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 LINEAR REGRESSION WITH NON-NORMAL ERROR TERMS

 Richard Zeckhauser and Mark Thompson *

 Background and Introduction

 T HIS paper considers the linear regression
 technique when the error term is not as-

 sumed to have a normal distribution. The
 weaker assumption is made that errors are dis-
 tributed by a power distribution of the class
 made popular by such papers as Dianada [4],
 Turner [10], and Box and Tiao [2 and 3]. For
 these distributions the density at z depends on
 three parameters, a, a-, 0, and is given by

 f(z; pto, 9) = k(, 9)exp{ - J?
 (la)

 where

 k ,(90) = [2or(1 + 1/0)]-. (lb)
 The ranges of the variables are

 -co < z < co,

 -00 < K < c,

 a > O and 9 > 0. (1c)
 The density functions are centered about the
 location parameter, p; a- is the scale parameter.
 The parameter 0 measures the degree of peak-
 edness (kurtosis) of the distribution. The mul-
 tiplicative constant, k (a-, 0), which incorporates
 the well-tabulated gamma function, serves as
 a normalizing factor to insure that the area
 under the density curve is one.' For the normal
 distribution 0 = 2; 0 = 1 gives the double ex-
 ponential distribution; where 0 tends to oo, the
 distribution tends to the rectangular.
 We shall investigate the model

 y,-=a + bx, + ,l i6 = 1, . .. , n,
 where the manifest observations are the (xi, y,)
 pairs, and where the error random variables,
 the ui's, are independent, identically distributed
 according to (1) with ,u = 0. The parameters
 of the model 2 are a, b, a-, and 0.

 Given the observations, the likelihood of the
 parameters is found by multiplying together
 the likelihoods for the individual error random
 variables. The likelihood of the parameters
 given the entire sample is

 n

 L(a, b, o:,)= II f(Y Ia + bx,, o-, 0) (2)
 l=l

 = kn (a,0) eXp{ , S} (3a)

 where
 n

 S = Xy IY-a -bxjJO; (3b)
 i=1

 and where the vectors of observations in the
 likelihood function are suppressed for conve-
 nience. For this general family of distributions,
 o- has no effect on the maximum likelihood pa-
 rameters of the regression line.3 Throughout
 this discussion we will look at the generalized
 likelihood function of a, b, 0 defined by

 L* (a, b, 0) = tL(a, b, 0, r).

 It may be seen from the form of (3) that with
 0 = 2 the maximum likelihood estimates of a
 and b are the least squares estimates, and that
 with 0 = 1 the maximum likelihood estimates
 of a and b are those that minimize the sum of
 absolute deviations.

 Least Squares Regression
 The least squares technique has traditionally

 been justified by two assumptive arguments:
 (1) that it provides the maximal likelihood re-
 gression coefficients; and (2) that of all un-
 biased linear estimators, least squares has mini-
 mal variance about the regression line. Both of
 these properties have at times been adduced to
 call least squares the "best" of regression tech-
 niques. Because least squares possesses in ad-
 dition the attribute of computational facility,
 this method long has reigned as the foremost
 tool of the social scientist in reducing data to
 mathematically descriptive relationships.

 The first argument above assumes a normal
 distribution of the error terms. We argue that

 * Professor Howard Raiffa generously gave us his expert
 advice on this paper. A referee made suggestions which
 helped us clarify our argument. The research was supported
 by the Society of Fellows, the Harvard Institute of Eco-
 nomic Research, and the Public Policy Program of the
 Kennedy School of Government.

 'This may be seen from the derivation,

 e- ddx (1/0) J e7't1/01dt =- r (i/o)

 J or ease of cor (i + loscs
 2'For ease of computation and exposition we discuss only-

 two-variable regressions. Multivariate regressions introduce
 no new conceptual problems.

 'The maximum likelihood T is given by (OS/n)'!0.

 [ 280 ]
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 LINEAR REGRESSION WITH NON-NORMAL ERROR TERMS 281

 this supposition is often unwarranted and shall
 show that significant gains in likelihood may
 be achieved when the regression technique al-
 lows for the more general class of error distri-
 bution defined in (1).

 Various conditions may render inoperative
 the Central Limit Theorem and thus vitiate the
 a priori hypothesis of a normal error distribu-
 tion. The number of errors making significant
 contributions to the error term is quite often
 small and these factors treated as random vari-
 ables may be dependent. Unless these few
 factors are themselves normally distributed,
 they will not aggregate to produce a normal
 distribution of the overall error term. Further-
 more, the presence of non-random aspects of
 human error, as well as the fact that few
 studied relationships are truly linear, will fur-
 ther weaken any argument that errors are nor-
 mally distributed.

 The second assumptive argument, the well-
 known Gauss-AMlarkov result, makes the im-
 plicit assertion that variance is a valuable mea-
 sure in gauging the efficiency of the fit of a
 regression line. We argue that the value and
 significance of this measure diminish as the
 underlying error distribution diverges from the
 normal. Note, for example, that for error dis-
 tributions of the class in the preceding section
 defined by 0 - 1, the variance of the errors
 about the true regression line is infinite.4 This
 fact means that in many cases of interest any
 variance measure will be utterly impractical
 and misleading as a measure of the efficiency of
 a regression.

 Whenever the precise best fit of a regression
 line is sought and the non-normality of the
 error terms cannot justify the use of least
 squares, we assert that it is desirable that the
 regression technique allow for the general class
 of error distributions considered in this paper.
 We support this contention below with exam-
 ples drawn from two classic papers. There, we
 compare coefficient estimates and likelihood
 values derived using least squares and using the
 more general regression technique proposed
 here. We will find that the estimated coeffi-
 cients will differ for the two methods, and that

 the advantage in terms of likelihood of the pro-
 posed method is significant.

 Least squares has one unassailable advan-

 tage, its simplicity. The computational process
 used to prepare this paper takes several times
 longer than least squares, but it still turned out

 to consume little computer time for the kinds
 of examples considered here. For regressions

 involving a great number of coefficients, com-

 puter cost might be more of a consideration.
 Even for these cases we believe that the advent

 of rapid new computing machinery together
 with experience with relevant algorithms might

 soon make it worthwhile to employ the regres-
 sion procedures discussed here whenever the
 assumptions motivating the least squares pro-
 cedure are not a reasonable specification.

 Maximum Likelihood Estimates for a, b, and 0
 for Real Data

 In what follows we will apply maximum like-
 lihood methods to some well-known sets of data
 in order to compare results derived with least
 squares with those that are achieved when in
 addition to a and b, 0 also is estimated.

 With the aid of these empirical examples, we
 were able to discern the general shapes of like-
 lihood functions for different values of 0. Imag-
 ine a and b on the axes of the horizontal plane,
 with the likelihood of the regression parameters
 conditional upon the sample given by the height
 above the plane. In general, the likelihood sur-
 face will have a ridge running obliquely across
 the plane. The highest point on this ridge will
 correspond to the (a, b) combination that gives
 the maximum likelihood regression line for the
 particular value of 8.

 The shape of the likelihood surface was in-
 vestigated analytically and with the aid of an
 on-line computer. For 0 = 1, the likelihood
 surface is composed of many planar segments.
 For 0 > 1, the ridge is round-topped, and the
 slope near the maximum is rather gentle. The
 first derivatives of the likelihood with respect
 to a and b are necessarily continuous, and the
 sections of the likelihood surface parallel to the
 axes are unimodal. With 0 < 1, the sections of
 the likelihood surface parallel to the axes are
 no longer unimodal; the ridge top is sharply
 peaked and non-differentiable. There are in
 addition several minor ridges, each correspond-

 4 The unboundedness of a variable is implicit in the con-
 sideration of any distribution, such as the normal, which
 has infinite tails. Distributions which also have infinite
 variances imply nothing further in this regard.
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 282 THE REVIEW OF ECONOMICS AND STATISTICS

 ing to a set of coordinates (a, b) that takes the
 regression line through a data point. The sec-
 ond derivatives in the neighborhood of a maxi-
 mum become positive, thereby, incidentally,
 rendering all quadratic optimization techniques
 infeasible.

 The maximum likelihood values of a and b
 will depend significantly on the 0 for which
 they are estimated. Thus, even if we are pri-
 marily interested in the likelihood function for
 a and b, our results will be strongly influenced
 by any assumptions about the value of 0.

 We can best illustrate with an empirical ex-
 ample. The paper by Arrow et al. [ 1 ] on the
 estimation of CES production functions gives
 cross-nation data for the textiles spinning and
 weaving industry.5 The regression was of the
 logarithm of value added per man year on the
 logarithm of the wage rate, each measured in

 dollars.
 Table 1 gives the maximum likelihood esti-

 mates of a and b for each of four values of 0.

 Quite obviously, if the true value of 0 were 0.5
 it would not be very satisfactory to use maxi-
 mum likelihood estimates that were derived on
 the assumption that 0 equals 2. One way
 around this difficulty is to derive maximum
 likelihood estimates with 0 as well as a and b

 being estimated. That is, with 0 set equal to

 0, its maximum likelihood estimate.
 In each of four examples we found the maxi-

 mum likelihood estimates for a and b with 0
 specified equal to 2. These were the least
 squares estimates. These estimates were com-
 pared with the maximum likelihood estimates
 for the regression parameters when 0 was al-
 lowed to take its maximum likelihood value, 0.
 The examples were:

 I) The cross-section regression to estimate

 the textiles spinning and weaving production
 function.

 II) A cross-section regression of 1965 United

 States foreign aid to Near East and South Asian
 countries on their populations.

 III) A time-series regression of consumption
 on the supply of money for the years 1897-
 1958. The data and original regression appear
 in a classic article by Milton Friedman [5].

 IV) A time-series regression of national
 income on money supply for the 1897-1958

 period that also is taken from Friedman's ar-
 ticle.6

 Table 2 shows the results of these calcula-
 tions.

 The values of the maximum likelihood re-
 gression parameters vary greatly when 0 is set

 equal to 0 rather than assuming that 0 = 2.
 The intercepts were changed from 15.0 to 57.1
 per cent. In the four examples, the slopes of

 the regression lines changed less on a percent-
 age basis than did the intercepts; they changed
 from 1.8 to 9.3 per cent. In the second exam-
 ple, the positive slope and intercept both de-
 creased.7

 Unfortunately, without much further statis-
 tical work, there will be no easy formulas which
 give the distributions of the maximum likeli-
 hood estimators of the regression line when 0
 is allowed to take on values different from 2.
 This makes it impossible to employ the usual
 classical tests for the significance of regression
 coefficients. It would of course be possible to
 employ the conditional sampling distributions
 of the estimators (given the population param-
 eters) to derive reference tables of boundary
 values that indicate different levels of signifi-
 cance. Such tables are not presented in this
 paper. An alternate procedure, more in the
 spirit of Bayesian investigations, is available.
 It compares aggregate likelihoods with and
 without the inclusion of a particular regression
 coefficient. The framework of the likelihood

 TABLE 1. - TEXTILES SPINNING AND WEAVING
 MAXIMUM LIKELIHOOD PARAMETERS OF REGRESSION

 LINE FOR DIFFERENT VALUES OF 0

 Value of 0

 0.5 1.0 2.0 3.0

 a 2.543 2.119 2.023 1.733
 b 0.73 0.79 0.81 0.85

 This was the first mentioned of the two industries for
 which they presented the greatest number of observations.

 ' The data for the second example is taken from The
 World Almanac [12]. The units are aid in millions of dol-
 lars and population in millions. The units for the third and
 fourth examples are millions of current dollars.

 7The calculations of percentage changes were made be-
 fore rounding. Percentage changes in the intercept will de-
 pend upon units of measurement if logs of variables enter
 the regression. The change in a in example I therefore has
 little meaning.
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 LINEAR REGRESSION WITH NON-NORMAL ERROR TERMS 283

 TABLE 2.- MAXIMUM LIKELIHOOD ESTIMATES OF THE REGRESSION PARAMETERS a AND b
 FOR FOUR EXAMPLES WHEN 0 = 2 AND WHEN 0 = 0, ITS MLE VALUE

 Specification Examples

 I II III IV

 a b a b a b a b

 With 9 = 2, least squares 2.023 .81 23.24 1.81 7813 1.31 9075 1.47
 A

 With 9 = 9, the MLE value 2.574 .73 9.98 1.78 6615 1.34 7715 1.50
 A

 The MLE value , 0 .45 .6o .50 .675

 comparison procedure is set forth in the ma-
 terial that follows.

 Likelihood Gains and Their Significance
 Table 3 shows the gains in likelihood that

 were achieved by estimating rather than as-
 suming a value for 0.

 Table 3 shows that the gain in likelihood per
 data point ranges from 14.9 per cent to 37.8
 per cent. This appears to be a significant gain,
 but it is difficult to get a feeling for what is a
 large and what is a small gain when an addi-
 tional parameter is estimated.

 To obtain a basis for comparison, we calcu-
 lated the likelihood losses incurred when values
 of a and b are pre-specified in the textiles spin-
 ning and weaving example. We assumed 0
 equal to 2, pre-specified the value of a and b
 away from its maximum likelihood value, and
 then calculated the maximum likelihood allow-
 ing the other regression parameter and o- to
 vary. Table 4 gives the results.

 The last row of table 4 shows that the gains in
 likelihood per data point derived by freeing a
 or b from fairly restrictive pre-specifications
 were relatively small, ranging from 0.4 to 7.4
 per cent.

 Maximum Likelihood Values of 0
 It is somewhat startling to note that the

 maximum likelihood 0 in each of our four ex-
 amples was significantly less than one. This
 means that in each case the distribution of the
 error term that gives the greatest likelihood is
 one with more density in the tails in compari-

 son to the central hump than is consistent with
 any normal distribution. For such a distribu-
 tion, to estimate the regression parameters
 using least squares is highly inefficient.

 Least-squares procedures weight large errors
 relatively much more heavily than does the
 maximum likelihood regression procedure for
 a 0 significantly less than 2. If the true 0 is
 equal to, let us say, 0. 7, but we use least
 squares estimation techniques, we will be giving
 much too much weight to eccentric points. This
 will exert a randomizing effect on the estimated
 regression line. If the true 0 is significantly
 greater than 2, the converse will be true. A
 random factor will be introduced because least

 squares underweights eccentric points. By
 failing to use the true, or approximately true,
 value of 0 when 0 is far from 2, least squares
 incurs a significant loss of efficiency.

 TABLE 3. - MAXIMUM VALUES OF THE LIKELIHOOD FUNCTION

 FOR FoUR EXAMPLES WHEN 0=2 AND WHEN 0 0, ITS MLE VALUE

 Examples

 I II III IV

 Log L* with 9 2, least squares 2.137 -69.06 -676.9 -678.1
 A

 Log L* with 9 =, the MLE value 5.133 -66.94 -657.0 -669.5
 A

 Ratio L* with = 19.298 8.331 4.498X108 5431
 L* with 9 = 2

 Number of observations = n 18 13 62 62
 The n" root of ratio 1.181 1.177 1.378 1.149
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 TABLE 4.-TEXTILES SPINNING AND WEAVING.
 THE EFFECT OF PRESETTING THE VALUE OF ONE REGRESSION PARAMETER ON THE MAXIMUM VALUE

 OF THE LIKELIHOOD FUNCTION AND THE MAXIMUM LIKELIHOOD ESTIMATE OF THE OTHER PARAMETER

 Pre-Specification

 Parameter None a=2.5 a=1.5 b=.7 b=.78 b=.083 b=0.9

 a 2.023 2.5 1.5 2.723 2.186 1.864 1.396
 b 0.805 0.734 0.884 0.7 0.78 0.83 0.9

 Log L* 2.137 1.510 1.388 0.835 2.055 2.059 1.079
 Ratio of L* without
 restrictions to L*
 with a parameter pre-
 specified 1.871 2.115 3.743 1.085 1.081 2.881
 The nth root of ratio (n- 18) 1.035 1.042 1.074 1.005 1.004 1.061

 Effect of Estimating 0
 It might be objected that the likelihood im-

 provements achieved using our procedures were
 primarily attributable to the loss of one degree
 of freedom when 0 was made variable. For
 example, even if the distribution of the error
 term were normal, we would expect random
 aspects of small samples to lead to fluctuating
 values for the maximum likelihood estimate
 of 0.

 To test this conjecture we ran four simula-
 tions with a pre-determined regression equation
 and error terms drawn from a table of random
 normal deviates. There were forty data points
 in each simulation. The values of the inde-
 pendent variable were assigned at unit inter-
 vals. For each of the simulations we calculated
 the maximum likelihood with a and b variable,
 but 0 set equal to its known true value of 2.
 Then we calculated the maximum likelihood
 for each sample allowing 0 to vary as well. The
 results are shown in table 5.

 In these four simulations, we note with some
 surprise that the maximum likelihood 0's are

 far from two. What is much more startling is
 that the likelihood gains are so small given
 these sizable divergences. The gains from esti-
 mating 0 rather than using its known true value
 ranged from 0.6 per cent to 2.8 per cent. This
 provides an interesting extension of a previous
 observation. For 0 equal to 2, the likelihood
 function has a rather gentle slope in the neigh-
 borhood of the maximum not only for changes
 in a and b, but for changes in 0 as well.

 This observation has a practical corollary.
 In assessing the applicability of least squares
 we thought first to use the optimal likelihood
 O as a measure of normality. Although this in
 a rough way is feasible, it now appears pref-
 erable to use the likelihood gain per data point
 from estimating 0 as the yardstick. Thus, while
 Example I is by either standard the least
 amenable to least squares, we conclude on
 grounds of the likelihood gains that Example
 II and not Example III - as one might have
 expected from its lower 0- includes the next
 most non-normal data.

 The likelihood gains from freeing 0 in our
 simulations are quite small in comparison to
 those that are achieved by freeing 0 in our real
 world examples. This is to be expected. Even
 though the maximum likelihood estimate for a
 parameter may be far from its true value, the
 likelihood gain to be derived by using the
 former rather than the latter should not be ex-
 pected to be great. Given the magnitude of
 the likelihood gains that we achieved in our
 four empirical examples, we would conclude
 that the observed maximum likelihood values
 were not in fact chance occurrences with the
 true 0 being close to 2.8

 TABLE 5. -LIKELIHOOD GAINS FROM SETTING 0 EQUAL
 TO ITS MLE VALUE RATHER THAN ITS KNOWN VALUE
 FOUR SIMULATIONS WITH NORMAL ERROR RANDOM

 VARIABLES, WITH TRUE 0=2

 Log L* with 0 = 2,
 its true value -60.377 -55.569 -50.477 -57.146

 Log L* with 0=0,
 the MLE value -59.418 -54.482 -49.469 -56.945

 A

 The MLE value, 0 3.25 1.25 3.928 2.825

 L* with 0= 0 Ratio 2.609 2.965 2.740 1.260
 L* with 0=2

 The ne" root of ratio
 (n=40) 1.024 1.028 1.026 1.006  I To deal with cases that might be less clear-cut, we
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 Summary and Conclusions

 This paper presents a procedure for esti-
 mating linear regression lines when errors are
 distributed by one of a class of power distribu-
 tions. The degree of peakedness of these dis-
 tributions is indicated by the parameter 6; it
 equals 2 in the case of the normal distribution.

 The maximum likelihood parameters of a
 regression line can be significantly affected by
 the value of 6 that defines the distribution with
 which they are estimated. If the true 0 is far
 from 2, least squares regression will give ineffi-
 cient estimates of a and b.

 The four empirical examples showed that
 there can be sizeable gains in likelihood if 6 is
 estimated rather than pre-specified equal to 2.

 We noted with some surprise that the maximum
 likelihood values for 0 in the four examples
 were significantly less than one, that the maxi-
 mum likelihood distributions of the error term
 were relatively flat with long tails. Future
 studies will investigate whether this is a gen-
 eral phenomenon for errors about a regression
 line. This will give us some insight into the
 question of what values of 0 should be ex-
 pected.

 A logical extension of this analysis would be
 to adopt a fully Bayesian approach: (1) place
 a joint prior distribution on 0, a, b, ci-; (2) up-
 date this prior by multiplying it by the likeli-
 hood function; (3) integrate out the nuisance
 parameters cr and 0 to get a joint posterior on
 a and b. This would obviate the need to have
 any procedure to test the null hypothesis that
 0 - 2.

 All of the evidence we uncovered leads us
 to the conclusion that if accurate estimation of
 a linear regression line is important, it will
 usually be desirable to estimate not only the
 coefficients of the regression line, but also the
 parameters of the power distribution that gen-
 erated the errors about the regression line. The
 effect on the estimates of regression coefficients
 may not be small.

 devised a simple procedure to test whether a 0 for a power
 distribution, either assumed or estimated from a sample,
 was consistent with the observed sample. The procedure
 computes the ratio of the width of the interval that contains
 the third of the observations with the smallest absolute
 values, to the width of the interval that contains the next
 third. The greater the true value of 0, the smaller is the
 expected value of this ratio. As a complement to this test
 we ran some Monte Carlo studies to get the distribution of
 this ratio for the normal distribution. The results of these
 tests supported, but did not provide overwhelming evidence
 for, our conclusions about the values of 0. The tests and
 results, too lengthy to detail here, are available on request.

 APPENDIX

 The Computation of Maximum Likelihood Parameters

 We start with 0 = 2 and find maximum likelihood
 estimates for a and b which are the least squares esti-
 mates. Next, using these estimates of a and b we find
 the a and 0 that maximize the likelihood function. Then
 we find the maximum likelihood a and b for this particu-
 lar 0 value; o has no influence. This procedure is then
 iterated with some creative modification to be described.
 To find the maximizing values it is useful to know the
 derivatives of the likelihood function with respect to a,
 b, and 0. They are,

 Z log L 0n
 = - 2 jy,-a-bx4fjl -x4.sgn(y4-a-bxO,

 Da 0g41

 log L 0 n
 = - 2 I yi-a-bxt O1sgn(y-a-bx4),

 3b O18 -
 and

 a logL -D Slogor nrJ(1+1/0)
 Z [ + _ + uO uO o2 r(1?1/0)'

 where
 n

 D = 2; y4-a-bxi log I yi-a-bx ,

 and S is as indicated in (3b) in the text. The notation
 "sgn" denotes the sign function which gives the values
 of one for positive operands and the minus one for
 negative operands. The combined factor r(1?+1/c)!
 r(1+1/o) from the third term of the derivative with
 respect to 0 is the digamma function. If only a finite
 set of values of 0 is used, the well-tabulated values of
 this factor may be held in memory. For continuously
 varying 0, Euler's equation

 r'(x)/r(x)=-c--+ 2t.-
 X 1=1 Z X+i

 where c is Euler's constant, can serve as the basis of
 a simple subroutine to determine the value of this factor.

 In the conventional method of computing, the search
 follows the gradient in the ab-plane to the likelihood
 maximum. The major problem is determination of step
 size. Because of the erratic behavior of the second
 derivative with 0 < 1, the step determination formula
 for quadratic maxima could not be used. The most
 efficient method found involved presetting the step
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 286 THE REVIEW OF ECONOMICS AND STATISTICS

 length and altering it as the subsequent searches showed
 the best length to be either longer or shorter. 0 was
 periodically checked and varied to keep the general
 likelihood-maximizing G for the new combination of a,
 b. Because of the nature of the likelihood topology of
 a curving ridge, the optimization procedure of Rosen-
 brock, designed for such terrains, was also found ef-
 ficient when modified slightly.

 Problems of this type are also uniquely suited to the
 on-line method of programming. With the programmer
 at the console, errors are found immediately and the
 programmer acquires a much better grasp of the na-
 ture of his object function than can be obtained from
 printed output. This intuition acts along a feedfor-
 ward principle in the search for a maximum and
 achieves efficiency that cannot be preprogrammed. For
 computation ease at the console, the program was modi-
 fied so that for a given b and 0 the likelihood-maximizing
 a was found automatically. The program operator
 could consider his problem one of two variable opti-
 mization.

 Copies of the program are available on request.
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