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The hypothesis examined in this paper is that the greater the investor's flexibility,
the easier it is for him to change his portfolio depending on his results, the more
willing he will be to accept risks. When the investor has no control on the size of
the risky investment, but can choose between one risky and one riskless asset, this
conjecture is shown to be correct. However, if there is more than one risky asset
each period, counterexamples demonstrate that flexibility rarely ensures greater risk
taking. For the standard portfolio problem in which investors are free to determine
the size of their investment in a risky asset, flexibility always raises the demand for
the risky asset if constant relative risk aversion is less than unity. But counter-
examples can always be found when the constant relative risk aversion is larger
than unity. Journal of Economic Literature Classification Numbers: G11, D81, D84.
� 1997 Academic Press

1. INTRODUCTION

Common wisdom suggests that the greater one's ability to shift one's
investment after intermediary shocks to wealth, the riskier should be one's
portfolio. For example, an investor with decreasing risk aversion should
be more likely to take a risky investment if he can exit should returns
plummet, that is when the costs of risk escalate.

This analysis examines the relationship between flexibility��we label its
opposite rigidity��and the risk of portfolios optimized to maximize expected
utility. The strong form of rigidity arises when the investor is not able
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to modify his exposure to risk from period to period. In this paper, we
examine a somewhat weaker form of rigidity, i.e., the investor can modify
his risk exposure from one period to another, but he is forced to fix it a
priori, i.e., before observing realizations of the early returns on his invest-
ment. We simplify the problem by considering a two-period model. The
individual invests at the beginning or period 1, receives investment returns,
and then must invest in period 2. In the rigid economy, period 2 investment
decisions must be made before period 1 results are learned.

In Section 2, we consider a model in which the investor can only invest
in indivisible investment projects. Our main result is that, except for a
handful utility functions, it is always possible to build a counterexample in
which less risk will be taken in the flexible economy than in the rigid one.
We exclude the case of constant absolute risk aversion, for which wealth
has no effect on risky investment choice, hence flexibility has no effect on
the risk of the optimal portfolio.

Section 3 is devoted to the standard portfolio problem. We assume that
one can invest in two assets, one being risk free. The returns of the risky
asset are not serially correlated. In this case, the two forms of rigidities
coincide, since the investor who is forced to determine today the size of his
investment in the risky asset tomorrow will invest the same amount in the
risky asset in each of the two periods. The impact of flexibility upon risk
has important consequences in the context of portfolio management. In the
United States, for example, retirement funds are more flexible than
ordinary investments because capital gains taxes need not be paid when
retirement investments are shifted from one security to another. This
suggest a fundamental maxim due to flexibility: an individual with both
ordinary savings and a retirement account should emphasize (riskier)
assets in the latter.1

2. THE CASE OF INDIVISIBLE INVESTMENT PROJECTS

2.1. The Model

We consider a simple two-period model. The investor is endowed with
wealth w at the beginning of the first period. He maximizes the expected
utility of his final wealth. The utility function u is assumed to be twice dif-
ferentiable, increasing and concave. A(z)=&u"(z)�u$(z) denotes absolute
risk aversion. In each period t=1 or 2, he must choose one of two
indivisible investment projects. The net payoffs of the two projects available
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1 This parallels the well known result that the tax-protected retirement funds should dis-
proportionately be allocated higher current yield assets.
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at period t are denoted respectively x~ t and y~ t . Random variables x~ 1 , x~ 2 , y~ 1 ,
y~ 2 are independently distributed.

We compare two economies which differ on the timing of decisions. In
what we call the ``rigid'' economy, the investor has to decide at the begin-
ning of the first period about which project to undertake at each period. It
is a ``rigid'' economy in the sense that the investor cannot reexamine his
second period risk exposure due to first period results, perhaps large losses
or gains. The problem of the investor in the rigid economy is to find the
pair ($r

1 , $r
2) that solves the following program:

max

$2 # [0, 1]
$1 # [0, 1]

Eu \w+ :
2

t=1

($t y~ t+(1&$t) x~ t)+ . (1)

It is a simple maximization at the beginning of period 1. Choice variable
$t takes value 1 if project y~ t is undertaken in period t, otherwise $t=0 and
project x~ t is undertaken in period t.

We compare this optimal risk-taking decision with the optimal deci-
sion in the so-called ``flexible'' economy. In the flexible economy, the
investor can delay the decision on which project to undertake in period 2
until he has learned (observed) the return of his first period investment. In
this economy, the dynamic problem of the investor is solved by using back-
ward induction:

$ f
1 # arg max

$1 # [0, 1]
Ev(w+$1 y~ 1+(1&$1) x~ 1). (2)

Function v is the value function which is obtained by solving the second
period problem:

v(z)= max
$2 # [0, 1]

Eu(z+$2 y~ 2+(1&$2) x~ 2). (3)

Some comments are in order here. First, observe that program (1) can be
seen as a constrained version of the dynamic problem, represented by equa-
tions (2) and (3), faced by the investor in the flexible economy. The con-
straint in the rigid economy is that $2 must be independent of z, the wealth
level at the beginning of the second period. The investor is strictly better-off
in the flexible economy. There is one exception to this rule, that is when the
optimal decision of the investor in period 2 is independent of his wealth z.
This will happen if x~ 2 and y~ 2 are identically distributed, if one set of gam-
bles stochastically dominates another, or if all outcomes lie in a constant
absolute risk aversion (CARA) portion of u. In the CARA case, decisions
are not affected by wealth; hence learning period 1 results before deciding
on period 2 investments offers no advantage.

221FLEXIBILITY AND RISK ACCEPTANCE
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It is worth noting that the value function v used by the investor in the
flexible economy to solve his first period need not be concave. This was
first noticed by Bell [1].2 The existence of a discrete choice in period 2, as
here, can induce a risk-loving behavior in period 1. As it is intuitively sen-
sible, ``an entrepreneur with an idea she believes will work, but without
financial backers who agree, would be justified trying to raise the necessary
capital in Atlantic City'' (Bell [1]).

2.2. A Positive Result when one of the Two Projects is Certain

We first consider a simple special case of the problem presented above.
The relationship between flexibility and risk is most easily understood
when the investor must choose between a risky and a risk-free position. We
assume here that one of the two projects available in period 1 is risk-free.
Without loss of generality, we assume that x~ 1 is zero with probability 1.
The investor's problem in period 1 is just to accept or to reject a risky
investment project y~ 1 .

Common wisdom suggests that more flexibility in risk-taking decisions
induces people to be more willing to accept risks. This logic would mean
that the first period investment is undertaken in the flexible economy if it
is undertaken in the rigid economy. This proves to be true, as shown in the
following Proposition.

Proposition 1. If x~ 1 is zero with probability 1, then the risky project is
always undertaken in the flexible economy if it is undertaken in the rigid one:
$r

1=1 O $ f
1=1.

Intuition. Introducing flexibility is not about to make you switch to the
safe project in period 1, since with a safe project flexibility is useless
because you know what is going to happen in period 1.

Proof. If the risky project is not undertaken in period 1, the expected
utility of the investor is the same in the two economies, since waiting to
decide is not worth anything when one knows what is going to happen in
period 1. The expected utility in this case equals

U f ($1=0)=Ur($1=0)= max
$2 # [0, 1]

Eu(w+$2 y~ 2+(1&$2) x~ 2). (4)

Also, because the information has a value, when the risky project is
undertaken in period 1, the investor can obtain a larger expected utility in
the flexible economy than in the rigid one, i.e., U f ($1=1)�U r($1=1).
Finally, assume that it is optimal to undertake the risky project in period 1

222 GOLLIER, LINDSEY, AND ZECKHAUSER

2 For additional insights on the concavity of the value function, see Pratt [9]. Gollier [5]
analyzed the dynamic problem of the investor in this flexible economy when risks are i.i.d. over time.
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in the rigid economy, i.e., Ur($1=1)>Ur($1=0). Combining these condi-
tions yields

U f ($1=1)�Ur($1=1)>Ur($1=0)=U f ($1=0). K (5)

In this simple framework, the value of the information in the flexible
economy not only increases the expected utility of the investor, but it also
makes him less risk-averse towards the first period project. This is not true
in general, as the next section explains.

2.3. A General Counterexample: Flexibility Need Not Increase Risk Taking

Once the choice set is allowed to contain more than one risky project
from period to period, it is less likely that flexibility will promote risk tak-
ing in all circumstances. In effect, we find that��except for utility functions
that satisfy a very specialized, unintuitive condition��a counterexample will
always exist to the assertion that flexibility-promotes-risk taking.

This result is particularly surprising for utility functions displaying
monotonic risk aversion. With such utility functions, the riskier the first-
period lottery, the greater will be the diversity in risk aversion (risks costs)
depending on the first-period outcome. Hence, second-period investments
that are attractive for some first-period outcomes will be unattractive for
others. The more diverse is a utility function's relative risk aversion, it
would seem, the greater the benefits reaped from flexibility in the choice of
second-period lottery. Hence, we might conjecture that if the riskier first-
stage lottery is optimal in the rigid economy, it would also be optimal in
the flexible economy as in Proposition 1. Our Proposition 2 below shows,
however, how to construct a counterexample to this conjecture for quite
general utility functions, including rather general monotonic risk averse
utility functions.

In the previous section, risk y~ 1 was obtained by adding some noise to
risk x~ 1 which was degenerate at zero. Here we extend here this definition
by allowing x~ 1 to be any random variable.

Proposition 2. Suppose that there exists a scalar z such that u$$$$ is con-
tinuous at z and A"(z){A$(z) A(z). Take y~ 1 by adding some noise =~ to some
realization of x~ 1 . Then, there exists x~ 1 , =~ , x~ 2 , y~ 2 such that the investor
prefers the first period lottery y~ 1 in the rigid economy, but the lottery x~ 1 in
the flexible economy.

Proof. See the Appendix.

In the remainder of this section, we provide some intuition for this result.
Let us assume that A"(z)>A$(z) A(z). The case A"(z)>A$(z) A(z) corre-
sponds to the notion of strict ``local properness'', as introduced by Pratt
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and Zeckhauser [10]. To illustrate, consider two lotteries with payoffs =~ 1
and =~ 2 . These lotteries are small and their payoffs are independently dis-
tributed. Suppose that if you were offered either lottery, you would be
indifferent whether or not to accept it. Might you accept the two lotteries
if they were offered jointly? If your answer is no, as we might think
intuitively to be appropriate, then your risk aversion is said to be strictly
locally proper. Small risks are not complementary: taking on one small
undesirable (or neutral) risk does not make another small undesirable
(or neutral) risk desirable. It can be inferred from the work by Pratt and
Zeckhauser that risk aversion is strictly locally proper if A"(z)>A$(z) A(z).

Under strict local properness, one can build a counterexample as
follows: normalize w0 to zero, and consider x~ 1 which takes values z and ẑ
with some probabilities. Lottery y~ 1 is obtained from x~ 1 by adding some
noise =~ . Assume that =~ is zero with probability 1 if x~ 1=ẑ, and =~ is some
small risk =~ z1 if x~ 1=z. We assume that Eu(z+=~ z1)=u(z), i.e., a myopic
agent would be indifferent between x~ 1 and y~ 1 . In period 2, we have x~ 2

equal to zero, and y~ 2 is some small risk such that Eu(z+y~ 2)=u(z). In
short, at each period a myopic investor with wealth z would be indifferent
between the two projects.

In the flexible economy, the investor selects project y~ 2 in period 2 if he
got payoff z in period 1. Since we assumed that risk aversion is locally
proper at z, it means that noise =~ z1 which was considered to be neutral by
the myopic agent is strictly disliked by the dynamic investor in the flexible
economy. Since y~ 1 differs from x~ 1 only by the addition of noise =~ z1 if x~ 1=z,
the option to invest in y~ 2 in period 2 makes the flexible investor prefer the
safer x~ 1 in period 1. This illustrates the fact that a small neutral risk��here
risk y~ 2��can substitute for any other small risk (=~ z1).

Since risk aversion is locally proper at z, A may not be maximal at z. So,
select ẑ such that A(ẑ)>A(z). In the rigid economy, the investor evaluates
the desirability of the second-period lottery y~ 2 without knowing whether
his wealth in period 2 will be ẑ, z, or z+=~ z1 . Recall that the investor is
neutral to y~ 2 at z. Since =~ z1 is small and A is continuous, this is also almost
true at z+=~ z1 . But as A(ẑ)>A(z), the investor strictly dislikes y~ 2 at wealth
ẑ. Therefore, the investor in the rigid economy does not undertake the risky
project in period 2. He behaves in period 1 like the myopic investor, i.e.,
he is indifferent between x~ 1 and y~ 1 . A slight modification in the distribution
of the noise can induce him to prefer the riskier project y~ 1 . This is a
paradox since the same investor prefers the less risky project x~ 1 in the
flexible economy.

This discussion suggest that paradoxes may arise when investment rules
are rigid, because risky positions may be transferred from one period to
another. In the general counterexamples we construct for the case A"(z)>
A$(z) A(z), the investor in the rigid economy takes a riskier position in
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period 1, but accepts no risk at all in period 2. In the flexible economy, a
less risky project is taken initially, but the loss in expected return is more
than made up by sometimes taking a risky project in period 2.

Let us consider the following numerical example to illustrate this con-
struction. Take u(t)=log(t), a locally proper utility function. Initial wealth
is normalized to 1. Lottery x~ 1 is distributed as (z=0, 1�2; z=2, 1�2),
whereas lottery y~ 1 is obtained from lottery x~ 1 by adding risk =~ z1=(1.5, 1�2;
&1, 1�2) to the good realization of x~ 1 . In period 2, the decision-maker has
an option to invest in y~ 2=(2, 1�2; &1, 1�2) or not. In the flexible economy,
it is easy to check that this option is used in period 2 if wealth at that time
is larger or equal to 2. In consequence, independent of whether or not the
agent purchases risk =~ z1 or not, the option to invest is used in period 2 if
the realization of x~ 1 is 2. Two observations lead to the counter-example.
First, given wealth w0=1, the agent is indifferent between x~ 1 and y~ 1 when
he has no option to take risk in the future. Second, it can be shown that
the second-period option on y~ 2 increases local risk aversion with respect
first-period risks in the interval [2, 4+3 - 2] of first-period wealth; v is
strictly more concave than u in this interval. Since y~ 1 is riskier than x~ 1 in
this interval, and is the same elsewhere, the flexible investor now prefers x~ 1

due to the existence of the option on y~ 2 . In short, the flexible investor
selects the less risky x~ 1 in the first period, and he invests in y~ 2 in case of
a success. In contrast, the rigid investor never invests in y~ 2 , since he would
otherwise finish with a zero wealth with some positive probability (1�4).
Given this, he invests in y~ 1 , the riskier investment.

This example illustrates the fact that the existence of counter-intuitive
results are not limited to the case of adding extremely small noises to the
initial gamble, nor to the case involving options on small risks in the
future. The problem of larger risks is more difficult, as shown by Pratt and
Zeckhauser [10]. Even global properness is not very useful for our
problem, since global properness is the condition for any undesirable
(future) risk not to make any other undesirable risk desirable. Since we
consider options on future risks, only the effect of desirable risks matters.
However, by continuity, if a neutral risk generates the result, it will also
pertain for risks that are not too much desirable. This is the case for risks
y~ 2 for z not too much larger than 2, as in the example. Indeed, the accep-
tance of y~ 2 increases local risk aversion for any wealth level between 2 and
4+3 - 2, which is in fact ``much larger'' than 2.

In the case of A"(z)<A$(z) A(z), we know that a small neutral risk
always reduces the aversion to any other small risk: small risks are com-
plementary. This counter-intuitive effect allows for a construction sym-
metric to the one presented above. The flexible investor selects the safer
asset in period 1 and sometimes selects the safer asset in period 2, while the

225FLEXIBILITY AND RISK ACCEPTANCE



File: DISTIL 230008 . By:DS . Date:01:10:97 . Time:09:53 LOP8M. V8.0. Page 01:01
Codes: 3174 Signs: 2306 . Length: 45 pic 0 pts, 190 mm

rigid investor commits to holding the riskier asset in both periods. The
intuition is that bearing more risk in period 2 in the rigid economy induces
the investor to accept more risk in period 1 by complementarity. A full
description of how to build a counterexample in this case is presented in
the Appendix. Building a numerical example in this case is not simple, since
all familiar utility functions we know satisfy the local properness condition.

Such constructions might not be possible when A"(z)=A$(z) A(z), i.e., if
the absolute risk aversion is not equal to minus the absolute risk aversion
of the absolute risk aversion. In this case, accepting a gamble on a small
risk for which one is indifferent does not affect the willingness to gamble on
another small risk. For such utility functions, one might have a 5th-order
preference. Except for the CARA class, &ez, z, the set of utility functions
that satisfy A"=A$A is rather exotic: It contains u(z)=z3, u(z)=z,
u(z)=z&sin(z), u(z)=z&sinh(z), u(z)=z+sinh(z), u(z)=&e&Az, and
all u obtained by replacing u(z) by a+bu(c+dz).

3. THE PORTFOLIO PROBLEM WITH CONSTANT RELATIVE
RISK AVERSION

In this section, we examine a two-period portfolio problem with one
riskfree asset offering zero return and one risky asset with returns y~ 1 and
y~ 2 respectively in period 1 and 2. Moreover, we assume that y~ 1 and y~ 2 are
i.i.d. and distributed as y~ . The expectation of y~ is positive. As before, we
examine the effect of flexibility on the optimal exposure to risk in period 1.

In the rigid economy, the investor must determine the structure of his
portfolio at each period at the beginning of the first period. The problem
of the investor in the rigid economy is written as3

(:r
1 , :r

2) # arg max
:1 , :2

Eu \w+ :
2

t=1

:t y~ t+ . (6)

An important difference from problem (1) is that :t is not restricted to be
zero or one. The size of the exposure to risk is now a decision variable.
A simple diversification argument4 implies that the solution to problem (6)
must be symmetric. Suppose by contradiction that it is not. Then, we have

:1 y~ 1+:2 y~ 2=
:1+:2

2
( y~ 1+y~ 2)+

:1&:2

2
( y~ 1&y~ 2), (7)

226 GOLLIER, LINDSEY, AND ZECKHAUSER

3 Eeckhoudt, Gollier and Levasseur [4] compares :r
1 with the optimal solution for the one-

period problem max: Eu(w+:y~ ).
4 See for example Rothschild and Stiglitz [11].
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where E[ y~ 1&y~ 2 | y~ 1+y~ 2=z] is obviously zero for any z. This means that
:1 y~ 1+:2 y~ 2 is a Rothschild�Stiglitz increase in risk of ((:1+:2)�2)(y~ 1+y~ 2)
in comparison to a symmetric choice. Therefore, the optimal solution to (6)
must be symmetric. The problem in the rigid economy is thus equivalent to

:r # arg max
:

Eu(w+:( y~ 1+y~ 2)). (8)

As before, we compare this optimal risk-taking decision with the optimal
decision in the flexible economy. In such an economy, the dynamic
problem of the investor is solved by using backward induction:

: f
1 # arg max

:1

Ev(w+:1 y~ 1). (9)

Function v is the value function which is obtained by solving the second
period problem:

v(z)=max
:2

Eu(z+:2 y~ 2). (10)

As is well-known in dynamic finance, the problem of the investor in the
flexible economy is substantially simplified if we assume constant absolute
risk aversion (CARA), or constant relative risk aversion (CRRA)5, 6. The
problem is trivial under CARA, since we obviously get :r

1=: f
1 . Under

CRRA, myopia is optimal in the flexible economy. Myopia means that the
investor considers each period in isolation to determine his portfolio. This
is due to the fact that v inherits the same degree of concavity as u when u
is CRRA. Therefore, we hereafter consider the case of u$(z)=z&#, #>0.
Since u and v are equivalent, the first-order condition for program (9) can
be written as

E[ y~ 1u$(w+: f
1 y~ 1)]=0. (11)

We are interested in determining whether the demand for the risky asset
in the rigid economy is less than the demand for the same asset in the
flexible economy, i.e., whether :r is less than : f

1 . Since the objective func-
tion in (8) is concave in the decision variable, this is true if and only if

E( y~ 1+y~ 2) u$(w+: f
1 ( y~ 1+y~ 2))�0. (12)

227FLEXIBILITY AND RISK ACCEPTANCE

5 Gollier and Zeckhauser [7] consider other utility functions. They obtained the necessary
and sufficient condition on the utility function to assure that : f

1 is larger than the optimal
demand for the risky asset in the one-period�myopic problem, max: Eu(w+:y~ 1 ).

6 Caballe� and Pomansky [2] examined the properties of utility functions exhibiting mixed
risk aversion, as is the case for CRRA functions. They discuss the implication of mixed risk
aversion on portfolio selection, and on the management of multiple risk taking.
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We begin with a positive result which holds for small risks.

Proposition 3. Let u$(z)=z&#, #>0. If y~ is small in the sense that
| y~ Ey~ �Ey~ 2 | is small almost surely, how small depending on #, then the demand
for the risky asset is smaller in the rigid economy than in the flexible.

Proof. See the Appendix.

The outline of the proof goes as follows: suppose that : f
1 y~ 1 is small

almost surely. Then condition (11) can be approximated by

Ey~ 1 [u$(w)+u"(w) : f
1 y~ 1]$0, (13)

or : f
1=(1�A(w))(Ey~ �Ey~ 2). Thus our assumption above holds by assuming

that y~ (Ey~ �Ey~ 2) is small. We may thus also approximate u$(w+: f
s ( y~ 1+y~ 2))

in (12) by a second order Taylor approximation around w. It yields

E( y~ 1+y~ 2)[u$(w)+u"(w) : f
1 ( y~ 1+y~ 2)]�0. (14)

This is equivalent to

2u$(w) Ey~ +2u"(w) : f
1 [Ey~ 2+(Ey~ )2]�0. (15)

By eliminating : f
1 , inequality (15) is equivalent to &2u$(w)((Ey~ )3�Ey~ 2).

This is negative.
This result does not hold for larger risks. As a counterexample, consider

the CRRA utility function with relative risk aversion #=5. Take y~ =(&0.1,
4�10; 10, 6�10). After some computations, we get :r

1=0.1707, which is
larger than : f

1=0.1678. Our next Proposition provides a necessary and suf-
ficient condition for : f

1�:r
1 under CRRA.

Proposition 4. A necessary and sufficient condition for : f
1�:r

1 is that
the constant relative risk aversion be less than or equal to unity. It is
necessary in the sense that if # is larger than unity, than one can always find
an initial wealth z and a distribution y~ such that : f

1 if less than :r
1 .

Proof. See the Appendix for the proof of the general case. We prove
here that : f

1�:r
1 for the logarithmic (#=1) investor, since this case does

not require using sophisticated techniques. We have to prove that for any
w and any y~ 1 , y~ 2 ,

E
y~ i

w+: f
1 y~ i

=0 O E
y~ 1+y~ 2

w+: f
1 ( y~ 1+y~ 2)

�0. (16)
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Notice that, for all z, w+z, z�(w+z)=w((1�w)&(1�w+z)). Also, because
Ey~ >0 by assumption, : f

1 is positive. Thus, the right condition in (16) is
equivalent to

E _1
w

&
1

w+: f
1 ( y~ 1+y~ 2)&�0. (17)

The left condition in (16) can be rewritten in a similar way, implying
that it is equivalent to

Eh(w+: f
1 y~ i)=h(w) O Eh(w+: f

1 y~ 1+: f
1 y~ 2)�h(w). (18)

where h(z)=&1�z. Observe that h can be seen as a CRRA utility function.
Condition (18) is interpreted as whether two lotteries : f

1 y~ 1 and : f
1 y~ 2 for

which individual h is indifferent when considered in isolation, are jointly
weakly undesirable. We know that this is true, since function h is proper
(see Pratt and Zeckhauser [10]). Though successful for the logarithmic
case, we were unable to extend this trick to other CRRA functions. K

4. THE CONCEPT OF FLEXIBILITY PREMIUM

In this section, we propose a way to quantify the effect of rigidity on
welfare. We consider an economy with several assets and potentially several
periods, with either flexibility or rigidity in the decision process. We com-
pare this economy with a ``dual'' economy with only one asset, which is
risk-free. The Certainty Equivalent Interest Rate (CEIR) is the per-period
rate of return of the riskfree asset in the dual economy which makes the
investor indifferent between living in the reference economy or in its dual
one.

Let us consider the case of an economy with a single period and two
assets: one is riskfree with a zero return, and the other is risky with return
&100 or +200 with equal probability. Investor's utility is logarithmic.
After some computations, it appears that his optimal strategy is to invest
2500 of his wealth in the risky asset. Normalizing wealth to unity,7 the
maximum expected utility of the investor equals 0.0588. The CEIR in this
case is 6.070, since 0.0588=log(1+0.0607). The investor is indifferent
between being an expected-utility-maximizer in the two-asset economy and
living in the dual economy with a risk-free rate of 6.070.

Consider now two economies, f and r. The investor is more constrained
in economy r than in economy f. We define the ``constraint premium'' as
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relative risk aversion is constant.
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the difference between the certainty equivalent interest rate of economy f
and the certainty equivalent interest rate of economy r. It is necessarily
nonnegative. It measures the loss in welfare due to adding the constraint in
the economy. The flexibility premium is an example of this, in which the
constraint is on the timing of the decisions.

Consider now the example above with 2 periods. In economy f, the
CEIR is still 6.070. This results from the constancy of relative risk aver-
sion, which makes myopia rational. In economy r, one can verify that the
investor invests only 2300 of his wealth in the risky position, yielding a
CEIR of 5.790. The flexibility premium is thus 0.280 per year. For three,
four and five years, we get flexibilty premia of respectively 0.560, 0.850
and 1.140 per year. In the case of the ``square root'' utility function, we
get flexibility premia of respectively 1.830, 3.30, 4.50 and 5.650 per
year, for respectively two, three, four and five years horizons.

Technically, in the case of CRRA utility functions, the CEIR in the
flexible economy is obtained by solving the static problem of the investor,
since myopia is optimal,

u(1+CEIRf )=max
:

Eu(1+R+:x~ ), (19)

where R is the risk-free rate and x~ is the excess return of the risky asset.
The computation of the CEIR in the flexible economy with utility functions
which do not exhibit linear risk tolerance would be much more difficult.
The CEIR in the rigid economy with n periods is implicitly defined by

u((1+CEIRr(n))n)=max
:

u(1+R+:(x~ 1+x~ 2+ } } } +x~ n)), (20)

with x~ 1 ,..., x~ n independent and identically distributed as x~ . Finally, the
flexible premium in an economy with n periods of investment equals
CEIRf&CEIRr(n).

5. PARALLEL PORTFOLIOS

The analysis thus far has focused on properties of and comparisons
between pure portfolios, all rigid or all flexible. Many real world investors,
however, have both rigid and flexible investments. They have what we label
``parallel portfolios.'' Given parallel portfolios, two questions come to mind.
First, when will the flexible portfolio be relatively large enough that the
individual can achieve the same outcome he would were he totally flexible?
Second, is the maxim we mentioned at the outset satisfied: will the optimal
holdings in the flexible portfolio be at least as risky as those in the rigid
one?
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We investigate these questions in a multi-period context assuming there
is a safe asset, s, yielding a zero return, and a gambling asset, g, whose
return can range from complete loss to arbitrarily large gains. We say the
amount placed in the gambling asset is invested. You are not permitted to
sell either asset short. (If you were, the fully flexible outcome could be
trivially achieved.)

Let the net payoff for investing t be tx where x>&1 (you cannot lose
more than your entire investment) and x has density f (x). Let u be the
utility function and w the initial wealth. Then the expected utility is
r(t)=��

&1 u(w+tx) f (x) dx. As is well-known, the optimal t has the same
sign as Ex~ . Also, the demand for the gambling asset is proportional to
wealth in the CRRA case, whereas the demand is independent of wealth in
the CARA case. Finally, it can easily be shown that, for any amount d of
the gambling asset, one can find distributions of returns of the gambling
asset with an arbitrarily large return in some states for which d is the
optimal demand, in the case of CRRA, or in the case of CARA.

Suppose that we have several periods of investment, and a flexible
portfolio, f, where we can trade after each period and a rigid portfolio, r,
whose holdings must be maintained. Let bij be the amount placed in
portfolio i in the j th asset. Thus bfg is the amount placed in the gambling
asset in the flexible portfolio, and bg=bfg+brg would be the total invest-
ment in the gambling asset. We shall investigate the nature of and potential
for optimal solutions with the CARA utility function u(x)=&e&kx and the
CRRA utility function u(x)=x1&#�(1&#), #>0.

5.1. CARA Utility

In the CARA case, the optimal level of g is independent of wealth. If the
investor places some of his monies in the gambling asset of his rigid
portfolio, he faces the risk of a large increase in the value of this asset,
thereby overinvesting in it in the future. Also, since one cannot be short on
the safe asset, the investor should invest enough in the flexible portfolio in
order to have enough wealth to invest in the gambling asset at each period,
even in the worst case of repeated losses. We thus obtain the following
simple result.

Proposition 5. You can ensure investing exactly t each period for n
periods iff the initial bf �nt.

Proof. You cannot invest anything in the rigid portfolio since it might
rise above t forcing you to be overinvested in the next period. Thus we
must invest t each period in the flexible portfolio. The worst-case scenario
(approachable anyway) is that the gambling investment goes to 0 each
period. Then you need bf�nt. K
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5.2. CRRA Utility

In the CRRA case, the optimum ratio of monies allocated to the gam-
bling and safe assets, a ratio we label a, is independent of wealth and time-
horizon. The following lemmas and proposition relate to a utility function
with CRRA.

In this section through Proposition 6 both assets could have been gam-
bling and they need not be independent of each other. All that is needed
is that each can greatly outperform the other sometimes (that is if value of
one is multiplied by r and the other by s in a period, then r�s can be
arbitrarily close to zero or infinity.). Even without this last condition the
sufficient condition for being able to invest as well as we could have with
complete flexibility still holds.

Lemma 1. Suppose the initial brg is forced to be 0. Let fn=(1+a)n&1.
One will be able to allocate a times as much to the gambling asset as safe
asset for n periods iff bf � fnbr .

Proof. We use induction on n, so suppose the lemma holds for n. The
first period portfolio must satisfy bfg=a(bfs+br). By the induction
hypothesis, we also need that what is left of bf after the first period must
be at least fnbr . The worst case scenario is that the gambling investment
goes to 0 so we need bfr�fnbr . Multiplying this by a+1 and adding to
bfg=a(bfs+br) yields bf�[(a+1) fn+a] br=fn+1br . K

Lemma 2. Suppose the initial brs is forced to be 0. Let gn=(1+1�a)n&1.
Then one can assure allocation exactly a times as much in the gambling asset
as in the safe for n periods iff bf�gn br .

Proof. The gambling investment appreciating by a factor of z is equiv-
alent to the safe investment being multiplied by a factor of 1�z. Thus there
is a symmetry beween safe and gambling investments that changes a for fn

to 1�a for gn . K

Lemma 3. One can ensure investing exactly a times as much in the safe for
n periods iff for the first period bg=abs , bfg�gn&1brg , and bfs� fn&1 brs .

The middle inequality is forced by Lemma 2 when the safe asset drops
to zero and the last is forced by Lemma 1 when the gambling investment
drops to 0. Assume all three comparisons. Suppose that gambling invest-
ment goes up. Without any adjustment you would be overinvested in the
second period. Ignoring the safe portions, if you adjusted the gambling por-
tion of your portfolio so that it had the right fraction invested and bfg2

becomes b*fg2 by the proof of Lemma 2, b*fg2�gn&2brg2 . However, now you
would be underinvested because of the ``ignored'' safe portions. Thus you
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do not need to trade away this much gambling stock and this last
inequality still holds. Then ensurance follows from an induction hypothesis.

Suppose the gambling investment goes down. This is equivalent to the
safe portion going up and the symmetric argument applies.

Proposition 6. One can assure investing exactly a times as much in the
gambling investment as in the safe for n periods iff for the first period

bf�_(1+a)n

1+an &1& br . (21)

Proof. Suppose some b
**

assignments do assure the required outcome.
Then multiplying the equations of Lemma 3 by gn&1& fn&1, (1+a)(1+fn&1),
and (1+a)(1+gn&1), respectively yields the inequality of the proposition.
Conversely, suppose that proposition inequality holds. By treating some of
the flexible portfolio as rigid we may assume equality. Letting

bfg=agn&1 �(1+gn&1), brg=a�(1+gn&1),

bfs=fn&1 �(1+fn&1), brs=1�(1+fn&1)

gives three equalities in Lemma 3 and therefore the following inequality,
which is a linear combination:

(1+gn&1+a+afn&1) bf�( fn&1+fn&1gn&1+afn&1 gn&1+agn&1) br .

Using the defintions of fn&1 and gn&1 , this is rewritten as (21). Multiplying
these figures by the appropriate constant gives the correct bf and br and
ensurance follows from Lemma 3. This completes the proof. K

When n=2 this becomes bf�[2a�(1+a2)] br so bf�br suffices. Suppose
bf=br . If a>1, the last inequality of Lemma 3 forces the flexible porfolio
to be more safely invested than the rigid. If a<1, the middle inequality of
Lemma 3 forces the flexible portfolio to be more riskily invested than the
rigid. In sum, this shows that depending on conditions, the optimal rigid
portfolio can be riskier (have a higher proportion in the gambling asset) or
less risky than the optimal flexible portfolio. Our conjectured maxim fails.

5.3. Cases Close to CRRA

We may also be interested in the behavior of portfolios when utility
is not pure CRRA. Such utilities are easily produced by mixing a small
component of CARA with CRRA. Thus we consider the utility function
u(x)=log(x)&de&kx, for small (absolute) values of d. With d positive
(negative), the fraction of the portfolio invested in the gambling asset tends
to decline (increase) with wealth.
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Suppose the inequality of Proposition 6 is satisfied strictly. Then we may
split off an auxiliary portion of the flexible portfolio so that the rest of it
gives equality. Suppose the auxiliary is zw where w is the total wealth. Let
p=z min(t, 1&t) where t=a�(1+a).

With u(x)=log(x), r(ws)=log w+S(s) where S(s)=��
&1 log(1+sx)

f (x) dx is maximized at s=t. Let |d | be less than min(0.5, S(t)&S(t+p),
S(t)&S(t&p)). Let v be the optimal investment for u(x)=&e&kx. Let
u(x)=log x&de&kx. Since d�&0.5, u is concave. For all wealths the
optimal investment fraction must be in I=[t&p, t+p], since otherwise
log loses more that |d | from taking the fraction t, and the second summand
of u cannot make this up.

Let there be two periods and start by investing t of the auxiliary and
follow the scheme of the Proposition 6 for the rest of your wealth. Scale the
original wealth so that v is the total investment. By Proposition 6, after the
first period we can adjust the non-auxiliary part of our wealth so that we
are fraction t invested. Since we invested the same way in the auxiliary as
the rest of our wealth the auxiliary is still fraction z of our wealth. If we
invest t of the auxiliary in the gambling investment we would be fraction
t invested, with the proposition adjustment on the rest. We can adjust the
auxiliary fraction by at least min(t, 1&t) either way and this adjusts the
fraction of the total wealth fraction by at least p either way and this allows
us to make it the optimum fraction which lies in I.

In the following we can get by (do as well as with wealth flexible) with
equality in Proposition 6, implying that no auxiliary portfolio is available.
Suppose t=0.5 for the optimal investment fraction for u(x)=log x. Let
u(x)=log x&de&kx with &0.5<d<0. As above take |d | sufficiently small
that the optimal investment fraction must be in [0.25, 0.75] and let v be
the optimal investment in the gambling asset for u2(x)=&e&kx. Let bf =
br=v and invest half of each in the gambling asset in the first of two periods.
Suppose the gambling investment goes up in the first period leaving us with
wealth at least 2v. By concavity r$2(0.5x)�r$2(v)=0 and r$(0.5w)�0. Thus
our optimal second period investment lies in [0.5w, 0.75w]. Since brs is at
most 0.25w we can adjust bg to investing at least 0.75w. Thus we can invest
optimally in the second period. The case that the gambling investment goes
down in the first period is similar. Conditions for more than two periods
will, of course, be more difficult to satisfy.

6. CONCLUSION

Economists have long recognized that risky investments drive the
economy, and they have praised those who take the risks. Much of modern
finance, both in theory and in the marketplace, seeks to facilitate investors'

234 GOLLIER, LINDSEY, AND ZECKHAUSER



File: DISTIL 230017 . By:DS . Date:01:10:97 . Time:09:53 LOP8M. V8.0. Page 01:01
Codes: 3642 Signs: 3184 . Length: 45 pic 0 pts, 190 mm

ability to diversify their portfolios and make them more liquid, hence
flexible. Though finance theory has constructed beautiful models to address
diversification, relatively little attention has been paid to flexibility.

The hypothesis examined here is that the greater the investor's flexibility,
the easier it is for him to change his portfolio depending on his results, the
more willing he will be to accept risks. When the investor has no control
on the size of the risky investment, but can choose between one risky and
one riskless asset, this conjecture proves correct. However, if there is more
than one risky asset each period, as would be the case in the real world,
counterexamples demonstrate that flexibility rarely ensures greater risk
taking. For the standard portfolio problem, counterexamples can even be
found when the constant relative risk aversion is larger than unity.

Our focus here has been on the behavior of the individual decision
maker; however, society, which sets the rules, may have a concern for the
aggregate results of individuals' decisions in the macroeconomics of finan-
cial decision making. For example, in evaluating the tax treatment of retire-
ment funds, policy makers look at the effects on aggregate savings rate.
Presumably they are also concerned about effects on risk taking, the
primary subject of this paper, and financial market stability. Our finding of
a quite general counterexample to the maxim that flexibility promotes risk
taking suggests that seemingly minor financial market constraints, or their
relaxation, may have unexpected effects on securities prices. Moreover, our
experience with sunspot equilibria (Shell [12], Jackson and Peck [8]) and
related phenomena suggest that these effects may prove both substantial
and unpredictable.

Factors that promote investment rigidity, such as trading costs, taxation,
and exit charges, can be thought of as fulfilling the opposite function of
innovative securities. In fact, many new derivative securities are designed to
overcome rigidities, for example to hedge an appreciated position without
requiring a disposition that would incur taxes. (See Duffie and Rahi [3]
for a useful review on financial market innovations.) Our analysis suggests
that in theory at least, new securities will have an unpredictable effect on
risk taking.

Many developing nations limit capital ouflows, thereby reducing the
flexibility of investments, and hence their attractiveness, but possibly damp-
ening the type of speculative activity that often plagues securities markets
of such nations.8 We have shown how the microeconomics of risk taking
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8 Chile prevents foreign investors in its securities markets withdrawing their money in less
than one year. Eduardo Engel observes that this rigidifying factor may have saved his nation
from a financial collapse that Mexico recently suffered. Woo-Chan Kim, South Korean
Ministry of Finance, tells us that his nation is concerned about opening its securities markets
further to foreign investors because they may respond excessively to events between North
and South Korea. (Personal communications, February 1996).
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depends upon the flexibility of investments. Its macroeconomics, addressing
which investments society undertakes and how they perform, will be no less
dependent.

APPENDIX

Proof of Proposition 2. On a small enough open interval containing z,
u$, A"&A$A have constant signs and u" is continuous. Restrict everything
to this interval. Let A(ẑ){A(z). Let :=u$(z)(A(z) A$(z)&A"(z)), ;=
u$(z)(A(ẑ)&(A(z)). Let B be the gamble paying h, 0.5(1+bh) of the time,
otherwise, &h. Let D be the gamble paying h, 0.5(1+dh) of the time,
otherwise &h. Let E denote expected utility with initial wealth z. Define
f(h)=E(B+D)&E(B)&E(D)+E(0). Then f (0)=f $(0)=f "(0)=f $$$(0)=0
and by Taylor's Theorem f (h)=f $$$$(k) h4�24 for some 0<k<h. Now
f $$$$(0)=6u$$$$(z)+12(b+d ) u$$$(z)+24bdu"(z) and when we substitute
c=0.5A(z) for b and d, this becomes 6:. Since f $$$$(k) is continuous in
k, b, d at k=0, b=d=c, there exists =>0 such that f $$$$(k) will have the
same sign as : if h, b, d are within = of 0, c, c respectively.

Let g(h)=E(B)&E(0)=0.5(1+bh) u(z+h)+0.5(1&bh) u(z&h)&u(z).
Then g(0)=g$(0)=0 and by Taylor's Theorem g(h)=0.5g"(k) h2 for some
0<k<h. Since u is strictly monotone, we can and do take b so that
g(h)=0 and then 0=g"(k)=0.5(1+bk) u"(z+k)+bu$(z+k)+0.5(1&bk)
u"(z&k)+bu$(z&k). Solving for b:

b=
&0.5(u"(z+k)+u"(z&k))

u$(z+k)+u$(z&k)+0.5k(u"(z+k)&u"(z&k))
.

As h and k approach 0, b approaches c=0.5A(z). Take h small enough that
b is withing = of c. Take d between 0.5A(z) and 0.5A(ẑ) and within = of c.
Then we can and do take h small enough that E(B+D)&E(D)=f (h) has
the same sign as :.

With initial wealth w=z or w=z\h, E(D)&E(0)=0.5g"(k) h2 for
some 0<k<h where

g"(k)=0.5(1+dk) u"(w+k)+du$(w+k)+0.5(1&dk) u"(w&k)

+du$(w&k).

As h approaches 0, g"(k) approaches u"(w)+2du$(w)=2(d&0.5A(w)) u$(w).
Taking h small enough, g"(k) has the same sign as (d&c)u$, 0.5(A(ẑ)&A(z))u$,
and ;. When w=ẑ, d&0.5A(w) reverses sign and g"(k) has the same sign
as &; for small enough h. Here g and k change as the base wealth changes,
but we make h small enough to guarantee that all k's are sufficiently small.
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To summarize, D is strictly desirable at ẑ when &; is positive and strictly
undesirable otherwise, the opposite at z, z\h.

Adjust b slightly enough that E(B+D)&E(D) retains the same sign as
: but E(B)&E(0) takes on the same sign as &:. Define the first period
lottery x~ 1 to have outcome ẑ with probability p and z with probability
q=1&p. Let the other first period lottery y~ 1 be the same, except we throw
in the lottery =~ =B when z arises. Let the second period lotteries x~ 2 and y~ 2

be 0 and D, respectively. Take p large enough that in the inflexible world
we chose D exactly when D is desirable at ẑ. Define ES(X ) to be the
expected utility after the second period when we start with X in the first
period and, given this start and possible flexibility constraints, choose
the second period optimally. Since ẑ always comes up with the same prob-
ability and we always choose the same second period lottery when it does
come up, we can ignore the ẑ-contribution to ES( y~ 1)&ES(x~ 1). When we
use D for the second period lottery at z, z\h, which is optimal given the
first period lottery when &;>0 and the economy is inflexible, or &;<0
and the world is flexible, ES( y~ 1)&ES(x~ 1)=q(E(B+D)&E(D)) which has
the same sign as :. When we use 0 for the second period lottery at z, z\h,
which is optimal given whichever the first period lottery when &;>0
and the economy is flexible or &;<0 and the world is inflexible,
ES( y~ 1)&ES(x~ 1)=q(E(B)&E(0)) which has the same sign as &:. Thus in
the flexible (resp. inflexible) world the sign of ES( y~ 1)&ES(x~ 1) is the same
as the sign of :; (resp. &:;). Thus by choosing A(ẑ) on the sign (&:u$(z))
side of A(z), x~ 1 is strictly optimal in the flexible world and y~ 1 is strictly
optimal in the inflexible world. We can find such a ẑ else A has the inap-
propriate maximum or minimum at z and A$(z)=0. But then A(ẑ)&A(z)
has the same sign as A"(z) and &:u$(z) for ẑ in some deleted neighbor-
hood of z. K

Alternatively, suppose A"(z)=A$(z) A(z), A$(z)>0, and u$$$$ is continuous
at z. Then the example still works: Let ẑ be slightly larger than z so that
A(ẑ)&A(z) has the same sign as A$(z). Let B be neutral at z and D at z+h.
By the formula for b it is 0.5A(z) within second order terms in h. Similarly,
d=0.5A(z+h)=0.5A(z)+0.5hA$(z) within second order terms. Since
f (h)=E(B+D)&E(B)&E(D)+E(0) is even in h we may use Taylor's
formula with just the term f $$$$(z)h4�24 and a sixth order error term. Then for
small h the 0.5hA$(z) part of d dominates and is multiplied by 12u$$$(z)+
24bu"(z) r 12u$$$(z) + 24(&0.5u"(z)�u$(z)) u"(z) =&12u$(z) A$(z) within
second order terms. Thus f (h) has the same sign 0.5hA$(z)(&12u$(z) A$(z))
and &u$(z) and the example works.

Now suppose u$$$$ is continuous on an interval I. Assume A"&A$A is
zero on I since otherwise the theorem guarantees an example. Solving this
for A and then solving the definition for A for u, the solutions for u, within
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the affine equivalence of u to a+bu(c+dz), are ez, z, z3, z&sin z,
z&sinh z, and z+sinh z. The first two are CARA and there is no example
since the preference between 0 and D is independent of wealth. The next
three satisfy A$>0 and the last paragraph produces an example. Only for
the last u do we not know whether an example exists.

Proof of Proposition 3. Since u is CRRA, we may assume w=1. Let us
also assume without loss of generality that the supremum of | y~ | equals 1.
Let

:$=
1

A(1)
Ey
Ey2=

1
#

Ey
Ey2

and 0<|c&1|<1. Then by the definition of u", |c:$y|�2:$ can be
assumed small enough that &| yc:$y(c&1) #�c|�yu$(1+c:$y)&yu$(1)&
yc:$yu"(1)�| yc:$y(c&1) #�c|. Taking expectations in this inequality yields

&#:$ |c&1| Ey2�Eyu$(1+c:$y)&Ey+c:$#Ey2

=Eyu$(1+c:$y)+(c&1) :$#Ey2

�#:$ |c&1| Ey2.

When c>1 (c<1) the right-hand (left-hand) inequality shows
Eyu$(1+c:$y)�0 (�0) and :�c:$ (:�c:$). This shows we may make :
relatively close (ratio close to 1) to :$ by making Ey�Ey2 small. In par-
ticular assume 0.5:$<:<2:$<0.1.

The Taylor series for u$ about 1 converges uniformly on any symmetric
closed interval about 1 not containing 0. As |:( y1+y2)|�2:$( | y1 |+| y2 | )�
(0.1)2=0.2 we may use this series on the LHS's of equations (11) and (12).
Then the LHS of equations (12) minus twice equation (11) becomes

:
�

k=1

1
k!

u (k+1)(1) :k[E( y1+y2)k+1&Eyk+1
1 &Eyk+1

2 ]

= :
�

k=1

1
k!

u (k+1)(1) :k :
k

i=1
\k+1

i + EyiEyk+1&i

Now Ey<Ey2 by assumption and for j>1, |Ey j |�E | y2y j&2 |�
Ey21 j&2=Ey2. Thus for the tail of our series
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} :
�

k=4

1
k!

uk+1(1) :k :
k

i=1
\k+1

i + EyiEk+1&i }
� :

�

k=4
} 1
k!

u(k+1)(1) :k2k+1(Ey2)2 }
�

25:4

(0.5)4 :
�

k=4

1
k!

u(k+1)(1)(&0.5)k (Ey2)2

�29:4u$(1&0.5)(Ey2)2

=2#+9:4(Ey2)2.

The remaining terms are

u"(1) :2(Ey)2+ 1
2 u$$$(1) :26EyEy2+ 1

6u$$$$(1) :3[6(Ey2)2+8EyEy3]

=&#:[2(Ey)2&3(#+1) :EyEy2+(#+1)(#+2) :2(Ey2)2]

&4#(#+1)(#+2) :3EyEy3�3.

For the last term |:3EyEy3|�:3 |Ey| |Ey2|=:3:$#(Ey2)2�2#:4(Ey2)2. If
we substitute :$ for : in the bracket we get

2(Ey)2&3(#+1) :$EyEy2+(#+1)(#+2) :$2(Ey2)2

=[2#2&3(#+1) #+(#+1)(#+2)] :$2(Ey2)2=2:$2(Ey2)2.

This substitution introduces small relative error in each term in the brace
where it is small absolute error which may be made small enough that
before the substitution the brace is at least 1 and the original bracket
(before we substituted for :) is at least (:2�4)(Ey2)2. Then, with : suf-
ficiently small &#: times the bracket is still negative even after adding in
the last term and the tail of the series. K

Proof of Proposition 4.

Without loss of generality, we hereafter normalize : f
1 to be equal to

unity. We look at conditions on the utility function which guarantee that
the following condition holds:

Ey~ 1u$(w+y~ 1)=0 and Ey~ 2u$(w+y~ 2)=0

O E( y~ 1+y~ 2) u$(w+y~ 1+y~ 2)�0, (22)

for any w, y~ 1 and y~ 2 , and for u$(z)=z&#. To solve this problem, we use the
``bivariate diffidence theorem'' obtained by Gollier and Kimball [6]:
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Theorem 1. Suppose that function h(x, y) satisfies h(x, 0)#0 and
h(0, y )#0. Then, as long as f $1(0){0 and f $2(0){0, the two following condi-
tions are equivalent:

v \y~ 1 , y~ 2 : Ef1( y~ 1)=f1(0) and Ef2( y~ 2)=f2(0) O Eh( y~ 1 , y~ 2)�0.

v h( y1 , y2) & $1( y1)( �h
�y1

)(0, y2) & $2( y2)( �h
�y2

)( y1 , 0) + $1( y1) $2( y2)
( �2h

�y1 �y2
)(0, 0)�0, for all y1 in the domain of f1 , y2 in the domain of f2 and

y1+y2 in the domain of h, with $i (t)=( fi (t)&fi (0))�f $i (0).

We apply this Theorem with h( y1W , y2) = ( y1 + y2) u$(w + y1 + y2) &
y1 u$(w+y1)&y2u$(w+y2), f1( y1)=y1 u$(w+y1) and f2( y2)=y2u$(w+y2).
Accordingly, condition (22) is equivalent to

H(#, w, y1 , y2)=( y1+y2) _u$(w) u$(w+y1+y2)
u$(w+y1) u$(w+y2)

&1&
&y1 y2[2A(w)&A(w+y1)&A(w+y2)]�0, (23)

for all w, y1 , and y2 such that w > 0, w + y1 > 0, w + y2 > 0 and
w+y1+y2>0. Notice that H#0 under CARA. With u$(z)=z&#, condi-
tion (23) can be rewritten as

H(#, w, y1 , y2)=( y1+y2) _(w+y1)# (w+y2)#

w#(w+y1+y2)# &1&
&

#y1 y2[w( y1+y2)+2y1 y2]
w(w+y1)(w+y2)

�0. (24)

The analysis of function H shows that it is nonpositive in the relevant
domain if # is less or equal to 1. Let us denote

r(#)=
H(#, w, y1 , y2)

#
=( y1+y2) f (#)&b,

with

v f (#)=(exp(a#)&1)�#;

v a=log(w+y1)(w+y2) w&1(w+y1+y2)&1;

v b=y1 y2(w( y1+y2)+2y1 y2) w&1(w+y1)&1 (w+y2)&1.

It is easily proved that f is increasing and that

r(1)=&
( y1 y2)2 (w+(w+y1+y2))

w(w+y1)(w+y2)(w+y1+y2)
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and

r(&1)=&
2( y1 y2)2

w(w+y1)(w+y2)
�0.

Suppose that 0<#�1. If y1+y2 is positive, then r is increasing in #.
Thus, r(#)�r(1)�0. If y1+y2 is negative, r is decreasing in #. Thus,
r(#)�r(&1)�0. This proves that H is nonpositive when # is less than 1.

If # is larger than 1, H is positive for some values of (w, y1 , y2). Indeed,
fix y1 , y2 positive and let w approach 0. Then the term with w# in the
denominator dominates and makes H positive. K
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