The true significance level correspond-
ing to a given asserted significance level depends, perhaps surpris-
ingly, on neither the true threshold nor G,. As long as G, is
continuous, which we assume henceforth, Table 1 reveals in pure
form the considerable overreaction implied by treating the ob-
served magnitude as if it were the threshold. For the null
hypothesis of safety, an erroneous test supposedly at the widely
used 5-percent level, for example, has a true significance level of
17.5 percent. That is, even if the procedure is safe by our own
standards, we face a 17.5-percent chance that we will conclude
that it is not. True and asserted P values satisfy the same relation-
ship as significance levels. Thus, Table 1, though limited in
coverage, applies also to P values: an asserted P value of 2.5
percent, for instance, is truly 10.4 percent. .

The bottom row of Table 1 gives the parallel results if we start
with a null hypothesis of danger. The overstatement of danger
persists. For example, an erroneous test thought to be conducted at

Table 1. True significance level of erroncous tests.

Supposed or
nominal
significance
level a 0.005 0.010 0.025 0.050 0.100

True significance
level when
null
hypothesis
represents
safety 0.029 0.051 0.104 0.175 0.287

True significance
level when
null
hypothesis
represents
danger 0.00071 0.011 0.025

0.0016 0.0046
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the 1-percent level has actually at most a 0.16-percent chance of
providing false reassurance by rejecting this null hypothesis if
true.

There are also significant differences between erroneous and
correct reassurance times. Table 2 gives the factor by which the
erroneous 1eassurance time 7T, (a) exceeds the correct reassurance
time of a test based on the time of first notice, assuming that the
true threshold is unknown. At the 1-percent level, for example, the
erroneous reassurance time is 7 times too large if the null
hypothesis represents safety, 1.5 times too large if it represents
danger.

It is instructive as well to compare the erroneous inferences with
those that would be correct for a known threshold a. Comparison
is easiest for the reassurance times: by eq. (4), the erroneous
reassurance time is too large by the factor

Tyo) 1
T:(a) "R ®
where
Gob)
R =%d0) 6
Gola) ©

The central question then becomes how big the error factor R is
likely to be, i.e., how it is distributed. The answer is simple in the
most important case: R is distributed uniformly between 0 and 1
when the magnitudes have the borderline null distribution G,."
Moreover, R is distributed independently of the time until first
notice."” This implies that the probability is % that the reassurance
time will be overstated by a factor of 2 or more; overstatement by a
factor of 3 or more has probability !, etc.

Note, furthermore, that because of the overstatement, the ex-
pected value of the erroneous reassurance time is infinite. In
contrast, the actual time of operation without a noticed event has

Table 2. Ratio of erroneous to correct reassurance times.

Significance
level a 0.005 0.010 0.025 0.050 0.100

Ratio when null
hypothesis
represents
safety 7.79 7.01 5.96 5.17 4.39

Ratio when null
hypothesis
represents .
danger 1.46 1.51 1.59 1.68 1.81
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Correct Inference When
the Threshold is Unknown

finite mean, namely, 1/AG(a). This infinite versus finite discrep-
ancy may sound rather puzzling. There are tinies when mathema-
tics is like that.

Finally, we compare the erroneous P values and significnce
levels with the correct ones for a known threshold a. The erroneous
P value P,(T) may be expressed in terms of the correct P value P(T)
as

PT) =1-[1-PM]* )]

where R has the same meaning as before. The relationship is the
same for significance levels. Two implications of this formula may
provide some insight. First, if the correct P value (or significance
level) is small, then the ratio of the incorrect to the correct P value
is approximately R. Second, the expectation of this ratio in the
borderline case is between 0.5 and 0.53 if the correct P value is 0.3
or less, and is always at least 0.5.'

Correct P values for an unknown threshold are given by Table 1
and formulas in Note 13. Comparing the correct P value with «
then gives a correct test. This amounts to viewing in reverse the
relationship discussed above between the supposed and true sig-
nificance levels of the erroneous test procedure that treats the first
noticed magnitude b as if it were the threshold. Specifically, define
H, as requiring that eq. (2) hold for all a and some given,
continuous G,. Then any desired true significance level can be
obtained by employing the erroneous test at the corresponding
nominal significance level in Table 1 (or a more complete table of
the same sort). Equivalently, for the true significance levels com-
monly used, Table 3 provides the critical values of the test statistic
TA; Gy(b): The null hypothesis is rejected if the time T of first notice
is less than this critical value divided by AG(b).!* Alternatively,
dividing the entry in Table 3 by T gives the strictest safety level

Table 3. Critical values of TAG(b) when threshold is unknown.

Significance
level « 0.005 0.010 0.025 0.050 0.100

Critical value
when null
hypothesis
represents
safety 0.000643 0.00143 0.00425  0.00994 0.0240

Critical value
when null
hypothesis
represents
danger 3.62 3.05 2.32 1.78 1.27
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Example: The Rivet Gun

L

AGb) we could adopt and still accept the null hypothesis; this is a
confidence limit. (For the null hypothesis of danger, “accept” and
“reject” are reversed.)

In the case of the rivet gun, suppose that the blinding occurred
after 220,000 firings. Suppose that the null hypothesis is that the
gun is “‘safe,” and is defined so that the probability on each firing
of an injury at least as severe as a blinding in one eye is no greater
than 1077, with milder or severer injuries correspondingly more or
less likely. (Choosing a null hypothesis after the data are known
risks biasing the choice to make a case. Though perhaps falling
prey to this bias, we are not investigating it here.) Then borderline
safety corresponds to A(Gb) = 1077,

If the true threshold a were known, a test of a null hypothesis (2)
stated in terms of a could be based on the P value (3) or the
reassurance time (4). Unfortunately a is unknown.

If blinding (which is b, the first observed magnitude) is treated
as the threshold, then for a = 0.05 eq. (4) gives the erroneous
critical value or reassurance time

=In(l — @) —1¢7 _
NGD) 107 In(0.95) = 512,933 (8)

This is too large by the factor

1 _ fraction of injuries that would have been reported &)

R~ fraction of injuries at least as severe as blinding

The erroneous P value (3) is
1 — g 0m0x 1077 — 0,022 (10)

which is too small by approximately the same factor. The problem
is, of course, that the factor R is unknown. Suppose that severity of
injury has a continuous distribution for injuries that would have
been reported. (This may be approximately though not exactly
true.) Then by Table 1 the true significance level of the erroneous
test, the chance of false alarm, is 17.5 percent: If the null
hypothesis is just satisfied, there is more than 1 chance in 6 that it
will be rejected, in contrast to the 1 chance in 20 we were aiming
for. Table 1 also shows that the true P value is a little less than 0.1,
rather than 0.022,

The correct reassurance time at level a = 0.05 is 0.00994/10°7 =
99,400 firings, the relevant entry in Table 3 divided by the
borderline safety level for blinding. Thus 220,000 firings before a
reported injury, if the injury is blinding, is more than twice the
correct reassurance time, though less than half the incorrect one.
The incorrect reassurance time is 5.17 times the correct one, by
Table 2. The null hypothesis of safety would be rejected only if it
required the probability of blinding on each firing to be below
0.00994/220,000 = 0.452 x 1077, or about 1 in 22 million.
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BAYESIAN METHODS Hypothesis testing is a very limited form of inference. To go
beyond it on the basis of a single observed event and a history of
nonevents, however, requires strengthening our assumptions. In
many real world situations, the next step would be to obtain
further data, but our irterest here is in developing more powerful
inferences without further data. The simplest plausible assump-
tion for this purpose appears to be that our earlier model will hold
with a known distribution of magnitude. Accordingly, we assume
that G is known.

In a more technical background paper,’ besides hypothesis
testing we treat confidence limits and several likelihood methods
with known and unknown thresholds. Here we consider only a type
of probability analysis called Bayesian® when both the frequency
of occurrence, A, and the true threshold for notice, a, are unknown.

The object of the Bayesian approach is tu obtain a probability
distribution for the quantity that is of interest, given the data at
hand. This is called the posterior distribution. To obtain it, it is
necessary to start with a probability distribution representing the
opinion one would have held in the absence of data. This is called
the prior distribution. Here we need a prior probability density for
the frequence A and the true threshold a. For any given A and a, the
probla;bility density of the data, the observed magnitude b and time
T, is

pT,b|\a) = Ag(b)e ™ for b = a, and otherwise 0  (11)

where g is the probability density function of the magnitude
distribution. According to an elementary law of probability theory
known as ““Bayes’ rule,” the posterior density of A and a is simply
the prior density times the quantity in eq. (11) times a constant.
Integrating over a then gives the posterior of A, the quantity of
interest. Erroneously treating b as the threshold replaces the
distribution of a by the single value b. Since a > b is impossible
once b has been observed, this error increases the relative weight
on large values of A in expression (11) and in the posterior density
of A, in much the spirit of the exaggerations discussed previously.'

Now we apply the approach to the case of the rivet gun. On the
220,000th firing it was noticed: it blinded someone. We now wish
to draw inferences about the probability of different values of a
and A. In particular, we wish to compute the probability density
for the hit frequency A given the data, the posterior density of A. To
do so, we must specify a prior distribution for the two unknowns.
Assume that the prior distribution has A and G(a) independently
uniformly distributed on intervals [0, L] and [C’,1], respectively,
where L is essentially infinite and C’ < G(b). The posterior density
of A for this illustrative prior distribution is (220/0.999) (¢ 2" —
£~22000%) 18 The erroneous posterior density of A, obtained by treating
blinding b as the threshold, with the same prior distribution of A, is
(220)2he™*™, Graphs of the correct and erroneous posterior densi-
ties A appear in Figure 1. The overweighting of large values of A
caused by the erroneous assumption that no accident less than
blinding would have been noticed is eminently clear.
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CONCLUSION
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Figure 1. Correct and incorrect posterior densities for frequency of hit in
the rivet gun example.

When drawing inferences from the occurrence of a single event
whose magnitude exceeds an unknown threshold, the natural
mistake of treating the size of the event itself as if it were the
threshold for notice introduces a substantial bias toward the
exaggeration of risk. (Overstatement by a factor of at least 3 was
typical in our examples.) Our formal investigation was limited to
models in which observations are temporally stationary and inde-
pendent, thresholds for notice are sharp, and the only knowledge
available from before the alert is how much time had already
passed. We believed that the significant magnitude of the bias, as
well as its qualitative nature, would persist not only through other
forms of inference,” but also through a variety of alternative
formulations, which would be a worthy subject for future research.

At least for the simple models employed here as paradigms,
tractable methodologies are available for correctly drawing infer-
ences after the occurrence of an extreme event. The existence of
appropriate methods for assessing low-probability risks is, how-
ever, no guarantee that they will be employed once such a risk
eventuates. Extreme events tend to generate extreme passions and
interpretations. Indeed, when such events occur, however plentiful
the data, statistical analyses are likely to receive low priority. Even
correctly drawn statistical inferences are likely to be abused or
ignored. Society needs mechanisms that make it more likely that
correct statistical methods will be employed—and used
appropriately—when policy decisions are undertaken in response
to alarming events.
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sounded. Once a corrupt official at City Hall has made the news,
reporters will be scurrying for other stories on the same beat. After
Three Mile Island, at least for a while, the media and the public
became much more sensitive to minor malfunctions at nuclear plants.

6. In the terminology of probability theory, the occurrence times follow a
Poisson process with parameter A, and given the occurrence times, the
magnitudes are independently, identically distributed with cumula-
tive right-tail probability function G.

7. Pratt, John W., and Zeckhauser, Richard J., “Retrospective inferences
from an extreme event: False tails and true when finally the watchdog
barks,” Harvard University Graduate School of Business Administra-
tion, Working Paper 78-48.

8. Fisher, Sir Ronald A., Statistical Methods and Scientific Inference, 1956,
3rd ed. (New York: Hafner, 1973).

9. Neyman, J., First Course in Probability and Statistics (New York: Henry
Holt, 1950).

10. Kefauver—Harris Drug Amendments to the Food, Drug, and Cosmetics
Act, Public Law 87-781, 1962,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11. Consumer Product Safety Act, Public Law 92-573, 1972.

12. This follows directly from eq. (6). R is the conditional probability that
a magnitude reaching the threshold will be as large as that observed if
G, governs the probability distribution of the magnitudes, i.e., if the
null hypothesis of safety is just barely satisfied. Technically, R is the
right-tail “probability integral transformation” of b, conditional on
b = a, when G, applies.

13. We can now derive the formula used to calculate Table 1. By eq. (3),
1 — PyT) = [1 = PT)]". The erroneous test rejects for Py(T) < «
and hence for P(T) < 1 - (1 - )R, The P value P,(T) is dis-
tributed uniformly between 0 and 1 in the “least favorable” case A, G.
The true significance level of the erroneous test is therefore 1 — (1 -
a)'R, conditionally on b, when a is known. (This is of some interest in
itself.) The unconditional significance level is the expectation of this
conditional level in the least favorable case, namely 1 — [§ (1 — &)'" dr.
Table 1 was calculated from this formula. By simple manipulation, the
unconditional significance level can be expressed in terms of standard
functions as 1 — E,[ —In(1 — &)], where E, is the exponential integral of
order 2, defined by E,(x) = [ 3¢ %™ dt = [& e dr. Substituting Py(T)
for a gives the unconditional P value, which is therefore 1 —
E,ITAG,b)].

14. Expression (7) follows directly from the second sentence of Note 13.
The expectation of the ratio for P(T) = P isj'",[l -(1 - P)']dr/P = (1/P)
+ 1/In(l — P).

15. The critical value of TA(G(b) appearing in the second line of Table 3 is
E,;”'(1 - @), obtained by setting the unconditional P value given in the
last sentence of Note 13 equal to a. It follows from eq. (4) that the ratio
T(a) to the critical value of T is ~In(1 — a)/E;"'(1 — a). This appears in
the second line of Table 2.

16. As a function of A and a, this quantity, or any constant multiple of it, is
called the likelihood. The famous method of maximum likelihood,
which chooses estimates to maximize the likelihood and is often
excellent, appears to do badly in this model. The maximum likelihood
estimate of the threshold a is the observed magnitude b. This is
a peculiarly extreme estimate, since it is the largest possible value of
the threshold given the data. Furthermore, the maximum likelihood
estimate of the frequency A is A = UTG(b). If the threshold a were
known, an appropriate (and maximum likelihood) estimate would
have G(a) in place of G(b). Therefore A is “too large” by the factor
G(a)/G(b) = 1IR discussed after eq. (6). This factor, the estimate A, and
the bias in A all have infinite mean. Thus, the extreme estimate of the
threshold chosen by maximum likelihood has unpleasant repercus-
sions for the frequency as well.

17. Thus, if the prior density of A is p(A) and that of a given A is g(a|A), then
the posterior density of A is proportional to () p()\)L()\IT, b) where

LT, b) <[ 8re 750 (y | A)dy (12)

L()\|T, b) is sometimes called the “marginal likelihood” of A. In
particular, if a is a priori independent of A with a distribution such that
G(a) is distributed uniformly on an interval [C', C], then C > G(b) and
LT, b «f5re ™ dx o T8 — T (13)

where B = max{C’, G(b)}. The integration is also easy to carry out in
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closed form if x = G(a) has density (¢ + dx)e™ on some interval, or if its
density is a linear combination of such terms.

18. Note 17 applies. Hence eq. (13) holds with B = G(b) = 0.001 and C = 1
(and T = 220,000), giving the marginal likelihood ¢22® — o~220.000
Since A is distributed uniformly a priori, its posterior density is simply
the marginal likelihood times a normalizing constant, as given. Simi-
larly, treating b as the threshold gives a posterior density of A

proportional to the erroneous likelihood Ae~220%,
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